Falls man etwas mehr information will, kann man die Eingabe (oder die Variale in welche man dies gespeichert hat) noch in die ```summary()``` Funktion schreiben.\
Falls man etwas mehr information will, kann man die Eingabe (oder die Variale in welche man dies gespeichert hat) noch in die ```summary()``` Funktion schreiben.\
Weiterhin kann man dies auf ein Plot abbilden. Dazu verwendet man die ```plot()``` Funktion in welche man einen x und y Wert eingibt, zusammen mit Optionen wie das Plot aussehen soll. Mehr information dazu findet man [in der Dokumentation](https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/plot).\
Weiterhin kann man dies auf ein Plot abbilden. Dazu verwendet man die ```plot()``` Funktion in welche man einen x und y Wert eingibt, zusammen mit Optionen wie das Plot aussehen soll. Mehr information dazu findet man [in der Dokumentation](https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/plot).\
Mit ```abline()``` kann man die Regressionslinie der lm Funktion abbilden. Dazu wird die lm Funktion, oder die Variable in der diese gespeichert ist, an ```abline()``` uebergeben.
Mit ```abline()``` kann man die Regressionslinie der lm Funktion abbilden. Dazu wird die lm Funktion, oder die Variable in der diese gespeichert ist, an ```abline()``` uebergeben.\
R hat Funktionen zum Testen von Hypothesen. Bei den bereits gegebenen Hypothesen eignet sich der [Chi-squared test](https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/chisq.test). Dieser wird mit ```chisq.test()``` aufgerufen und nimmt zwei Wertesets an mit weiteren Parametern fuer genaueres einstellen. Der ausgegebene p-Wert (p-value) kann dann mit dem Signifikanzwert (typischerweise 5% / 0.05) verglichen werden. Ist der Wert groesser als 0.05 kann man annehmen, dass die Hypothese stimmt.
R hat Funktionen zum Testen von Hypothesen. Hier kann man nun den [T-Test](https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test) anwenden. In der Funktion ```t.test()``` werden die beiden Wertesets eingegeben. Der ausgegebene p-Wert (p-value) kann dann mit dem Signifikanzwert (typischerweise 5%(0.05)) verglichen werden. Ist der Wert groesser als 0.05 kann man annehmen, dass die Hypothese stimmt. Einen Testdurchschnitt kann man mit dem Parameter ```mu={value}``` angeben.