Skip to content
Snippets Groups Projects
Commit e7392378 authored by Martin Hustoles's avatar Martin Hustoles
Browse files

bug fix

parent 1bf3de8f
No related branches found
No related tags found
No related merge requests found
......@@ -10,3 +10,5 @@ library(learnr)
install.packages(readxl)
install.packages("readxl")
library("readxl")
install.packages("knitr")
install.packages("knitr")
......@@ -18,6 +18,9 @@ runtime: shiny_prerendered
```{r setup, include=FALSE}
library(learnr)
library(readxl)
library(knitr)
library(dplyr)
current_dir = getwd()
data <- read_excel(file.path(current_dir, "Datensatz.xlsx"))
......@@ -237,10 +240,12 @@ Für die 2. Hypothese können wir die Lineare Regression und die Koeffizienz ber
```{r}
daten <- data.frame(
Jahr = c(1998:2021),
Frauen = c(as.numeric(unlist(data[-1 ,9]))),
Männer = c(as.numeric(unlist(data[-1 ,8])))
Frauen = c(as.numeric(unlist(data[2:25 ,9]))),
Männer = c(as.numeric(unlist(data[2:25 ,8])))
)
kable(daten$Frauen)
daten$Frauen_Anteil <- daten$Frauen / (daten$Frauen + daten$Männer) * 100
daten$Männer_Anteil <- daten$Männer / (daten$Frauen + daten$Männer) * 100
......
......@@ -647,31 +647,373 @@ class="section level3">
</div>
<div id="section-datenanalyse" class="section level2">
<h2>Datenanalyse</h2>
<p>Hier ist uner tatsächlicher Datensatz:</p>
<pre class="r"><code>print(data)</code></pre>
<pre><code>## # A tibble: 31 × 10
## Semester Deutsche ...3 ...4 Ausländer ...6 ...7 Insgesamt ...9 ...10
## &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;
## 1 &lt;NA&gt; männlich weibli… Insg… männlich weib… Insg… männlich weib… Insg…
## 2 WS 1998/99 907403 727254 1634… 92321 73673 1659… 999724 8009… 1800…
## 3 WS 1999/00 872178 723246 1595… 95460 79605 1750… 967638 8028… 1770…
## 4 WS 2000/01 870016 741820 1611… 99906 87121 1870… 969922 8289… 1798…
## 5 WS 2001/02 887462 774628 1662… 107831 98410 2062… 995293 8730… 1868…
## 6 WS 2002/03 903218 808567 1711… 117205 1098… 2270… 1020423 9183… 1938…
## 7 WS 2003/04 935718 837611 1773… 125826 1203… 2461… 1061544 9579… 2019…
## 8 WS 2004/05 901979 814795 1716… 124220 1221… 2463… 1026199 9369… 1963…
## 9 WS 2005/06 912696 824712 1737… 124447 1239… 2483… 1037143 9486… 1985…
## 10 WS 2006/07 909740 822934 1732… 122923 1234… 2463… 1032663 9463… 1979…
## # ℹ 21 more rows</code></pre>
<p><em>Information: Die hier dargestellten Tabellen beinhalten zur
Veranschaulichung jeweils nur die ersten 10 Zeilen. Unser Datensatz
besteht aus 24 Zeilen.</em></p>
<p>Hier ist uner tatsächlicher Datensatz aus der Excel-Datei:</p>
<pre class="r"><code>kable(head(data, 10))</code></pre>
<table style="width:100%;">
<colgroup>
<col width="11%" />
<col width="9%" />
<col width="9%" />
<col width="10%" />
<col width="10%" />
<col width="9%" />
<col width="10%" />
<col width="10%" />
<col width="9%" />
<col width="10%" />
</colgroup>
<thead>
<tr class="header">
<th align="left">Semester</th>
<th align="left">Deutsche</th>
<th align="left">…3</th>
<th align="left">…4</th>
<th align="left">Ausländer</th>
<th align="left">…6</th>
<th align="left">…7</th>
<th align="left">Insgesamt</th>
<th align="left">…9</th>
<th align="left">…10</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">NA</td>
<td align="left">männlich</td>
<td align="left">weiblich</td>
<td align="left">Insgesamt</td>
<td align="left">männlich</td>
<td align="left">weiblich</td>
<td align="left">Insgesamt</td>
<td align="left">männlich</td>
<td align="left">weiblich</td>
<td align="left">Insgesamt</td>
</tr>
<tr class="even">
<td align="left">WS 1998/99</td>
<td align="left">907403</td>
<td align="left">727254</td>
<td align="left">1634657</td>
<td align="left">92321</td>
<td align="left">73673</td>
<td align="left">165994</td>
<td align="left">999724</td>
<td align="left">800927</td>
<td align="left">1800651</td>
</tr>
<tr class="odd">
<td align="left">WS 1999/00</td>
<td align="left">872178</td>
<td align="left">723246</td>
<td align="left">1595424</td>
<td align="left">95460</td>
<td align="left">79605</td>
<td align="left">175065</td>
<td align="left">967638</td>
<td align="left">802851</td>
<td align="left">1770489</td>
</tr>
<tr class="even">
<td align="left">WS 2000/01</td>
<td align="left">870016</td>
<td align="left">741820</td>
<td align="left">1611836</td>
<td align="left">99906</td>
<td align="left">87121</td>
<td align="left">187027</td>
<td align="left">969922</td>
<td align="left">828941</td>
<td align="left">1798863</td>
</tr>
<tr class="odd">
<td align="left">WS 2001/02</td>
<td align="left">887462</td>
<td align="left">774628</td>
<td align="left">1662090</td>
<td align="left">107831</td>
<td align="left">98410</td>
<td align="left">206241</td>
<td align="left">995293</td>
<td align="left">873038</td>
<td align="left">1868331</td>
</tr>
<tr class="even">
<td align="left">WS 2002/03</td>
<td align="left">903218</td>
<td align="left">808567</td>
<td align="left">1711785</td>
<td align="left">117205</td>
<td align="left">109821</td>
<td align="left">227026</td>
<td align="left">1020423</td>
<td align="left">918388</td>
<td align="left">1938811</td>
</tr>
<tr class="odd">
<td align="left">WS 2003/04</td>
<td align="left">935718</td>
<td align="left">837611</td>
<td align="left">1773329</td>
<td align="left">125826</td>
<td align="left">120310</td>
<td align="left">246136</td>
<td align="left">1061544</td>
<td align="left">957921</td>
<td align="left">2019465</td>
</tr>
<tr class="even">
<td align="left">WS 2004/05</td>
<td align="left">901979</td>
<td align="left">814795</td>
<td align="left">1716774</td>
<td align="left">124220</td>
<td align="left">122114</td>
<td align="left">246334</td>
<td align="left">1026199</td>
<td align="left">936909</td>
<td align="left">1963108</td>
</tr>
<tr class="odd">
<td align="left">WS 2005/06</td>
<td align="left">912696</td>
<td align="left">824712</td>
<td align="left">1737408</td>
<td align="left">124447</td>
<td align="left">123910</td>
<td align="left">248357</td>
<td align="left">1037143</td>
<td align="left">948622</td>
<td align="left">1985765</td>
</tr>
<tr class="even">
<td align="left">WS 2006/07</td>
<td align="left">909740</td>
<td align="left">822934</td>
<td align="left">1732674</td>
<td align="left">122923</td>
<td align="left">123446</td>
<td align="left">246369</td>
<td align="left">1032663</td>
<td align="left">946380</td>
<td align="left">1979043</td>
</tr>
</tbody>
</table>
<div id="section-eigenschaften-der-daten" class="section level3">
<h3>Eigenschaften der Daten</h3>
<p>Nun können wir Eigenschaften wie Mittelwert, Meidan, Varianz und die
Standartabweichung berechnen. Dazu nutzen wir die 8. und 9. Spalte.
Diese enthalten die gesamte Anzahl der Männlichen und Weiblichen
Student:innen der Jahre:</p>
<pre class="r"><code>selected_data &lt;- data[ ,8:9]
kable(head(selected_data, 10))</code></pre>
<table>
<thead>
<tr class="header">
<th align="left">Insgesamt</th>
<th align="left">…9</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="left">männlich</td>
<td align="left">weiblich</td>
</tr>
<tr class="even">
<td align="left">999724</td>
<td align="left">800927</td>
</tr>
<tr class="odd">
<td align="left">967638</td>
<td align="left">802851</td>
</tr>
<tr class="even">
<td align="left">969922</td>
<td align="left">828941</td>
</tr>
<tr class="odd">
<td align="left">995293</td>
<td align="left">873038</td>
</tr>
<tr class="even">
<td align="left">1020423</td>
<td align="left">918388</td>
</tr>
<tr class="odd">
<td align="left">1061544</td>
<td align="left">957921</td>
</tr>
<tr class="even">
<td align="left">1026199</td>
<td align="left">936909</td>
</tr>
<tr class="odd">
<td align="left">1037143</td>
<td align="left">948622</td>
</tr>
<tr class="even">
<td align="left">1032663</td>
<td align="left">946380</td>
</tr>
</tbody>
</table>
<p>Wir teilen die Daten in männlich und weiblich. Zusätzlich werden die
Spalten etwas konvertiert:</p>
<pre class="r"><code>data_male &lt;- as.numeric(unlist(selected_data[-1 ,1]))
data_female &lt;- as.numeric(unlist(selected_data[-1 ,2]))</code></pre>
<p>Und Berechnen:</p>
<pre class="r"><code>print(paste(&quot;Median male: &quot;, median(data_male), &quot;Median female: &quot;, median(data_female)))</code></pre>
<pre><code>## [1] &quot;Median male: NA Median female: NA&quot;</code></pre>
<pre class="r"><code>print(paste(&quot;Varianz male: &quot;, var(data_male), &quot;Varianz female: &quot;, var(data_female)))</code></pre>
<pre><code>## [1] &quot;Varianz male: NA Varianz female: NA&quot;</code></pre>
<pre class="r"><code>print(paste(&quot;Std. Abweichung male: &quot;, sd(data_male), &quot;Std. Abweichung female: &quot;, sd(data_female)))</code></pre>
<pre><code>## [1] &quot;Std. Abweichung male: NA Std. Abweichung female: NA&quot;</code></pre>
</div>
<div id="section-hypothesentest" class="section level3">
<h3>Hypothesentest</h3>
<p>In der Datenbasis haben wir 2 Hypothesen aufgestellt:</p>
<ul>
<li>Die Anzahl der Ausländischen Studenten in Deutschland hat sich seit
dem WS 00/01 verdoppelt.</li>
<li>Der %-Anteil an studierenden Frauen (insgesamt) gegenüber
studierenden Männern (insgesamt) hat sich seit dem WS 98/99 stetig
erhöht.</li>
</ul>
<p>Für die erste Hypothese müssen wir ledeglich die Summe der
Ausländischen Student:innen vom Wintersemester 2000 mit dem aktuellstem
Wintersemester vergleichen und schauen, ob der Wert vom Aktuellen
Semester größer oder gleich doppelt so groß ist wie vom altem
Wintersemester:</p>
<pre class="r"><code>old_ws &lt;- as.numeric(data[2,7])
new_ws &lt;- as.numeric(data[25,7])
faktor &lt;- 2
old_ws_double &lt;- old_ws * faktor
print(paste(&quot;Stimmt es, dass die Anzahl an ausländischen Student:innen sich seid dem WS 2000 mindestens verdoppelt hat: &quot;, new_ws &gt;= old_ws_double))</code></pre>
<pre><code>## [1] &quot;Stimmt es, dass die Anzahl an ausländischen Student:innen sich seid dem WS 2000 mindestens verdoppelt hat: TRUE&quot;</code></pre>
<p>Für die 2. Hypothese können wir die Lineare Regression und die
Koeffizienz berechnen.</p>
<pre class="r"><code>daten &lt;- data.frame(
Jahr = c(1998:2021),
Frauen = c(as.numeric(unlist(data[2:25 ,9]))),
Männer = c(as.numeric(unlist(data[2:25 ,8])))
)
kable(daten$Frauen)</code></pre>
<table>
<thead>
<tr class="header">
<th align="right">x</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="right">800927</td>
</tr>
<tr class="even">
<td align="right">802851</td>
</tr>
<tr class="odd">
<td align="right">828941</td>
</tr>
<tr class="even">
<td align="right">873038</td>
</tr>
<tr class="odd">
<td align="right">918388</td>
</tr>
<tr class="even">
<td align="right">957921</td>
</tr>
<tr class="odd">
<td align="right">936909</td>
</tr>
<tr class="even">
<td align="right">948622</td>
</tr>
<tr class="odd">
<td align="right">946380</td>
</tr>
<tr class="even">
<td align="right">926644</td>
</tr>
<tr class="odd">
<td align="right">967501</td>
</tr>
<tr class="even">
<td align="right">1014728</td>
</tr>
<tr class="odd">
<td align="right">1059809</td>
</tr>
<tr class="even">
<td align="right">1125602</td>
</tr>
<tr class="odd">
<td align="right">1185392</td>
</tr>
<tr class="even">
<td align="right">1245241</td>
</tr>
<tr class="odd">
<td align="right">1290376</td>
</tr>
<tr class="even">
<td align="right">1323673</td>
</tr>
<tr class="odd">
<td align="right">1353385</td>
</tr>
<tr class="even">
<td align="right">1380335</td>
</tr>
<tr class="odd">
<td align="right">1402244</td>
</tr>
<tr class="even">
<td align="right">1426182</td>
</tr>
<tr class="odd">
<td align="right">1467779</td>
</tr>
<tr class="even">
<td align="right">1475633</td>
</tr>
</tbody>
</table>
<pre class="r"><code>daten$Frauen_Anteil &lt;- daten$Frauen / (daten$Frauen + daten$Männer) * 100
daten$Männer_Anteil &lt;- daten$Männer / (daten$Frauen + daten$Männer) * 100
trend_f &lt;- lm(Frauen_Anteil ~ Jahr, data = daten)
trend_m &lt;- lm(Männer_Anteil ~ Jahr, data = daten)
print(coef(trend_f))</code></pre>
<pre><code>## (Intercept) Jahr
## -257.9118506 0.1520867</code></pre>
<pre class="r"><code>print(coef(trend_m))</code></pre>
<pre><code>## (Intercept) Jahr
## 357.9118506 -0.1520867</code></pre>
</div>
</div>
<div id="section-ergebnispräsentation" class="section level2">
<h2>Ergebnispräsentation</h2>
<p>In der Datenanalyse haben wir bei der 2. Hypothese geschaut, ob die
Anzahl an Frauen im vergleich zu Männern stetig erhöt hat. Hierzu eine
Visualisierung:</p>
<pre class="r"><code>plot(daten$Jahr, daten$Frauen_Anteil, xlab = &quot;Jahr&quot;, ylab = &quot;% Anteil Frauen&quot;, main = &quot;Trend der Frauenanteile&quot;)
abline(trend_f, col = &quot;red&quot;)</code></pre>
<p><img src="DCProject_files/figure-html/unnamed-chunk-7-1.png" width="624" /></p>
<pre class="r"><code>plot(daten$Jahr, daten$Männer_Anteil, xlab = &quot;Jahr&quot;, ylab = &quot;% Anteil Männer&quot;, main = &quot;Trend der Männeranteile&quot;)
abline(trend_m, col = &quot;blue&quot;)</code></pre>
<p><img src="DCProject_files/figure-html/unnamed-chunk-8-1.png" width="624" /></p>
<p>Wie man sieht ist es tatsächlich so, dass der Frauenanteil stetig
gestiegen ist, im vergleich zum Männeranteil.</p>
</div>
<div id="section-teaminfos" class="section level2">
<h2>Teaminfos</h2>
......@@ -683,6 +1025,9 @@ class="section level3">
<script type="application/shiny-prerendered" data-context="server-start">
library(learnr)
library(readxl)
library(knitr)
library(dplyr)
current_dir = getwd()
data <- read_excel(file.path(current_dir, "Datensatz.xlsx"))
......@@ -715,7 +1060,7 @@ session$onSessionEnded(function() {
<!--/html_preserve-->
<!--html_preserve-->
<script type="application/shiny-prerendered" data-context="execution_dependencies">
{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["packages"]}},"value":[{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["packages","version"]},"class":{"type":"character","attributes":{},"value":["data.frame"]},"row.names":{"type":"integer","attributes":{},"value":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51]}},"value":[{"type":"character","attributes":{},"value":["backports","base","bslib","cachem","cellranger","checkmate","cli","compiler","datasets","digest","ellipsis","evaluate","fansi","fastmap","fontawesome","glue","graphics","grDevices","htmltools","htmlwidgets","httpuv","jquerylib","jsonlite","knitr","later","learnr","lifecycle","magrittr","methods","mime","pillar","pkgconfig","promises","R6","Rcpp","readxl","rlang","rmarkdown","rprojroot","sass","shiny","stats","tibble","tools","utf8","utils","vctrs","withr","xfun","xtable","yaml"]},{"type":"character","attributes":{},"value":["1.4.1","4.3.1","0.5.0","1.0.8","1.1.0","2.2.0","3.6.1","4.3.1","4.3.1","0.6.32","0.3.2","0.21","1.0.4","1.1.1","0.5.1","1.6.2","4.3.1","4.3.1","0.5.5","1.6.2","1.6.11","0.1.4","1.8.5","1.43","1.3.1","0.11.4","1.0.3","2.0.3","4.3.1","0.12","1.9.0","2.0.3","1.2.0.1","2.5.1","1.0.10","1.4.2","1.1.1","2.22","2.0.3","0.4.6","1.7.4","4.3.1","3.2.1","4.3.1","1.2.3","4.3.1","0.6.3","2.5.0","0.39","1.8-4","2.3.7"]}]}]}
{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["packages"]}},"value":[{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["packages","version"]},"class":{"type":"character","attributes":{},"value":["data.frame"]},"row.names":{"type":"integer","attributes":{},"value":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55]}},"value":[{"type":"character","attributes":{},"value":["backports","base","bslib","cachem","cellranger","checkmate","cli","compiler","datasets","digest","dplyr","ellipsis","evaluate","fansi","fastmap","fontawesome","generics","glue","graphics","grDevices","highr","htmltools","htmlwidgets","httpuv","jquerylib","jsonlite","knitr","later","learnr","lifecycle","magrittr","methods","mime","pillar","pkgconfig","promises","R6","Rcpp","readxl","rlang","rmarkdown","rprojroot","sass","shiny","stats","tibble","tidyselect","tools","utf8","utils","vctrs","withr","xfun","xtable","yaml"]},{"type":"character","attributes":{},"value":["1.4.1","4.2.3","0.5.0","1.0.8","1.1.0","2.2.0","3.6.1","4.2.3","4.2.3","0.6.31","1.1.2","0.3.2","0.20","1.0.4","1.1.1","0.5.1","0.1.3","1.6.2","4.2.3","4.2.3","0.10","0.5.5","1.6.2","1.6.11","0.1.4","1.8.4","1.43","1.3.1","0.11.4","1.0.3","2.0.3","4.2.3","0.12","1.9.0","2.0.3","1.2.0.1","2.5.1","1.0.10","1.4.2","1.1.0","2.22","2.0.3","0.4.6","1.7.4","4.2.3","3.2.1","1.2.0","4.2.3","1.2.3","4.2.3","0.6.1","2.5.0","0.39","1.8-4","2.3.7"]}]}]}
</script>
<!--/html_preserve-->
</div>
......
DCProject_files/figure-html/unnamed-chunk-7-1.png

11.6 KiB

DCProject_files/figure-html/unnamed-chunk-8-1.png

11.5 KiB

0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment