R hat Funktionen zum Testen von Hypothesen. Hier kann man nun den [T-Test](https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test) anwenden. In der Funktion ```t.test()``` werden die beiden Wertesets eingegeben. Der ausgegebene p-Wert (p-value) kann dann mit dem Signifikanzwert (typischerweise 5%(0.05)) verglichen werden. Ist der Wert groesser als 0.05 kann man annehmen, dass die Hypothese stimmt. Einen Testdurchschnitt kann man mit dem Parameter ```mu={value}``` angeben.
R hat Funktionen zum Testen von Hypothesen. Hier kann man nun den [T-Test](https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test) anwenden. In der Funktion ```t.test()``` werden die beiden Wertesets eingegeben. Der ausgegebene p-Wert (p-value) kann dann mit dem Signifikanzwert (typischerweise 5%(0.05)) verglichen werden. Ist der Wert groesser als 0.05 kann man annehmen, dass die Null-Hypothese stimmt.\
Die Alternative Hypothese, oder das, was man eigentlich beweisen will, wird ebenfalls im Bericht gezeigt. Einen Testdurchschnitt kann man mit dem Parameter ```mu={value}``` angeben.