diff --git a/.Rhistory b/.Rhistory
index 25085c8c3cdf8263077fedea74dc691908b5581f..259ab6bb6d6133d9dc841111e551b2b3a2a587ce 100644
--- a/.Rhistory
+++ b/.Rhistory
@@ -10,3 +10,5 @@ library(learnr)
 install.packages(readxl)
 install.packages("readxl")
 library("readxl")
+install.packages("knitr")
+install.packages("knitr")
diff --git a/DCProject.Rmd b/DCProject.Rmd
index 1164d79460e12ba5c1a27f8a27744b3f841abcec..7594cc4e0d66b11b83e7a4adfd57946621bf5b58 100644
--- a/DCProject.Rmd
+++ b/DCProject.Rmd
@@ -18,6 +18,9 @@ runtime: shiny_prerendered
 ```{r setup, include=FALSE}
 library(learnr)
 library(readxl)
+library(knitr)
+library(dplyr)
+
 
 current_dir = getwd()
 data <- read_excel(file.path(current_dir, "Datensatz.xlsx"))
@@ -237,10 +240,12 @@ Für die 2. Hypothese können wir die Lineare Regression und die Koeffizienz ber
 ```{r}
 daten <- data.frame(
   Jahr = c(1998:2021),
-  Frauen = c(as.numeric(unlist(data[-1 ,9]))),
-  Männer = c(as.numeric(unlist(data[-1 ,8])))
+  Frauen = c(as.numeric(unlist(data[2:25 ,9]))),
+  Männer = c(as.numeric(unlist(data[2:25 ,8])))
 )
 
+kable(daten$Frauen)
+
 daten$Frauen_Anteil <- daten$Frauen / (daten$Frauen + daten$Männer) * 100
 daten$Männer_Anteil <- daten$Männer / (daten$Frauen + daten$Männer) * 100
 
diff --git a/DCProject.html b/DCProject.html
index 528fd4d5d6cbc2b9ad7655e5f55b97e432ab26c8..c1d29ac1222e53c7f8901578d6326f4f69e44ccb 100644
--- a/DCProject.html
+++ b/DCProject.html
@@ -647,31 +647,373 @@ class="section level3">
 </div>
 <div id="section-datenanalyse" class="section level2">
 <h2>Datenanalyse</h2>
-<p>Hier ist uner tatsächlicher Datensatz:</p>
-<pre class="r"><code>print(data)</code></pre>
-<pre><code>## # A tibble: 31 × 10
-##    Semester   Deutsche ...3    ...4  Ausländer ...6  ...7  Insgesamt ...9  ...10
-##    &lt;chr&gt;      &lt;chr&gt;    &lt;chr&gt;   &lt;chr&gt; &lt;chr&gt;     &lt;chr&gt; &lt;chr&gt; &lt;chr&gt;     &lt;chr&gt; &lt;chr&gt;
-##  1 &lt;NA&gt;       männlich weibli… Insg… männlich  weib… Insg… männlich  weib… Insg…
-##  2 WS 1998/99 907403   727254  1634… 92321     73673 1659… 999724    8009… 1800…
-##  3 WS 1999/00 872178   723246  1595… 95460     79605 1750… 967638    8028… 1770…
-##  4 WS 2000/01 870016   741820  1611… 99906     87121 1870… 969922    8289… 1798…
-##  5 WS 2001/02 887462   774628  1662… 107831    98410 2062… 995293    8730… 1868…
-##  6 WS 2002/03 903218   808567  1711… 117205    1098… 2270… 1020423   9183… 1938…
-##  7 WS 2003/04 935718   837611  1773… 125826    1203… 2461… 1061544   9579… 2019…
-##  8 WS 2004/05 901979   814795  1716… 124220    1221… 2463… 1026199   9369… 1963…
-##  9 WS 2005/06 912696   824712  1737… 124447    1239… 2483… 1037143   9486… 1985…
-## 10 WS 2006/07 909740   822934  1732… 122923    1234… 2463… 1032663   9463… 1979…
-## # ℹ 21 more rows</code></pre>
+<p><em>Information: Die hier dargestellten Tabellen beinhalten zur
+Veranschaulichung jeweils nur die ersten 10 Zeilen. Unser Datensatz
+besteht aus 24 Zeilen.</em></p>
+<p>Hier ist uner tatsächlicher Datensatz aus der Excel-Datei:</p>
+<pre class="r"><code>kable(head(data, 10))</code></pre>
+<table style="width:100%;">
+<colgroup>
+<col width="11%" />
+<col width="9%" />
+<col width="9%" />
+<col width="10%" />
+<col width="10%" />
+<col width="9%" />
+<col width="10%" />
+<col width="10%" />
+<col width="9%" />
+<col width="10%" />
+</colgroup>
+<thead>
+<tr class="header">
+<th align="left">Semester</th>
+<th align="left">Deutsche</th>
+<th align="left">…3</th>
+<th align="left">…4</th>
+<th align="left">Ausländer</th>
+<th align="left">…6</th>
+<th align="left">…7</th>
+<th align="left">Insgesamt</th>
+<th align="left">…9</th>
+<th align="left">…10</th>
+</tr>
+</thead>
+<tbody>
+<tr class="odd">
+<td align="left">NA</td>
+<td align="left">männlich</td>
+<td align="left">weiblich</td>
+<td align="left">Insgesamt</td>
+<td align="left">männlich</td>
+<td align="left">weiblich</td>
+<td align="left">Insgesamt</td>
+<td align="left">männlich</td>
+<td align="left">weiblich</td>
+<td align="left">Insgesamt</td>
+</tr>
+<tr class="even">
+<td align="left">WS 1998/99</td>
+<td align="left">907403</td>
+<td align="left">727254</td>
+<td align="left">1634657</td>
+<td align="left">92321</td>
+<td align="left">73673</td>
+<td align="left">165994</td>
+<td align="left">999724</td>
+<td align="left">800927</td>
+<td align="left">1800651</td>
+</tr>
+<tr class="odd">
+<td align="left">WS 1999/00</td>
+<td align="left">872178</td>
+<td align="left">723246</td>
+<td align="left">1595424</td>
+<td align="left">95460</td>
+<td align="left">79605</td>
+<td align="left">175065</td>
+<td align="left">967638</td>
+<td align="left">802851</td>
+<td align="left">1770489</td>
+</tr>
+<tr class="even">
+<td align="left">WS 2000/01</td>
+<td align="left">870016</td>
+<td align="left">741820</td>
+<td align="left">1611836</td>
+<td align="left">99906</td>
+<td align="left">87121</td>
+<td align="left">187027</td>
+<td align="left">969922</td>
+<td align="left">828941</td>
+<td align="left">1798863</td>
+</tr>
+<tr class="odd">
+<td align="left">WS 2001/02</td>
+<td align="left">887462</td>
+<td align="left">774628</td>
+<td align="left">1662090</td>
+<td align="left">107831</td>
+<td align="left">98410</td>
+<td align="left">206241</td>
+<td align="left">995293</td>
+<td align="left">873038</td>
+<td align="left">1868331</td>
+</tr>
+<tr class="even">
+<td align="left">WS 2002/03</td>
+<td align="left">903218</td>
+<td align="left">808567</td>
+<td align="left">1711785</td>
+<td align="left">117205</td>
+<td align="left">109821</td>
+<td align="left">227026</td>
+<td align="left">1020423</td>
+<td align="left">918388</td>
+<td align="left">1938811</td>
+</tr>
+<tr class="odd">
+<td align="left">WS 2003/04</td>
+<td align="left">935718</td>
+<td align="left">837611</td>
+<td align="left">1773329</td>
+<td align="left">125826</td>
+<td align="left">120310</td>
+<td align="left">246136</td>
+<td align="left">1061544</td>
+<td align="left">957921</td>
+<td align="left">2019465</td>
+</tr>
+<tr class="even">
+<td align="left">WS 2004/05</td>
+<td align="left">901979</td>
+<td align="left">814795</td>
+<td align="left">1716774</td>
+<td align="left">124220</td>
+<td align="left">122114</td>
+<td align="left">246334</td>
+<td align="left">1026199</td>
+<td align="left">936909</td>
+<td align="left">1963108</td>
+</tr>
+<tr class="odd">
+<td align="left">WS 2005/06</td>
+<td align="left">912696</td>
+<td align="left">824712</td>
+<td align="left">1737408</td>
+<td align="left">124447</td>
+<td align="left">123910</td>
+<td align="left">248357</td>
+<td align="left">1037143</td>
+<td align="left">948622</td>
+<td align="left">1985765</td>
+</tr>
+<tr class="even">
+<td align="left">WS 2006/07</td>
+<td align="left">909740</td>
+<td align="left">822934</td>
+<td align="left">1732674</td>
+<td align="left">122923</td>
+<td align="left">123446</td>
+<td align="left">246369</td>
+<td align="left">1032663</td>
+<td align="left">946380</td>
+<td align="left">1979043</td>
+</tr>
+</tbody>
+</table>
 <div id="section-eigenschaften-der-daten" class="section level3">
 <h3>Eigenschaften der Daten</h3>
+<p>Nun können wir Eigenschaften wie Mittelwert, Meidan, Varianz und die
+Standartabweichung berechnen. Dazu nutzen wir die 8. und 9. Spalte.
+Diese enthalten die gesamte Anzahl der Männlichen und Weiblichen
+Student:innen der Jahre:</p>
+<pre class="r"><code>selected_data &lt;- data[ ,8:9]
+kable(head(selected_data, 10))</code></pre>
+<table>
+<thead>
+<tr class="header">
+<th align="left">Insgesamt</th>
+<th align="left">…9</th>
+</tr>
+</thead>
+<tbody>
+<tr class="odd">
+<td align="left">männlich</td>
+<td align="left">weiblich</td>
+</tr>
+<tr class="even">
+<td align="left">999724</td>
+<td align="left">800927</td>
+</tr>
+<tr class="odd">
+<td align="left">967638</td>
+<td align="left">802851</td>
+</tr>
+<tr class="even">
+<td align="left">969922</td>
+<td align="left">828941</td>
+</tr>
+<tr class="odd">
+<td align="left">995293</td>
+<td align="left">873038</td>
+</tr>
+<tr class="even">
+<td align="left">1020423</td>
+<td align="left">918388</td>
+</tr>
+<tr class="odd">
+<td align="left">1061544</td>
+<td align="left">957921</td>
+</tr>
+<tr class="even">
+<td align="left">1026199</td>
+<td align="left">936909</td>
+</tr>
+<tr class="odd">
+<td align="left">1037143</td>
+<td align="left">948622</td>
+</tr>
+<tr class="even">
+<td align="left">1032663</td>
+<td align="left">946380</td>
+</tr>
+</tbody>
+</table>
+<p>Wir teilen die Daten in männlich und weiblich. Zusätzlich werden die
+Spalten etwas konvertiert:</p>
+<pre class="r"><code>data_male &lt;- as.numeric(unlist(selected_data[-1 ,1]))
+data_female &lt;- as.numeric(unlist(selected_data[-1 ,2]))</code></pre>
+<p>Und Berechnen:</p>
+<pre class="r"><code>print(paste(&quot;Median male: &quot;, median(data_male), &quot;Median female: &quot;, median(data_female)))</code></pre>
+<pre><code>## [1] &quot;Median male:  NA Median female:  NA&quot;</code></pre>
+<pre class="r"><code>print(paste(&quot;Varianz male: &quot;, var(data_male), &quot;Varianz female: &quot;, var(data_female)))</code></pre>
+<pre><code>## [1] &quot;Varianz male:  NA Varianz female:  NA&quot;</code></pre>
+<pre class="r"><code>print(paste(&quot;Std. Abweichung male: &quot;, sd(data_male), &quot;Std. Abweichung female: &quot;, sd(data_female)))</code></pre>
+<pre><code>## [1] &quot;Std. Abweichung male:  NA Std. Abweichung female:  NA&quot;</code></pre>
 </div>
 <div id="section-hypothesentest" class="section level3">
 <h3>Hypothesentest</h3>
+<p>In der Datenbasis haben wir 2 Hypothesen aufgestellt:</p>
+<ul>
+<li>Die Anzahl der Ausländischen Studenten in Deutschland hat sich seit
+dem WS 00/01 verdoppelt.</li>
+<li>Der %-Anteil an studierenden Frauen (insgesamt) gegenüber
+studierenden Männern (insgesamt) hat sich seit dem WS 98/99 stetig
+erhöht.</li>
+</ul>
+<p>Für die erste Hypothese müssen wir ledeglich die Summe der
+Ausländischen Student:innen vom Wintersemester 2000 mit dem aktuellstem
+Wintersemester vergleichen und schauen, ob der Wert vom Aktuellen
+Semester größer oder gleich doppelt so groß ist wie vom altem
+Wintersemester:</p>
+<pre class="r"><code>old_ws &lt;- as.numeric(data[2,7])
+new_ws &lt;- as.numeric(data[25,7])
+
+faktor &lt;- 2
+old_ws_double &lt;- old_ws * faktor
+
+print(paste(&quot;Stimmt es, dass die Anzahl an ausländischen Student:innen sich seid dem WS 2000 mindestens verdoppelt hat: &quot;, new_ws &gt;= old_ws_double))</code></pre>
+<pre><code>## [1] &quot;Stimmt es, dass die Anzahl an ausländischen Student:innen sich seid dem WS 2000 mindestens verdoppelt hat:  TRUE&quot;</code></pre>
+<p>Für die 2. Hypothese können wir die Lineare Regression und die
+Koeffizienz berechnen.</p>
+<pre class="r"><code>daten &lt;- data.frame(
+  Jahr = c(1998:2021),
+  Frauen = c(as.numeric(unlist(data[2:25 ,9]))),
+  Männer = c(as.numeric(unlist(data[2:25 ,8])))
+)
+
+kable(daten$Frauen)</code></pre>
+<table>
+<thead>
+<tr class="header">
+<th align="right">x</th>
+</tr>
+</thead>
+<tbody>
+<tr class="odd">
+<td align="right">800927</td>
+</tr>
+<tr class="even">
+<td align="right">802851</td>
+</tr>
+<tr class="odd">
+<td align="right">828941</td>
+</tr>
+<tr class="even">
+<td align="right">873038</td>
+</tr>
+<tr class="odd">
+<td align="right">918388</td>
+</tr>
+<tr class="even">
+<td align="right">957921</td>
+</tr>
+<tr class="odd">
+<td align="right">936909</td>
+</tr>
+<tr class="even">
+<td align="right">948622</td>
+</tr>
+<tr class="odd">
+<td align="right">946380</td>
+</tr>
+<tr class="even">
+<td align="right">926644</td>
+</tr>
+<tr class="odd">
+<td align="right">967501</td>
+</tr>
+<tr class="even">
+<td align="right">1014728</td>
+</tr>
+<tr class="odd">
+<td align="right">1059809</td>
+</tr>
+<tr class="even">
+<td align="right">1125602</td>
+</tr>
+<tr class="odd">
+<td align="right">1185392</td>
+</tr>
+<tr class="even">
+<td align="right">1245241</td>
+</tr>
+<tr class="odd">
+<td align="right">1290376</td>
+</tr>
+<tr class="even">
+<td align="right">1323673</td>
+</tr>
+<tr class="odd">
+<td align="right">1353385</td>
+</tr>
+<tr class="even">
+<td align="right">1380335</td>
+</tr>
+<tr class="odd">
+<td align="right">1402244</td>
+</tr>
+<tr class="even">
+<td align="right">1426182</td>
+</tr>
+<tr class="odd">
+<td align="right">1467779</td>
+</tr>
+<tr class="even">
+<td align="right">1475633</td>
+</tr>
+</tbody>
+</table>
+<pre class="r"><code>daten$Frauen_Anteil &lt;- daten$Frauen / (daten$Frauen + daten$Männer) * 100
+daten$Männer_Anteil &lt;- daten$Männer / (daten$Frauen + daten$Männer) * 100
+
+trend_f &lt;- lm(Frauen_Anteil ~ Jahr, data = daten)
+trend_m &lt;- lm(Männer_Anteil ~ Jahr, data = daten)
+
+print(coef(trend_f))</code></pre>
+<pre><code>##  (Intercept)         Jahr 
+## -257.9118506    0.1520867</code></pre>
+<pre class="r"><code>print(coef(trend_m))</code></pre>
+<pre><code>## (Intercept)        Jahr 
+## 357.9118506  -0.1520867</code></pre>
 </div>
 </div>
 <div id="section-ergebnispräsentation" class="section level2">
 <h2>Ergebnispräsentation</h2>
+<p>In der Datenanalyse haben wir bei der 2. Hypothese geschaut, ob die
+Anzahl an Frauen im vergleich zu Männern stetig erhöt hat. Hierzu eine
+Visualisierung:</p>
+<pre class="r"><code>plot(daten$Jahr, daten$Frauen_Anteil, xlab = &quot;Jahr&quot;, ylab = &quot;% Anteil Frauen&quot;, main = &quot;Trend der Frauenanteile&quot;)
+
+abline(trend_f, col = &quot;red&quot;)</code></pre>
+<p><img src="DCProject_files/figure-html/unnamed-chunk-7-1.png" width="624" /></p>
+<pre class="r"><code>plot(daten$Jahr, daten$Männer_Anteil, xlab = &quot;Jahr&quot;, ylab = &quot;% Anteil Männer&quot;, main = &quot;Trend der Männeranteile&quot;)
+
+abline(trend_m, col = &quot;blue&quot;)</code></pre>
+<p><img src="DCProject_files/figure-html/unnamed-chunk-8-1.png" width="624" /></p>
+<p>Wie man sieht ist es tatsächlich so, dass der Frauenanteil stetig
+gestiegen ist, im vergleich zum Männeranteil.</p>
 </div>
 <div id="section-teaminfos" class="section level2">
 <h2>Teaminfos</h2>
@@ -683,6 +1025,9 @@ class="section level3">
 <script type="application/shiny-prerendered" data-context="server-start">
 library(learnr)
 library(readxl)
+library(knitr)
+library(dplyr)
+
 
 current_dir = getwd()
 data <- read_excel(file.path(current_dir, "Datensatz.xlsx"))
@@ -715,7 +1060,7 @@ session$onSessionEnded(function() {
 <!--/html_preserve-->
 <!--html_preserve-->
 <script type="application/shiny-prerendered" data-context="execution_dependencies">
-{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["packages"]}},"value":[{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["packages","version"]},"class":{"type":"character","attributes":{},"value":["data.frame"]},"row.names":{"type":"integer","attributes":{},"value":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51]}},"value":[{"type":"character","attributes":{},"value":["backports","base","bslib","cachem","cellranger","checkmate","cli","compiler","datasets","digest","ellipsis","evaluate","fansi","fastmap","fontawesome","glue","graphics","grDevices","htmltools","htmlwidgets","httpuv","jquerylib","jsonlite","knitr","later","learnr","lifecycle","magrittr","methods","mime","pillar","pkgconfig","promises","R6","Rcpp","readxl","rlang","rmarkdown","rprojroot","sass","shiny","stats","tibble","tools","utf8","utils","vctrs","withr","xfun","xtable","yaml"]},{"type":"character","attributes":{},"value":["1.4.1","4.3.1","0.5.0","1.0.8","1.1.0","2.2.0","3.6.1","4.3.1","4.3.1","0.6.32","0.3.2","0.21","1.0.4","1.1.1","0.5.1","1.6.2","4.3.1","4.3.1","0.5.5","1.6.2","1.6.11","0.1.4","1.8.5","1.43","1.3.1","0.11.4","1.0.3","2.0.3","4.3.1","0.12","1.9.0","2.0.3","1.2.0.1","2.5.1","1.0.10","1.4.2","1.1.1","2.22","2.0.3","0.4.6","1.7.4","4.3.1","3.2.1","4.3.1","1.2.3","4.3.1","0.6.3","2.5.0","0.39","1.8-4","2.3.7"]}]}]}
+{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["packages"]}},"value":[{"type":"list","attributes":{"names":{"type":"character","attributes":{},"value":["packages","version"]},"class":{"type":"character","attributes":{},"value":["data.frame"]},"row.names":{"type":"integer","attributes":{},"value":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55]}},"value":[{"type":"character","attributes":{},"value":["backports","base","bslib","cachem","cellranger","checkmate","cli","compiler","datasets","digest","dplyr","ellipsis","evaluate","fansi","fastmap","fontawesome","generics","glue","graphics","grDevices","highr","htmltools","htmlwidgets","httpuv","jquerylib","jsonlite","knitr","later","learnr","lifecycle","magrittr","methods","mime","pillar","pkgconfig","promises","R6","Rcpp","readxl","rlang","rmarkdown","rprojroot","sass","shiny","stats","tibble","tidyselect","tools","utf8","utils","vctrs","withr","xfun","xtable","yaml"]},{"type":"character","attributes":{},"value":["1.4.1","4.2.3","0.5.0","1.0.8","1.1.0","2.2.0","3.6.1","4.2.3","4.2.3","0.6.31","1.1.2","0.3.2","0.20","1.0.4","1.1.1","0.5.1","0.1.3","1.6.2","4.2.3","4.2.3","0.10","0.5.5","1.6.2","1.6.11","0.1.4","1.8.4","1.43","1.3.1","0.11.4","1.0.3","2.0.3","4.2.3","0.12","1.9.0","2.0.3","1.2.0.1","2.5.1","1.0.10","1.4.2","1.1.0","2.22","2.0.3","0.4.6","1.7.4","4.2.3","3.2.1","1.2.0","4.2.3","1.2.3","4.2.3","0.6.1","2.5.0","0.39","1.8-4","2.3.7"]}]}]}
 </script>
 <!--/html_preserve-->
 </div>
diff --git a/DCProject_files/figure-html/unnamed-chunk-7-1.png b/DCProject_files/figure-html/unnamed-chunk-7-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..71a4d952386c0c28baad02a720f29c93c3ce787a
Binary files /dev/null and b/DCProject_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/DCProject_files/figure-html/unnamed-chunk-8-1.png b/DCProject_files/figure-html/unnamed-chunk-8-1.png
new file mode 100644
index 0000000000000000000000000000000000000000..5426a0edafb5544d3699f2c4aa936ead6e3a6cc0
Binary files /dev/null and b/DCProject_files/figure-html/unnamed-chunk-8-1.png differ