diff --git a/Insurance/Predicting mental illness for health insurance/Notebooks.ipynb b/Insurance/Predicting mental illness for health insurance/Notebooks.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..1f3dc71932e181fef2602e6c4daca9548ffcefee --- /dev/null +++ b/Insurance/Predicting mental illness for health insurance/Notebooks.ipynb @@ -0,0 +1,10778 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "include": true, + "paragraph": "business", + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Predicting mental illness for health insurance\n", + "# 1. Business Understanding\n", + "Das weltweit agierende Versicherungsunternehmen New York Life Insurance Company\n", + "mit Hauptsitz in den USA betreut Privat- und Geschäftskunden. Der Hauptgeschäftsbereich liegt in der Absicherung der leiblichen Gesundheit im Sinne von Krankenkassen\n", + "und gesundheitlicher Vorsorge. Dazu gehören neben der klassischen Krankenversicherung auch Unfallversicherungen, Risikolebensversicherungen und Berufsunfähigkeitsversicherungen.\n", + "In unserer aktuellen Gesellschaft ist der Mensch nicht nur klassischen körperlichen\n", + "Erkrankungen ausgesetzt, sondern zunehmend kommen – beispielsweise durch\n", + "Überlastungen am Arbeitsplatz oder Stress – psychische Erkrankungen hinzu. Das\n", + "Bewusstsein für diese Art von Erkrankung und die Klassifikation als „Krankheit“\n", + "durchdringt jedoch noch nicht alle gesellschaftlichen Bereiche.\n", + "Für das Versicherungsunternehmen New York Life Insurance Company bietet es sich\n", + "daher an, den Geschäftsbereich zu erweitern und zukünftig nicht nur körperliche,\n", + "sondern auch psychische Erkrankungen zu versichern. Um zunächst Kosten\n", + "einzusparen, wird keine eigene Umfrage durch das Unternehmen erstellt, sondern auf\n", + "schon bestehende Daten zurückgegriffen (OSMI Mental Health in Tech Survey 2016,\n", + "2020). \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Data and Data Understanding \n", + "## 2.1. Import of Relevant Modules " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "include": true, + "paragraph": "daten", + "slideshow": { + "slide_type": "" + }, + "tags": [ + "daten" + ] + }, + "source": [ + "Der Code importiert Bibliotheken für numerische Berechnungen (NumPy), Datenanalyse (Pandas), statistische Modelle (Statsmodels), Visualisierungen (Matplotlib, Plotly Express, Seaborn), Datenvorverarbeitung (scikit-learn's StandardScaler und LabelEncoder), Modelltraining und -bewertung (train_test_split, DecisionTreeClassifier, RandomForestClassifier, LogisticRegression, KMeans, metrics, confusion_matrix, classification_report, SVM), sowie Multikollinearitätsprüfung (variance_inflation_factor)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import statsmodels.api as sm\n", + "import matplotlib.pyplot as plt\n", + "import plotly.express as px\n", + "%matplotlib inline\n", + "import seaborn as sns\n", + "sns.set()\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "# from sklearn.linear_model import LinearRegression\n", + "from sklearn.cluster import KMeans\n", + "from sklearn import metrics\n", + "from sklearn.metrics import confusion_matrix, classification_report\n", + "from statsmodels.stats.outliers_influence import variance_inflation_factor\n", + "from sklearn import svm, datasets\n", + "\n", + "from sklearn.preprocessing import LabelEncoder\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.2. Read Data " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Jede Zeile der Tabelle stellt eine einzelne Beobachtung oder Antwort dar." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Timestamp</th>\n", + " <th>Age</th>\n", + " <th>Gender</th>\n", + " <th>Country</th>\n", + " <th>state</th>\n", + " <th>self_employed</th>\n", + " <th>family_history</th>\n", + " <th>treatment</th>\n", + " <th>work_interfere</th>\n", + " <th>no_employees</th>\n", + " <th>...</th>\n", + " <th>leave</th>\n", + " <th>mental_health_consequence</th>\n", + " <th>phys_health_consequence</th>\n", + " <th>coworkers</th>\n", + " <th>supervisor</th>\n", + " <th>mental_health_interview</th>\n", + " <th>phys_health_interview</th>\n", + " <th>mental_vs_physical</th>\n", + " <th>obs_consequence</th>\n", + " <th>comments</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>2014-08-27 11:29:31</td>\n", + " <td>37</td>\n", + " <td>Female</td>\n", + " <td>United States</td>\n", + " <td>IL</td>\n", + " <td>NaN</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Often</td>\n", + " <td>6-25</td>\n", + " <td>...</td>\n", + " <td>Somewhat easy</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Some of them</td>\n", + " <td>Yes</td>\n", + " <td>No</td>\n", + " <td>Maybe</td>\n", + " <td>Yes</td>\n", + " <td>No</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>2014-08-27 11:29:37</td>\n", + " <td>44</td>\n", + " <td>M</td>\n", + " <td>United States</td>\n", + " <td>IN</td>\n", + " <td>NaN</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Rarely</td>\n", + " <td>More than 1000</td>\n", + " <td>...</td>\n", + " <td>Don't know</td>\n", + " <td>Maybe</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Don't know</td>\n", + " <td>No</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>2014-08-27 11:29:44</td>\n", + " <td>32</td>\n", + " <td>Male</td>\n", + " <td>Canada</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Rarely</td>\n", + " <td>6-25</td>\n", + " <td>...</td>\n", + " <td>Somewhat difficult</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>2014-08-27 11:29:46</td>\n", + " <td>31</td>\n", + " <td>Male</td>\n", + " <td>United Kingdom</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Often</td>\n", + " <td>26-100</td>\n", + " <td>...</td>\n", + " <td>Somewhat difficult</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Some of them</td>\n", + " <td>No</td>\n", + " <td>Maybe</td>\n", + " <td>Maybe</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>2014-08-27 11:30:22</td>\n", + " <td>31</td>\n", + " <td>Male</td>\n", + " <td>United States</td>\n", + " <td>TX</td>\n", + " <td>NaN</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Never</td>\n", + " <td>100-500</td>\n", + " <td>...</td>\n", + " <td>Don't know</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Some of them</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Don't know</td>\n", + " <td>No</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>5 rows × 27 columns</p>\n", + "</div>" + ], + "text/plain": [ + " Timestamp Age Gender Country state self_employed \\\n", + "0 2014-08-27 11:29:31 37 Female United States IL NaN \n", + "1 2014-08-27 11:29:37 44 M United States IN NaN \n", + "2 2014-08-27 11:29:44 32 Male Canada NaN NaN \n", + "3 2014-08-27 11:29:46 31 Male United Kingdom NaN NaN \n", + "4 2014-08-27 11:30:22 31 Male United States TX NaN \n", + "\n", + " family_history treatment work_interfere no_employees ... \\\n", + "0 No Yes Often 6-25 ... \n", + "1 No No Rarely More than 1000 ... \n", + "2 No No Rarely 6-25 ... \n", + "3 Yes Yes Often 26-100 ... \n", + "4 No No Never 100-500 ... \n", + "\n", + " leave mental_health_consequence phys_health_consequence \\\n", + "0 Somewhat easy No No \n", + "1 Don't know Maybe No \n", + "2 Somewhat difficult No No \n", + "3 Somewhat difficult Yes Yes \n", + "4 Don't know No No \n", + "\n", + " coworkers supervisor mental_health_interview phys_health_interview \\\n", + "0 Some of them Yes No Maybe \n", + "1 No No No No \n", + "2 Yes Yes Yes Yes \n", + "3 Some of them No Maybe Maybe \n", + "4 Some of them Yes Yes Yes \n", + "\n", + " mental_vs_physical obs_consequence comments \n", + "0 Yes No NaN \n", + "1 Don't know No NaN \n", + "2 No No NaN \n", + "3 No Yes NaN \n", + "4 Don't know No NaN \n", + "\n", + "[5 rows x 27 columns]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = pd.read_csv('survey.csv')\n", + "data.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Timestamp: Der Zeitpunkt der Datenerfassung.\n", + "2. Age: Das Alter der befragten Person.\n", + "3. Gender: Das Geschlecht der befragten Person.\n", + "4. Country: Das Land, in dem die befragte Person lebt.\n", + "5. state: Der Bundesstaat, in dem die befragte Person lebt (nur relevant für die USA).\n", + "6. self_employed: Gibt an, ob die Person selbstständig ist.\n", + "7. family_history: Gibt an, ob es eine Familiengeschichte von psychischen Erkrankungen gibt.\n", + "8. treatment: Gibt an, ob die Person derzeit in Behandlung ist.\n", + "9. work_interfere: Gibt an, wie oft die Arbeit durch psychische Gesundheitsprobleme beeinträchtigt wird.\n", + "10. no_employees: Die Anzahl der Mitarbeiter im Unternehmen der befragten Person.\n", + "11. leave: Gibt an, wie einfach es für die Person ist, eine Beurlaubung aufgrund von psychischen Gesundheitsproblemen zu nehmen.\n", + "12. mental_health_consequence: Gibt an, ob die Person glaubt, dass es Konsequenzen für die psychische Gesundheit gibt.\n", + "13. phys_health_consequence: Gibt an, ob die Person glaubt, dass es Konsequenzen für die körperliche Gesundheit gibt.\n", + "14. coworkers: Gibt an, ob die Person mit ihren Kollegen über ihre psychische Gesundheit sprechen kann.\n", + "15. supervisor: Gibt an, ob die Person mit ihrem Vorgesetzten über ihre psychische Gesundheit sprechen kann.\n", + "16. mental_health_interview: Gibt an, ob die Person während eines Interviews über ihre psychische Gesundheit sprechen würde.\n", + "17. phys_health_interview: Gibt an, ob die Person während eines Interviews über ihre körperliche Gesundheit sprechen würde.\n", + "18. mental_vs_physical: Gibt an, ob die Person glaubt, dass psychische und körperliche Gesundheitsprobleme gleich behandelt werden sollten.\n", + "19. obs_consequence: Gibt an, ob die Person beobachtet hat, dass jemand aufgrund von psychischen Gesundheitsproblemen negative Konsequenzen erfahren hat.\n", + "20. comments: Zusätzliche Kommentare der befragten Person (falls vorhanden)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.3. Descriptive Analytics " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Die angezeigte Datenrahmenstruktur enthält eine Zusammenfassung der Datenstruktur, einschließlich der Datenzeilen und Datenspalten, der Datentypen für jede Spalte und der Zahl der vorhandenen (Nicht-Null-) Werte in jeder Spalte. Diese Informationen sind hilfreich, um die Datenqualität zu bewerten, fehlende Daten zu ermitteln und den Dateninhalt vor der Datenanalyse besser zu verstehen." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "<class 'pandas.core.frame.DataFrame'>\n", + "RangeIndex: 1259 entries, 0 to 1258\n", + "Data columns (total 27 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Timestamp 1259 non-null object\n", + " 1 Age 1259 non-null int64 \n", + " 2 Gender 1259 non-null object\n", + " 3 Country 1259 non-null object\n", + " 4 state 744 non-null object\n", + " 5 self_employed 1241 non-null object\n", + " 6 family_history 1259 non-null object\n", + " 7 treatment 1259 non-null object\n", + " 8 work_interfere 995 non-null object\n", + " 9 no_employees 1259 non-null object\n", + " 10 remote_work 1259 non-null object\n", + " 11 tech_company 1259 non-null object\n", + " 12 benefits 1259 non-null object\n", + " 13 care_options 1259 non-null object\n", + " 14 wellness_program 1259 non-null object\n", + " 15 seek_help 1259 non-null object\n", + " 16 anonymity 1259 non-null object\n", + " 17 leave 1259 non-null object\n", + " 18 mental_health_consequence 1259 non-null object\n", + " 19 phys_health_consequence 1259 non-null object\n", + " 20 coworkers 1259 non-null object\n", + " 21 supervisor 1259 non-null object\n", + " 22 mental_health_interview 1259 non-null object\n", + " 23 phys_health_interview 1259 non-null object\n", + " 24 mental_vs_physical 1259 non-null object\n", + " 25 obs_consequence 1259 non-null object\n", + " 26 comments 164 non-null object\n", + "dtypes: int64(1), object(26)\n", + "memory usage: 265.7+ KB\n" + ] + } + ], + "source": [ + "data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Timestamp</th>\n", + " <th>Age</th>\n", + " <th>Gender</th>\n", + " <th>Country</th>\n", + " <th>state</th>\n", + " <th>self_employed</th>\n", + " <th>family_history</th>\n", + " <th>treatment</th>\n", + " <th>work_interfere</th>\n", + " <th>no_employees</th>\n", + " <th>...</th>\n", + " <th>leave</th>\n", + " <th>mental_health_consequence</th>\n", + " <th>phys_health_consequence</th>\n", + " <th>coworkers</th>\n", + " <th>supervisor</th>\n", + " <th>mental_health_interview</th>\n", + " <th>phys_health_interview</th>\n", + " <th>mental_vs_physical</th>\n", + " <th>obs_consequence</th>\n", + " <th>comments</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>count</th>\n", + " <td>1259</td>\n", + " <td>1.259000e+03</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>744</td>\n", + " <td>1241</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>995</td>\n", + " <td>1259</td>\n", + " <td>...</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>1259</td>\n", + " <td>164</td>\n", + " </tr>\n", + " <tr>\n", + " <th>unique</th>\n", + " <td>1246</td>\n", + " <td>NaN</td>\n", + " <td>49</td>\n", + " <td>48</td>\n", + " <td>45</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>4</td>\n", + " <td>6</td>\n", + " <td>...</td>\n", + " <td>5</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " <td>2</td>\n", + " <td>160</td>\n", + " </tr>\n", + " <tr>\n", + " <th>top</th>\n", + " <td>2014-08-27 12:44:51</td>\n", + " <td>NaN</td>\n", + " <td>Male</td>\n", + " <td>United States</td>\n", + " <td>CA</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Sometimes</td>\n", + " <td>6-25</td>\n", + " <td>...</td>\n", + " <td>Don't know</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Some of them</td>\n", + " <td>Yes</td>\n", + " <td>No</td>\n", + " <td>Maybe</td>\n", + " <td>Don't know</td>\n", + " <td>No</td>\n", + " <td>* Small family business - YMMV.</td>\n", + " </tr>\n", + " <tr>\n", + " <th>freq</th>\n", + " <td>2</td>\n", + " <td>NaN</td>\n", + " <td>615</td>\n", + " <td>751</td>\n", + " <td>138</td>\n", + " <td>1095</td>\n", + " <td>767</td>\n", + " <td>637</td>\n", + " <td>465</td>\n", + " <td>290</td>\n", + " <td>...</td>\n", + " <td>563</td>\n", + " <td>490</td>\n", + " <td>925</td>\n", + " <td>774</td>\n", + " <td>516</td>\n", + " <td>1008</td>\n", + " <td>557</td>\n", + " <td>576</td>\n", + " <td>1075</td>\n", + " <td>5</td>\n", + " </tr>\n", + " <tr>\n", + " <th>mean</th>\n", + " <td>NaN</td>\n", + " <td>7.942815e+07</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>...</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>std</th>\n", + " <td>NaN</td>\n", + " <td>2.818299e+09</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>...</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>min</th>\n", + " <td>NaN</td>\n", + " <td>-1.726000e+03</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>...</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25%</th>\n", + " <td>NaN</td>\n", + " <td>2.700000e+01</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>...</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>50%</th>\n", + " <td>NaN</td>\n", + " <td>3.100000e+01</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>...</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>75%</th>\n", + " <td>NaN</td>\n", + " <td>3.600000e+01</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>...</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>max</th>\n", + " <td>NaN</td>\n", + " <td>1.000000e+11</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>...</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>11 rows × 27 columns</p>\n", + "</div>" + ], + "text/plain": [ + " Timestamp Age Gender Country state \\\n", + "count 1259 1.259000e+03 1259 1259 744 \n", + "unique 1246 NaN 49 48 45 \n", + "top 2014-08-27 12:44:51 NaN Male United States CA \n", + "freq 2 NaN 615 751 138 \n", + "mean NaN 7.942815e+07 NaN NaN NaN \n", + "std NaN 2.818299e+09 NaN NaN NaN \n", + "min NaN -1.726000e+03 NaN NaN NaN \n", + "25% NaN 2.700000e+01 NaN NaN NaN \n", + "50% NaN 3.100000e+01 NaN NaN NaN \n", + "75% NaN 3.600000e+01 NaN NaN NaN \n", + "max NaN 1.000000e+11 NaN NaN NaN \n", + "\n", + " self_employed family_history treatment work_interfere no_employees \\\n", + "count 1241 1259 1259 995 1259 \n", + "unique 2 2 2 4 6 \n", + "top No No Yes Sometimes 6-25 \n", + "freq 1095 767 637 465 290 \n", + "mean NaN NaN NaN NaN NaN \n", + "std NaN NaN NaN NaN NaN \n", + "min NaN NaN NaN NaN NaN \n", + "25% NaN NaN NaN NaN NaN \n", + "50% NaN NaN NaN NaN NaN \n", + "75% NaN NaN NaN NaN NaN \n", + "max NaN NaN NaN NaN NaN \n", + "\n", + " ... leave mental_health_consequence phys_health_consequence \\\n", + "count ... 1259 1259 1259 \n", + "unique ... 5 3 3 \n", + "top ... Don't know No No \n", + "freq ... 563 490 925 \n", + "mean ... NaN NaN NaN \n", + "std ... NaN NaN NaN \n", + "min ... NaN NaN NaN \n", + "25% ... NaN NaN NaN \n", + "50% ... NaN NaN NaN \n", + "75% ... NaN NaN NaN \n", + "max ... NaN NaN NaN \n", + "\n", + " coworkers supervisor mental_health_interview phys_health_interview \\\n", + "count 1259 1259 1259 1259 \n", + "unique 3 3 3 3 \n", + "top Some of them Yes No Maybe \n", + "freq 774 516 1008 557 \n", + "mean NaN NaN NaN NaN \n", + "std NaN NaN NaN NaN \n", + "min NaN NaN NaN NaN \n", + "25% NaN NaN NaN NaN \n", + "50% NaN NaN NaN NaN \n", + "75% NaN NaN NaN NaN \n", + "max NaN NaN NaN NaN \n", + "\n", + " mental_vs_physical obs_consequence comments \n", + "count 1259 1259 164 \n", + "unique 3 2 160 \n", + "top Don't know No * Small family business - YMMV. \n", + "freq 576 1075 5 \n", + "mean NaN NaN NaN \n", + "std NaN NaN NaN \n", + "min NaN NaN NaN \n", + "25% NaN NaN NaN \n", + "50% NaN NaN NaN \n", + "75% NaN NaN NaN \n", + "max NaN NaN NaN \n", + "\n", + "[11 rows x 27 columns]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.describe(include='all') " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alle Daten statistisch anschauen" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "| Feature | Data Type|\n", + "|-----|------|\n", + "|Timestamp | str [ example: \"2014-08-28 10:34:01\" ] |\n", + "|Age | int64 |\n", + "|Gender | str [ example: \"m\" ] |\n", + "|Country | str [ example: \"United States\" ] |\n", + "|state | str [ example: \"CA\" ] |\n", + "|self_employed | str {\"Yes\"; \"No\"} |\n", + "|family_history | str {\"No\"; \"Yes\"} |\n", + "|treatment | str {\"Yes\"; \"No\"} |\n", + "|work_interfere | str {\"Often\"; \"Rarely\"; \"Never\"; \"Sometimes\"} |\n", + "|no_employees | str {\"6-25\"; \"More than 1000\"; \"26-100\"; \"100-500\"; \"1-5\"; \"500-1000\"} |\n", + "|remote_work | str {\"No\"; \"Yes\"} |\n", + "|tech_company | str {\"Yes\"; \"No\"} |\n", + "|benefits | str {\"Yes\"; \"Don't know\"; \"No\"} |\n", + "|care_options | str {\"Not sure\"; \"No\"; \"Yes\"} |\n", + "|wellness_program | str {\"No\"; \"Don't know\"; \"Yes\"} |\n", + "|seek_help | str {\"Yes\"; \"Don't know\"; \"No\"} |\n", + "|anonymity | str {\"Yes\"; \"Don't know\"; \"No\"} |\n", + "|leave | str {\"Somewhat easy\"; \"Don't know\"; \"Somewhat difficult\"; \"Very difficult\"; \"Very easy\"} |\n", + "|mental_health_consequence| str {\"No\"; \"Maybe\"; \"Yes\"} |\n", + "|phys_health_consequence | str {\"No\"; \"Yes\"; \"Maybe\"} |\n", + "|coworkers | str {\"Some of them\"; \"No\"; \"Yes\"} |\n", + "|supervisor | str {\"Yes\"; \"No\"; \"Some of them\"} |\n", + "|mental_health_interview | str {\"No\"; \"Yes\"; \"Maybe\"} |\n", + "|phys_health_interview | str {\"Maybe\"; \"No\"; \"Yes\"} |\n", + "|mental_vs_physical | str {\"Yes\"; \"Don't know\"; \"No\"} |\n", + "|obs_consequence | str {\"No\"; \"Yes\"} |\n", + "|comments | str [ example: \"fwiw I am a co founder of this company and the would you X in an interview questions shouldn't reflect how I would treat anyone addressing their own phys/mental health issue to me in such a situation. \" ] |\n" + ] + } + ], + "source": [ + "def attribute_description(data):\n", + " longestColumnName = len(max(np.array(data.columns), key=len))\n", + " print(\"| Feature | Data Type|\")\n", + " print(\"|-----|------|\")\n", + " for col in data.columns:\n", + " description = ''\n", + " col_dropna = data[col].dropna()\n", + " example = col_dropna.sample(1).values[0]\n", + " if type(example) == str:\n", + " description = 'str '\n", + " if len(col_dropna.unique()) < 10:\n", + " description += '{'\n", + " description += '; '.join([ f'\"{name}\"' for name in col_dropna.unique()])\n", + " description += '}'\n", + " else:\n", + " description += '[ example: \"'+ example + '\" ]'\n", + " elif (type(example) == np.int32) and (len(col_dropna.unique()) < 10) :\n", + " description += 'dummy int32 {'\n", + " description += '; '.join([ f'{name}' for name in sorted(col_dropna.unique())])\n", + " description += '}'\n", + " else:\n", + " try:\n", + " description = example.dtype\n", + " except:\n", + " description = type(example)\n", + " print(\"|\" + col.ljust(longestColumnName)+ f'| {description} |')\n", + " \n", + "attribute_description(data) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Die Funktion attribute_description nimmt ein pandas-DataFrame als Input und druckt eine Tabelle aus, die die Eigenschaften der Spalten des DataFrames beschreibt. Dabei wird der längste Spaltenname als Maximalwert für die Breite der Tabelle verwendet. Für jede Spalte in der DataFrame wird dann versucht, Informationen zum Datentyp und zum Beispiel für die Spalte zu bekommen. Wenn das Datentyp ist eine Zeichenkette und es gibt weniger als 10 einzigartige Werte in der Spalte, wird der Spaltenname mit zusätzliche Information gedruckt. Wenn das Datentyp ist ein Integer 32-bit und es gibt weniger als 10 einzigartige Werte in der Spalte, wird auch eine zusätzliche Information gedruckt.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "| Feature | Data Type|\n", + "|-----|------|\n", + "|Timestamp | str [ example: \"2014-08-27 20:52:31\" ] |\n", + "|Age | int64 |\n", + "|Gender | str [ example: \"Male\" ] |\n", + "|Country | str [ example: \"China\" ] |\n", + "|state | str [ example: \"OR\" ] |\n", + "|self_employed | str {\"Yes\"; \"No\"; \"IL\"} |\n", + "|family_history | str {\"No\"; \"Yes\"} |\n", + "|treatment | str {\"Yes\"; \"No\"} |\n", + "|work_interfere | str {\"Often\"; \"Rarely\"; \"Never\"; \"Sometimes\"; \"Yes\"} |\n", + "|no_employees | str {\"6-25\"; \"More than 1000\"; \"26-100\"; \"100-500\"; \"1-5\"; \"500-1000\"; \"Often\"; \"Sometimes\"} |\n", + "|remote_work | str {\"No\"; \"Yes\"; \"1-5\"; \"6-25\"} |\n", + "|tech_company | str {\"Yes\"; \"No\"} |\n", + "|benefits | str {\"Yes\"; \"Don't know\"; \"No\"} |\n", + "|care_options | str {\"Not sure\"; \"No\"; \"Yes\"; \"Don't know\"} |\n", + "|wellness_program | str {\"No\"; \"Don't know\"; \"Yes\"} |\n", + "|seek_help | str {\"Yes\"; \"Don't know\"; \"No\"} |\n", + "|anonymity | str {\"Yes\"; \"Don't know\"; \"No\"} |\n", + "|leave | str {\"Somewhat easy\"; \"Don't know\"; \"Somewhat difficult\"; \"Very difficult\"; \"Very easy\"; \"Yes\"} |\n", + "|mental_health_consequence| str {\"No\"; \"Maybe\"; \"Yes\"; \"Very easy\"; \"Don't know\"} |\n", + "|phys_health_consequence | str {\"No\"; \"Yes\"; \"Maybe\"} |\n", + "|coworkers | str {\"Some of them\"; \"No\"; \"Yes\"; \"Maybe\"} |\n", + "|supervisor | str {\"Yes\"; \"No\"; \"Some of them\"} |\n", + "|mental_health_interview | str {\"No\"; \"Yes\"; \"Maybe\"} |\n", + "|phys_health_interview | str {\"Maybe\"; \"No\"; \"Yes\"} |\n", + "|mental_vs_physical | str {\"Yes\"; \"Don't know\"; \"No\"; \"Maybe\"} |\n", + "|obs_consequence | str {\"No\"; \"Yes\"; \"Don't know\"} |\n", + "|comments;;;; | str [ example: \"NA;;;;\" ] |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Die bereitgestellten Informationen beschreiben ein Dataset mit verschiedenen Merkmalen (Features) und den entsprechenden Datentypen oder möglichen Wertebereichen für jedes Feature. Dieses Dataset könnte beispielsweise aus einer Umfrage stammen, die sich mit der psychischen Gesundheit von Beschäftigten befasst. Lassen Sie mich kurz die Bedeutung jedes Merkmals erläutern:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# 3. Data Preparation \n", + "## 3.1 Remove duplicates" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "include": true, + "paragraph": "Datenvorbereitung", + "slideshow": { + "slide_type": "" + }, + "tags": [ + "Datenvorbereitung" + ] + }, + "source": [ + "Der Codeabschnitt entfernt Duplikate in einer Liste, indem er alle Elemente beibehält, die nicht doppelt vorhanden sind. Dabei überprüft er zunächst, ob es in der Liste duplizierte Elemente gibt, und wenn ja, ruft er die data.duplicated(keep=False)-Funktion auf. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Timestamp</th>\n", + " <th>Age</th>\n", + " <th>Gender</th>\n", + " <th>Country</th>\n", + " <th>state</th>\n", + " <th>self_employed</th>\n", + " <th>family_history</th>\n", + " <th>treatment</th>\n", + " <th>work_interfere</th>\n", + " <th>no_employees</th>\n", + " <th>...</th>\n", + " <th>leave</th>\n", + " <th>mental_health_consequence</th>\n", + " <th>phys_health_consequence</th>\n", + " <th>coworkers</th>\n", + " <th>supervisor</th>\n", + " <th>mental_health_interview</th>\n", + " <th>phys_health_interview</th>\n", + " <th>mental_vs_physical</th>\n", + " <th>obs_consequence</th>\n", + " <th>comments</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " </tbody>\n", + "</table>\n", + "<p>0 rows × 27 columns</p>\n", + "</div>" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [Timestamp, Age, Gender, Country, state, self_employed, family_history, treatment, work_interfere, no_employees, remote_work, tech_company, benefits, care_options, wellness_program, seek_help, anonymity, leave, mental_health_consequence, phys_health_consequence, coworkers, supervisor, mental_health_interview, phys_health_interview, mental_vs_physical, obs_consequence, comments]\n", + "Index: []\n", + "\n", + "[0 rows x 27 columns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[data.duplicated(keep=False)] # show duplicates" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2 Remove missing data" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Timestamp 0\n", + "Age 0\n", + "Gender 0\n", + "Country 0\n", + "state 515\n", + "self_employed 18\n", + "family_history 0\n", + "treatment 0\n", + "work_interfere 264\n", + "no_employees 0\n", + "remote_work 0\n", + "tech_company 0\n", + "benefits 0\n", + "care_options 0\n", + "wellness_program 0\n", + "seek_help 0\n", + "anonymity 0\n", + "leave 0\n", + "mental_health_consequence 0\n", + "phys_health_consequence 0\n", + "coworkers 0\n", + "supervisor 0\n", + "mental_health_interview 0\n", + "phys_health_interview 0\n", + "mental_vs_physical 0\n", + "obs_consequence 0\n", + "comments 1095\n", + "dtype: int64" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.isnull().sum() #count missing data" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "data1 = data.drop(['Timestamp','state','comments'], axis =1)\n", + "# delete features, that are not needed" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "data1['self_employed'] = data1['self_employed'].fillna(data1['self_employed'].mode().iloc[0]) \n", + "# replace missing data in 'self_employed' wwith 'No'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Der Code setzt die fehlenden Daten im 'self_employed' Column auf 'No', indem er den Wert aus der häufigsten Wert in 'self_employed' als Substitut verwendet." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Age 0\n", + "Gender 0\n", + "Country 0\n", + "self_employed 0\n", + "family_history 0\n", + "treatment 0\n", + "work_interfere 264\n", + "no_employees 0\n", + "remote_work 0\n", + "tech_company 0\n", + "benefits 0\n", + "care_options 0\n", + "wellness_program 0\n", + "seek_help 0\n", + "anonymity 0\n", + "leave 0\n", + "mental_health_consequence 0\n", + "phys_health_consequence 0\n", + "coworkers 0\n", + "supervisor 0\n", + "mental_health_interview 0\n", + "phys_health_interview 0\n", + "mental_vs_physical 0\n", + "obs_consequence 0\n", + "dtype: int64" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data1.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "data1 = data1.dropna(axis=0) # remove rows with missing data (in 'work_interfere)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Age 0\n", + "Gender 0\n", + "Country 0\n", + "self_employed 0\n", + "family_history 0\n", + "treatment 0\n", + "work_interfere 0\n", + "no_employees 0\n", + "remote_work 0\n", + "tech_company 0\n", + "benefits 0\n", + "care_options 0\n", + "wellness_program 0\n", + "seek_help 0\n", + "anonymity 0\n", + "leave 0\n", + "mental_health_consequence 0\n", + "phys_health_consequence 0\n", + "coworkers 0\n", + "supervisor 0\n", + "mental_health_interview 0\n", + "phys_health_interview 0\n", + "mental_vs_physical 0\n", + "obs_consequence 0\n", + "dtype: int64" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data1.isnull().sum() # make sure there is no missing data now" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.3 Remove unwanted Features" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Age', 'Gender', 'Country', 'self_employed', 'family_history',\n", + " 'treatment', 'work_interfere', 'no_employees', 'remote_work',\n", + " 'tech_company', 'benefits', 'care_options', 'wellness_program',\n", + " 'seek_help', 'anonymity', 'leave', 'mental_health_consequence',\n", + " 'phys_health_consequence', 'coworkers', 'supervisor',\n", + " 'mental_health_interview', 'phys_health_interview',\n", + " 'mental_vs_physical', 'obs_consequence'], dtype=object)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data1.columns.values " + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "data1 = data1.drop(['Country','wellness_program', 'seek_help', 'anonymity', 'leave',\n", + " 'mental_health_consequence', 'phys_health_consequence',\n", + " 'coworkers', 'supervisor', 'mental_health_interview',\n", + " 'phys_health_interview', 'mental_vs_physical', 'obs_consequence'], axis = 1) \n", + "# remove features that are not relevant\n", + "# and remove features, that are relevant, but can not be used in the final model, \n", + "# as the data can not be collected in the production environment" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Die Zeilen des Dataframes werden entfernt, in denen bestimmte Spalten nicht enthalten sind, oder nicht relevant oder nicht in der Produktionsumgebung erhoben werden können. Dies wird erreicht, indem der Drop-Methode mit einem Syntax-Paar von Spaltennamen und Spaltenenums zu einem Dataframe-Objekt zugefügt wird. " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Age', 'Gender', 'self_employed', 'family_history', 'treatment',\n", + " 'work_interfere', 'no_employees', 'remote_work', 'tech_company',\n", + " 'benefits', 'care_options'], dtype=object)" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data1.columns.values # these features are left" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Age</th>\n", + " <th>Gender</th>\n", + " <th>self_employed</th>\n", + " <th>family_history</th>\n", + " <th>treatment</th>\n", + " <th>work_interfere</th>\n", + " <th>no_employees</th>\n", + " <th>remote_work</th>\n", + " <th>tech_company</th>\n", + " <th>benefits</th>\n", + " <th>care_options</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>count</th>\n", + " <td>9.950000e+02</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " <td>995</td>\n", + " </tr>\n", + " <tr>\n", + " <th>unique</th>\n", + " <td>NaN</td>\n", + " <td>44</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>4</td>\n", + " <td>6</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " </tr>\n", + " <tr>\n", + " <th>top</th>\n", + " <td>NaN</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Sometimes</td>\n", + " <td>26-100</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " </tr>\n", + " <tr>\n", + " <th>freq</th>\n", + " <td>NaN</td>\n", + " <td>481</td>\n", + " <td>870</td>\n", + " <td>546</td>\n", + " <td>633</td>\n", + " <td>465</td>\n", + " <td>229</td>\n", + " <td>691</td>\n", + " <td>815</td>\n", + " <td>406</td>\n", + " <td>393</td>\n", + " </tr>\n", + " <tr>\n", + " <th>mean</th>\n", + " <td>1.005025e+08</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>std</th>\n", + " <td>3.170213e+09</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>min</th>\n", + " <td>-1.726000e+03</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25%</th>\n", + " <td>2.700000e+01</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>50%</th>\n", + " <td>3.100000e+01</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>75%</th>\n", + " <td>3.600000e+01</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>max</th>\n", + " <td>1.000000e+11</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Age Gender self_employed family_history treatment \\\n", + "count 9.950000e+02 995 995 995 995 \n", + "unique NaN 44 2 2 2 \n", + "top NaN Male No No Yes \n", + "freq NaN 481 870 546 633 \n", + "mean 1.005025e+08 NaN NaN NaN NaN \n", + "std 3.170213e+09 NaN NaN NaN NaN \n", + "min -1.726000e+03 NaN NaN NaN NaN \n", + "25% 2.700000e+01 NaN NaN NaN NaN \n", + "50% 3.100000e+01 NaN NaN NaN NaN \n", + "75% 3.600000e+01 NaN NaN NaN NaN \n", + "max 1.000000e+11 NaN NaN NaN NaN \n", + "\n", + " work_interfere no_employees remote_work tech_company benefits \\\n", + "count 995 995 995 995 995 \n", + "unique 4 6 2 2 3 \n", + "top Sometimes 26-100 No Yes Yes \n", + "freq 465 229 691 815 406 \n", + "mean NaN NaN NaN NaN NaN \n", + "std NaN NaN NaN NaN NaN \n", + "min NaN NaN NaN NaN NaN \n", + "25% NaN NaN NaN NaN NaN \n", + "50% NaN NaN NaN NaN NaN \n", + "75% NaN NaN NaN NaN NaN \n", + "max NaN NaN NaN NaN NaN \n", + "\n", + " care_options \n", + "count 995 \n", + "unique 3 \n", + "top Yes \n", + "freq 393 \n", + "mean NaN \n", + "std NaN \n", + "min NaN \n", + "25% NaN \n", + "50% NaN \n", + "75% NaN \n", + "max NaN " + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data1.describe(include='all')" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 37, 44, 32, 31, 31,\n", + " 33, 35, 39, 42, 23,\n", + " 31, 29, 42, 36, 27,\n", + " 29, 23, 32, 46, 29,\n", + " 31, 46, 41, 33, 35,\n", + " 35, 34, 37, 32, 31,\n", + " 30, 42, 40, 27, 29,\n", + " 35, 24, 27, 18, 30,\n", + " 38, 26, 30, 22, 32,\n", + " 27, 24, 33, 44, 26,\n", + " 27, 35, 40, 23, 36,\n", + " 34, 28, 34, 23, 33,\n", + " 31, 32, 28, 38, 23,\n", + " 30, 27, 33, 39, 34,\n", + " 29, 31, 40, 25, 29,\n", + " 24, 31, 33, 30, 26,\n", + " 44, 33, 29, 35, 35,\n", + " 28, 34, 32, 22, 28,\n", + " 45, 32, 26, 21, 27,\n", + " 18, 29, 33, 36, 27,\n", + " 27, 32, 31, 19, 33,\n", + " 32, 27, 24, 39, 28,\n", + " 39, 38, 37, 35, 37,\n", + " 24, 23, 30, 32, 28,\n", + " 36, 37, 25, 27, 26,\n", + " 27, 25, 36, 25, 31,\n", + " 26, 33, 34, 23, 24,\n", + " 26, 31, 22, 34, 31,\n", + " 32, 45, 29, 26, 28,\n", + " 45, 43, 24, 35, 38,\n", + " 28, 28, 35, 32, 31,\n", + " 35, 26, 28, 27, 34,\n", + " 41, 37, 32, 21, 30,\n", + " 24, 37, 26, 32, 32,\n", + " 27, 30, 29, 28, 28,\n", + " 23, 32, 34, 24, 26,\n", + " 36, 41, 38, 38, 25,\n", + " 37, 37, 28, 34, 33,\n", + " 27, 40, 21, 32, 29,\n", + " 23, 31, 24, 29, 23,\n", + " 42, 25, 27, 27, 30,\n", + " 29, 41, 32, 37, 32,\n", + " 30, 23, 34, 38, 28,\n", + " 28, 23, 22, 27, 18,\n", + " 35, 27, 26, 18, 38,\n", + " 26, 30, 35, 45, 32,\n", + " 56, 30, 33, 37, 23,\n", + " 31, 26, 28, 37, 26,\n", + " 30, 27, 25, 35, 36,\n", + " 26, 25, 22, 41, 29,\n", + " 32, 24, 25, 30, 25,\n", + " 30, 33, 25, 45, 46,\n", + " 30, 29, 33, 27, 33,\n", + " 25, 23, 54, 22, 25,\n", + " 29, 27, 30, 26, 25,\n", + " 31, 33, 34, 34, 34,\n", + " 26, 32, 329, 28, 36,\n", + " 21, 21, 41, 55, 32,\n", + " 21, 45, 27, 25, 34,\n", + " 26, 41, 27, 31, 25,\n", + " 26, 27, 42, 29, 25,\n", + " 33, 99999999999, 40, 31, 26,\n", + " 29, 35, 32, 29, 26,\n", + " 28, 35, 29, 33, 22,\n", + " 33, 31, 21, 31, 26,\n", + " 30, 30, 34, 55, 28,\n", + " 28, 32, 28, 21, 24,\n", + " 28, 24, 33, 34, 27,\n", + " 28, 23, 29, 26, 36,\n", + " 41, 23, 39, 26, 24,\n", + " 37, 43, 40, 30, 34,\n", + " 27, 36, 27, 35, 32,\n", + " 33, 28, 26, 27, 38,\n", + " 57, 28, 26, 42, 31,\n", + " 58, 29, 39, 34, 57,\n", + " 27, 23, 23, 43, 18,\n", + " 29, 48, 43, 28, 30,\n", + " 26, 33, 30, 24, 23,\n", + " 36, 25, 54, 34, 25,\n", + " 35, 46, 42, 32, 47,\n", + " 33, 25, 39, 38, 46,\n", + " 38, 33, 34, 62, 25,\n", + " 36, 41, 24, 51, 29,\n", + " 31, 31, 27, 23, 21,\n", + " 27, 39, 26, 27, 22,\n", + " 26, 31, 32, 28, 28,\n", + " 30, 36, 30, 32, 29,\n", + " 21, 27, 32, 34, 22,\n", + " 27, 33, 36, 40, 28,\n", + " 39, 32, 31, 38, 23,\n", + " 42, 27, 26, 50, 37,\n", + " 33, 29, 34, 41, 29,\n", + " 35, 27, 40, 27, 29,\n", + " 31, 43, 34, 29, 19,\n", + " 41, 29, 23, 24, 31,\n", + " 29, 33, 30, 32, 50,\n", + " 24, 27, 32, 42, 37,\n", + " 30, 29, 30, 35, 35,\n", + " 38, 22, 24, 22, 31,\n", + " 23, 31, 28, 37, 34,\n", + " 32, 28, 24, 56, 31,\n", + " 34, 35, 28, 36, 30,\n", + " 49, 29, 57, 31, 37,\n", + " 25, 30, 26, 22, 39,\n", + " 29, 54, 34, 32, 29,\n", + " 32, 30, 20, 27, 32,\n", + " 26, 30, 30, 26, 26,\n", + " 23, 26, 35, 28, 29,\n", + " 45, 33, 38, 19, 29,\n", + " 23, 33, 49, 27, 23,\n", + " 29, 32, 33, 37, 23,\n", + " 43, 32, 26, 32, 29,\n", + " 30, 29, 32, -1726, 30,\n", + " 25, 33, 31, 21, 30,\n", + " 43, 37, 33, 33, 36,\n", + " 37, 39, 31, 36, 30,\n", + " 35, 19, 37, 40, 36,\n", + " 29, 38, 26, 34, 21,\n", + " 31, 37, 37, 38, 27,\n", + " 33, 27, 36, 28, 39,\n", + " 33, 37, 39, 43, 32,\n", + " 43, 33, 34, 25, 25,\n", + " 39, 29, 33, 37, 35,\n", + " 22, 38, 32, 35, 29,\n", + " 23, 28, 40, 41, 29,\n", + " 29, 35, 28, 36, 39,\n", + " 39, 44, 26, 35, 40,\n", + " 35, 38, 48, 20, 40,\n", + " 29, 35, 29, 40, 29,\n", + " 29, 34, 44, 24, 36,\n", + " 43, 36, 31, 35, 37,\n", + " 34, 36, 40, 40, 42,\n", + " 21, 26, 51, 32, 32,\n", + " 26, 23, 33, 46, 35,\n", + " 32, 56, 32, 30, 23,\n", + " 31, 29, 30, 37, 36,\n", + " 35, 41, 31, 39, 42,\n", + " 32, 30, 40, 33, 34,\n", + " 50, 24, 25, 43, 25,\n", + " 51, 49, 25, 36, 48,\n", + " 48, 53, 24, 33, 25,\n", + " 30, 30, 34, 22, 28,\n", + " 35, 28, 42, 29, 43,\n", + " 31, 35, 34, 43, 38,\n", + " 26, 38, 42, 32, 44,\n", + " 28, 40, 31, 32, 28,\n", + " 39, 43, 35, 40, 34,\n", + " 24, 61, 36, 33, 30,\n", + " 34, 26, 25, 35, 24,\n", + " 55, 33, 26, 25, 45,\n", + " 33, 43, 30, 40, 49,\n", + " 38, 26, 28, 40, 37,\n", + " 34, 28, 27, 29, 39,\n", + " 28, 23, 8, 30, 20,\n", + " 35, 39, 31, 32, 25,\n", + " 42, 34, 26, 35, 34,\n", + " 38, 34, 39, 33, 24,\n", + " 38, 31, 46, 30, 25,\n", + " 19, 30, 32, 37, 42,\n", + " 25, 19, 40, 31, 40,\n", + " 31, 36, 35, 26, 34,\n", + " 28, 40, 26, 29, 26,\n", + " 33, 28, 41, 39, 26,\n", + " 23, 35, 36, 42, 39,\n", + " 27, 33, 31, 28, 29,\n", + " 27, 44, 25, 24, 25,\n", + " 34, 26, 48, 39, 43,\n", + " 41, 25, 31, 40, 43,\n", + " 27, 37, 32, 25, 29,\n", + " 30, 34, 32, 41, 38,\n", + " 32, 28, 11, 43, 32,\n", + " 25, 37, 36, 24, 40,\n", + " 43, 26, 33, 35, 45,\n", + " 25, 50, 26, 33, 30,\n", + " 33, 29, 25, 24, 40,\n", + " 46, 38, 34, 32, 44,\n", + " 33, 45, 26, 20, -1,\n", + " 37, 42, 36, 27, 27,\n", + " 27, 25, 23, 21, 26,\n", + " 29, 28, 23, 26, 38,\n", + " 39, 35, 32, 32, 26,\n", + " 38, 34, 39, 32, 37,\n", + " 31, 30, 51, 29, 31,\n", + " 26, 46, 32, 29, 34,\n", + " 26, 32, 40, 23, 20,\n", + " 26, 29, 40, 25, 32,\n", + " 38, 72, 35, 28, 27,\n", + " 56, 38, 40, 44, 34,\n", + " 37, 38, 34, 35, 34,\n", + " 32, 28, 28, 34, 32,\n", + " 34, 23, 33, 29, 45,\n", + " 34, 31, 33, 27, 42,\n", + " 38, 46, 46, 41, 23,\n", + " 24, 23, 32, 25, 23,\n", + " 24, 25, 23, 24, 23,\n", + " 60, 28, 28, 30, 31,\n", + " 31, 28, 43, 22, 32,\n", + " 36, 41, 30, 30, 36,\n", + " 29, 36, 32, 34, 25],\n", + " dtype=int64)" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data1['Age'].values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.4 Remove outliers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "einige Personen haben einen Troll Value für \"Alter\" eingegeben, diese Zeilen müssen entfernt werden \n", + "das Alter sollte zwischen 16 und 70 Jahren liegen" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<Axes: xlabel='Age', ylabel='Count'>" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG1CAYAAADz8VB4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAu4UlEQVR4nO3dfXRU9Z3H8c9MhjxAGAwRCKA8iBsDrSRgQmIPEYriWtStke2qGK08RFYRFJaHKrTEFqotaEjUiEIQdpEmahAVtYKIR2sxAq6yR4gWChElDxpiIiEPTGb2D5rxNw3KJCR3JvB+ncNh8ru/e/3e7+QwH+/9zYzN4/F4BAAAAEmSPdAFAAAABBPCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGR6AL6Kw8Ho/c7vb/cHG73dYhx4Uv+mwdem0N+mwN+myNjuqz3W6TzWY77TzCURu53R4dPVrbrsd0OOyKiuqmmprjcrnc7XpsfIc+W4deW4M+W4M+W6Mj+9yzZzeFhJw+HHFbDQAAwEA4AgAAMBCOAAAADIQjAAAAA+EIAADAQDgCAAAwEI4AAAAMhCMAAABDUIWj3Nxc3XbbbT5j+/btU3p6uhISEjR27Fjl5eX5bHe73crJyVFqaqri4+M1ZcoUlZSUtOoYAAAAzYImHK1du1Y5OTk+Y1VVVZo8ebIGDRqkwsJCzZw5U9nZ2SosLPTOyc3NVX5+vpYsWaKCggLZbDZlZGSosbHR72MAAAA0C/jXh5SXl2vhwoXavXu3Bg8e7LPtueeeU2hoqDIzM+VwODRkyBCVlJRo1apVmjhxohobG7VmzRrNmzdPY8aMkSRlZWUpNTVVW7du1bXXXnvaYwAAAJgCfuXok08+UY8ePfTyyy8rPj7eZ9uuXbuUlJQkh+O7DJeSkqKDBw+qsrJSxcXFqq2tVUpKine70+nUsGHDtHPnTr+OAQAAYAr4laNx48Zp3Lhxp9xWVlam2NhYn7HevXtLko4cOaKysjJJUt++fVvMKS0t9esY0dHRba7d4WjfbBkSYvf5Gx2DPluHXluDPluDPlsjGPoc8HD0Q+rr6xUaGuozFhYWJklqaGhQXV2dJJ1yTnV1tV/HaCu73aaoqG5t3v+HOJ0RHXJc+KLP1qHX1qDP1qDP1ghkn4M6HIWHh3sXVjdrDjRdu3ZVeHi4JKmxsdH7uHlORESEX8doK7fbo5qa423e/1RCQuxyOiN07Fi93G5Pq+vxeFq3z7mquc81NXVqanIHupyzGr22Bn22Bn22Rkf22emM8OuKVFCHo5iYGFVUVPiMNf/cp08fuVwu79iAAQN85sTFxfl1jDPhcrXvk2az2eR2exQZGX76yf+kye3WN1XHWx2qzmVNTe52fw5xavTaGvTZGvTZGoHsc1CHo6SkJOXn56upqUkhISGSpB07dmjw4MGKjo5W9+7dFRkZqaKiIm84qqmp0d69e5Wenu7XMYKJ3W6T3W7Tn94oVnllrd/79e7ZVZOuGSq73UY4AgDgDAX1qrKJEyfq2LFjWrhwofbv36+NGzdq3bp1mj59uqSTa43S09O1fPlybdu2TcXFxZo9e7ZiYmI0fvx4v44RjCqOHteXXx3z+0/F0fa9vQcAwLksqK8cRUdHa/Xq1Vq6dKnS0tLUq1cvzZ8/X2lpad45s2bNksvl0qJFi1RfX6+kpCTl5eV5F2H7cwwAAIBmNg+reNukqcmto0f9v/Xlj7Awh5zOCGX/6UN9UfGt3/v17xWp+yZdpqqqWu6D+8HhsCsqqhv9sgC9tgZ9tgZ9tkZH9rlnz25+LcgO6ttqAAAAViMcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAIZOEY5OnDihrKwsjR07ViNGjNCkSZP04Ycferfv27dP6enpSkhI0NixY5WXl+ezv9vtVk5OjlJTUxUfH68pU6aopKTE6tMAAACdQKcIR08++aQKCwu1ZMkSbdq0SRdddJEyMjJUXl6uqqoqTZ48WYMGDVJhYaFmzpyp7OxsFRYWevfPzc1Vfn6+lixZooKCAtlsNmVkZKixsTGAZwUAAIJRpwhH27Zt03XXXafRo0dr4MCB+tWvfqVjx47po48+0nPPPafQ0FBlZmZqyJAhmjhxou644w6tWrVKktTY2Kg1a9Zo5syZGjNmjOLi4pSVlaXy8nJt3bo1wGcGAACCTacIR+edd562b9+uL774Qk1NTSooKFBoaKiGDh2qXbt2KSkpSQ6Hwzs/JSVFBw8eVGVlpYqLi1VbW6uUlBTvdqfTqWHDhmnnzp2BOB0AABDEHKefEngLFy7U7NmzdeWVVyokJER2u13Z2dkaMGCAysrKFBsb6zO/d+/ekqQjR46orKxMktS3b98Wc0pLS8+oLoejfbOl3W47+cAm2Ww2v/drnhsS0imybsA194l+dTx6bQ36bA36bI1g6HOnCEcHDhyQ0+nUE088oT59+uj555/XggULtH79etXX1ys0NNRnflhYmCSpoaFBdXV1knTKOdXV1W2uyW63KSqqW5v3/yEhdrscjhD/5//jF8jpjOiQes5W9Ms69Noa9Nka9Nkagexz0IejL7/8UvPmzdPatWuVmJgoSbr00ku1f/9+PfbYYwoPD2+xsLqhoUGS1LVrV4WHh0s6ufao+XHznIiItjfe7faopuZ4m/c/lS5dQhQZGa4mt1suV5Pf+zU1uSVJNTV13sf4fiEhdjmdEfTLAvTaGvTZGvTZGh3ZZ6czwq8rUkEfjvbs2aMTJ07o0ksv9RmPj4/XO++8o379+qmiosJnW/PPffr0kcvl8o4NGDDAZ05cXNwZ1eZyte+T5n3CPJLH4/F7v+a5TU3udq/pbEa/rEOvrUGfrUGfrRHIPgf9jdPmtUKffvqpz/hnn32mgQMHKikpSbt371ZT03dXWnbs2KHBgwcrOjpacXFxioyMVFFRkXd7TU2N9u7d670SBQAA0Czow9Hw4cOVmJioBQsW6P3339ehQ4e0YsUK7dixQ3feeacmTpyoY8eOaeHChdq/f782btyodevWafr06ZJOrjVKT0/X8uXLtW3bNhUXF2v27NmKiYnR+PHjA3x2AAAg2AT9bTW73a7c3FytWLFC999/v6qrqxUbG6u1a9cqISFBkrR69WotXbpUaWlp6tWrl+bPn6+0tDTvMWbNmiWXy6VFixapvr5eSUlJysvLa7FIGwAAwOZpzeIWeDU1uXX0aG27HjMszCGnM0LZf/pQX1R86/d+/XtF6r5Jl6mqqpb74H5wOOyKiupGvyxAr61Bn61Bn63RkX3u2bObXwuyg/62GgAAgJUIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICh04SjTZs2acKECbr00kt17bXX6vXXX/du27dvn9LT05WQkKCxY8cqLy/PZ1+3262cnBylpqYqPj5eU6ZMUUlJidWnAAAAOoFOEY5eeuklPfDAA7rpppu0efNmTZgwQXPmzNH//u//qqqqSpMnT9agQYNUWFiomTNnKjs7W4WFhd79c3NzlZ+fryVLlqigoEA2m00ZGRlqbGwM4FkBAIBg5Ah0Aafj8XiUnZ2tX/7yl/rlL38pSZoxY4Y+/PBDffDBB/rggw8UGhqqzMxMORwODRkyRCUlJVq1apUmTpyoxsZGrVmzRvPmzdOYMWMkSVlZWUpNTdXWrVt17bXXBvL0AABAkAn6K0d///vf9eWXX+r666/3Gc/Ly9P06dO1a9cuJSUlyeH4LuelpKTo4MGDqqysVHFxsWpra5WSkuLd7nQ6NWzYMO3cudOy8wAAAJ1D0F85OnTokCTp+PHjmjp1qvbu3asLLrhAd911l8aNG6eysjLFxsb67NO7d29J0pEjR1RWViZJ6tu3b4s5paWlZ1Sbw9G+2dJut518YJNsNpvf+zXPDQkJ+qwbFJr7RL86Hr22Bn22Bn22RjD0OejD0bFjxyRJCxYs0D333KO5c+fqjTfe0N13361nnnlG9fX1Cg0N9dknLCxMktTQ0KC6ujpJOuWc6urqNtdlt9sUFdWtzfv/kBC7XQ5HiP/z//EL5HRGdEg9Zyv6ZR16bQ36bA36bI1A9jnow1GXLl0kSVOnTlVaWpokaejQodq7d6+eeeYZhYeHt1hY3dDQIEnq2rWrwsPDJUmNjY3ex81zIiLa3ni326OamuNt3v9UunQJUWRkuJrcbrlcTX7v19TkliTV1NR5H+P7hYTY5XRG0C8L0Gtr0Gdr0GdrdGSfnc4Iv65IBX04iomJkaQWt84uvvhivf322+rfv78qKip8tjX/3KdPH7lcLu/YgAEDfObExcWdUW0uV/s+ad4nzHNyIbq/muc2NbnbvaazGf2yDr22Bn22Bn22RiD7HPQ3TocNG6Zu3brp448/9hn/7LPPNGDAACUlJWn37t1qavruSsuOHTs0ePBgRUdHKy4uTpGRkSoqKvJur6mp0d69e5WYmGjZeQAAgM4h6K8chYeHa9q0aXriiSfUp08fDR8+XK+++qree+89rV27VhdffLFWr16thQsXatq0adqzZ4/WrVunBx98UNLJtUbp6elavny5evbsqf79+2vZsmWKiYnR+PHjA3x2AAAg2AR9OJKku+++WxEREcrKylJ5ebmGDBmixx57TMnJyZKk1atXa+nSpUpLS1OvXr00f/587/okSZo1a5ZcLpcWLVqk+vp6JSUlKS8vr8UibQAAAJunNYtb4NXU5NbRo7XtesywMIeczghl/+lDfVHxrd/79e8VqfsmXaaqqlrug/vB4bArKqob/bIAvbYGfbYGfbZGR/a5Z89ufi3IbtOao507d6q29tTBoKamRq+++mpbDgsAABBwbQpHt99+uw4cOHDKbXv37tX9999/RkUBAAAEit9rjhYsWOD9RGmPx6PMzExFRka2mHfo0CGdf/757VchAACAhfy+cvSv//qv8ng8Pp+/0/xz8x+73a6EhAQ99NBDHVIsAABAR/P7ytG4ceM0btw4SdJtt92mzMxMDRkypMMKAwAACIQ2vZX/f/7nf9q7DgAAgKDQpnBUV1enlStXavv27aqrq5Pb7ftWO5vNpjfffLNdCgQAALBSm8LR0qVLVVhYqFGjRmno0KGy24P+W0gAAAD80qZwtGXLFs2ePVt33nlne9cDAAAQUG265ONyuTR8+PD2rgUAACDg2hSORo8erXfeeae9awEAAAi4Nt1WmzBhghYvXqyjR48qPj5eERERLebccMMNZ1obAACA5doUju677z5J0qZNm7Rp06YW2202G+EIAAB0Sm0KR9u2bWvvOgAAAIJCm8JR//7927sOAACAoNCmcPT444+fds4999zTlkMDAAAEVLuHo8jISPXu3ZtwBAAAOqU2haPi4uIWY8ePH9fu3buVmZmpX//612dcGAAAQCC02/d+dO3aVampqZoxY4b++Mc/ttdhAQAALNXuX4rWt29fHThwoL0PCwAAYIk23VY7FY/Ho9LSUq1atYp3swEAgE6rTeEoLi5ONpvtlNs8Hg+31QAAQKfVpnA0Y8aMU4ajyMhIjR07VoMGDTrTugAAAAKiTeFo5syZ7V0HAABAUGjzmqPGxkZt3LhRRUVFqqmpUVRUlBITE5WWlqawsLD2rBEAAMAybQpHNTU1uv3221VcXKx+/fqpV69eOnjwoDZv3qxnn31WGzZsUPfu3du7VgAAgA7XprfyP/LIIyorK9P69ev11ltvqaCgQG+99ZbWr1+vyspKZWdnt3edAAAAlmhTONq2bZvuu+8+JSYm+ownJiZq1qxZ2rJlS7sUBwAAYLU2haPa2lpdeOGFp9x24YUX6ptvvjmTmgAAAAKmTeHooosu0vbt20+5bdu2bRo4cOAZFQUAABAobVqQPXXqVM2ZM0eNjY26/vrrdf755+vrr7/WK6+8oueff16ZmZntXCYAAIA12hSOJkyYoEOHDmnlypV6/vnnveNdunTRjBkzdNNNN7VbgQAAAFZqUzg6fvy47r77bqWnp+ujjz5SdXW1SktLddNNN6lHjx7tXSMAAIBlWrXmaN++fbrhhhu0du1aSZLT6dQVV1yhK664QitWrNCkSZN04MCBjqgTAADAEn6Ho8OHD+uOO+5QdXW1Lr74Yp9toaGheuCBB1RbW6tJkyaprKys3QsFAACwgt/h6Omnn1ZUVJRefPFFXX311T7bIiIilJ6ersLCQnXt2lUrV65s90IBAACs4Hc42rFjh6ZNm6bzzjvve+dER0dr8uTJ2rFjR3vUBgAAYDm/w9FXX33l1+cXxcbGclsNAAB0Wn6Ho549e6qiouK0844ePfqDV5cAAACCmd/hKCkpSRs3bjztvE2bNmno0KFnVBQAAECg+B2ObrvtNhUVFenhhx9WQ0NDi+2NjY36wx/+oHfffVe33npruxYJAABgFb8/BPLSSy/V/fffr9///vd66aWXdPnll+uCCy5QU1OTjhw5oqKiIlVVVenee+9VampqR9YMAADQYVr1Cdm33nqr4uLilJeXp23btnmvIHXr1k2jR4/WlClTFB8f3yGFAgAAWKHVXx9y2WWX6bLLLpMkVVVVyW6385UhAADgrNGm71ZrFhUV1V51AAAABIVWfbcaAADA2Y5wBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgKFThaODBw9qxIgR2rhxo3ds3759Sk9PV0JCgsaOHau8vDyffdxut3JycpSamqr4+HhNmTJFJSUlVpcOAAA6iU4Tjk6cOKG5c+fq+PHj3rGqqipNnjxZgwYNUmFhoWbOnKns7GwVFhZ65+Tm5io/P19LlixRQUGBbDabMjIy1NjYGIjTAAAAQa7ThKPHHntM3bp18xl77rnnFBoaqszMTA0ZMkQTJ07UHXfcoVWrVkmSGhsbtWbNGs2cOVNjxoxRXFycsrKyVF5erq1btwbiNAAAQJDrFOFo586dKigo0B/+8Aef8V27dikpKUkOh8M7lpKSooMHD6qyslLFxcWqra1VSkqKd7vT6dSwYcO0c+dOy+oHAACdR9CHo5qaGs2fP1+LFi1S3759fbaVlZUpJibGZ6x3796SpCNHjqisrEySWuzXu3dvlZaWdmDVAACgs3KcfkpgZWZmKiEhQddff32LbfX19QoNDfUZCwsLkyQ1NDSorq5Okk45p7q6+oxrczjaN1va7baTD2ySzWbze7/muSEhQZ91g0Jzn+hXx6PX1qDP1qDP1giGPgd1ONq0aZN27dqlV1555ZTbw8PDWyysbmhokCR17dpV4eHhkk6uPWp+3DwnIiLijGqz222Kiup2+oltEGK3y+EI8X/+P36BnM4zO6dzDf2yDr22Bn22Bn22RiD7HNThqLCwUJWVlRo7dqzP+OLFi5WXl6d+/fqpoqLCZ1vzz3369JHL5fKODRgwwGdOXFzcGdXmdntUU3P89BNboUuXEEVGhqvJ7ZbL1eT3fk1NbklSTU2d9zG+X0iIXU5nBP2yAL22Bn22Bn22Rkf22emM8OuKVFCHo+XLl6u+vt5n7Oqrr9asWbM0YcIEvfrqq8rPz1dTU5NCQk5eadmxY4cGDx6s6Ohode/eXZGRkSoqKvKGo5qaGu3du1fp6elnXJ/L1b5PmvcJ80gej8fv/ZrnNjW5272msxn9sg69tgZ9tgZ9tkYg+xzU4ahPnz6nHI+Ojlb//v01ceJErV69WgsXLtS0adO0Z88erVu3Tg8++KCkk2uN0tPTtXz5cvXs2VP9+/fXsmXLFBMTo/Hjx1t5KgAAoJMI6nB0OtHR0Vq9erWWLl2qtLQ09erVS/Pnz1daWpp3zqxZs+RyubRo0SLV19crKSlJeXl5LRZpAwAASJ0wHH366ac+Pw8fPlwFBQXfOz8kJETz5s3TvHnzOro0AABwFuD9iAAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcAQAAGAhHAAAABsIRAACAgXAEAABgIBwBAAAYCEcAAAAGwhEAAICBcAQAAGAI+nD0zTff6De/+Y2uuOIKjRw5Urfccot27drl3b5v3z6lp6crISFBY8eOVV5ens/+brdbOTk5Sk1NVXx8vKZMmaKSkhKrTwMAAHQSQR+O5syZo48//liPPvqoXnjhBf3oRz/S1KlTdeDAAVVVVWny5MkaNGiQCgsLNXPmTGVnZ6uwsNC7f25urvLz87VkyRIVFBTIZrMpIyNDjY2NATwrAAAQrByBLuCHlJSU6L333tOf/vQnjRw5UpK0cOFCvfPOO9q8ebPCw8MVGhqqzMxMORwODRkyRCUlJVq1apUmTpyoxsZGrVmzRvPmzdOYMWMkSVlZWUpNTdXWrVt17bXXBvL0AABAEArqK0dRUVF6+umn9eMf/9g7ZrPZ5PF4VF1drV27dikpKUkOx3cZLyUlRQcPHlRlZaWKi4tVW1urlJQU73an06lhw4Zp586dlp4LAADoHIL6ypHT6fRe8Wn2+uuv6/PPP9fo0aOVlZWl2NhYn+29e/eWJB05ckRlZWWSpL59+7aYU1paesb1ORztmy3tdtvJB7aTIdBfzXNDQoI66waN5j7Rr45Hr61Bn61Bn60RDH0O6nD0z3bv3q0HHnhAV155pcaNG6eHHnpIoaGhPnPCwsIkSQ0NDaqrq5OkU86prq4+o1rsdpuiorqd0TG+T4jdLocjxP/5//gFcjojOqSesxX9sg69tgZ9tgZ9tkYg+9xpwtGbb76puXPnKj4+Xo8++qgkKTw8vMXC6oaGBklS165dFR4eLklqbGz0Pm6eExFxZk13uz2qqTl+Rsf4Z126hCgyMlxNbrdcria/92tqckuSamrqvI/x/UJC7HI6I+iXBei1NeizNeizNTqyz05nhF9XpDpFOFq/fr2WLl2q8ePHa/ny5d4rQTExMaqoqPCZ2/xznz595HK5vGMDBgzwmRMXF3fGdblc7fukeZ8wj+TxePzer3luU5O73Ws6m9Ev69Bra9Bna9BnawSyz0F/43TDhg363e9+p1tvvVUrVqzwuUWWlJSk3bt3q6npu6ssO3bs0ODBgxUdHa24uDhFRkaqqKjIu72mpkZ79+5VYmKipecBAAA6h6AORwcPHtTvf/97jR8/XtOnT1dlZaW++uorffXVV/r22281ceJEHTt2TAsXLtT+/fu1ceNGrVu3TtOnT5d0cq1Renq6li9frm3btqm4uFizZ89WTEyMxo8fH+CzAwAAwSiob6u98cYbOnHihLZu3aqtW7f6bEtLS9PDDz+s1atXa+nSpUpLS1OvXr00f/58paWleefNmjVLLpdLixYtUn19vZKSkpSXl9dikTYAAIAk2TytWdwCr6Ymt44erW3XY4aFOeR0Rij7Tx/qi4pv/d6vf69I3TfpMlVV1XIf3A8Oh11RUd3olwXotTXoszXoszU6ss89e3bza0F2UN9WAwAAsBrhCAAAwEA4AgAAMBCOAAAADIQjAAAAA+EIAADAQDgCAAAwEI4AAAAMhCMAAAAD4QgAAMBAOAIAADAQjgAAAAyEIwAAAAPhCAAAwEA4AgAAMBCOAAAADIQjAAAAA+EIAADAQDgCAAAwEI4AAAAMhCMAAAAD4QgAAMBAOAIAADAQjgAAAAyEIwAAAAPhCAAAwEA4AgAAMBCOAAAADIQjAAAAA+EIAADAQDgCAAAwEI4AAAAMhCMAAAAD4QgAAMBAOAIAADAQjgAAAAyEIwAAAAPhCAAAwEA4AgAAMBCOAAAADIQjAAAAA+EIAADAQDgCAAAwEI4AAAAMhCMAAAAD4QgAAMBAOAIAADAQjgAAAAyEIwAAAAPhCAAAwEA4AgAAMBCOAAAADIQjAAAAA+EIAADAQDgCAAAwEI4AAAAMhCMAAAAD4QgAAMBAOAIAADCcM+HI7XYrJydHqampio+P15QpU1RSUhLosgAAQJA5Z8JRbm6u8vPztWTJEhUUFMhmsykjI0ONjY2BLg0AAASRcyIcNTY2as2aNZo5c6bGjBmjuLg4ZWVlqby8XFu3bg10eQAAIIicE+GouLhYtbW1SklJ8Y45nU4NGzZMO3fuDGBlAAAg2DgCXYAVysrKJEl9+/b1Ge/du7dKS0vbdEy73aaePbudcW0mm+3k31N//mM1uT1+7xdiP7ljjx4R7VrP2Y5+WYdeW4M+W4M+W6NHjwh5/H8p9Iv9H6+Xp3NOhKO6ujpJUmhoqM94WFiYqqur23RMm82mkBD/mtxakV1DTz/pFOz2c+JCYLuhX9ah19agz9agz9YIZJ/PiWc4PDxcklosvm5oaFBEBP8HAAAAvnNOhKPm22kVFRU+4xUVFYqJiQlESQAAIEidE+EoLi5OkZGRKioq8o7V1NRo7969SkxMDGBlAAAg2JwTa45CQ0OVnp6u5cuXq2fPnurfv7+WLVummJgYjR8/PtDlAQCAIHJOhCNJmjVrllwulxYtWqT6+nolJSUpLy+vxSJtAABwbrN5PO39RjkAAIDO65xYcwQAAOAvwhEAAICBcAQAAGAgHAEAABgIRwAAAAbCEQAAgIFwBAAAYCAcWcjtdisnJ0epqamKj4/XlClTVFJS8r3zq6qq9F//9V9KSkpSUlKSfv3rX+v48eMWVtw5tbbPf/vb33TnnXcqOTlZl19+uWbNmqUjR45YWHHn1dpem1555RVdcskl+uKLLzq4ys6vtX0+ceKEHnnkEaWmpiohIUHp6enat2+fhRV3Tq3t81dffaU5c+YoOTlZycnJuvfee1VWVmZhxZ1fbm6ubrvtth+cE4jXQsKRhXJzc5Wfn68lS5aooKBANptNGRkZamxsPOX8WbNm6fDhw1q7dq1ycnL03nvv6cEHH7S46s6nNX2uqqrS5MmT1a1bN61fv16rVq1SVVWVpk2bpoaGhgBU37m09ne62Zdffsnvciu0ts+ZmZl64YUX9Lvf/U6FhYU677zzlJGRoW+//dbiyjuX1vZ59uzZKi0t1TPPPKNnnnlGZWVluvvuuy2uuvNqfm07nYC8FnpgiYaGBs+IESM8GzZs8I5VV1d7hg8f7tm8eXOL+R9++KEnNjbWs3//fu/Yu+++67nkkks8ZWVlltTcGbW2z88995xn5MiRnvr6eu9YaWmpJzY21vPXv/7Vkpo7q9b2ullTU5Pnlltu8dx+++2e2NhYz+HDh60ot9NqbZ8///xzT2xsrGf79u0+83/605/yO/0DWtvn6upqT2xsrGfbtm3esTfffNMTGxvrOXr0qCU1d1ZlZWWeqVOnehISEjzXXHONJz09/XvnBuq1kCtHFikuLlZtba1SUlK8Y06nU8OGDdPOnTtbzN+1a5d69eqlIUOGeMdGjRolm82m3bt3W1JzZ9TaPl9++eV64oknFBYW1mJbdXV1h9ba2bW2181WrlypEydOaPr06VaU2em1ts9/+ctf5HQ6dcUVV/jMf+utt3T55ZdbUnNn1No+h4WFqWvXrtq0aZOOHTumY8eO6aWXXtKgQYPUo0cPK0vvdD755BP16NFDL7/8suLj439wbqBeC8+ZL54NtOb70H379vUZ7927t0pLS1vMLy8vbzE3NDRU55133inn46TW9vmCCy7QBRdc4DP21FNPKSwsTElJSR1X6Fmgtb2WpD179mjNmjV64YUXVF5e3uE1ng1a2+dDhw7pwgsv1JYtW/T000+rvLxcw4YN069+9SufFxj4am2fw8LCtHTpUv32t79VYmKibDabevXqpfXr18tu57rDDxk3bpzGjRvn19xAvRbyDFqkrq5O0skn1RQWFnbKtS11dXUt5v7QfJzU2j7/s//+7//Whg0bNGfOHEVHR3dIjWeL1vb6+PHjmjt3rubOnatBgwZZUeJZobV9PnbsmD7//HPl5uZqzpw5evLJJ+VwODRp0iRVVlZaUnNn1No+ezweffrppxoxYoSeffZZrVu3Tv3799eMGTN07NgxS2o+FwTqtZBwZJHw8HBJarGwr6GhQREREaecf6pFgA0NDeratWvHFHkWaG2fm3k8Hq1YsUJLly7V9OnTdccdd3RkmWeF1vZ6yZIlGjRokG6++WZL6jtbtLbPXbp00bfffqusrCyNHj1aw4cPV1ZWliTpxRdf7PiCO6nW9vnVV1/Vhg0btGzZMl122WUaNWqUVq5cqS+//FKFhYWW1HwuCNRrIeHIIs2XBSsqKnzGKyoqFBMT02J+TExMi7mNjY365ptv1KdPn44rtJNrbZ+lk297njdvnlauXKn58+drzpw5HV7n2aC1vS4sLNSOHTs0YsQIjRgxQhkZGZKk6667Tr/5zW86vuBOqi3/djgcDp9baOHh4brwwgv52IQf0No+7969W4MHD1ZkZKR3rEePHho8eLAOHTrUobWeSwL1Wkg4skhcXJwiIyNVVFTkHaupqdHevXuVmJjYYn5SUpLKysp8PmOjed+RI0d2fMGdVGv7LEnz58/Xn//8Zz3yyCOaOnWqVaV2eq3t9ZYtW7R582Zt2rRJmzZt0pIlSyRJTz/9tO69917L6u5sWtvnxMREuVwu/d///Z93rL6+XocPH9bAgQMtqbkzam2f+/btq5KSEp9bO3V1dfriiy/oczsK1GshC7ItEhoaqvT0dC1fvlw9e/ZU//79tWzZMsXExGj8+PFqamrS0aNH1b17d4WHhys+Pl4jR47U7NmzlZmZqePHj2vx4sW64YYbuHL0A1rb540bN+q1117T/PnzNWrUKH311VfeYzXPwam1ttf//ILRvAC2X79+rO/6Aa3tc2Jion7yk59owYIF+u1vf6vzzjtPOTk5CgkJ0c9//vNAn07Qam2fb7jhBuXl5em+++7zhvsVK1YoNDRUN954Y4DPpvMKmtfCDvuQALTgcrk8f/zjHz0pKSmehIQET0ZGhvczXg4fPuyJjY31FBYWeud//fXXnpkzZ3oSEhI8ycnJnsWLF/t8Hg9OrTV9njx5sic2NvaUf8znAqfW2t9p0/vvv8/nHPmptX3+9ttvPYsXL/YkJyd74uPjPZMnT/b87W9/C1T5nUZr+7x//37P9OnTPaNGjfKkpKR47rnnHn6fW2nBggU+n3MULK+FNo/H4+m46AUAANC5sOYIAADAQDgCAAAwEI4AAAAMhCMAAAAD4QgAAMBAOAIAADAQjgAAQMDk5ubqtttu65D9Dx48qISEhFZ/dQ7hCMA5Y/78+brkkkv09NNPB7oUAJLWrl2rnJycDtn/008/1eTJk1VXV9fq4xKOAJwTjh07pi1btig2NlbPPfec+PxbIHDKy8s1bdo0ZWdna/Dgwe2+/5NPPqn/+I//UM+ePdtUH+EIwDnh1VdfVVNTkxYtWqTDhw/rL3/5S6BLAs5Zn3zyiXr06KGXX35Z8fHxLbZv375dN954o4YPH67x48drxYoVamxs9Hv/d999V8uWLdOCBQvaVB/hCMA5obCwUMnJyUpOTtbgwYOVn5/fYk5eXp6uvPJKDR8+XDfffLPeeustXXLJJT7f1P7ZZ59p+vTpGjlypEaOHKkZM2bo8OHDVp4K0OmNGzdOjzzyiC688MIW29555x3de++9+sUvfqHNmzdr8eLFev311zVv3jy/9pekDRs26Oqrr25zfYQjAGe9AwcO6OOPP1ZaWpok6cYbb9T27dtVXl7unfP4449r+fLl+tnPfqbc3FzFx8dr9uzZPsc5ePCgbr75ZlVWVurhhx/W0qVLdfjwYd1yyy2qrKy09JyAs9XKlSv17//+77rllls0YMAAjR49Wg8++KD+/Oc/t3phdVs5LPmvAEAAvfDCC3I6nbrqqqskSTfccINWrFih559/Xvfcc4+OHz+uVatW6dZbb9XcuXMlSaNHj1ZdXZ0KCgq8x3n88ccVHh6utWvXKjIyUpJ0+eWX66qrrtLq1avbfAkfwHf27t2rPXv26MUXX/SONa8RPHDggC644IIOr4FwBOCs5nK59PLLL+uqq65SQ0ODGhoaFB4eruTkZD3//PO666679NFHH6m+vl7XXHONz77XXXedTzh6//33lZycrPDwcLlcLklSZGSkEhMT9de//tXS8wLOVm63W9OmTfNe6TX16tXLkhoIRwDOam+//ba+/vprbdy4URs3bmyxffv27aqvr5ekFu9sOf/8831+/uabb/Taa6/ptddea3Gctr4rBoCvf/mXf9Hf//53DRw40Dv2wQcfaN26dcrMzFTXrl07vAbCEYCz2gsvvKD+/fvroYcearFt1qxZys/P13/+539Kko4ePaqLLrrIu/3o0aM+87t3766f/OQnmjx5cotjORz8cwq0h4yMDN1333167LHHdN1116msrEyLFi1Sv379uHIEAGfq66+/1rvvvqspU6YoOTm5xfYJEyYoPz9f8+bNU/fu3bVlyxYlJiZ6t7/xxhs+80eNGqX9+/dr6NCh3jDk8Xg0d+5cDRw4UEOHDu3YEwLOAddcc42ysrL01FNP6amnnlKPHj3005/+1Ofdah3N5uGT0ACcpVatWqXly5frpZdeUlxcXIvte/bs0S9+8Qvdeeed6tatm3JycpSRkaFRo0bpgw8+UF5enk6cOKH169crKSlJxcXFuvnmm3XZZZfplltuUVhYmAoKCvTmm28qJyfnjN46DCB4EI4AnLUmTJggu92uzZs3f++cn/3sZ6qurtbbb7+t1atXq6CgQJWVlYqPj9f48eP10EMPaePGjfrRj34k6eSHz2VlZenDDz+Ux+NRbGys7rzzTl155ZVWnRaADkY4AnDOc7lc2rx5s5KTk9W3b1/v+LPPPqslS5aoqKhITqczgBUCsBLhCAAkXXvttQoNDdVdd92lqKgoFRcXKzs723v1CMC5g3AEAJIOHz6sRx99VEVFRaqpqVG/fv30b//2b5o+fbq6dOkS6PIAWIhwBAAAYOC71QAAAAyEIwAAAAPhCAAAwEA4AgAAMBCOAAAADIQjAAAAA+EIAADAQDgCAAAwEI4AAAAM/w+63BBAP0OuwQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data = data1, x = 'Age', bins=\"sqrt\")" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "<Axes: xlabel='Age', ylabel='Count'>" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAx3ElEQVR4nO3dfXRTdZ7H8c+9CaUtGGkRKKJAheVJedJ2YBSUgzIKqGNlPY4IwwIiCsKIw8MozFKOIroyIIqsA1RhFxHEdhnFR0Q9ui4i4EGPAjIgIIK02gKdUkpJ7t0/sIFMq5YkbW5y369zekLvwy/f5EvaT++jYdu2LQAAAJcwY10AAABAfSL8AAAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAV/HGugAnsm1blhUfF742TSNuanUbeuNM9MW56I0zxUtfTNOQYRi1WpbwUwPLslVScjzWZfwir9dUWlojlZaWy++3Yl0OzkJvnIm+OBe9caZ46kt6eiN5PLULP+z2AgAArkL4AQAArkL4AQAArkL4AQAAruKo8LNo0SINHz48ZNq7776rIUOGqGfPnurfv78ef/xxVVRUBOdblqWnnnpKffv2Vffu3TVq1Cjt37+/vksHAABxwjHhZ9myZXrqqadCpm3ZskX33Xefrr/+eq1du1a5ubl64403NGvWrOAyixYt0qpVq/TII49o9erVMgxDY8aMUWVlZX2/BAAAEAdiHn4KCwt11113acGCBcrMzAyZt2rVKvXu3Vt333232rRpo6uvvlqTJk3SK6+8osrKSlVWVuq5557ThAkTdM0116hTp06aP3++CgsLtX79+hi9IgAA4GQxDz9ffvmlzj//fL3yyivq3r17yLxRo0Zp6tSp1dbx+/0qKyvTzp07dfz4cfXu3Ts4z+fzqUuXLtq8eXOd1w4AAOJPzC9y2L9/f/Xv37/GeV26dAn5vrKyUs8//7wuvfRSpaena8uWLZKkli1bhizXvHlzfffddxHV5fXGPBf+Io/HDHmEc9AbZ6IvzkVvnClR+xLz8FNbfr9fU6dO1e7du/XCCy9Ikk6cOCFJSkpKClm2YcOGOnbsWNjPZZqG0tIahV9sPfP5UmJdAn4CvXEm+uJc9MaZEq0vcRF+ysrKdP/992vTpk166qmngrvHkpOTJZ3eIlT1b0k6efKkUlLCb5Rl2SotLY+s6Hrg8Zjy+VJUWnpCgYCzLzvuNvTGmeiLc9EbZ4qnvvh8KbXeQuX48FNUVKQxY8bo22+/1ZIlS0KO76na3VVUVKTWrVuHrNOpU6eIntfp9zA5WyBgxVW9bkJvnIm+OBe9caZE64ujd+IdO3ZMI0aMUElJiVauXBkSfCSpU6dOaty4sTZt2hScVlpaqu3btysrK6u+ywUAAHHA0Vt+5syZowMHDmjp0qVKT0/X999/H5yXnp6upKQkDRs2THPnzlV6erpatWqlJ554QhkZGRowYEAMKwcAAE7l2PBjWZZef/11nTp1SiNGjKg2f8OGDbrooos0ceJE+f1+zZgxQxUVFcrOzlZeXl61g6CBWDJNQ6ZpRDyOZdmyLDsKFQGAexm2bfOT9J8EApZKSo7Huoxf5PWaSktrpCNHjifUvthEcHZvLMtWk7RUeczI9zIHLEtHj5QTgMLEZ8a56I0zxVNf0tMbJc4Bz0C8M01DHtPUyjd3qKgk/LMIm6enaugNnWWaBuEHACJA+AHqSVFJuQ5+XxbrMgDA9Rx9thcAAEC0EX4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrEH4AAICrcJFD4GeEe0+uqkus1/ZS6wCA+kP4AX6CaRoR35PL50uJYkUAgGgg/AA/IZJ7chmGIY/HVCBgqUObNA28MlOGEfld3QEAkSP8AL8gnHtyGYYhr9cjvz+gC5ok11FlAIBwcEACAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFcIPAABwFW+sCwDqgmkaMk0jojE8Hv42AIBERPhBwjFNQ03SUuUxCS8AgOoIP0g4pmnIY5pa+eYOFZWUhz1Ox7bpGnhlpgwjsi1IAABnIfwgYRWVlOvg92Vhr98sLSWK1QAAnIL9AgAAwFUIPwAAwFUIPwAAwFUIPwAAwFUIPwAAwFUIPwAAwFUIPwAAwFUIPwAAwFUIPwAAwFUIPwAAwFUcFX4WLVqk4cOHh0zbsWOHhg0bph49eqhfv37Ky8sLmW9Zlp566in17dtX3bt316hRo7R///76LBsAAMQRx4SfZcuW6amnngqZduTIEY0cOVJt27ZVfn6+JkyYoAULFig/Pz+4zKJFi7Rq1So98sgjWr16tQzD0JgxY1RZWVnfLwEAAMSBmN/YtLCwUNOnT9fWrVuVmZkZMu+ll15SUlKScnNz5fV61a5dO+3fv19LlizRkCFDVFlZqeeee05TpkzRNddcI0maP3+++vbtq/Xr12vw4MGxeEkAAMDBYr7l58svv9T555+vV155Rd27dw+Zt2XLFmVnZ8vrPZPRevfurb1796q4uFg7d+7U8ePH1bt37+B8n8+nLl26aPPmzfX2GgAAQPyI+Zaf/v37q3///jXOO3z4sDp06BAyrXnz5pKkQ4cO6fDhw5Kkli1bVlvmu+++i6gurzfmufAXeTxmyCNOq3o/DMOQYRhhjxNc19C5j2OceYxonBrqod/h4zPjXPTGmRK1LzEPPz+noqJCSUlJIdMaNmwoSTp58qROnDghSTUuc+zYsbCf1zQNpaU1Cnv9+ubzpcS6BEfyeEx5vZ7w1zfN4GO443g9nqiMI5354UO/I8d76Fz0xpkSrS+ODj/JycnVDlw+efKkJCk1NVXJycmSpMrKyuC/q5ZJSQm/UZZlq7S0POz164vHY8rnS1Fp6QkFAlasy3GMqvclELDk9wfCHidgWcHHcx7HOB18/IFAZOOcXc+PPabf4eMz41z0xpniqS8+X0qtt1A5OvxkZGSoqKgoZFrV9y1atJDf7w9Oa926dcgynTp1iui5/X5nN/lsp3/Jx0+99cW2bdm2HdH6p/+hcx7HqNrvZUc2Tk310O/I8R46F71xpkTri6N34mVnZ2vr1q0KBM78tbxx40ZlZmaqadOm6tSpkxo3bqxNmzYF55eWlmr79u3KysqKRckAAMDhHB1+hgwZorKyMk2fPl27d+9WQUGBli9frrFjx0o6fazPsGHDNHfuXG3YsEE7d+7UpEmTlJGRoQEDBsS4egAA4ESO3u3VtGlTLV26VLNnz1ZOTo6aNWumqVOnKicnJ7jMxIkT5ff7NWPGDFVUVCg7O1t5eXnVDoIGcIZpGjLN8M88q2JZtiwr/F15ABALjgo/jz32WLVp3bp10+rVq39yHY/HoylTpmjKlCl1WRqQMEzTUJO01OBZaJEIWJaOHiknAAGIK44KPwDqnmka8pimVr65Q0Ul4Z/V2Dw9VUNv6CzTNAg/AOIK4QdwqaKSch38vizWZQBAvXP0Ac8AAADRRvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuQvgBAACuEhfh59SpU5o/f7769eunnj17aujQofr000+D83fs2KFhw4apR48e6tevn/Ly8mJYLQAAcLK4CD//+Z//qfz8fD3yyCNau3atLrnkEo0ZM0aFhYU6cuSIRo4cqbZt2yo/P18TJkzQggULlJ+fH+uyAQCAA3ljXUBtbNiwQTfeeKP69OkjSfrTn/6kNWvWaNu2bdq3b5+SkpKUm5srr9erdu3aaf/+/VqyZImGDBkS48oBAIDTxMWWnyZNmui9997Tt99+q0AgoNWrVyspKUmdO3fWli1blJ2dLa/3TI7r3bu39u7dq+Li4hhWDQAAnCgutvxMnz5dkyZN0rXXXiuPxyPTNLVgwQK1bt1ahw8fVocOHUKWb968uSTp0KFDatq0aSxKBgAADhUX4WfPnj3y+Xx65pln1KJFC61Zs0bTpk3TihUrVFFRoaSkpJDlGzZsKEk6efJk2M/p9Tp/o5jHY4Y84rSq98MwDBmGEfY4wXUNnfs4xpnHiMapoZ5I+x3t9yee/v/xmXEueuNMidoXx4efgwcPasqUKVq2bJmysrIkSV27dtXu3bv19NNPKzk5WZWVlSHrVIWe1NTUsJ7TNA2lpTWKrPB65POlxLoER/J4THm9nvDXN83gY7jjeD2eqIwjnfnhE61+R/z+RLme+hSPNbsFvXGmROuL48PP559/rlOnTqlr164h07t3764PPvhAF154oYqKikLmVX3fokWLsJ7TsmyVlpaHV3A98nhM+XwpKi09oUDAinU5jlH1vgQClvz+QNjjBCwr+HjO4xing48/EIhsnLPr+bHHkfY7au9PlOqpT3xmnIveOFM89cXnS6n1FirHh5+WLVtKkr766it169YtOH3Xrl1q06aNevTooVWrVikQCMjjOf1X7MaNG5WZmRnR8T5+v7ObfLbTv8Tip976Ytu2bNuOaP3T/9A5j2NU7feyIxunpnqi1e9ovT/x+P8vHmt2C3rjTInWF8fvxOvWrZuysrI0bdo0ffzxx9q3b5+efPJJbdy4UXfffbeGDBmisrIyTZ8+Xbt371ZBQYGWL1+usWPHxrp0AADgQI7f8mOaphYtWqQnn3xSDz74oI4dO6YOHTpo2bJl6tGjhyRp6dKlmj17tnJyctSsWTNNnTpVOTk5sS0cAAA4kuPDjySdf/75mjlzpmbOnFnj/G7dumn16tX1XBXOZpqGTDP8M4eqWJYtywp/VwwAAL8kLsIPnM00DTVJSw2e1RSJgGXp6JFyAhAAoM4QfhAx0zTkMU2tfHOHikrCP0uueXqqht7QWaZpEH4AAHWG8IOoKSop18Hvy2JdBgAAP8vxZ3sBAABEE+EHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4CuEHAAC4SljhZ/PmzTp+/HiN80pLS/Xaa69FVBQAAEBdCSv8/P73v9eePXtqnLd9+3Y9+OCDERUFAABQV7y1XXDatGn67rvvJEm2bSs3N1eNGzeutty+fft0wQUXRK9CAACAKKr1lp/rr79etm3Ltu3gtKrvq75M01SPHj00Z86cOikWAAAgUrXe8tO/f3/1799fkjR8+HDl5uaqXbt2dVYYgPjg8UR+3oRl2bIs+5cXBIAoqHX4Odt///d/R7sOAHHmvNQGsixbPl9KxGMFLEtHj5QTgADUi7DCz4kTJ/Tss8/qvffe04kTJ2RZVsh8wzD0zjvvRKVAAM6U3NAr0zT04ls7VVhc89mftdE8PVVDb+gs0zQIPwDqRVjhZ/bs2crPz9evfvUrde7cWabJ5YIAtyoqKdfB78tiXQYA1FpY4eftt9/WpEmTdPfdd0e7HgAAgDoV1iYbv9+vbt26RbsWAACAOhdW+OnTp48++OCDaNcCAABQ58La7TVo0CDNnDlTJSUl6t69u1JSqp/tccstt0RaGwAAQNSFFX7uv/9+SdLatWu1du3aavMNwyD8AAAARwor/GzYsCHadQAAANSLsMJPq1atol0HAABAvQgr/CxcuPAXl7nvvvvCGRoAAKBORT38NG7cWM2bNyf8AAAARwor/OzcubPatPLycm3dulW5ubn685//HHFhAAAAdSFq96VITU1V3759NX78eP3Hf/xHtIYFAACIqqjflKtly5bas2dPtIcFAACIirB2e9XEtm199913WrJkCWeDAQAAxwor/HTq1EmGYdQ4z7btOtnttXbtWi1evFgHDhxQ69atdd9992ngwIGSpB07dmj27Nn64osv1KRJEw0fPlyjR4+Oeg0AACD+hRV+xo8fX2P4ady4sfr166e2bdtGWleIv/3tb3rooYc0bdo09evXT+vWrdMDDzygjIwMtW3bViNHjtR1112nWbNmadu2bZo1a5aaNGmiIUOGRLUOAAAQ/8IKPxMmTIh2HT/Jtm0tWLBAI0aM0IgRIySdDl+ffvqpPvnkE33yySdKSkpSbm6uvF6v2rVrp/3792vJkiWEHwAAUE3Yx/xUVlaqoKBAmzZtUmlpqdLS0pSVlaWcnBw1bNgwagV+/fXXOnjwoG666aaQ6Xl5eZKkMWPGKDs7W17vmZfSu3dv/fWvf1VxcbGaNm0atVoAAED8Cyv8lJaW6ve//7127typCy+8UM2aNdPevXu1bt06vfDCC1q5cqXOO++8qBS4b98+SaevIzR69Ght375dF110ke699171799fhw8fVocOHULWad68uSTp0KFDYYcfrzfqJ8JFncdjhjzGug7DMH7yWLDaqFq3QQNPRK/JNI2o1iND5z6OceYxonFqqCfSfke7X055XbXhlM8MqqM3zpSofQkr/PzlL3/R4cOHtWLFCmVlZQWnb9myRRMnTtSCBQs0Y8aMqBRYVlYmSZo2bZruu+8+TZ48WW+99ZbGjRun559/XhUVFUpKSgpZp2rL08mTJ8N6TtM0lJbWKLLC65HPlxLrEiSd/nB4vZ6w1z//vIayLFuNGyc7oh6PaQYfwx3H6/FEZRzpzA+faPXbCe9PVR1S/f4/dspnBtXRG2dKtL6EfVf3+++/PyT4SFJWVpYmTpyoRYsWRS38NGjQQJI0evRo5eTkSJI6d+6s7du36/nnn1dycrIqKytD1qkKPampqWE9p2XZKi0tj6Dq+uHxmPL5UlRaekKBgBXzOgIBS35/IOxxkrymTNPQi2/tVFFJ+O9/xzZpuuHKTAWsyOoJWFbw8ZzHMU4HH38gENk4Z9fzY48j7Xe0+uW011UbTvnMoDp640zx1BefL6XWW6jCCj/Hjx/XxRdfXOO8iy++WEePHg1n2BplZGRIUrVdW+3bt9f777+vVq1aqaioKGRe1fctWrQI+3n9fmc3+Wynf4nFvl7btmXbdkTrS1JRSbm+LfpH2ONc0OTHLUe2olJPOOMYVfu97MjGqameaPU7Wv1y2uuqDad8ZlAdvXGmROtLWDvxLrnkEr333ns1ztuwYYPatGkTUVFn69Klixo1aqTPPvssZPquXbvUunVrZWdna+vWrQoEzvzluXHjRmVmZnKwMwAAqCasLT+jR4/WAw88oMrKSt1000264IIL9MMPP+jVV1/VmjVrlJubG7UCk5OTddddd+mZZ55RixYt1K1bN7322mv66KOPtGzZMrVv315Lly7V9OnTddddd+nzzz/X8uXLNWvWrKjVAAAAEkdY4WfQoEHat2+fnn32Wa1ZsyY4vUGDBho/frxuv/32qBUoSePGjVNKSormz5+vwsJCtWvXTk8//bR69eolSVq6dKlmz56tnJwcNWvWTFOnTg0eHwQAAHC2sMJPeXm5xo0bp2HDhmnbtm06duyYvvvuO91+++06//zzo12jJGnkyJEaOXJkjfO6deum1atX18nzAgCAxHJOx/zs2LFDt9xyi5YtWyZJ8vl8uvrqq3X11VfrySef1NChQ7mjOwAAcLRah58DBw7o3/7t33Ts2DG1b98+ZF5SUpIeeughHT9+XEOHDtXhw4ejXiiAxHb6ukORfVVd4BIAfk6td3stXrxYaWlpWrVqlZo0aRIyLyUlRcOGDdPAgQP1r//6r3r22WejetAzgMR1XmoDWZYdlYuoBSxLR4+Uy7LCP/UeQOKrdfjZuHGj7rnnnmrB52xNmzbVyJEj9cILL0SjNgAukNzQG7y4ZWHx8bDHaZ6eqqE3dJZpGoQfAD+r1uHn+++/r9X1ezp06MBurzhimkbEuwoS7Z4viI2iknId/L4s1mUAcIFah5/09PRqV1KuSUlJyc9uHYJzmKahJmmpwXs0AQDgBrUOP9nZ2SooKNDgwYN/drm1a9eqc+fOEReGumeahjymqZVv7ojsXlpt0zXwysyI7uwNAEB9qXX4GT58uO644w499thjmjRpUvDO6VUqKys1f/58ffjhh1q8eHHUC0XdiXR3Q7O0xLrbLwAgsdU6/HTt2lUPPvigHn30Uf3tb3/Tr3/9a1100UUKBAI6dOiQNm3apCNHjugPf/iD+vbtW5c1AwAAhO2crvB85513qlOnTsrLy9OGDRt08uRJSVKjRo3Up08fjRo1St27d6+TQgEAAKLhnG9vccUVV+iKK66QJB05ckSmadbZLS0AAACiLax7e1VJS0uLVh0AAAD1gnOcAQCAqxB+AACAqxB+AACAqxB+AACAq0R0wDOA+hfpvdS4FxsAtyP8AHHivNQGsixbPh9X1AaASBB+gDiR3NAr0zT04ls7VVh8POxxuBcbALcj/ABxhnuxAUBk2PkPAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABcJa7Cz969e9WzZ08VFBQEp+3YsUPDhg1Tjx491K9fP+Xl5cWwQgAA4HRxE35OnTqlyZMnq7y8PDjtyJEjGjlypNq2bav8/HxNmDBBCxYsUH5+fgwrBQAATuaNdQG19fTTT6tRo0Yh01566SUlJSUpNzdXXq9X7dq10/79+7VkyRINGTIkRpUCAAAni4stP5s3b9bq1av1+OOPh0zfsmWLsrOz5fWeyXC9e/fW3r17VVxcXN9lAgCAOOD4LT+lpaWaOnWqZsyYoZYtW4bMO3z4sDp06BAyrXnz5pKkQ4cOqWnTpmE/r9fr/Fzo8Zghj+GubxiGDMMIu47guoYYJ7jymUdH1OOicX7u8xDpZwZ1h944U6L2xfHhJzc3Vz169NBNN91UbV5FRYWSkpJCpjVs2FCSdPLkybCf0zQNpaU1+uUFHcLnS4lofY/HlNfrCX990ww+Mk4or8fjqHoSepwffzjX5vMQ6WcGdYfeOFOi9cXR4Wft2rXasmWLXn311RrnJycnq7KyMmRaVehJTU0N+3kty1ZpafkvLxhjHo8pny9FpaUnFAhYYa8fCFjy+wNh1xGwrOAj4/zIOB18/IGAM+pxwzg/fgZ+7vMQ6WcGdYfeOFM89cXnS6n1FipHh5/8/HwVFxerX79+IdNnzpypvLw8XXjhhSoqKgqZV/V9ixYtInpuv9/ZTT7b6fASfr22bcu27YjWP/0PMc6PjKr9XrYz6nHTOLX5PET6mUHdoTfOlGh9cXT4mTt3rioqKkKm/eY3v9HEiRM1aNAgvfbaa1q1apUCgYA8ntObyzdu3KjMzMyIjvcBAACJy9FHMLVo0UJt2rQJ+ZKkpk2bqlWrVhoyZIjKyso0ffp07d69WwUFBVq+fLnGjh0b48oBAIBTOTr8/JKmTZtq6dKl2rt3r3JycrRw4UJNnTpVOTk5sS4NAAA4lKN3e9Xkq6++Cvm+W7duWr16dYyqAQAA8Saut/wAAACcK8IPAABwFcIPAABwFcIPAABwlbg74BkA6pppGjLN8O8zVsWybFlW+BduBFA3CD8AcBbTNNQkLTV4z7FIBCxLR4+UE4AAhyH8AMBZTNOQxzS18s0dKioJ/x5/zdNTNfSGzjJNg/ADOAzhBwBqUFRSroPfl8W6DAB1gAOeAQCAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAqxB+AACAq3hjXQAARJPH89N/01XNq80y9VFPbVmWLcuyo1ANAInwAyBBnJfaQJZly+dL+cVla7NMfdbzSwKWpaNHyglAQJQQfgAkhOSGXpmmoRff2qnC4uM1LmMYhjweU4GAJduuOUh0bJuugVdmyjCMOq+nNpqnp2roDZ1lmgbhB4gSwg+AhFJUUq6D35fVOM8wDHm9Hvn9gZ8MP83SortV6OfqARAbHPAMAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABcxRvrAgAAv8zjifxvVcuyZVl2FKoB4pvjw8/Ro0c1b948vf/++yorK1PHjh31xz/+UVlZWZKkHTt2aPbs2friiy/UpEkTDR8+XKNHj45x1QAQHeelNpBl2fL5UiIeK2BZOnqknAAE13N8+HnggQdUXFysefPmKT09XStXrtTo0aNVUFCg9PR0jRw5Utddd51mzZqlbdu2adasWWrSpImGDBkS69IBIGLJDb0yTUMvvrVThcXHwx6neXqqht7QWaZpEH7geo4OP/v379dHH32kF198UZdffrkkafr06frggw+0bt06JScnKykpSbm5ufJ6vWrXrp3279+vJUuWEH4AJJSiknId/L4s1mUACcHRBzynpaVp8eLFuuyyy4LTDMOQbds6duyYtmzZouzsbHm9ZzJc7969tXfvXhUXF8eiZAAA4HCODj8+n0/XXHONkpKSgtPeeOMNffPNN+rTp48OHz6sjIyMkHWaN28uSTp06FC91goAAOKDo3d7/bOtW7fqoYce0rXXXqv+/ftrzpw5IcFIkho2bChJOnnyZETP5fU6OhdKOnP2R7hngVStZxiGDMMIu47guoYYJ7jymUdH1MM4wXnBZVTzMnH5us5hnGicNVYXIv15hrqRqH2Jm/DzzjvvaPLkyerevbvmzZsnSUpOTlZlZWXIclWhJzU1NeznMk1DaWmNwi+2nkV6FojHY8rr9YS/vmkGHxknlNfjcVQ9jHOa1/PT8+P5df3sOD/+8orGWWN1yen1uVWi9SUuws+KFSs0e/ZsDRgwQHPnzg1u7cnIyFBRUVHIslXft2jRIuznsyxbpaXl4RdcTzweUz5fikpLTygQsMJePxCw5PcHwq4jYFnBR8b5kXH6F6w/EHBGPYxz2ll90U+c8BSXr6s24/z4MyLcnxd1LdKfZ6gb8dQXny+l1luoHB9+Vq5cqYcffljDhw/XQw89JNM888Kys7O1atUqBQIBeX78S27jxo3KzMxU06ZNI3pev9/ZTTZNQz/zx+s5sW1bth3+qa/BdW0xzo+Cu1RsZ9TDOKfV2JcY1hOLcU7/sePcn29Or8+tEq0vjg4/e/fu1aOPPqoBAwZo7NixIWdwJScna8iQIVq6dKmmT5+uu+66S59//rmWL1+uWbNmxbDqumeahpqkpQY3hyfa5kgAAOqSo8PPW2+9pVOnTmn9+vVav359yLycnBw99thjWrp0qWbPnq2cnBw1a9ZMU6dOVU5OTowqrh+machjmnrxrZ0qPlahQMAK6y/Cjm3TNfDKzIgOogQAIN44Ovzcc889uueee352mW7dumn16tX1VJGzFJWUq/DICfn9gbDCT7M0thgBANwnsc5dAwAA+AWEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4CreWBfgNqZpyDSNiMbweMisAACEi/BTj0zTUJO0VHlMwgsAALFC+KlHpmnIY5pa+eYOFZWUhz1Ox7bpGnhlphTZBiQAAFyJ8BMDRSXlOvh9WdjrN0tLiWI1AAC4C/tfAACAqxB+AACAq7DbCwBwTqJx1qokWZYty7KjUBFwbgg/AIBai+ZZqwHL0tEj5QQg1DvCDwCg1qJ11mrz9FQNvaGzTNMg/KDeEX4AAOcs0rNWq1RdtPWfH88Fu89wrgg/AIB6d15qA1mWLZ8v9NId//x9bbD7DOeK8AMAqHfJDb0yTUMvvrVThcXHZRiGPB5TgYAl2659iGH3GcJB+AEAxEzV7jPDMOT1euT3B84p/DgVZ8Q5G+EHAIAo4ow45yP8AAAQRZwR53yEHwAA6kC0zohD9HF7CwAA4CqEHwAA4CqEHwAA4CqEHwAA4CqEHwAA4Cqc7QUAgIOFc7+zf8bFEkMRfgAAcKCfuv9ZOLhYYijCDwAADvTP9z8LFxdLrI7wAwDAj6JxT65o7KY6GxdLjD7CDwAAiu49ueBshB8AABS9e3J1bJuugVdmyjAiv6s76gbhBwCAs0S6m6lZWuQHKDtVNHYLSrE/+4zwAwAAflE0dwvG+uyzhAg/lmVp4cKFWrNmjUpLS3XFFVdo5syZatOmTaxLAwAgIURrt6ATzj5LiPCzaNEirVq1SnPmzFGLFi30xBNPaMyYMVq3bp2SkpJiXR4AOEakZyJF+0ymaIlGXU59bdESzuurWufsdRPh7LO4Dz+VlZV67rnnNGXKFF1zzTWSpPnz56tv375av369Bg8eHOMKASD2onnBPCdJ1NcVTdF4jxLt/Y378LNz504dP35cvXv3Dk7z+Xzq0qWLNm/eTPgBAEXvgnlOO5MpWq9Lct5ri5ZI3iPDMOTxmAoELHVok5Yw749h23ZcX+7x7bff1oQJE/TZZ58pOTk5OP0Pf/iDKioq9Ne//vWcx7TtujkK3TAk0zRVVl6pQATjN/CaSk1uwDiMwziMwzhRGseJNSXqOB7TUOPUJFmWpWgmENM0ah3M4n7Lz4kTJySp2rE9DRs21LFjx8Ia83TSrbtk2zg1OschMQ7jMA7jME50x4nmWIzz88wYXkwy7o/uqtraU1lZGTL95MmTSklJrH2UAAAgcnEfflq2bClJKioqCpleVFSkjIyMWJQEAAAcLO7DT6dOndS4cWNt2rQpOK20tFTbt29XVlZWDCsDAABOFPfH/CQlJWnYsGGaO3eu0tPT1apVKz3xxBPKyMjQgAEDYl0eAABwmLgPP5I0ceJE+f1+zZgxQxUVFcrOzlZeXh4XOAQAANXE/anuAAAA5yLuj/kBAAA4F4QfAADgKoQfAADgKoQfAADgKoQfAADgKoQfAADgKoQfAADgKoSfOHD06FH9+7//u66++mpdfvnluuOOO7Rly5bg/B07dmjYsGHq0aOH+vXrp7y8vBhW6y7FxcWaMmWKevfurZ49e+ruu+/W7t27g/PpTezt3btXPXv2VEFBQXAafYmdgwcPqmPHjtW+1qxZI4nexNLatWs1aNAgde3aVYMHD9Ybb7wRnJdwfbHheCNHjrRvvvlme/PmzfaePXvshx9+2O7WrZu9e/duu6SkxO7Vq5c9ffp0e/fu3fbLL79sd+3a1X755ZdjXbYr3Hbbbfbtt99uf/755/bu3bvtCRMm2FdddZVdXl5ObxygsrLSvvXWW+0OHTrY+fn5tm3b9CXGNmzYYHft2tUuLCy0i4qKgl8nTpygNzG0du1au3PnzvayZcvsffv22QsXLrQ7depkf/rppwnZl4S4vUUi279/vz766CO9+OKLuvzyyyVJ06dP1wcffKB169YpOTlZSUlJys3NldfrVbt27bR//34tWbJEQ4YMiXH1ie3IkSO66KKLdO+99+pf/uVfJEnjxo3Tb3/7W/3973/Xxo0b6U2MPf3002rUqFHItJdeeom+xNCuXbuUmZmp5s2bV5u3fPlyehMDtm1rwYIFGjFihEaMGCFJGj9+vD799FN98skn+uSTTxKuL+z2cri0tDQtXrxYl112WXCaYRiybVvHjh3Tli1blJ2dLa/3TI7t3bu39u7dq+Li4liU7BppaWmaN29eMPj88MMPysvLU0ZGhtq3b09vYmzz5s1avXq1Hn/88ZDp9CW2vvrqK7Vv377GefQmNr7++msdPHhQN910U8j0vLw8jR07NiH7QvhxOJ/Pp2uuuSbkJq1vvPGGvvnmG/Xp00eHDx9WRkZGyDpVf1EdOnSoXmt1sz//+c+66qqr9Oabb2r27NlKTU2lNzFUWlqqqVOnasaMGWrZsmXIPPoSW7t27VJxcbGGDh2qK6+8UnfccYc+/PBDSfQmVvbt2ydJKi8v1+jRo/XrX/9at912m959911JidkXwk+c2bp1qx566CFde+216t+/vyoqKqrdvb5hw4aSpJMnT8aiRFcaMWKE8vPzdfPNN2v8+PH68ssv6U0M5ebmqkePHtX+kpVEX2KosrJS+/btU1lZme6//34tXrxYXbt21ZgxY7Rx40Z6EyNlZWWSpGnTpunGG2/Uc889p6uuukrjxo1L2L5wzE8ceeeddzR58mR1795d8+bNkyQlJyersrIyZLmq/4ypqan1XqNbVW3Gf/jhh7Vt2zatWLGC3sTI2rVrtWXLFr366qs1zqcvsZOUlKTNmzfL6/UGf5ledtll2rNnj/Ly8uhNjDRo0ECSNHr0aOXk5EiSOnfurO3bt+v5559PyL6w5SdOrFixQhMmTNDVV1+tJUuWKDk5WZKUkZGhoqKikGWrvm/RokW91+kmxcXFWrdunQKBQHCaaZpq166dioqK6E2M5Ofnq7i4WP369VPPnj3Vs2dPSdLMmTM1ePBg+hJjqamp1bYidOjQQYWFhfQmRqp2aXXo0CFkevv27fXtt98mZF8IP3Fg5cqVevjhh3XnnXfqySefDPnBkZ2dra1bt4b8At64caMyMzPVtGnTWJTrGkVFRfrjH/+oTz75JDjt1KlT2r59u9q1a0dvYmTu3Ll6/fXXtXbt2uCXJE2cOFGLFy+mLzG0c+dO9ezZM+Q6ZZL0xRdfqH379vQmRrp06aJGjRrps88+C5m+a9cutW7dOjH7Eutz7fHzvv76a/vSSy+1x48fH3JNjKKiIru0tNT+4Ycf7OzsbHvatGn23//+dzs/P9/u2rWrXVBQEOvSE55lWfaoUaPs66+/3t68ebP91Vdf2ZMmTbKzs7PtgwcP0hsHOfs6P/QldgKBgH3bbbfZN954o71582Z79+7d9qOPPmpfdtll9s6dO+lNDD3zzDN2z5497VdffdXev3+/vWjRIrtTp072xx9/nJB9MWzbtmMdwPDTnn32Wc2fP7/GeTk5OXrsscf0+eefa/bs2dq+fbuaNWumUaNGadiwYfVcqTv94x//0F/+8he98847+sc//qGsrCz96U9/Cp7+Tm+coWPHjpozZ45uvfVWSfQllkpKSjR37lx98MEHKi0tVZcuXTR58mRlZWVJojex9Pzzz2vFihUqLCxUu3btNGHCBF133XWSEq8vhB8AAOAqHPMDAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADAABchfADICFMnTpVHTt21OLFi2NdCgCH4yKHAOJeWVmZ+vTpo4svvlgnTpzQ+vXrZRhGrMsC4FBs+QEQ91577TUFAgHNmDFDBw4c0P/+7//GuiQADkb4ARD38vPz1atXL/Xq1UuZmZlatWpVtWXy8vJ07bXXqlu3bvrd736nd999Vx07dtSmTZuCy+zatUtjx47V5Zdfrssvv1zjx4/XgQMH6vOlAKgHhB8AcW3Pnj367LPPlJOTI0m69dZb9d5776mwsDC4zMKFCzV37lwNHDhQixYtUvfu3TVp0qSQcfbu3avf/e53Ki4u1mOPPabZs2frwIEDuuOOO1RcXFyvrwlA3SL8AIhrL7/8snw+X/Du07fccoskac2aNZKk8vJyLVmyRHfeeacmT56sPn366MEHH9Rvf/vbkHEWLlyo5ORkLVu2TL/5zW80cOBA/dd//ZcqKiq0dOnSen1NAOoW4QdA3PL7/XrllVd03XXX6eTJkyotLVVycrJ69eqlNWvWKBAIaNu2baqoqNANN9wQsu6NN94Y8v3HH3+sXr16KTk5WX6/X36/X40bN1ZWVpb+7//+rz5fFoA65o11AQAQrvfff18//PCDCgoKVFBQUG3+e++9p4qKCklSenp6yLwLLrgg5PujR4/q9ddf1+uvv15tnH9eF0B8I/wAiFsvv/yyWrVqpTlz5lSbN3HiRK1atUr33HOPJKmkpESXXHJJcH5JSUnI8uedd56uvPJKjRw5stpYXi8/KoFEwicaQFz64Ycf9OGHH2rUqFHq1atXtfmDBg3SqlWrNGXKFJ133nl6++23lZWVFZz/1ltvhSz/q1/9Srt371bnzp2DYce2bU2ePFlt2rRR586d6/YFAag3HPMDIC79z//8j/x+vwYPHlzj/JycHFmWpXXr1umuu+7SihUrNH/+fH300UeaP3++XnzxRUmSaZ7+MThu3Dh98803Gjt2rN555x19+OGHmjBhgl577TV16tSp3l4XgLrHFZ4BxKVBgwbJNE2tW7fuJ5cZOHCgjh07pvfff19Lly7V6tWrVVxcrO7du2vAgAGaM2eOCgoKdOmll0qSvvzyS82fP1+ffvqpbNtWhw4ddPfdd+vaa6+tr5cFoB4QfgAkNL/fr3Xr1qlXr15q2bJlcPoLL7ygRx55RJs2bZLP54thhQDqG+EHQMIbPHiwkpKSdO+99yotLU07d+7UggULglt/ALgL4QdAwjtw4IDmzZunTZs2qbS0VBdeeKFuvvlmjR07Vg0aNIh1eQDqGeEHAAC4Cmd7AQAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAVyH8AAAAV/l/Hx8iSiaw9sgAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data2 = data1[data1['Age']<70] \n", + "data2 = data2[data2['Age']>16] \n", + "sns.histplot(data2['Age'])" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "31.5" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data2['Age'].median(axis = 0) " + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Age', 'Gender', 'self_employed', 'family_history', 'treatment',\n", + " 'work_interfere', 'no_employees', 'remote_work', 'tech_company',\n", + " 'benefits', 'care_options'], dtype=object)" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data2.columns.values # these features are left" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## .5 Clean the data" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Age', 'Gender', 'self_employed', 'family_history', 'treatment',\n", + " 'work_interfere', 'no_employees', 'remote_work', 'tech_company',\n", + " 'benefits', 'care_options'], dtype=object)" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data2.columns.values" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "# clean Gender\n", + "# reduce options to only male or female\n", + "data2['Gender'] = data2['Gender'].str.lower()\n", + "male = [\"male\", \"m\", \"male-ish\", \"maile\", \"mal\", \"male (cis)\", \"make\", \"male \", \"man\",\"msle\", \"mail\", \"malr\",\"cis man\", \"cis male\"]\n", + "trans = [\"trans-female\", \"something kinda male?\", \"queer/she/they\", \"non-binary\",\"nah\", \"all\", \"enby\", \"fluid\", \"genderqueer\", \"androgyne\", \"agender\", \"male leaning androgynous\", \"guy (-ish) ^_^\", \"trans woman\", \"neuter\", \"female (trans)\", \"queer\", \"ostensibly male, unsure what that really means\"]\n", + "female = [\"cis female\", \"f\", \"female\", \"woman\", \"femake\", \"female \",\"cis-female/femme\", \"female (cis)\", \"femail\"]\n", + "data2['Gender'] = data2['Gender'].apply(lambda x:\"Male\" if x in male else x)\n", + "data2['Gender'] = data2['Gender'].apply(lambda x:\"Female\" if x in female else x)\n", + "data2['Gender'] = data2['Gender'].apply(lambda x:\"Trans\" if x in trans else x)\n", + "data2.drop(data2[data2.Gender == 'p'].index, inplace=True)\n", + "data2.drop(data2[data2.Gender == 'a little about you'].index, inplace=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dieser Code setzt die Spalte \"Geschlecht\" des Datenrahmens \"data2\" auf der Grundlage einer Liste vordefinierter Optionen entweder auf \"Männlich\", \"Weiblich\" oder \"Trans\". Die Spalte \"Geschlecht\" wird zunächst in Kleinbuchstaben umgewandelt und dann wird der Code ausgeführt, um den Wert von \"Geschlecht\" auf der Grundlage der Liste der Optionen festzulegen. Schließlich entfernt der Code alle Instanzen von \"p\" oder \"a little about you\" (die wahrscheinlich ungültige Werte darstellen) aus der Spalte \"Geschlecht\".\n", + "\n", + "Das Ergebnis dieses Codes ist eine Spalte \"Geschlecht\" mit konsistenteren Werten, die für eine genauere Analyse oder Modellierung verwendet werden kann\n", + "\n", + "Übersetzt mit DeepL.com (kostenlose Version)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "Gender=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "Male", + "Female", + "Trans" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 761, + 210, + 17 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Gender" + } + } + }, + "text/html": [ + "<div> <div id=\"845f7507-694b-43eb-9d99-520d15f1e5b1\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"845f7507-694b-43eb-9d99-520d15f1e5b1\")) { Plotly.newPlot( \"845f7507-694b-43eb-9d99-520d15f1e5b1\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"Gender=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"Male\",\"Female\",\"Trans\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[761,210,17],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Gender\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('845f7507-694b-43eb-9d99-520d15f1e5b1');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_gender = data2['Gender'].value_counts().reset_index()\n", + "plot_gender.columns = ['Gender','count']\n", + "\n", + "px.pie(plot_gender,values='count',names='Gender',template='ggplot2',title='Gender')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaubild wird die Anzahl der Männer, Frauen und Trans-Personen dargestellt." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "dropvalue = data2[ data2['Gender'] == 'ostensibly male' ].index \n", + "data2.drop(dropvalue , inplace=True)\n", + "dropvalue1 = data2[ data2['Gender'] == 'Trans' ].index \n", + "data2.drop(dropvalue1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "Gender=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "Male", + "Female" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 761, + 210 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Gender" + } + } + }, + "text/html": [ + "<div> <div id=\"45a9c756-03a2-4cb3-b163-e6e50fee87a8\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"45a9c756-03a2-4cb3-b163-e6e50fee87a8\")) { Plotly.newPlot( \"45a9c756-03a2-4cb3-b163-e6e50fee87a8\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"Gender=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"Male\",\"Female\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[761,210],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Gender\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('45a9c756-03a2-4cb3-b163-e6e50fee87a8');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_gender = data2['Gender'].value_counts().reset_index()\n", + "plot_gender.columns = ['Gender','count']\n", + "\n", + "px.pie(plot_gender,values='count',names='Gender',template='ggplot2',title='Gender')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaubild wird die Anzahl der Männer, Frauen und Trans-Personen dargestellt." + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "self_employed=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "No", + "Yes" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 852, + 119 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Self employed" + } + } + }, + "text/html": [ + "<div> <div id=\"bf442cd6-a33e-4e5b-8b17-f92f666173c7\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"bf442cd6-a33e-4e5b-8b17-f92f666173c7\")) { Plotly.newPlot( \"bf442cd6-a33e-4e5b-8b17-f92f666173c7\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"self_employed=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"No\",\"Yes\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[852,119],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Self employed\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('bf442cd6-a33e-4e5b-8b17-f92f666173c7');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_self = data2['self_employed'].value_counts().reset_index()\n", + "plot_self.columns = ['self_employed','count']\n", + "\n", + "px.pie(plot_self,values='count',names='self_employed',template='ggplot2',title='Self employed')\n", + "\n", + "# Self employed looks good" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "im diesem Schaubild zeig die Anzahl der selbstständigen Menschen und nicht selbstständigen zeigt." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "family_history=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "No", + "Yes" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 535, + 436 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Family history" + } + } + }, + "text/html": [ + "<div> <div id=\"014e78b0-7812-4011-8ae1-46d2298e0fc6\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"014e78b0-7812-4011-8ae1-46d2298e0fc6\")) { Plotly.newPlot( \"014e78b0-7812-4011-8ae1-46d2298e0fc6\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"family_history=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"No\",\"Yes\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[535,436],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Family history\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('014e78b0-7812-4011-8ae1-46d2298e0fc6');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_fam = data2['family_history'].value_counts().reset_index()\n", + "plot_fam.columns = ['family_history','count']\n", + "\n", + "px.pie(plot_fam,values='count',names='family_history',template='ggplot2',title='Family history')\n", + "\n", + "# family history looks good" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaulbild Gibt an, ob es eine Familiengeschichte von psychischen Erkrankungen gibt." + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "treatment=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "Yes", + "No" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 613, + 358 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "In treatment" + } + } + }, + "text/html": [ + "<div> <div id=\"710c8a5b-922d-4f04-96e5-e280a306879d\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"710c8a5b-922d-4f04-96e5-e280a306879d\")) { Plotly.newPlot( \"710c8a5b-922d-4f04-96e5-e280a306879d\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"treatment=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"Yes\",\"No\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[613,358],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"In treatment\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('710c8a5b-922d-4f04-96e5-e280a306879d');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_treat = data2['treatment'].value_counts().reset_index()\n", + "plot_treat.columns = ['treatment','count']\n", + "\n", + "px.pie(plot_treat,values='count',names='treatment',template='ggplot2',title='In treatment')\n", + "\n", + "# in treatment looks good.\n", + "# this will be our target variable" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaubild gibt es wie viele Personen derzeit in Behandlung ist." + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "work_interfere=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "Sometimes", + "Never", + "Rarely", + "Often" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 453, + 210, + 170, + 138 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Work interfere" + } + } + }, + "text/html": [ + "<div> <div id=\"c68d2635-b9eb-4836-824e-3e3b83b8e426\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"c68d2635-b9eb-4836-824e-3e3b83b8e426\")) { Plotly.newPlot( \"c68d2635-b9eb-4836-824e-3e3b83b8e426\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"work_interfere=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"Sometimes\",\"Never\",\"Rarely\",\"Often\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[453,210,170,138],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Work interfere\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('c68d2635-b9eb-4836-824e-3e3b83b8e426');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_inter = data2['work_interfere'].value_counts().reset_index()\n", + "plot_inter.columns = ['work_interfere','count']\n", + "\n", + "px.pie(plot_inter,values='count',names='work_interfere',template='ggplot2',title='Work interfere')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaubild gibt an wie oft die Arbeit durch psychische Gesundheitsprobleme beeinträchtigt wird. " + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "no_employees=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "26-100", + "6-25", + "More than 1000", + "100-500", + "1-5", + "500-1000" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 223, + 216, + 215, + 137, + 137, + 43 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Number of employees" + } + } + }, + "text/html": [ + "<div> <div id=\"aab12f43-ff24-4dcd-8208-51c0328e071c\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"aab12f43-ff24-4dcd-8208-51c0328e071c\")) { Plotly.newPlot( \"aab12f43-ff24-4dcd-8208-51c0328e071c\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"no_employees=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"26-100\",\"6-25\",\"More than 1000\",\"100-500\",\"1-5\",\"500-1000\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[223,216,215,137,137,43],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Number of employees\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('aab12f43-ff24-4dcd-8208-51c0328e071c');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_numb = data2['no_employees'].value_counts().reset_index()\n", + "plot_numb.columns = ['no_employees','count']\n", + "px.pie(plot_numb,values='count',names='no_employees',template='ggplot2',title='Number of employees')\n", + "\n", + "# no_employees looks good" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaulbild wird die Anzahl der Mitarbeiter im Unternehmen der befragten Person dargestellt." + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "remote_work=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "No", + "Yes" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 675, + 296 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Remote work" + } + } + }, + "text/html": [ + "<div> <div id=\"e3a0d346-2c0e-4488-8fc8-6603ab03435a\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"e3a0d346-2c0e-4488-8fc8-6603ab03435a\")) { Plotly.newPlot( \"e3a0d346-2c0e-4488-8fc8-6603ab03435a\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"remote_work=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"No\",\"Yes\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[675,296],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Remote work\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('e3a0d346-2c0e-4488-8fc8-6603ab03435a');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_remo = data2['remote_work'].value_counts().reset_index()\n", + "plot_remo .columns = ['remote_work','count']\n", + "\n", + "px.pie(plot_remo ,values='count',names='remote_work',template='ggplot2',title='Remote work')\n", + "\n", + "# remote work looks good" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaubild wird dargestellt, wie viele Personen Remote Work ausüben.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "tech_company=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "Yes", + "No" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 798, + 173 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Tech company" + } + } + }, + "text/html": [ + "<div> <div id=\"405dfe41-a70c-48cd-abe1-05c3de8f28e3\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"405dfe41-a70c-48cd-abe1-05c3de8f28e3\")) { Plotly.newPlot( \"405dfe41-a70c-48cd-abe1-05c3de8f28e3\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"tech_company=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"Yes\",\"No\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[798,173],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Tech company\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('405dfe41-a70c-48cd-abe1-05c3de8f28e3');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_tech = data2['tech_company'].value_counts().reset_index()\n", + "plot_tech.columns = ['tech_company','count']\n", + "\n", + "px.pie(plot_tech,values='count',names='tech_company',template='ggplot2',title='Tech company')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaubild wird dargestellt, wie viele Personen in einem Technologieunternehmen arbeiten" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "benefits=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "Yes", + "Don't know", + "No" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 395, + 289, + 287 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Benefits" + } + } + }, + "text/html": [ + "<div> <div id=\"7449612f-7d88-4506-abc0-e59cb39780d7\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"7449612f-7d88-4506-abc0-e59cb39780d7\")) { Plotly.newPlot( \"7449612f-7d88-4506-abc0-e59cb39780d7\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"benefits=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"Yes\",\"Don't know\",\"No\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[395,289,287],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Benefits\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('7449612f-7d88-4506-abc0-e59cb39780d7');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_bene = data2['benefits'].value_counts().reset_index()\n", + "plot_bene.columns = ['benefits','count']\n", + "\n", + "px.pie(plot_bene,values='count',names='benefits',template='ggplot2',title='Benefits')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaubild werden die Benefits dargestellt " + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "care_options=%{label}<br>count=%{value}<extra></extra>", + "labels": [ + "Yes", + "No", + "Not sure" + ], + "legendgroup": "", + "name": "", + "showlegend": true, + "type": "pie", + "values": [ + 379, + 367, + 225 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "rgb(51,51,51)" + }, + "error_y": { + "color": "rgb(51,51,51)" + }, + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "rgb(237,237,237)", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "baxis": { + "endlinecolor": "rgb(51,51,51)", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "rgb(51,51,51)" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + }, + "colorscale": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "rgb(237,237,237)" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "rgb(217,217,217)" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "tickcolor": "rgb(237,237,237)", + "ticklen": 6, + "ticks": "inside" + } + }, + "colorscale": { + "sequential": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ], + "sequentialminus": [ + [ + 0, + "rgb(20,44,66)" + ], + [ + 1, + "rgb(90,179,244)" + ] + ] + }, + "colorway": [ + "#F8766D", + "#A3A500", + "#00BF7D", + "#00B0F6", + "#E76BF3" + ], + "font": { + "color": "rgb(51,51,51)" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "rgb(237,237,237)", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "paper_bgcolor": "white", + "plot_bgcolor": "rgb(237,237,237)", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "rgb(237,237,237)", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "fillcolor": "black", + "line": { + "width": 0 + }, + "opacity": 0.3 + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + }, + "bgcolor": "rgb(237,237,237)", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside" + } + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "showgrid": true, + "tickcolor": "rgb(51,51,51)", + "ticks": "outside", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white" + } + } + }, + "title": { + "text": "Care options" + } + } + }, + "text/html": [ + "<div> <div id=\"4e5228bd-4eb1-4c9d-a719-8b3de429445f\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"4e5228bd-4eb1-4c9d-a719-8b3de429445f\")) { Plotly.newPlot( \"4e5228bd-4eb1-4c9d-a719-8b3de429445f\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"care_options=%{label}<br>count=%{value}<extra></extra>\",\"labels\":[\"Yes\",\"No\",\"Not sure\"],\"legendgroup\":\"\",\"name\":\"\",\"showlegend\":true,\"values\":[379,367,225],\"type\":\"pie\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"fillpattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Care options\"}}, {\"responsive\": true} ).then(function(){\n", + " \n", + "var gd = document.getElementById('4e5228bd-4eb1-4c9d-a719-8b3de429445f');\n", + "var x = new MutationObserver(function (mutations, observer) {{\n", + " var display = window.getComputedStyle(gd).display;\n", + " if (!display || display === 'none') {{\n", + " console.log([gd, 'removed!']);\n", + " Plotly.purge(gd);\n", + " observer.disconnect();\n", + " }}\n", + "}});\n", + "\n", + "// Listen for the removal of the full notebook cells\n", + "var notebookContainer = gd.closest('#notebook-container');\n", + "if (notebookContainer) {{\n", + " x.observe(notebookContainer, {childList: true});\n", + "}}\n", + "\n", + "// Listen for the clearing of the current output cell\n", + "var outputEl = gd.closest('.output');\n", + "if (outputEl) {{\n", + " x.observe(outputEl, {childList: true});\n", + "}}\n", + "\n", + " }) }; }); </script> </div>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_care = data2['care_options'].value_counts().reset_index()\n", + "plot_care.columns = ['care_options','count']\n", + "\n", + "px.pie(plot_care,values='count',names='care_options',template='ggplot2',title='Care options')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In diesem Schaubild wird dargestellt wie viele eine Pflegemöglichkeit haben" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Age</th>\n", + " <th>Gender</th>\n", + " <th>self_employed</th>\n", + " <th>family_history</th>\n", + " <th>treatment</th>\n", + " <th>work_interfere</th>\n", + " <th>no_employees</th>\n", + " <th>remote_work</th>\n", + " <th>tech_company</th>\n", + " <th>benefits</th>\n", + " <th>care_options</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>count</th>\n", + " <td>971.000000</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " </tr>\n", + " <tr>\n", + " <th>unique</th>\n", + " <td>NaN</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>4</td>\n", + " <td>6</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " </tr>\n", + " <tr>\n", + " <th>top</th>\n", + " <td>NaN</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Sometimes</td>\n", + " <td>26-100</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " </tr>\n", + " <tr>\n", + " <th>freq</th>\n", + " <td>NaN</td>\n", + " <td>761</td>\n", + " <td>852</td>\n", + " <td>535</td>\n", + " <td>613</td>\n", + " <td>453</td>\n", + " <td>223</td>\n", + " <td>675</td>\n", + " <td>798</td>\n", + " <td>395</td>\n", + " <td>379</td>\n", + " </tr>\n", + " <tr>\n", + " <th>mean</th>\n", + " <td>32.330587</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>std</th>\n", + " <td>7.268977</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>min</th>\n", + " <td>18.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25%</th>\n", + " <td>27.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>50%</th>\n", + " <td>32.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>75%</th>\n", + " <td>36.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>max</th>\n", + " <td>62.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Age Gender self_employed family_history treatment \\\n", + "count 971.000000 971 971 971 971 \n", + "unique NaN 2 2 2 2 \n", + "top NaN Male No No Yes \n", + "freq NaN 761 852 535 613 \n", + "mean 32.330587 NaN NaN NaN NaN \n", + "std 7.268977 NaN NaN NaN NaN \n", + "min 18.000000 NaN NaN NaN NaN \n", + "25% 27.000000 NaN NaN NaN NaN \n", + "50% 32.000000 NaN NaN NaN NaN \n", + "75% 36.000000 NaN NaN NaN NaN \n", + "max 62.000000 NaN NaN NaN NaN \n", + "\n", + " work_interfere no_employees remote_work tech_company benefits \\\n", + "count 971 971 971 971 971 \n", + "unique 4 6 2 2 3 \n", + "top Sometimes 26-100 No Yes Yes \n", + "freq 453 223 675 798 395 \n", + "mean NaN NaN NaN NaN NaN \n", + "std NaN NaN NaN NaN NaN \n", + "min NaN NaN NaN NaN NaN \n", + "25% NaN NaN NaN NaN NaN \n", + "50% NaN NaN NaN NaN NaN \n", + "75% NaN NaN NaN NaN NaN \n", + "max NaN NaN NaN NaN NaN \n", + "\n", + " care_options \n", + "count 971 \n", + "unique 3 \n", + "top Yes \n", + "freq 379 \n", + "mean NaN \n", + "std NaN \n", + "min NaN \n", + "25% NaN \n", + "50% NaN \n", + "75% NaN \n", + "max NaN " + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data2.describe(include='all')" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAHcCAYAAAAgFrBMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9Z0lEQVR4nO3dd3QUVcPH8d9uQiCUQALSQhXYUEMNoKBAIHSUqkZAEUUUEKRXkdAElCIgUkRE2msBUaKiUpSigoCAT0KRXkRqKIFAYHfePzzZ51kTOpcNyfdzDuckM5Odu8tV83Vm79osy7IEAAAAALin7N4eAAAAAACkRcQWAAAAABhAbAEAAACAAcQWAAAAABhAbAEAAACAAcQWAAAAABhAbAEAAACAAcQWAAAAABhAbAEAAACAAcQWAMBDYmKiZs6cKafTecePER4erpCQEF27du2Gxy1ZskQhISGaOHHiHZ/rXhkwYIBCQkL0888/e2zfsGGDfv31V/f3R44cUUhIiCIjI+/3EO+JTZs2aejQoWratKnCwsJUvnx51a1bV/3799fmzZu9PTy3B/11BgCJ2AIA/Eu7du00fvx4WZbl7aF43aJFi/Tcc8/p8OHD3h7KXbt06ZL69euntm3b6ssvv1RwcLBatWqltm3bqnjx4vr666/17LPPatSoUfzdA8A94uvtAQAAUpdTp055ewipRlp6LXr16qXVq1erXr16ioqKUq5cuTz2HzlyRK+99po+/vhjORwOtWnTxksjBYC0gytbAACkcUuXLtXq1asVFhamyZMnJwstSSpQoIAmT56sDBky6P333+fqFgDcA8QWANxHSe8LOn78uMaOHavHH39coaGhat68uVatWiVJWrFihVq2bOl+L82kSZOUmJiY7LF++ukndejQQVWqVFFoaKiefPJJzZs3Ty6Xy+O49u3bq0qVKoqLi9PQoUNVs2ZNlStXTk2bNtWCBQvcx23YsEEhISE6evSoJKlMmTJq3769e/+JEyc0ZswYNW7cWBUqVFC5cuUUERGhkSNHKi4u7q5fmy+++EItWrRQaGioqlevrp49e7rH8r/Onj2rsWPHql69eipbtqweffRR9erVS3v37k127JUrVzRnzhw9/fTTqlKlisqWLauaNWvq9ddf165du244nvDwcE2dOlWSNGTIEIWEhOjIkSMex/z+++/q2LGjKlWqpEqVKql9+/basGHDTZ/ra6+9ppCQkBSPvXjxoipUqKD69eu7t/3222966aWX3H93devWVVRUlE6cOHHTc0ly/z337dtXPj4+1z2uYMGC6tixo1q1aqXLly977Nu7d6969+6tGjVqqGzZsqpbt67Gjh2rc+fOeRw3ZcoUhYSE6I8//tDMmTPVoEEDlS1bVrVr19aYMWN08eLFZOf95Zdf9Pzzz6ty5cqqWrWqBgwYoDNnzlx3nF999ZWeeeYZVaxYURUrVtTTTz+tr776Ktlx4eHhatq0qVauXKnw8HCFhoaqXbt2N3ytAOBe4jZCAPCCV155RXFxcWrYsKHOnj2rZcuWqVu3burQoYM+/vhjNWjQQNWqVVN0dLTef/99+fn5qUuXLu6fnzVrlt555x0FBQWpQYMGCggI0Lp16zRy5Ej99ttvevfdd2Wz2dzHX7t2Te3bt9elS5fUoEEDXb16VdHR0Ro+fLjsdrsiIyMVHBysbt26ae7cubpw4YK6dOmiggULSpKOHz+uVq1aKS4uTnXq1FF4eLguXLigH3/8UfPmzdOWLVu0ZMmSO349Pv/8c507d0716tXTI488og0bNuibb77R1q1b9fXXXytz5syS/gm+Z599VocPH1a1atVUv359nTx5UsuXL9fq1av1wQcfqHLlypIkl8ulTp06acOGDapUqZJat24tp9OpLVu26Ntvv9WaNWv07bffKk+ePCmO6bnnntPKlSu1ceNG1alTR2XKlFFAQIDOnz8vSdq3b5/at2+vihUrKjIyUvv27dOqVavUsWNHffbZZypduvR1n2+LFi30/fffKzo6WtWqVfPY98MPPyghIUHNmzeXJG3evFkdO3ZUQECAIiIilDVrVsXExGjhwoVat26dli1bpkyZMl33XMeOHdP27duVJ08elS9f/qZ/F7169Uq27ddff9Wrr76qq1evql69eipQoIB27NihDz/8UKtWrdKiRYsUFBTk8TNRUVHau3evGjZsqPDwcH333XeaM2eOjh8/7rEgytdff62+ffsqY8aMioiIkL+/v1atWqV169alOL5hw4Zp0aJFCg4O1hNPPKGMGTNq1apV6tu3r2JiYjRw4ECP448fP65evXopIiJC2bNnV44cOW76GgDAPWMBAO6b/v37Ww6Hw6pXr5517tw59/a3337bcjgclsPhsNauXevevn//fsvhcFj169d3b4uJibFKlixpNW3a1Dpz5ox7u9PptHr16mU5HA7rk08+cW9v166d5XA4rMjISOvSpUvu7Rs3brQcDofVuHFjjzHWqVPHcjgc1tWrV93bhg8fbjkcDuuLL77wODYhIcEKDw+3HA6HtXv37hs+RkoWL15sORwOq3Tp0tamTZs8nktkZKTlcDis5cuXu7d36dIl2fOzLMuKjY21ypUrZ9WpU8d9zuXLl1sOh8MaMGBAsvO+/vrrlsPhsObPn+/elvR3s379eve2yZMnWw6Hw/r000/d2w4fPuz+u5o5c6bH406YMMFyOBzW8OHDb/i8r169aj366KNWWFiYdeXKFY99L7zwghUSEmIdOXLEsizLeu211yyHw2EdPHjQ47hBgwZZDofDWrZs2Q3P9fPPP1sOh8N68cUXb3jc9Vy+fNmqUaOGVaFCBSsmJsZj38KFCy2Hw2H16tXLvS3pNatatap1+PBh9/azZ89aVatWtUqVKmWdOHHCsizLunDhglW1alWrUqVK1s6dO93Hnj592mratKnlcDisZ555xr39hx9+sBwOh9WhQwePuXz58mX3PF+3bp17e9I8HD9+/B09dwC4W9xGCABe8NRTTykgIMD9fdLVmNKlS6tmzZru7UWKFFHOnDk9bqf77LPP5HK51KdPHwUGBrq32+129evXz33Mv3Xo0EH+/v7u78PCwpQtWzYdPHjwpuNt0qSJoqKi9MQTT3hsz5QpkypUqCBJN7zt62Yee+wx92sg/fNcwsPDJck9vlOnTmnlypUqV66cnnrqKY+fL1WqlJ588kkdPXpU69evlySFhIRo9OjR6t69e7LzVa9e/a7HnC1bNnXs2NFjW926dT3GfD2+vr5q2rSpzp07p7Vr17q3nzx5Ur/++quqVq2q4OBgSXK/d2rTpk0ej9G/f3+tXbtWTZo0ueG5Tp8+LUnKnj17ivtnz56tKVOmJPsTExMjSVq1apVOnjypyMjIZFfrIiMjVaRIES1fvlzx8fEe+5o1a6YCBQq4v8+ePbsqVaokp9Ppvh3zp59+0tmzZ9WmTRuFhIS4jw0KCkrxCtunn34qSRo8eLDHXM6YMaN69uwpKeW536hRo+u8OgBgFrcRAoAXFC1a1OP7pNvkkm7b+1+ZMmVy/8IsSX/88Yckae3atdq+fXuKx+/YsUOWZXncSlikSJFkx2bLlk0XLly46XiT3pMUHx+vXbt26dChQzp06JB27Njhft/Rv98rdjtSGlvSbWmXLl2SJMXExMiyLCUmJmrKlCnJjv/7778lSbGxsapVq5aKFCmiIkWK6OrVq4qNjdWBAwd05MgR7d692/25WXfzWWKFChVK9v6nf4/5Rlq0aKGPPvpI0dHR7kiLjo6W0+lUy5Yt3cc988wzWrFihQYOHKipU6eqZs2aevTRR1WjRg3lzp37pudJum3u3++tSvLhhx+muOpi3rx5VaZMGfd8279/f4qvu4+Pj65du6Zdu3Z5BHNKf6dJ/4Ph6tWrkuQOutDQ0GTHVqlSJdm2pLF8/fXXsts9/39x0mPGxsYm+7mU/rkCgPuB2AIAL0iKq3/z8/O76c8mvWdo3rx5Nzzu4sWLypo1q/v7jBkzJjvmf2PsRuLj4/X2229r6dKl7oUTgoKCVL58eRUqVEg7d+68q9XrUhpbkqTHTYqFXbt23XBxi6TjLMvSnDlzNHv2bHdMZM6cWaVLl1apUqV08uRJ42O+kZIlS6p06dJavXq1Ll68qCxZsuirr75S5syZPRbHqFGjhhYsWKA5c+Zo3bp1+uSTT/TJJ58oQ4YMeuKJJzRkyJDrzifpv6Fx4MCBFPcnXQlMMmXKFPfCINJ/59uqVavci7ik5N8xd6P5lvT6JIV+tmzZkh2bLVs2+fp6/pqSNJZp06bd8jgk3fA9bQBgErEFAA+YLFmySJJ+/vln5cyZ876cs1+/flq5cqUaN26sp59+WiVKlHCfu2fPntq5c6fxMSQ978jISA0bNuymx8+dO1djx45VmTJlFBUVpZIlSyo4OFg2m02LFi3SmjVrDI/45po3b67Ro0dr5cqVKlOmjGJjY9WiRYtk8ZR0ZTExMVHbt2/XunXrtHTpUi1evFh2u10jR4687jkKFy6skJAQ7dq1SzExMSpTpsxtjTHpdZ84caIaN258+0/yBpKuuqV0dfXKlSu6du1asrEkJibq999/v+X/UQAA3sR7tgDgAVOqVClJ0rZt25Lti4+P16hRozR//vx7dr7z589r1apVCg4O1sSJE1W9enWPyNuzZ4+kW7uaczeSnndKt05K/9xaNmnSJHf4LV26VJL07rvvulfQS/oFPWnMN2P6F/pmzZopQ4YMWrFihaKjoyXJvQqh9M+tmTNnznSv3ufn56cqVaro9ddf18KFCyX9syz8zSQt4T9y5Mib3jr579tBb/a6T5s2Te+//77Onj1703H8W7ly5SQlfz+aJG3dujXZtlKlSikhIUG7d+9Otu+vv/7S6NGj9eWXX972OADAFGILAB4wrVu3liS9/fbbOnnypMe+8ePH6+OPP9aOHTvu+PEzZMggSe6rCn5+frLb7UpISEi2CMLMmTPdv/j++yrEvZY/f37VqFFDMTExmjt3rse+ffv2KSoqSjNnznTfOpl069j/vt9NkjZu3OheRCHpfT7Xk3Qb282Ou1NBQUGqVauW1q5dq2+++UbBwcEeS8Hb7XatWrVKM2bMSBYkhw8fliSPRSiup02bNqpfv762bNmil156SX/99VeyYy5fvqw5c+Zozpw5kv4bmvXq1VOOHDm0YMGCZIH/zTff6N1339XSpUs9Fny5VY8//rjy5MmjxYsXe8RVfHy8x/LwSZLm/ogRIzzmotPp1PDhwzV37twUP5sNALyF2wgB4AFTqVIldenSRdOmTVOTJk0UHh6uwMBA/fbbb/rjjz/08MMPp7iS263Kly+fDhw4oH79+qly5cp6/vnn1ahRI0VHR6tly5aqU6eOpH+iJTY2Vrly5dKpU6fuyQcb38yIESPUtm1bjR49Wt99953Kly+vs2fPavny5bp06ZIGDx7sjo+WLVvq999/V6dOndSoUSMFBARo586d+vnnnxUYGKgrV67c9GpMvnz5JP1zS+KxY8eMfCBuixYttGLFCh04cEBdunRJdjWtT58+6tChgzp06KCIiAgVKFBAf//9t77//ntlypRJPXr0uKXzjB8/XuPGjdO8efNUr149hYWFqUSJEsqYMaMOHz6s9evXKz4+XlmyZFHv3r315JNPSpKyZs2qcePGqVu3boqMjFR4eLgKFy6svXv36qefflLmzJk1ZsyYZAtW3IpMmTLprbfe0quvvqp27dqpQYMGypEjh1avXp3s/VrSP1cCk26hbNy4sWrVqqUsWbJozZo12rt3r6pUqaIXXnjhtscBAKYQWwDwAOrRo4fKli2refPmacWKFbp69ary58+vV155RS+88MJdfXBrnz59NGjQIK1atUo7duzQ888/rxEjRig4OFjffvutFi1apBw5cqhw4cJ6++23lT9/frVt21Y//vijxy1wJgQHB2vJkiWaMWOGVq5cqXnz5rmXFO/YsaNq1KjhPvapp56S3W7XvHnztGzZMvn5+bk/uLldu3aqVauW1qxZI6fTmWxVwSSNGjXS2rVrtXLlSs2fP19Vq1ZNtpLk3apVq5aCgoJ05syZFF+/KlWqaOHChZo5c6a2bt2qH374QdmzZ1fdunX16quvqkSJErd0Hj8/Pw0ZMkStW7fW0qVL9csvv2jZsmW6ePGiAgMDVaVKFT322GNq3ry5x8IqSWP87LPPNHPmTG3YsEE//vijcufOrWbNmqlz584qVqzYHT//pAVA3nvvPa1du1bXrl1TjRo1NGjQINWuXTvZ8WPGjFG1atX06aefum+9LFiwoPr06aN27dp5LAkPAN5ms0zfZA8AAAAA6RDv2QIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA/hQ41tkWZZcLj6SDKmL3W5jXiLVYV4iNWJeIjViXj6Y7HabbDbbLR1LbN0im82m8+cv6do1l7eHAkiSfH3tCgzMwrxEqsK8RGrEvERqxLx8cAUFZZGPz63FFrcRAgAAAIABxBYAAAAAGEBsAQAAAIABxBYAAAAAGEBsAQAAAIABrEYIAAAApDEul0tO5zVvD+OB5OPjK7v93lyTIrYAAACANMKyLJ0/f0YJCfHeHsoDzd8/qwICgm7587Suh9gCAAAA0oik0MqaNVB+fhnvOhbSG8uylJh4RfHxcZKk7Nlz3tXjEVsAAABAGuByOd2hlTVrgLeH88Dy88soSYqPj1O2bIF3dUshC2QAAAAAaYDT6ZT031jAnUt6De/2fW/EFgAAAJCGcOvg3btXryGxBQAAAKQTlmWl6fPdivs5JmILAAAASAfWrftJI0e+ed/ON3fubC1aNO++ne9WREcv1dSpk+7b+YgtAAAAIB34v/9boOPH/75v55s1630lJCTct/Pdio8+mq3z58/dt/MRWwAAAABgALEFAAAApHHdur2srVu3aOvWLapZs4q2bNmkmjWraOnSxWrVqqmaNauvjRt/lSRt2/a7unV7WXXr1lCjRuEaOfJNxcXFeTze1q1b1KtXNzVsWEe1a1dXmzZPaPbsGXK5XJKkmjWrSJLmzJnl/nr27Bl69tlWWrPmR7Vv/5TCwx9Vhw7P6j//2a7//OcPder0vMLDa6h9+6e0adNGj/Pt27dH/fq9rvr1a6l+/VoaOLCPjh494t6f9Hw2bdqonj27qm7dGmrWrL7ee+9dXbv2z4qCrVs3099/H9O330arZs0qOnbsLzMv9v8gtgAAAIA0rnfvAXI4QuRwhGj69Dm6dOmiJGnmzGnq1u11dev2usqWLaetW7eoR49XlTFjJg0fPkbdu/fS779vVvfunXXlymVJ0p9/7laPHq8qICC7hg9/S2PHTlS5cuU1Z84srVjxvSRp+vQ5kqSmTZ90fy1JJ04c15QpE/Xccx01fPhbOn/+nIYM6a+oqMF64okWiooaJcuyNGzYIPf5Dh06qFdeeVFxcWc0ePCbGjDgDf3111F16fLPtv81fPgbKl++osaNm6T69Rtq0aJ5io7+UpI0evTbypkzpx55pIamT5+jnDlzmX3RxYca3xYfH9oUqUfSfGRePthcLksuV+pbqQkAkLYULfqwMmfOIkkqW7actmzZJElq3ryV6tSp5z5uxoypKlSosMaNmygfHx9JUpky5dS+/VOKjv5KrVo9pb17/1RYWDUNHTrC/YG/YWHV9PPPa7V162bVr99QZcuWkyQ99FBu99eSdPnyZfXu3V/Vqz8qSdq/f79mzJiqAQPeUNOmT0r65/PChgzpr0OHDqpEiRDNmTNLGTNm1KRJ05QlS1ZJUpUqYXrqqSe1cOE8de3aw/34zZo1V4cOL0mSKlcO05o1P+nnn9epefNWcjhKKkMGP+XIEegxJpOIrVtkWZYCAvy9PQwgGeblg83pdOns2UsEFwDAK4oVK+7++vLly4qJ+Y8iI9vLsiz37Xf58wercOEi2rRpg1q1ekoNGzZRw4ZNdOXKFR09ekRHjhzW7t075XQ63T9zI+XKhbq/zpkzp6R/gi5JQEB2SdKFCxckSZs3/6ZKlSorY8ZM7sfPnDmLQkMr6rffNng89r8jKnfu3Lp82XuLdBBbt8hms+m9Ret19MT9W70EQNoWnDu7ukbWkN1uI7YAAF4RGBjk/vrChfNyuVxasGCuFiyYm+zYjBkzSpKuXLmsiRPf1nfffaNr164pX778KlcuVD4+vrf0GVZJV6f+V6ZMma57/LlzZ7Vy5Q9aufKHZPty5Aj81xg9H8dms7nfR+YNxNZtOHrinA4cjbv5gQAAAMADJkuWLLLZbHrqqWcVEdEg2f6kkJk0abx+/HGloqLeUlhYNfn7/3OXTdOmEUbGlS1bNlWuXFWRke2S7Uu61TG1IrYAAACAdMDHx0dOp/O6+zNnziKHo6QOHTqgkiVLu7dfuXJZb7wxQNWr11DRog/rjz+2qmLFKnr88druY3bu3KGzZ+M8riIlvZ/rblWoUEkHDuxX8eIO+fr+ky+WZWn48DdUoEBBlSgRcsuPda/GdMvnu69nAwAAAOAVWbNm1eHDh7R582/u90P9W+fOXbVx46+KihqiX35Zp3Xr1qh37+7atGmjHI6SkqRSpcpo48ZftHTp5/r998367LP/U58+3WWz2TzeH5U1azb95z/btXXrllu6vfB6OnTopKNHD6tfv55au/ZHbdjwiwYP7qcVK75T8eIlbuuxsmbNpt27d+n33ze7Vzs0idgCAAAA0oFWrZ6Wr6+v+vTpritXrqR4TNWq1TV+/BSdOHFcQ4b018iRQ+Xj46OJE6e5F5947bWeevzxOpo1633169dT0dFL9fzzL6pZs+b6z3/+cF89e+65F7RjR6z69Omu48eP3/G4ixcvoffe+0A2m00jRrypIUP66/TpU3rrrXdUq1b4bT1WZGQ7nTlzWr17v6adO3fe8Zhulc26m8xMZwa9+w3v2QJwzxQJDtToHo0VF3dR1655782795Kvr12BgVnS1HPCg495idTIxLy8ejVRp08fU86c+ZQhg989ecz06kavZVBQllv+6B2ubAEAAACAAcQWAAAAABhAbAEAAACAAcQWAAAAABhAbAEAAACAAcQWAAAAABhAbAEAAACAAcQWAAAAABhAbAEAAACAAb7eHgAAAAAA8+x2m+x2m1fO7XJZcrksr5zbm4gtAAAAII2z223KkSOzfHy8c2Ob0+nS2bOXbjm4Rox4Q6tXr9LcuYtUsGAhj31xcWfUtm0bhYVVU1TUaBPDvWeILQAAACCNs9tt8vGx671F63X0xLn7eu7g3NnVNbKG7HbbLcdWjx59tWnTRo0bN0qTJ0+XzfbfK3ITJoyTn5+fevceYGrI9wyxBQAAAKQTR0+c04Gjcd4exk0FBASob99BGjCgt6Kjv1SzZs0lST/9tFqrV6/Q+PFTFBAQ4N1B3gJiCwAAAECqU7NmLUVENNR7772rmjUfl5+fnyZMGKsWLdqoWrVHdODAfk2dOlHbtv2uzJkzq1KlMHXr9rpy5swlSTp8+JAmTnxbMTHb5XJZKlcuVF27vq5ixYrft+fAaoQAAAAAUqWePfsqY0Y/TZs2WR98MEP+/pnVtWsPnTp1Ul27vqT8+YM1a9bHGjt2ki5ejNcrr7yohIQESdKbbw5Srly59MEH8zRz5key2+0aNKjPfR0/V7YAAAAApEoBAdnVp89ADRrUV76+vpoyZaYyZcqkefPmKGfOXOrVq7/72OHDx6hJk7pavXqFGjdupr/+OqKqVasrX7788vX11cCBQ3Xw4AG5XC7Z7ffnmhOxBQAAACDVeuyx2ipZspTy5s2vsmXLSZJ2796pgwcPKCLiMY9jExMTdeDAfklSp05dNHnyeC1d+rkqVQpTtWqPKDw84r6FlkRsAQAAAEjlMmbMpEyZMrm/d7ksVapUJcUVCbNmzSZJatXqKYWH19Mvv6zX5s0bNWPGe/rwwxmaM2ehgoJy3pdx854tAAAAAA+Uhx8upoMHDyh37jwqUKCgChQoqICAAE2ePF779u3RmTOnNWHCWF29elWNGzfTG2+M0Ny5i3T69Gn9/vuW+zZOYgsAAADAA6VFi9aKj4/XsGGD9eefu7Rnz58aNmywYmNjVLTowwoIyK6ff16nsWNH6c8/d+no0SP64ovPlSFDBpUsWeq+jZPbCAEAAIB0Ijh39jRxzvz5gzV16gxNnz5VXbq8JB8fH5UpE6rJk99XYGCQJOmddybrvfcmqUePLrp8+bJKlHBo3LhJCg4ucM/Hcz3EFgAAAJDGuVyWnE6XukbW8Mr5nU6XXC7rjn9+6tSZybY5HCU1YcLU6/5MkSJF9fbb797xOe8FYgsAAABI41wuS2fPXpLdbvPa+e8mth5UxBYAAACQDqTX4PEmFsgAAAAAAAOILQAAAAAwgNgCAAAAAAOILQAAAAAwgNgCAAAAAAOILQAAAAAwgNgCAAAAAAP4nC0AAAAgHbDbbQ/Uhxq3bt1MLpdL8+Z9oixZsnrsGzVqmI4d+0tTp868l8O854gtAAAAII2z220KDPSX3e7jlfO7XE7FxSXcdnCdOHFcU6dOUv/+QwyNzCxiCwAAAEjj/rmq5aP90bOUcPrYfT23f858Ktq0k+x2223HVv78wVq2bKlq166ratUeMTRCc4gtAAAAIJ1IOH1MCccPeXsYt6xBg8bavn2bxo4dmeLthJJ0/vw5zZo1XevXr9HZs2cVElJSr7zSTeXLV/TCiD2xQAYAAACAVGvgwDcUHx+vKVMmJtvndDrVs2c3bdu2RUOGROnDD+ereHGHXn+9i3bujPXCaD0RWwAAAABSrbx586lLl9cUHf2lNmz4xWPfxo2/ateuHRo2bJQqVaqiIkWKqlevfnr44eJauHCel0b8X8QWAAAAgFTtySdbqXLlqho7dqQuXox3b9+3b4+yZs2qhx8u7t5ms9lUvnwF7d37pzeG6oHYAgAAAJCq2Wy2FG8ntCxLUvLl7F0ul3x9vb88BbEFAAAAINX753bC7oqO/lLbtv0uSSpWrLji4y9o3749Hsdu375VRYoU9cYwPRBbAAAAAB4IzZu3UpUqVfXXX0clSWFh1VWsWAlFRQ3Rli2bdODAfo0fP1Z79+5RmzbPenm0LP0OAAAApBv+OfM98OccMOANPffcM5IkX19fTZr0nqZOnaTBg/vp6tVEhYSU0rvvvq+yZcvd0/PeCWILAAAASONcLksul1NFm3by0vmdt/2Bxp9/vizF7Xnz5tP33//k/j4wMEhvvDH8rsZnCrEFAAAApHEul6W4uATZ7ckXk7hf57/d2EoLiC0AAAAgHUivweNNLJABAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAEAaYlm8L+tu3avXkNgCAAAA0gAfHx9JUmLiFS+P5MGX9Br6+NzdeoKsRggAAACkAXa7j/z9syo+Pk6S5OeXUTabd5Z6f1BZlqXExCuKj4+Tv39W2e13d22K2AIAAADSiICAIElyBxfujL9/VvdreTeILQAAACCNsNlsyp49p7JlC5TTec3bw3kg+fj43vUVrSTEFgAAAJDG2O122e1+3h5GuscCGQAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAbcVmy1b99eISEhKf4ZNWqUqTHeVEhIiJYsWeK18wMAAADAv/ne7g80atRIgwcPTrbd39//ngwIAAAAANKC246tTJky6aGHHjIxFgAAAABIM+7pe7Ysy9KsWbNUt25dlS9fXk8++aS++uor9/4NGzaodOnS+vXXX9W4cWOVK1dOTz/9tPbv36/3339fjz76qKpWraoRI0bIsiz3Y37wwQdq1KiRypYtq8qVK6tz5846fPjwdcexevVqtWzZUqGhoYqIiNCkSZOUmJh4L58qAAAAANzQPY2tiRMnauHChRoyZIiWLVum5557TsOGDdOCBQvcxzidTo0ZM0ajR4/Wp59+qtOnT+uZZ57R3r17NW/ePPXq1Uvz58/Xjz/+KEmaO3euZsyYob59++q7777TtGnTtH//fo0ZMybFMaxZs0Y9evRQmzZtFB0drTfffFPffvut+vbtey+fKgAAAADc0G3fRrhs2TJ99913HtsqVqyoqVOn6qOPPtK4ceNUp04dSVKhQoV09OhRzZ49W23btnUf36NHD1WoUEGSVL9+fX388ccaMWKE/P39VaxYMU2ZMkV//vmn6tSpo0KFCmnMmDEKDw+XJAUHB6tRo0b6+uuvUxzf9OnT1bp1a0VGRrrHEBUVpeeff15HjhxRgQIFbvcpu5UPya/8DwXc8c+nRRcvJ+rchcveHgbwQArOnd3bQwAAAAbddmyFh4erT58+HtsyZcqkPXv26MqVK+rfv78GDhzo3nft2jUlJibq8uX//kJetGhR99f+/v7KlSuXxwIbGTNm1JUrV9zn27ZtmyZPnqyDBw9q7969+vPPP5UnT54UxxcbG6vt27friy++cG9LuiVx7969dxxblmXp6YYV7uhn0zLL5ZLNzicIAHfK6XTJ5bK8PQwAAGDAbcdWlixZVLhw4WTb//77b0nSpEmT9PDDDyfb7+fn99+T+nqe1n6DX9ZnzZqlKVOmqGXLlqpatarat2+vlStXXvfKlsvl0ksvvaQWLVok23c3C3vYbDbtj56lhNPH7vgx0hr/nPlUtGknnT+fIKfT5e3hpDs+PnYFBPjz+j/gXC6L2AIAII267di6nocffli+vr7666+/3LcRStLHH3+sPXv2aPjw4Xf0uO+//766deuml19+2b1t9uzZ7qtV/1aiRAnt27fPIwg3btyouXPnatiwYcqcOfMdjUOSEk4fU8LxQ3f882mV0+nStWv8su8tvP4AAACp0z27/ytbtmx65plnNGnSJC1dulSHDx/WF198obffflu5cuW648fNly+f1q9frz179mjfvn2aOHGivv/+++uuLtipUyd9//33mjJlivbv369ffvlFAwcO1Pnz51myHgAAAMB9c8+ubEnSwIEDFRQUpMmTJ+vEiRPKmzdvsqtSt2vcuHEaPny4WrVqpSxZsqh8+fKKiorSsGHDUlzwomHDhpo4caJmzJihGTNmKHv27KpTpw6rEQIAAAC4r2zW9e7HQzKxc4dzG+H/8M9TSKWfH6q4uIvcxuYFvr52BQZm4fVHqsK8RGrEvERqxLx8cAUFZZGPz63dIMgycgAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAb4ensADxL/nPm8PYRUhdcDAAAAuD5i6xZZlqWiTTt5exipjsvllMtleXsYAAAAQKpDbN0im82m8+cT5HS6vD2UVMXlsogtAAAAIAXE1m1wOl26do3YAgAAAHBzLJABAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABggK+3B/Ag8fGhTZF6JM1H5iVSE+YlUiPmJVIj5uWtc7ksuVyWt4dxR2yWZT2YI7/PLMuSzWbz9jAAAACAdMXpdOns2UupJriCgrLcciRzZesW2Ww2vbdovY6eOOftoQAAAADpQnDu7OoaWUN2uy3VxNbtILZuw9ET53TgaJy3hwEAAADgAcBNogAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABggFdiKzw8XCEhIZozZ06K+4cOHaqQkBBNmTLllh/vVo8FAAAAgPvBa1e2MmTIoOXLlyfbfu3aNX3//fey2WxeGBUAAAAA3Btei61HHnlE27Zt07Fjxzy2//rrr8qcObPy5cvnpZEBAAAAwN3zWmyFhoYqf/78ya5uffPNN2rUqJHHla3FixerefPmCg0NVYUKFdS+fXvFxMRc97G3bNmitm3bKjQ0VLVr11ZUVJTi4+ONPRcAAAAA+Ddfb568UaNGWr58uV544QVJUmJiolasWKGPPvpI3377rSTphx9+0JtvvqmRI0cqLCxMp06d0siRIzV48GAtXbo02WPu3LlTHTp00CuvvKJRo0bp1KlTGjdunDp27KhPPvnkrm5PLB+SX/kfCrjjnwcAAGnbxcuJOnfhsreHAaQZwbmze3sId8XrsTV79mwdO3ZM+fLl0/r16xUYGKjSpUu7j8mRI4dGjhyp5s2bS5KCg4PVpk0bvfnmmyk+5uzZs/XII4+oS5cukqQiRYpo/PjxqlevnjZu3Khq1ard0Vgty9LTDSvc0c8CAID0wXK5ZLOz2DNwLzmdLrlclreHcUe8Gltly5ZVwYIF3Ve3vvnmGzVt2tTjmLCwMAUFBWnatGk6ePCg9u/frx07dsjlcqX4mLGxsTp48KAqVqyYbN/evXvvOLZsNpv2R89SwuljNz8YAACkO/4586lo0046fz5BTmfKv6cASXx87AoI8Ge+3AKXyyK27lTSrYTPPvusVq5cqc8++8xj/9dff61+/fqpadOmCg0NVevWrbV7924NHz48xcdzuVxq1qyZXnnllWT7goKC7mqsCaePKeH4obt6DAAAkLY5nS5du8Yvz7g1zJe0zevXuRs1aqRt27bp888/V8GCBVWsWDGP/dOnT1fr1q01duxYtW3bVmFhYTp8+LCkf27t+7cSJUrozz//VOHChd1/nE6n3nrrrWQrHwIAAACAKV6PrVKlSqlw4cKaMGGCmjRpkmx/vnz5tGXLFsXExOjQoUP66KOPNH/+fEn/LKjxbx07dtSOHTs0dOhQ7dmzR9u2bVOfPn20f/9+FSlSxPTTAQAAAABJqSC2pH+ubsXHx6tx48bJ9r3xxhvKlSuX2rVrpzZt2mj16tUaN26cJGnbtm3Jjq9QoYI++OAD7d69Wy1bttTLL7+sggULas6cOfLz8zP+XAAAAABAkmxWSvfiIUWxc4fzni0AAJAi/zyFVPr5oYqLu8h7cHBTvr52BQZmYb48gIKCssjH59auWaWKK1sAAAAAkNYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAYQWwAAAABgALEFAAAAAAb4ensADxL/nPm8PQQAAJBK8XsCgH8jtm6RZVkq2rSTt4cBAABSMZfLKZfL8vYwAKQSxNYtstlsOn8+QU6ny9tDASRJPj52BQT4My+RqjAvkRrdz3npclnEFgA3Yus2OJ0uXbvGLw9IXZiXSI2Yl0iNmJcA7jcWyAAAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA2yWZVneHsSDwul0eXsIgAcfHzvzEqkO8xKpEfMSqRHz8sFkt9tks9lu6VhiCwAAAAAM4DZCAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2AIAAAAAA4gtAAAAADCA2LoJl8ulyZMn67HHHlP58uXVsWNHHTx40NvDQjoxbdo0tW/f3mPbjh071K5dO1WoUEG1a9fW7NmzPfYzZ2HC2bNnNXToUD3++OOqVKmSIiMjtWnTJvd+5iW84fTp0+rbt6+qV6+uihUr6uWXX9aePXvc+5mX8Kb9+/erYsWKWrJkiXsbczL9IbZuYtq0afq///s/jRw5Up988olsNps6deqkxMREbw8NadxHH32kyZMne2yLi4vTCy+8oCJFimjx4sV67bXX9O6772rx4sXuY5izMKFXr17atm2bJkyYoM8//1xlypTRiy++qL179zIv4TWvvvqqDh8+rFmzZunzzz9XpkyZ1KFDByUkJDAv4VVXr15Vnz59dOnSJfc25mQ6ZeG6rly5YlWsWNFauHChe9u5c+es0NBQKzo62osjQ1r2999/Wy+++KJVoUIFq2HDhla7du3c+6ZPn2499thj1tWrV93bxo8fbzVo0MCyLOYszDhw4IDlcDiszZs3u7e5XC4rIiLCmjRpEvMSXnHmzBmrZ8+e1u7du93bduzYYTkcDmvbtm3MS3jV+PHjrfbt21sOh8NavHixZVn8Nzy94srWDezcuVMXL15U9erV3dsCAgJUunRp/fbbb14cGdKymJgYZc+eXV999ZXKly/vsW/Tpk0KCwuTr6+ve1v16tW1f/9+nT59mjkLIwIDAzVz5kyVLVvWvc1ms8myLJ07d455Ca8IDAzUhAkTVKJECUnSqVOnNHv2bOXNm1fFixdnXsJrfvvtN33yyScaO3asx3bmZPpEbN3A33//LUnKly+fx/bcuXPr2LFj3hgS0oHw8HCNHz9eBQsWTLbv77//Vt68eT225c6dW5L0119/MWdhREBAgGrVqiU/Pz/3tm+//VaHDh1SzZo1mZfwujfeeEM1atTQ8uXLNWrUKGXOnJl5Ca84f/68+vXrpyFDhiSbW8zJ9InYuoGEhARJ8vgFQ5IyZsyoK1eueGNISOcuX76c4nyUpCtXrjBncV9s3rxZgwYNUt26dRUeHs68hNc9//zzWrx4sZ544gl17dpVMTExzEt4xbBhw1ShQgU1a9Ys2T7mZPrke/ND0q9MmTJJkhITE91fS//8A+Hv7++tYSEdy5QpU7I3ySb9Czhz5szMWRi3YsUK9enTR+XLl9eECRMkMS/hfcWLF5ckjRgxQlu3btX8+fOZl7jvli5dqk2bNmnZsmUp7mdOpk9c2bqBpMu4J06c8Nh+4sSJZJeBgfshb968Kc5HScqTJw9zFkbNnz9fr732mh5//HHNmjXL/csA8xLecPr0aUVHR8vpdLq32e12FStWzD23mJe4nxYvXqzTp0+rdu3aqlixoipWrChJevPNN9WkSRPmZDpFbN1AyZIllTVrVm3YsMG97fz584qNjVWVKlW8ODKkV2FhYdq8ebPHLxe//PKLihYtqpw5czJnYczChQs1YsQItW3bVpMmTfK4zYV5CW84ceKEevfurY0bN7q3Xb16VbGxsSpWrBjzEvfdO++8o2+++UZLly51/5Gk7t27a+bMmczJdIrYugE/Pz+1a9dO77zzjlauXKmdO3eqZ8+eyps3ryIiIrw9PKRDrVq1Unx8vAYPHqw9e/ZoyZIlmjt3rjp37iyJOQsz9u/fr9GjRysiIkKdO3fW6dOndfLkSZ08eVIXLlxgXsIrSpYsqZo1ayoqKkqbNm3S7t271b9/f50/f14dOnRgXuK+y5MnjwoXLuzxR5Jy5syp4OBg5mQ6ZbMsy/L2IFIzp9OpCRMmaMmSJbp8+bLCwsI0dOhQFShQwNtDQzowYMAAHT16VPPmzXNv2759u0aNGqXY2Fg99NBD6tixo9q1a+fez5zFvTZ9+nRNnDgxxX0tWrTQmDFjmJfwigsXLmj8+PFasWKFLly4oCpVqmjAgAHu5eCZl/C2kJAQvfXWW2rZsqUk5mR6RGwBAAAAgAHcRggAAAAABhBbAAAAAGAAsQUAAAAABhBbAAAAAGAAsQUAAAAABhBbAAAAAGAAsQUAwH3Gp64AQPpAbAEAcB9t3rxZnTt39vYwAAD3AbEFAMB99Nlnn2nPnj3eHgYA4D4gtgAAAADAAGILAJDmWZalBQsWqEmTJgoNDVVERIRmzZrlfu/U+vXr9eyzz6py5cqqVq2aevfurWPHjrl/fsmSJQoJCdGRI0c8Hjc8PFwDBgxwfx8SEqIFCxZo8ODBqlq1qipWrKju3bvr1KlTkqQBAwboiy++0NGjRxUSEqIlS5bch2cPAPAWX28PAAAA0yZMmKDZs2erQ4cOqlGjhmJiYjRx4kQlJiaqQIEC6tevnxo3bqzOnTsrLi5OkydP1tNPP60vvvhCOXPmvK1zTZw4UREREZowYYIOHz6st956S76+vpowYYK6dOmiM2fOKDY2VlOnTlWhQoUMPWMAQGpAbAEA0rTz589rzpw5at++vfr16ydJqlGjhs6cOaPNmzdr0aJFevTRRzVx4kT3z1SqVEmNGzfWhx9+qL59+97W+RwOh9566y3399u3b9fy5cslSYUKFVJQUJD8/PxUoUKFu39yAIBUjdsIAQBp2tatW3X16lVFRER4bB8wYIAGDx6skydPqlmzZh77ChUqpIoVK2rDhg23fb5/R1TevHmVkJBw248DAHjwEVsAgDTt7NmzkqSgoKDr7suVK1eyfbly5dKFCxdu+3z+/v4e39vtdj5XCwDSKWILAJCmBQQESJLOnDnjsf3YsWPatWuXJLkXsPhfJ0+eVGBgoCTJZrNJklwul8cxFy9evOfjBQCkHcQWACBNCw0NVYYMGbRy5UqP7XPnztWkSZP00EMPadmyZR77Dh8+rK1bt6pSpUqSpKxZs0qSxwqF+/btc18Zux12O//pBYD0ggUyAABpWlBQkJ577jnNnTtXfn5+ql69uv744w/Nnz9fvXr1Uo4cOTRw4ED17NlTzZs3V1xcnKZOnars2bPrhRdekCRVr15d/v7+GjNmjF5//XVdvHhRU6dOVY4cOW57PAEBATp16pR++uknlSpVSrlz577HzxgAkFoQWwCANK9v377KlSuXFi1apA8//FAFChTQoEGD9Oyzz0qSsmTJohkzZqhr167KmjWrHnvsMfXq1UsPPfSQJClbtmyaPHmyxo8fr65duyo4OFjdunXT0qVLb3ssLVu21E8//aSuXbuqe/fuevnll+/lUwUApCI2i3ftAgAAAMA9x43jAAAAAGAAsQUAAAAABhBbAAAAAGAAsQUAAAAABhBbAAAAAGAAsQUAAAAABhBbAAAAAGAAsQUAAAAABhBbAAAAAGAAsQUAAAAABhBbAAAAAGAAsQUAAAAABvw/C9bjKYSCjlcAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 1000x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.countplot(y=\"Gender\", hue=\"treatment\", data=data2)\n", + "plt.title(\"mental health vs Gender\",fontsize=15,fontweight=\"normal\")\n", + "plt.ylabel(\"\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAHcCAYAAAAQmqFtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABBLUlEQVR4nO3df3zN9f//8fs5m2EYIyL5UTgHbWxsfjTSeyj5/aPS/IjIu2IiQwqVHynKCEl8kDfx7k2leFcKoSK/SX6tTfM7P2bMMsPO6/uH786704Zttp0zr9v1culy2V6v13m9Huc8zjPnvtfr9TwWwzAMAQAAAIBJWN1dAAAAAADkJ0IQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAI+0e/duPfnkk6pbt65CQ0P16aefuqWOnj17ym636/Dhw5KkY8eOyW63KyIiIteOsXnzZtntdg0dOjRL248YMUJ2u10bN27M0fESEhL08ccf5+ixyH/ffvutDhw4kOPHZ/X9khfv7Zz67LPPZLfbNWXKFJflR48e1eeff+6yLDw8XHa7XdeuXcvPEgEUcIQgAB7H4XBowIAB2r17t1q0aKGuXbsqICDALbV06tRJkZGRKlmypFuOn5kWLVooMjJSlSpVyvZjExIS9Mgjj2jlypV5UBly27vvvquBAwfq3Llz7i7F7Q4cOKDWrVvrp59+cncpAO4A3u4uAAD+7uzZszpz5oxq1KihyZMnu7WWzp07u/X4mWnRooVatGiRo8empKQoOTk5lytCXjl79qy7S/AYFy5c0JUrV9xdBoA7BGeCAHic9A86/v7+bq4EAADciQhBADxKz5491bx5c0nSli1bZLfb1bNnT+f6vXv3aujQoXr44YcVEBCg4OBgdezYUfPmzVNaWppzu/T7G958801t2rRJ3bt3V1BQkBo1aqSRI0cqOTlZ58+f12uvvabGjRurfv366tmzp/bs2ZOhnr/eE/R3u3fvlt1u19NPP53p+nfffVd2u13r1q3L0vNft26dnnrqKee9UM8991yG+0Eyu8cjMTFRY8aMUatWrVSnTh01bNhQzz77rMs206dPd762O3bskN1u1/Tp053rz58/r4kTJ6pFixYKCAhQw4YN9cILL2jXrl0ux09/bceOHasZM2YoJCRE9erV07vvvqsGDRooODhYKSkpGZ7bhg0bZLfbNXHixEyf+7Vr1xQWFqbg4GBdunQpw/pNmzbJbrdr1KhRzmVLly5V165dFRoaqqCgILVv314ffvhhls4YpN938t1332nx4sVq3bq1AgMDFR4ertmzZ8swDMXExKhfv36qV6+ewsLCFBUVpTNnzmTYV1xcnKKiohQWFqaAgAA1b95cEydO1IULF1y2mz59uux2u/bs2aPZs2fr0UcfVUBAgB5++GG9/fbb+vPPP53b2u125/0vzzzzjOx2u3Ndamqq5s+fr65duyokJEQBAQFq0qSJBg8erIMHD97yud/Kzp071adPH9WrV0/16tVTz549tXnz5gzbpaWlaeHCherUqZPq1q2r+vXrq1evXtqwYUOm+/3222/Vt29fNW7cWA888IBCQ0P19NNPa82aNTetZ8SIEc4xtmLFCtntdn322Wcu2/zxxx8aMWKEGjdurDp16qhdu3b65JNPcvgKALjTEYIAeJROnTo5P+xUrFhRkZGR6tSpkyTpxx9/VNeuXbV+/Xo1btxYzzzzjFq0aKHDhw9r4sSJevfddzPsb/PmzXr22Wfl5+eniIgI+fv7a9myZRo6dKh69uyp7du3q3379mrUqJG2bNmifv36KSkpKcv11q1bVzVq1NCWLVt04sQJl3UOh0NffvmlypYtq6ZNm95yXxs3blT//v1VqlQp9ejRQ7Vq1dK6devUvXt3nTp16oaPu3Llip599ll98sknqlGjhnr16qXw8HBt375dffv2dX4gbdCggfO1rVChgiIjI9WgQQNJ0smTJ9WpUyfNmzdPpUuXVvfu3dWoUSP98MMP6tatm5YvX57huKtWrdJHH32kjh07Kjw8XEFBQWrTpo0uXbqkb7/9NsP26fvo0qVLps/D29tb7dq106VLlzL9UPzll19Kkjp27ChJmjdvnkaNGqVLly6pc+fOeuqpp5SWlqbo6Gi98sorN3y9/m7mzJl65513FBQUpK5duyo5OVmTJ0/WuHHj9NRTT+nq1at66qmndPfdd2vlypUaNmyYy+N//vlnPf7441q1apVCQ0PVu3dvVa1aVfPmzdOTTz6Z6f08Y8aM0QcffOAMGFarVfPnz3cJeJGRkapZs6YkqUOHDoqMjJR0/X3Vr18/vf3227JarXr88ccVERGhu+++W19//bUiIiJu+n65lUOHDqlnz566evWqIiIi1LBhQ23ZskV9+vTRvn37nNulpaVpwIABGj9+vK5cuaInnnhC7du3V1xcnPr166cFCxa47HfatGkaOHCgjhw5otatW6t3796qV6+etmzZov79+2vt2rU3rKlFixbO/w/YbDZFRkaqVq1aLtt07dpVO3fuVIcOHdSuXTsdOXJEr732mhYuXJjj1wLAHcwAAA9z9OhRw2azGT169HBZ3rZtWyMgIMA4dOiQy/LY2FjDbrcbDRs2zLAPm81m/Otf/3IuP3funFG3bl3n/q9cueJcFxUVZdhsNmPFihXOZT169DBsNpsRHx/vst+nnnrKuc3cuXMNm81mzJo1y6WuDRs2GDabzZg0adJNn+/PP//srPW///2vy7ohQ4YYNpvNmDt3rnPZyy+/bNhsNuOnn34yDMMw1q5da9hsNmPKlCkuj926daths9mMPn36ZHhd/lq/YRhG3759DZvNZrz//vsuy3/99VcjKCjICAgIME6cOOGyD5vNZvzwww8u2+/ZsyfDMQ3DMJKSkozAwEDj8ccfv+lrceDAAcNmsxn//Oc/XZZfvnzZqFevntGiRQvnsgYNGhjNmzd36WFqaqrRunVrw2azGX/88cdNj/Xpp58aNpvNqF27tvHrr786l69fv975/CZPnuxcfuXKFSM8PNyw2WzGqVOnnHWFhYUZQUFBxt69e132v3jxYsNmsxlDhgxxLps2bZphs9mMBg0aGEePHnUuP3/+vNGgQQOjVq1axunTp53L/95rwzCMb775xrDZbMaIESMyPKfBgwcbNpvNWLRo0U33kZm/9nX27Nku66Kjow2bzWaMHTvWueyjjz4ybDabMXz4cOPq1asuz+Wxxx4zatWqZcTGxhqGYRhnzpwxateubbRp08a4dOlSpq/TwIEDncvSexMdHe1clj5OoqKiXB7/j3/8w7DZbMYLL7zg8l748ccfDZvNZrRt2/amzxuAOXEmCECBYBiGBg0apMmTJ+u+++5zWVetWjXdddddSkxMzPC4YsWKqVu3bs7f/f39df/990uSevfurUKFCjnX1atXT5J0/PjxbNXWoUMHFSpUSF988YXL8vQzH1mdXMFms6l169Yuy9InQLjR5XjS9ddGkvbv3+9yGVlISIi+/fZbffDBBzc97qlTp/TDDz/o/vvvV//+/V3WPfDAA+rbt6+uXLmS4fIjPz8/hYWFuSwLCAhQzZo1tXHjRpezEV999ZVSU1Nv+VrY7XbVrl1bP/30k0s/16xZo+TkZHXo0MFl+8TERMXFxTl/9/Hx0bx587R161bdfffdNz1WugcffFAPPPCA8/f69es7f+7Xr5/z50KFCikwMFDS/94ja9eu1ZkzZxQREaHatWu77DciIkJVq1bVN998k2Eyinbt2unee+91/l6yZEnVq1dPaWlpOnbs2E3rtdvtmjBhgl588cUM6xo1aiRJtzWbXIkSJdSnTx+XZemXUf71ffif//xHXl5eGj16tLy9/zfPUsmSJfXCCy8oLS3N+Z7x9vbWpEmTNG7cOBUtWjTTmjMbv9nRv39/l/EcFhYmX1/fm44dAObF7HAACgSLxeIMBGfOnFFMTIyOHj2q+Ph47dmzRwkJCZKuX6Lj5eXlfFylSpVcfpeuByNJqly5ssvyIkWKSFK2Z6AqU6aMmjVrptWrV2vPnj0KDAxUcnKyVq9eraCgIFWrVi1L+6latWqGZaVLl5akTO+RSffggw+qatWqWrduncLCwtSwYUM9+OCDatq0aYbAmJn0S5xCQ0MzXR8SEiLpesj6q3vvvVcWiyXD9p07d9aECRO0cuVK9e3bV5L0+eefq3DhwmrTps0t6+nUqZPefPNNffPNN87vrPnyyy9lsVicl8JJUrdu3TRz5kx17NhRtWrVUlhYmMLCwhQSEuLyYfhW/v66p78//P39VaJECZd1f3+PpN9D9vvvv7vcX5XOy8tL165d08GDB13CVWa99vPzkyRdvXr1lvVWrVpVV69e1b59+xQfH69jx44pJiZGP//8syS53B+XXZUrV84wZv7+Prx06ZJiY2NVvHhxzZ8/P8M+0sdj+nurVKlSzt7Hx8crLi5Ox44dU1xcnLZv337bNUuZv6b+/v46fvx4hv8vAAAhCECBERcXp4kTJ2rDhg3Osx+VKlVS/fr19dtvv+nChQvO5el8fX1vuD8fH59cq61Lly5avXq1vvjiCwUGBuqrr77S5cuXszXFduHChW+47u/P66+KFCmiTz75RLNnz9Y333yj77//Xt9//72k62dy3njjDdWpU+eGj7948aIkZfjAny79jMrfJztIDwR/1759e73zzjtavny5+vbtq/j4eO3cuVNt27Z1ftC/mbZt22rSpElauXKlIiIilJiYqB9//FGhoaEuZ08GDRqkqlWr6j//+Y927typffv2ac6cOSpVqpT69eunZ5999pbHkm78HsnK+yP9/rG1a9fe9J6Wv0+QkFmv0wPlzXqdvn7+/PmaO3eucwptX19f1a5dW7Vq1dKZM2duuY+bycr7MP09k5ycrBkzZtxw+78+73Xr1ik6Oto5cYO3t7eqV6+uwMBAxcbG3lbN0o3fj3+tGwDSEYIAFAiXLl1S7969lZCQoBdeeEH/+Mc/VK1aNedf7f9+WVZ+a9asmcqWLauvv/5ar776qlasWKEiRYpkuLwtr5QqVUrDhw/X8OHDdfjwYW3cuFGrVq3Spk2b9Oyzz2rt2rUqXrx4po9NX36jm+nTP+iXKlUqS7X4+/srPDxcq1at0m+//aZVq1ZJyvplgaVLl1azZs20Zs0anTx5Ut9//72uXr3qvDH+rzp06KAOHTro4sWL2rp1q9avX68vv/xS77zzjsqVK6f27dtn6Zg5lf7+mzJlSr71esGCBZo4caIeeOABjRkzRjVr1lTFihVlsVi0ZMmSG87MlpvSn3e1atX01Vdf3XL7PXv2qH///vLz89P48eMVFBSkKlWqyMfHR3Fxcc5Z8AAgv3BPEIACYePGjTp9+rTatWunQYMGqU6dOs4PYufOnXPeA+Guv/h6eXmpQ4cOOnv2rNatW6cdO3aoRYsWNzy7kpt++OEHjR8/3nnvQ5UqVRQREaGPPvpIDRs21IULFxQTEyNJmV6+ln4vy65du3Tt2rUM69OnRrbZbFmuKX0GuNWrV2vNmjWqUKGCGjdunOXHd+rUSYZhaM2aNfrvf/8rX19fPfroo871p06d0nvvvee856REiRIKDw/XmDFj9Prrr0uStm7dmuXj5VT6DGW//PJLputnzpypDz74QOfPn8/R/jPrV/q9Zu+9955atGjhcllibGxsjo6TXcWLF1elSpV05MiRTO/l2bt3ryZOnOg8I7lixQqlpaVp2LBheuKJJ1SjRg3nmbb0mm81djN7LQAgpwhBAAqE9Etd0i//SZeamqrRo0fL4XBIUqYf4vNL+gf/8ePH69q1azecCjq3nThxQgsXLtScOXNclqempurMmTOyWq2qWLGiJDlvYP/r61S+fHk1adJER48e1cyZM132ceDAAc2dO1c+Pj7ZOtPRtGlTlS9fXkuXLtW+ffvUoUMHWa1Z/yenWbNmKl26tJYtW6YdO3bokUcecYZe6fqZiLlz52rKlCkZJgE4evSopOuXSua1Fi1aqFSpUvr444+1e/dul3VfffWV3nvvPS1fvjxLlwFmJr1ff71PKH0spN93k27Lli1aunRphu3zyuOPP66rV69qzJgxLvfRXbp0Sa+//rrmzZvnPIt4o5pPnjyp6OhoSbceu5m9dwEgp7gcDkCBUL9+fVWtWlU//vijunfvruDgYCUlJWn9+vU6c+aM/P39lZiYqPPnz2eYfSq/3H///QoODtbOnTt1zz33OGe9ymvt27fXJ598oqVLl+rgwYMKCQnR1atXtWHDBh0+fFh9+vRx3tdTunRpFS5cWPv27dP48ePVuHFjNW/eXGPHjlX37t31/vvv66efflJQUJBOnTqlNWvWyOFwaNy4cdkKFVarVR07dtSsWbMkZf1SuHSFChVS27Zt9a9//UuSXCZEkK6fiRg4cKDeffddtWnTRi1btpSfn58OHjyoH374QVWqVFHXrl2zdcycKF68uCZNmqTIyEhFREQoPDxcVapUUVxcnNavXy9fX1/n9/nkRIUKFSRd/46dbdu2acCAAercubN27typfv366bHHHpOfn58OHDigjRs3yt/fX6mpqTk+85Qdffv21c8//6yvv/5a+/fvV1hYmKxWq1avXq2TJ0+qVatWatu2rSSpTZs2mj9/vqZOnaq9e/eqcuXKOnHihNauXatChQqpUKFCt6w5/bXYsGGDJk6cqObNmzsn7QCA7OJMEIACoWjRopo3b57atm2ro0eP6l//+pc2btyowMBALV682PkloOmX37hLu3btJF3/0J7TD77Zlf7aPP/887p06ZL+/e9/69NPP1Xp0qX19ttva/jw4c5tCxUqpLFjx6ps2bL697//rdWrV0u6/sW0n332mXr16qWzZ8/q448/1tatWxUeHq4lS5ZkO8RIcn4ADgkJUZUqVbL9+PRj3ihQ9uvXT1OmTNH999+v1atX66OPPtLvv/+uXr166ZNPPlHJkiWzfcycaNasmZYuXapWrVpp586dWrBggWJiYtSuXTstW7ZMwcHBOd53t27d9NBDDyk2NlZLlizRsWPH9OSTT+rNN9/UPffcoxUrVmjp0qU6d+6cIiMj9fXXX8vX11cbNmy47dnWbqVQoUKaM2eOXnnlFfn6+urTTz/V8uXLVaZMGY0dO1aTJ092zshmt9s1f/58hYSE6Oeff9aiRYu0f/9+tW/fXl9++aVCQkJ09OhRl+nO/65ChQqKiopSkSJFtGjRIm3cuDFPnx+AO5vFYMoUAMg1I0eO1KeffqrvvvsuXy7H8mRffPGFhg8frrfeeitHIQoAgLzCmSAAyCWxsbH673//q6ZNm5o+ACUnJ2vu3LkqVapUvs2aBgBAVnFPEADcpilTpmjdunWKi4uTw+HQiy++6O6S3Gb16tWaMWOGjh07posXL+qVV1656fe3AADgDoQgALhN5cuX19GjR3X33XcrKipKgYGB7i7JbcqXL6/Tp0/Ly8tLzz//vHr16uXukgAAyIB7ggAAAACYCvcEAQAAADAVQhAAAAAAUyEEAQAAADCVAj8xgmEYcji4rcmTWa0WeuTh6JHno0eejx55Nvrj+eiR5/P0HlmtFlkslixtW+BDkMViUVLSJV275nB3KciEt7dV/v7F6JEHo0eejx55Pnrk2eiP56NHnq8g9Kh06WLy8spaCOJyOAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmUuBnhwMAAAAKCofDobS0a+4uI9scDosuX/bSlSupSktzzzTZXl7eslpz5xwOIQgAAADIY4ZhKCnpnFJSkt1dSo6dPWuVw+He6bGLFi0uP7/SWf4+oBshBAEAAAB5LD0AFS/uLx+fwrf9Id4dvLwsbjsLZBiGrlxJVXJyoiSpZMkyt7U/QhAAAACQhxyONGcAKl7cz93l5Ji3t9WtX5Tq41NYkpScnKgSJfxv69I4JkYAAAAA8lBaWpqk/32IR86lv4a3e18VIQgAAADIBwXxEjhPk1uvISEIAAAAcDPDyN97bfL7eFmRnzURggAAAAA3+vHH9Ro//vV8O96CBXO1ZMnCfDteVqxcuVwzZkzNt+MRggAAAAA3+ve/P9apU3/k2/HmzPlAKSkp+Xa8rPjoo7lKSrqQb8cjBAEAAAAwFUIQAAAA4CaRkf/Url07tGvXDjVpEqIdO7apSZMQLV/+qbp0aat27R7Rli0/S5J2796pyMh/qnnzMD32WLjGj39diYmJLvvbtWuHhgyJVKtW/9DDDzfSE0+019y5Hzq/5LRJkxBJ0vz5c5w/z537obp166ING9apZ88nFR7+oHr37qZff/1Fv/66R/369VJ4eJi6dXtC27ZtcTneoUOxGj58sB55pJkeeaSZXnllqI4fP+Zcn/58tm3bopdeGqDmzcPUrt0jev/993Tt2vUZ3h5/vJ3++OOkvv56pZo0CdHJkyfy5sX+C0IQAAAA4CZRUSNks9lls9k1a9Z8Xbr0pyRp9uyZiowcrMjIwQoICNSuXTs0aNALKly4iMaOfVsvvjhEO3du14svPqfU1MuSpN9+i9GgQS/Iz6+kxo59SxMnTlFgYF3Nnz9Hq1d/K0maNWu+JKlt2w7OnyXp9OlTmj59ip5+uo/Gjn1LSUkXNGrUyxozZqTat++kMWPelMPh0BtvvOo83pEjh/X8832VmHhOI0e+rhEjRuvEiePq3//6sr8aO3a06tYN1qRJU/XII620ZMlCrVz5hSRpwoR3VKZMGTVuHKZZs+arTJm78vZF1x3yZaleXmQ5T5XeG3rkueiR56NHno8eeba87o/DYcjh8LyZtlAw3Hff/fL1LSZJCggI1I4d2yRJHTt20T/+0cK53YcfzlDlylU0adIUeXl5SZIeeCBQPXs+qZUrv1SXLk8qLu43hYY21GuvjXN+kWhoaENt3PiDdu3arkceaaWAgEBJUtmy5Zw/S9Lly5cVFfWyGjV6UJL0+++/68MPZ2jEiNFq27aDpOuzt7366jAdOXJYNWrYNX/+HBUuXFhTp85UsWLFJUkhIaF68skOWrx4oQYMGOTcf7t2HdW797OSpPr1Q7Vhw3pt3PijOnbsIputpgoV8lGpUv4uNeWlAh+CDMOQn19Rd5eBW6BHno8eeT565PnokWfLq/6kpTl0/vwlghByVbVq1Z0/X758WXv3/qqIiJ4yDMN5Gdk991RUlSpVtW3bZnXp8qRatWqjVq3aKDU1VcePH9OxY0cVE3NAaWlpzsfcTGBgHefPZcqUkXQ9aKUrWbKkJOnixYuSpO3bt6pevfoqXLiIc/++vsVUp06wtm7d7LLvv4ebcuXK6fJl903OUOBDkMVi0ftLftLx0/k3mwQAAIAkVSxXUgMiwmS1WghByFX+/qWdP1+8mCSHw6GPP16gjz9ekGHbwoULS5JSUy9rypR3tGrVV7p27ZoqVLhHgYF15OXlnaXv4Ek/m/NXRYoUueH2Fy6c15o132nNmu8yrCtVyv9vNbrux2KxOO9TcocCH4Ik6fjpC4o/nnjrDQEAAIACplixYrJYLHryyW5q2fLRDOvTA8bUqZO1bt0ajRnzlkJDG6po0etnP9u2bZkndZUoUUL16zdQRESPDOvSL9nzVHdECAIAAAAKKi8vL6Wlpd1wva9vMdlsNXXkSLxq1qztXJ6aelmjR49Qo0Zhuu+++7Vnzy4FB4fooYcedm5z4MB+nT+f6HLWJf1+odsVFFRP8fG/q3p1m7y9r8cKwzA0duxo3XtvJdWoYc/yvnKrpiwfL1+PBgAAAMBF8eLFdfToEW3fvtV5v83fPffcAG3Z8rPGjBmlTZt+1I8/blBU1Ivatm2LbLaakqRatR7Qli2btHz5Mu3cuV1Ll/5bQ4e+KIvF4nL/TfHiJfTrr79o164dWbpM7kZ69+6n48ePavjwl/TDD+u0efMmjRw5XKtXr1L16jWyta/ixUsoJuagdu7c7px9Li8RggAAAAA36tKlq7y9vTV06ItKTU3NdJsGDRpp8uTpOn36lEaNelnjx78mLy8vTZky0znpwMCBL+mhh/6hOXM+0PDhL2nlyuXq1auv2rXrqF9/3eM82/T0089o//59Gjr0RZ06dSrHdVevXkPvv/9/slgsGjfudY0a9bISEs7qrbfeVbNm4dnaV0RED507l6CoqIE6cOBAjmvKKotxO/HPQ7z63lfcEwQAAPJd1Yr+mjCotRIT/9S1a+67ybug8/a2yt+/2B37Ol69ekUJCSdVpkwFFSrk4+5ycszb2+r2/tzstSxduliWp8LnTBAAAAAAUyEEAQAAADAVQhAAAAAAUyEEAQAAADAVQhAAAAAAUyEEAQAAADAVQhAAAAAAUyEEAQAAADAVQhAAAAAAU/F2dwEAAACAmVmtFlmtFrcc2+Ew5HAYbjm2OxGCAAAAADexWi0qVcpXXl7uuUArLc2h8+cvZTkIjRs3Wt9/v1YLFixRpUqVXdYlJp5T9+5PKDS0ocaMmZAX5eYaQhAAAADgJlarRV5eVr2/5CcdP30hX49dsVxJDYgIk9VqyXIIGjRomLZt26JJk97UtGmzZLH87wxWdPQk+fj4KCpqRF6VnGsIQQAAAICbHT99QfHHE91dxi35+flp2LBXNWJElFau/ELt2nWUJK1f/72+/361Jk+eLj8/P/cWmQWEIAAAAABZ1qRJM7Vs2Urvv/+emjR5SD4+PoqOnqhOnZ5Qw4aNFR//u2bMmKLdu3fK19dX9eqFKjJysMqUuUuSdPToEU2Z8o727v1FDoehwMA6GjBgsKpVq55vz4HZ4QAAAABky0svDVPhwj6aOXOa/u//PlTRor4aMGCQzp49owEDntU991TUnDn/0sSJU/Xnn8l6/vm+SklJkSS9/vqruuuuu/R//7dQs2d/JKvVqldfHZqv9XMmCAAAAEC2+PmV1NChr+jVV4fJ29tb06fPVpEiRbRw4XyVKXOXhgx52bnt2LFvq02b5vr++9Vq3bqdTpw4pgYNGqlChXvk7e2tV155TYcPx8vhcMhqzZ9zNIQgAAAAANnWtOnDqlmzlsqXv0cBAYGSpJiYAzp8OF4tWzZ12fbKlSuKj/9dktSvX39NmzZZy5cvU716oWrYsLHCw1vmWwCSCEEAAAAAcqhw4SIqUqSI83eHw1C9eiGZzhBXvHgJSVKXLk8qPLyFNm36Sdu3b9GHH76vefM+1Pz5i1W6dJl8qZt7ggAAAADkivvvr6bDh+NVrtzduvfeSrr33kry8/PTtGmTdehQrM6dS1B09ERdvXpVrVu30+jR47RgwRIlJCRo584d+VYnIQgAAABArujU6XElJyfrjTdG6rffDio29je98cZI7du3V/fdd7/8/Epq48YfNXHim/rtt4M6fvyYPv98mQoVKqSaNWvlW51cDgcAAAC4WcVyJe+IY95zT0XNmPGhZs2aof79n5WXl5ceeKCOpk37QP7+pSVJ7747Te+/P1WDBvXX5cuXVaOGTZMmTVXFivfmej03YjEMI2tfD+vBXn3vqwLx5VIAAODOUrWivyYMaq3ExD917ZrD3eUUWN7eVvn7F7tjX8erV68oIeGkypSpoEKFfFzWWa0WlSrlKy8v91yglZbm0Pnzl+Rw3DoSeHtb3d6fm72WpUsXy/LryJkgAAAAwE0cDkPnz1+S1Wpx2/GzEoDuNIQgAAAAwI3MGkTciYkRAAAAAJgKIQgAAACAqRCCAAAAAJgKIQgAAACAqRCCAAAAAJgKIQgAAACAqRCCAAAAAJgK3xMEAAAAuJHVailQX5b6+OPt5HA4tHDhJypWrLjLujfffEMnT57QjBmzc7PMXEcIAgAAANzEarXI37+orFYvtxzf4UhTYmJKtoPQ6dOnNGPGVL388qg8qixvEYIAAAAAN7l+FshLv6+co5SEk/l67KJlKui+tv1ktVqyHYLuuaeiVqxYrocfbq6GDRvnUYV5hxAEAAAAuFlKwkmlnDri7jKy7NFHW+uXX3Zr4sTxmV4WJ0lJSRc0Z84s/fTTBp0/f152e009/3yk6tYNdkPFrpgYAQAAAEC2vfLKaCUnJ2v69CkZ1qWlpemllyK1e/cOjRo1RvPmLVL16jYNHtxfBw7sc0O1rghBAAAAALKtfPkK6t9/oFau/EKbN29yWbdly886eHC/3njjTdWrF6KqVe/TkCHDdf/91bV48UI3Vfw/hCAAAAAAOdKhQxfVr99AEyeO159/JjuXHzoUq+LFi+v++6s7l1ksFtWtG6S4uN/cUaoLQhAAAACAHLFYLJleFmcYhqSM0347HA55e7t/WgJCEAAAAIAcu35Z3ItaufIL7d69U5JUrVp1JSdf1KFDsS7b/vLLLlWtep87ynRBCAIAAABwWzp27KKQkAY6ceK4JCk0tJGqVauhMWNGaceObYqP/12TJ09UXFysnniim5urZYpsAAAAwO2KlqlQ4I85YsRoPf30U5Ikb29vTZ36vmbMmKqRI4fr6tUrsttr6b33PlBAQGCuHjcnCEEAAACAmzgchhyONN3Xtp+bjp+W7S9KXbZsRabLy5evoG+/Xe/83d+/tEaPHntb9eUVQhAAAADgJg6HocTEFFmtGScRyK/jZzcE3QkIQQAAAIAbmTWIuBMTIwAAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAkA8Mg/t+blduvYaEIAAAACAPeXl5SZKuXEl1cyUFX/pr6OV1e/O7MTscAAAAkIesVi8VLVpcycmJkiQfn8KyWNwzJfbtcDgsSktzz9kswzB05UqqkpMTVbRocVmtt3cuhxAEAAAA5DE/v9KS5AxCBZHVapXD4XBrDUWLFne+lreDEAQAAADkMYvFopIly6hECX+lpV1zdznZ5uVlUcmSvrpw4ZLbzgZ5eXnf9hmgdIQgAAAAIJ9YrVZZrT7uLiPbvL2tKlKkiFJS0nTtmnvPBuUGJkYAAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmkishKDw8XA8//LCSk5MzrBsxYoR69uyZG4cBAAAAgNuWa2eCTp48qbfffju3dgcAAAAAeSLXQlClSpW0dOlS/fDDD7m1SwAAAADIdbkWgtq3b6/GjRtr9OjRmV4WJ0nnz5/XmDFj1KxZM9WpU0cRERHatm1bbpUAAAAAALeUayHIYrHozTffVFJSkt56660M69PS0tSnTx9t27ZNEydO1Oeff66aNWuqd+/e2rNnT26VAQAAAAA35Z2bO6tYsaKGDRumN954Q61atVLTpk2d63788Uft3btXK1askM1mkyS99tpr2r17t+bOnaupU6fm+Lh17ffonrJ+t1s+AABAtpQtXVyS5OWVfxPuOhyGHA4j344H3IlyNQRJ0lNPPaVVq1Zp9OjRWrlypXN5TEyMSpQo4QxA0vWzRyEhIbd1H5FhGOraKuh2SgYAALgtfn5F8+1YDkeaEhNTCELAbcj1EJR+WVy7du1cLoszDEMWiyXD9g6HQ97eOS/DYrHo95VzlJJwMsf7AAAAKAiKlqmg+9r2k9VqIQQBtyHXQ5B0/bK44cOH6/XXX1elSpVUoUIF2e12JSUlKSYmxuVs0Pbt21W9evXbOl5KwkmlnDpyu2UDAAAAMIE8u4D1qaee0oMPPqijR49KksLCwmS32xUVFaXNmzcrLi5OY8aMUUxMjHr16pVXZQAAAACAizy9i2/8+PEqVqyYJMnb21vz589XrVq1NHDgQHXp0kUxMTH66KOPFBQUlJdlAAAAAIBTrlwOt3bt2kyXV6xYUTt27HD+XqZMGU2aNCk3DgkAAAAAOZJ/8zkCAAAAgAcgBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFW93F5Abipap4O4SAAAA8hyfeYDcUeBDkGEYuq9tP3eXAQAAkC8cjjQ5HIa7ywAKtAIfgiwWi5KSUpSW5nB3KciEl5dVfn5F6ZEHo0eejx55Pnrk2e60/jgcBiEIuE0FPgRJUlqaQ9euFfz/qd3J6JHno0eejx55Pnrk2egPgHRMjAAAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEzF290F5AYvL7Kcp0rvDT3yXPTI89Ejz0ePPBv98Xz0yPNl1iOHw5DDYbirpNtiMQyjYFb+/xmGIYvF4u4yAAAAAFNJS3Po/PlLHhOESpculuUgXeDPBFksFr2/5CcdP33B3aUAAAAAplCxXEkNiAiT1WrxmBCUHQU+BEnS8dMXFH880d1lAAAAACgAuPASAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKkQggAAAACYCiEIAAAAgKlkOQQNGzZMderUUXx8fIZ1CQkJatiwoYYMGZKbtQEAAABArstyCBo1apT8/Pw0evRoGYbhsm7s2LHy8fHR66+/nusFAgAAAEBuynIIKlmypMaMGaMtW7Zo2bJlzuXfffedvvnmG02YMEElS5bMkyIBAAAAILdk656g5s2bq23btpo0aZISEhKUnJysMWPGqFu3bmratKni4uLUr18/BQcHq0mTJoqKitKZM2ecj4+Pj1ffvn1Vv359BQcHq2/fvjp48GCuPykAAAAAuBGL8fdr227h/Pnzatu2rZo0aaISJUpow4YNWr58uZKSktS+fXu1adNG3bt3V0pKiqZPn67Y2FitWLFCvr6+6ty5s+x2u5577jldu3ZNEydOVHx8vL777rvbehKffLNLZ84l39Y+AHf48/IVXbh42d1lAAAAZEvFciU1ICJMiYl/6to1h7vLkSSVLl1MXl5ZO8eT7RAkSatXr1ZkZKS8vb21aNEiBQUFaerUqVqzZo1WrFjh3C4lJUWNGjXS66+/rs6dOyskJEQREREaNGiQvL29debMGR06dEihoaGyWnM2UZ1hGLJYLDl6LOBuhsMhSw7f+wAAAO6UlubQ+fOX5HBkO07kieyEIO+cHKBFixYKCAhQxYoVFRQUJEnat2+f4uLiFBwc7LJtamqq4uLiJEkvvfSSJkyYoCVLlqhRo0Zq2rSpHnvssRwHIEmyWCz6feUcpSSczPE+AHcoWqaC7mvbT0lJKUpLc99fULy8rPLzK+r2OnBj9Mjz0SPPRn88Hz3yfJn1yOEwPCYAZVeOQpAkFS1aVEWLFnX+7nA4nGd9/q5EiRKSpO7du6tVq1Zav369Nm3apOjoaE2fPl3Lly/XXXfdldNSlJJwUimnjuT48YA7paU5POI0sqfUgRujR56PHnk2+uP56JHnu1N6lGvX4dSoUUNxcXGqUKGCqlSpoipVqqhkyZKaMGGCYmJidPbsWY0dO1ZXr15V586d9c477+jLL7/UmTNntGXLltwqAwAAAABuKtdCULdu3XTx4kUNGTJE+/fv14EDBxQVFaVffvlFNWrUUKlSpbRu3TqNGjVK+/fv19GjR7V48WIVKlRIAQEBuVUGAAAAANxUroWgSpUqadGiRUpJSVG3bt3Uo0cPWSwWLViwQGXKlJG3t7fmzJkjq9Wq3r17q02bNvr55581e/ZsVa5cObfKAAAAAICbyvE9QQsXLsywrHbt2po7d+4NH1OtWjXNnj07p4cEAAAAgNvG3LwAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATMXb3QXkhqJlKri7BCDbeN8CAAC4R4EPQYZh6L62/dxdBpAjDkeaHA7D3WUAAACYSoEPQRaLRUlJKUpLc7i7FGTCy8sqP7+i9OgGHA6DEAQAAJDPCnwIkqS0NIeuXeMDtiejRwAAAPAUTIwAAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQshmEY7i7idqWlOdxdAm7Cy8tKjzwcPfJ89Mjz0SPPRn88Hz3yfJ7eI6vVIovFkqVt74gQBAAAAABZxeVwAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEylwIYgh8OhadOmqWnTpqpbt6769Omjw4cPu7ss0zp+/LjsdnuG/5YuXSpJ2r9/v3r06KGgoCA9/PDDmjt3rpsrNpeZM2eqZ8+eLstu1RPGWP7KrEevvPJKhjH10EMPOdfTo7x1/vx5vfbaa3rooYdUr149RUREaNu2bc71jCH3u1WPGEPul5CQoGHDhqlRo0YKDg7WP//5T8XGxjrXM47c71Y9umPHkVFATZ8+3WjcuLGxbt06Y//+/UafPn2Mli1bGqmpqe4uzZTWrFljBAYGGqdOnTJOnz7t/C8lJcU4d+6c0bBhQ2PkyJFGbGyssWzZMiMwMNBYtmyZu8s2hfnz5xt2u93o0aOHc1lWesIYyz+Z9cgwDKNTp05GdHS0y5hKSEhwrqdHeeuZZ54x2rdvb2zdutWIi4szxo0bZ9SpU8eIjY1lDHmIm/XIMBhDnuCJJ54wunbtavzyyy9GbGysMXDgQCMsLMy4dOkS48hD3KxHhnHnjqMCGYJSU1ON4OBgY/Hixc5lFy5cMOrUqWOsXLnSjZWZ1wcffGC0b98+03WzZs0ymjZtaly9etW5bPLkycajjz6aX+WZ0h9//GH07dvXCAoKMlq1auXyAftWPWGM5Y+b9ejatWtGYGCg8d1332X6WHqUt+Lj4w2bzWZs377duczhcBgtW7Y0pk6dyhjyALfqEWPI/c6dO2e89NJLRkxMjHPZ/v37DZvNZuzevZtx5AFu1aM7eRwVyMvhDhw4oD///FONGjVyLvPz81Pt2rW1detWN1ZmXgcPHlT16tUzXbdt2zaFhobK29vbuaxRo0b6/ffflZCQkF8lms7evXtVsmRJffnll6pbt67Lulv1hDGWP27Wo/j4eKWmpqpatWqZPpYe5S1/f3/Nnj1bAQEBzmUWi0WGYejChQuMIQ9wqx4xhtzP399f0dHRqlGjhiTp7Nmzmjt3rsqXL6/q1aszjjzArXp0J48j71tv4nn++OMPSVKFChVclpcrV04nT550R0mmFxMTo7Jly6pbt26Kj49XlSpV1L9/fzVt2lR//PGHbDaby/blypWTJJ04cUJlypRxR8l3vPDwcIWHh2e67lY9YYzlj5v1KCYmRhaLRQsWLNCGDRtktVrVrFkzDR48WCVKlKBHeczPz0/NmjVzWfb111/ryJEjatKkiaZMmcIYcrNb9Ygx5FlGjx6t//znP/Lx8dEHH3wgX19f/i3yMJn16E4eRwXyTFBKSookycfHx2V54cKFlZqa6o6STO3KlSuKj49XcnKyBg8erNmzZyswMFD9+vXTpk2bdPny5Ux7JYl+ucmtesIYc7/ffvtNVqtVFStW1KxZs/Tyyy9r/fr16t+/vxwOBz3KZ9u3b9err76q5s2bKzw8nDHkgf7eI8aQZ+nVq5c+/fRTtW/fXgMGDNDevXsZRx4msx7dyeOoQJ4JKlKkiKTrH77Tf5auD5iiRYu6qyzT8vHx0datW+Xt7e0cBAEBAYqLi9PcuXNVpEgRXblyxeUx6QPD19c33+uFbtkTxpj7DRw4UL1795afn58kyWazqWzZsuratav27NlDj/LR6tWrNXToUNWtW1fR0dGSGEOeJrMeMYY8S/ol8+PGjdOuXbu0aNEixpGHyaxHEyZMuGPHUYE8E5R+yu306dMuy0+fPq3y5cu7oyTT8/X1zfBXAJvNplOnTql8+fKZ9kqS7r777nyrEf9zq54wxtzPYrE4/9FJl37ZyB9//EGP8smiRYs0cOBAPfTQQ5ozZ47zH3nGkOe4UY8YQ+6XkJCglStXKi0tzbnMarWqWrVqzteZceRet+rRnTyOCmQIqlmzpooXL67Nmzc7lyUlJWnfvn0KCQlxY2XmdODAAQUHB7t8N4Mk/frrr6pevbpCQ0O1fft2lwG2adMm3XfffdwP5Ca36gljzP2ioqLUt29fl2V79uyRdP2vdfQo7y1evFjjxo1T9+7dNXXqVJc/9DCGPMPNesQYcr/Tp08rKipKW7ZscS67evWq9u3bp2rVqjGOPMCtenRHjyN3T0+XU9HR0UaDBg2M1atXO+ckf+SRRzx+TvI7UVpamvHEE08Ybdu2NbZu3WrExsYaEyZMMAICAowDBw4YZ8+eNUJDQ42XX37Z+O2334xPP/3UCAwMND777DN3l24aL7/8ssv0y1npCWMsf/29R2vXrjXsdrsxc+ZM4/Dhw8a6deuM8PBwY8iQIc5t6FHeOXTokPHAAw8YAwYMcPlujNOnTxtJSUmMIQ9wqx4xhtzP4XAYffr0MR599FFj69atxsGDB42XXnrJCA0NNY4fP8448gC36tGdPI4shmEY7g5iOZGWlqbo6Gh99tlnunz5skJDQ/Xaa6/p3nvvdXdppnTu3Dm9++672rBhg5KSklS7dm0NHTrU+VeAX375RW+++ab27dunsmXLqk+fPurRo4ebqzaPESNG6Pjx41q4cKFz2a16whjLX5n1aNWqVZo1a5YOHTqkEiVKqF27dho8eLDzxmF6lHdmzZqlKVOmZLquU6dOevvttxlDbpaVHjGG3O/ixYuaPHmyVq9erYsXLyokJEQjRoxwTsnMOHK/W/XoTh1HBTYEAQAAAEBOFMh7ggAAAAAgpwhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAwP/Ht0YAgDkQggAAkLR9+3Y999xz7i4DAJAPCEEAAEhaunSpYmNj3V0GACAfEIIAAAAAmAohCADgNoZh6OOPP1abNm1Up04dtWzZUnPmzHHem/PTTz+pW7duql+/vho2bKioqCidPHnS+fjPPvtMdrtdx44dc9lveHi4RowY4fzdbrfr448/1siRI9WgQQMFBwfrxRdf1NmzZyVJI0aM0Oeff67jx4/Lbrfrs88+y4dnDwBwF293FwAAMK/o6GjNnTtXvXv3VlhYmPbu3aspU6boypUruvfeezV8+HC1bt1azz33nBITEzVt2jR17dpVn3/+ucqUKZOtY02ZMkUtW7ZUdHS0jh49qrfeekve3t6Kjo5W//79de7cOe3bt08zZsxQ5cqV8+gZAwA8ASEIAOAWSUlJmj9/vnr27Knhw4dLksLCwnTu3Dlt375dS5Ys0YMPPqgpU6Y4H1OvXj21bt1a8+bN07Bhw7J1PJvNprfeesv5+y+//KJvvvlGklS5cmWVLl1aPj4+CgoKuv0nBwDwaFwOBwBwi127dunq1atq2bKly/IRI0Zo5MiROnPmjNq1a+eyrnLlygoODtbmzZuzfby/h5vy5csrJSUl2/sBABR8hCAAgFucP39eklS6dOkbrrvrrrsyrLvrrrt08eLFbB+vaNGiLr9brVa+FwgATIoQBABwCz8/P0nSuXPnXJafPHlSBw8elCTnxAV/debMGfn7+0uSLBaLJMnhcLhs8+eff+Z6vQCAOwchCADgFnXq1FGhQoW0Zs0al+ULFizQ1KlTVbZsWa1YscJl3dGjR7Vr1y7Vq1dPklS8eHFJcpkx7tChQ84zSdlhtfJPIgCYBRMjAADconTp0nr66ae1YMEC+fj4qFGjRtqzZ48WLVqkIUOGqFSpUnrllVf00ksvqWPHjkpMTNSMGTNUsmRJPfPMM5KkRo0aqWjRonr77bc1ePBg/fnnn5oxY4ZKlSqV7Xr8/Px09uxZrV+/XrVq1VK5cuVy+RkDADwFIQgA4DbDhg3TXXfdpSVLlmjevHm699579eqrr6pbt26SpGLFiunDDz/UgAEDVLx4cTVt2lRDhgxR2bJlJUklSpTQtGnTNHnyZA0YMEAVK1ZUZGSkli9fnu1aOnfurPXr12vAgAF68cUX9c9//jM3nyoAwINYDO4KBQAAAGAiXAANAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABM5f8BaLbUuCm+R04AAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 1000x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.countplot(y=\"family_history\", hue=\"treatment\", data=data2)\n", + "plt.title(\"family history vs mental health \",\n", + " fontsize=15,fontweight=\"normal\")\n", + "plt.ylabel(\"\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAHcCAYAAACeQOgRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABmsElEQVR4nO3dd3QU5f/28WuzMUCAUCJIFRDYgPTeW+hIR+ldkar03puCSJEm5QuIgPQiIL1X6aj0IjXSeyAFsvP8wZP9sSRAAiGbgffrHM4hs7Mzn9l7Z3avnXvusRiGYQgAAAAAYDpuri4AAAAAAPB6CHQAAAAAYFIEOgAAAAAwKQIdAAAAAJgUgQ4AAAAATIpABwAAAAAmRaADAAAAAJMi0AEAAACASRHoAAAAAMCkCHR4p40bN04+Pj5h/mXPnl2+vr7q1auXLl269Ebr2LNnj3x8fNSlS5coqvrt6NGjh3x8fLRr1y7HNF9fX/n4+OjJkycurCzqvGvbE9Ui8/pE1/s6vPdlTBPeMSS8f9WqVYvQ8pYsWSIfHx+NHj36LVf++ho1aiQfHx9duHDB1aVEK39/f02fPj3cx3x8fOTr6yvpzfaPdevW6cSJE29UZ3Qfz19U8/Pvk9Aa3sTly5fl4+OjevXqOaa9yT7j6s/oZcuWOY4RZ8+efa1lvM3jZOj3pIULFzpN37Nnj/78888w8x88eFCtWrVSgQIFlDVrVvn6+mrQoEG6ceNGlNeGiHN3dQFAdMifP7/y588vSTIMQwEBATp37pyWLVumtWvXasGCBUqfPr2LqwRijpQpU6pdu3Zv/OXsXdKuXbuXPv7hhx9GUyV4W8qXLy+r1armzZuHeaxdu3aKHz++pNffP3788UdNnTpVM2bMiJJ6n9W4cWM9ePBAbm5R+1v9y2quUaOG8ufPrwQJEjjVENUyZ86sdu3aKW/evFG+7Ldt8eLF8vT01KNHjzR//nz16tXL1SU5yZ8/v9q1a6dPP/3UMW3u3LkaMGCAhgwZooIFCzqmr169Wp06dZLFYlGZMmWUIkUKHTx4UHPmzNG6des0d+5cpU6d2hWb8d4j0OG9kD9/fn3zzTdhpv/xxx/q1KmTRowYoUmTJrmgMiBmSpUqVbj7zPuM1+Pdd/PmTX300UfhPvZs+7/u/nHz5s3Xru1VmjZt+laW+7Kaa9asGS01ZM6cWZkzZ34ry36bLl26pH379ql27dravn27li1bpk6dOil27NiuLs2hQIECKlCggNO08Nr84cOHGjBggAzD0P/+9z8VKVLE8dioUaM0efJkDRgwQNOmTXvrNSMsulzivVapUiXFixdPe/bscXUpAADgHbJ48WIZhqHixYurXLlyunfvnlavXu3qsl7Ltm3bdPfuXZUpU8YpzElS+/bt5e3trV27dunhw4cuqvD9RqDDe81ischqtcrDwyPMY3fv3tXw4cNVpkwZZc2aVYULF1anTp1e2gd+y5Ytqlu3rnLkyKF8+fKpZcuW4V53cOHCBfXr109ly5ZV9uzZlSNHDlWqVEljxoxRYGCg07w+Pj5q06aNTp48qVatWilv3rzKmTOnGjZsqN27d4dZ9sOHD/Xjjz+qdOnSyp49u6pWrapVq1ZF6PUI79qFUOFdhxDa9/6ff/7RlClTVL58eWXNmlUlS5bUsGHDwj2wb926VQ0aNFDu3LlVoEABde3aVdevX9enn36qRo0aRajOixcvqkuXLipSpIhy5syppk2b6tixYy+c//Dhw2rdurUKFCigbNmyqWLFipowYYKCgoKc5gu9TuHAgQP6/PPPHdcH/Pfffy9ctq+vrypUqKBLly6pdevWju1q3bp1uDWdOHFC7dq1U6lSpZQ1a1YVL15c3bt31/nz5x3z9O/fXz4+Plq2bFmY59vtdhUrVkxFixZVSEiIY/qaNWvUqFEj5c+fX/ny5VPdunVf2O5Xr15Vjx49VKhQIWXPnl1VqlTR/PnzneZ50XUnCxcuVJ06dZQvXz7lzJlTVatW1eTJkxUcHBxmPUeOHFGHDh1UtGhR5cyZU5999pmmTJkS5j0uSYGBgRozZoxKly6trFmzqlSpUvrhhx8UEBAQZt6zZ8+qc+fOKlKkiLJmzarSpUtr+PDhunfvntN8r/P+jCqh1/wsWbJEHTp0UPbs2VWoUCGtX78+3Pntdru6d+/u2N9DX09fX19VrlxZGzdulK+vr7Jnz66GDRs6nvfnn3+qXbt2Klq0qLJmzao8efKoTp06Wrx4sdPyQ9vzl19+0fr16/XFF18oR44cyp8/vzp06KCLFy++cpsuXbqkEiVK6NNPP9XKlSudlhve9UnhXfcUuo9du3ZNP/74o2M/KFu2rCZMmBDu9V/Lli1TzZo1lStXLhUpUkSDBg3S6dOn5ePjox49eryy7sDAQI0cOVJVqlRRzpw5lTdvXjVq1Mhp/witVZKuXbsWZtmBgYEaP368KlWqpGzZsilv3rxq2rSptm7dGmZ9Pj4+atmypebPn6/ChQsrZ86c6tKli3x8fLR06VJJUrNmzSLUXTMyx/MXXUO3detWNW3aVHnz5lX27NlVrVo1zZo1S3a7/ZXrf1nNQUFBmjFjhurUqaO8efMqa9asKlq0qDp06KCTJ0+GWdaVK1fUq1cvFStWTDly5FDt2rW1detW9e7dWz4+Prp8+fIL63jRNXT+/v4aM2aMKlSooBw5cqhkyZLq3Lmzzp07F+5yIvoZHRgYqIkTJ+qzzz5TtmzZlD9/frVq1Up//fXXK1+zUHa7XcuWLZOHh4cKFiyozz77TJI0b968cOePyOfPo0eP9N1336lIkSLKkSOHPv/8cy1fvjzc5UX2OBl6DZ2vr6/Gjx8vSerTp4+jbVKmTKmvvvpKderUCbMuq9Wq5MmTy263h/lcRfSgyyXea2vWrNG9e/fCBJjr16+rfv36unTpkgoUKKBy5crpxo0bWrNmjTZv3qz//e9/ypMnj9Nzdu3apVWrVql48eJq2LCh/vnnH23ZskX79+/XqlWrHN14Tpw4oQYNGujJkyeOPui3b9/Whg0b9PPPP+vff//V2LFjnZZ9/vx51a1bVxkyZNAXX3whPz8/rVu3Tl999ZWWLl0qm80m6ekHbKNGjXT06FFlyZJFZcqU0ZkzZ9SxY0clSZLkrb2OAwcO1NmzZ1WhQgX5+vpq7dq1mjFjhq5du+b0ATxv3jwNGDBA8ePHV/ny5RU3blytWbNG9erVk2EYEVrX2bNnVb9+fd29e1elSpXSxx9/rD179qhhw4bhLmPFihXq0aOHPDw8VLZsWSVNmlT79+/X2LFjtX37ds2cOVOxYsVyes63336rTz75RI0aNdJ///2nFClSvLQmf39/NWzYUB4eHqpTp478/Py0YcMG7d69W1OmTHFcv3n+/Hk1adJEISEhKleunLy9vXX27FktX75cW7Zs0cqVK5UkSRLVqlVL8+bN07Jly1S9enWnde3cuVPXr1/Xl19+KavVKkn64YcfNG3aNCVOnFilS5dWvHjxtGbNGnXs2FGXL1/W119/7bSMOnXqKF68eKpWrZoePHiglStXql+/fgoODn5pqJ4+fbqGDx8um82mmjVrymKxaPv27Ro1apROnTqlkSNHOuZdv369OnbsKOnpF4SUKVNqz549GjlypA4ePKgJEyY46pekvn376smTJypfvrw8PDy0fv16TZs2TZcuXdK4ceMc8/35559q3bq1Hj9+rDJlyihVqlQ6fvy4pk+frk2bNmnu3LlKnDixU90RfX++DSNHjlTcuHHVsGFDnTp1Sjlz5tT27dud5jEMQ/3799eyZctUrlw5jRo1Sh988IHj8WvXrqlTp04qW7asEiRIoIQJE0qSFi1apD59+ujDDz+Ur6+vvLy8dPHiRW3atEm9evVSQECAU/iTpJUrV+rIkSMqVaqU8ufPrwMHDmj16tU6fPiw1q9f77TeZ129elVNmzbVzZs39eOPP6pSpUpv9Lq0bdtWfn5+Klu2rDw8PLRq1SqNHTtWAQEBTuEwtCtXkiRJVLVqVRmGoeXLl4d5DV+mQ4cO2rx5s4oWLarixYvL399fa9euVceOHfXgwQPVqVPHcY3W+PHjFTduXDVr1szRxe/Bgwdq1KiRjh8/LpvNpjp16ujevXvatGmTvv76a3Xs2FGtWrVyWuc///yj3bt3q3r16jIMQ59++qnSpEmjDRs26MSJE6pWrdorrzWKiuP51KlT9eOPPypx4sQqX768vLy8tGPHDg0ZMkT79u3TTz/9JIvF8sLnt2vXLtya7Xa7WrRooT179jiChd1u18GDB7V69Wpt27ZNq1evdnzuXb58WfXq1dP169dVtGhR+fj46NChQ2rVqtUrj68vcvfuXdWtW1fnzp1T1qxZVadOHd28eVNr1qzR9u3bNXfuXKdr4yP6Gf3o0SM1btxY//zzj7Jly6YGDRrowYMHWrt2rerXr69Ro0apfPnyr6xv586dunLlisqXL6948eIpe/bs+uSTT3T48GGdOHFCmTJlCvd5L/v8GTBggIKDg1WpUiU9efJE69evV9euXXX58mW1adPGMd/rHCdDNW7cWBs3btTevXtVqlQpZcmSRV5eXkqVKpWyZ88e7nP+/fdfnThxQqlSpXrhcvGWGcA7bOzYsYbNZjMaNmxojB071vFvxIgRRuvWrY3MmTMbjRo1Mvz9/Z2e16ZNG8Nmsxnz5893mn7s2DEjW7ZsRqlSpYzHjx8bhmEYf/75p2Gz2QybzWb88ccfTvN36tTJsNlsxrRp0xzTWrZsadhsNmPv3r1O8968edPInTu3kSlTJuPBgweO6aHLHjZsmNP848aNM2w2mzFgwADHtIkTJxo2m83o1auXERIS4pg+d+5cx3J27tzpmF6qVCnDZrM5tuXSpUuGzWYz6tatG+a1DN3Ozp07h3l98+fPb1y6dMkx/e7du0b+/PmNzJkzG9evXzcMwzCuXr1q5MiRw8ifP79x4cIFx7y3bt0yfH19He30Kk2bNjVsNpuxZMkSx7THjx8bXbp0cWxj6PZcv37dyJ49u1GkSBHj8uXLTsv58ccfDZvNZowaNcoxrXv37o7tf/b1e5nQ17B27dpGQECAY/qWLVuMTJkyGeXKlXMsa9iwYYbNZjN27drltIwJEyYYNpvNmDRpkmNa5cqVjUyZMhlXr151mrdjx46GzWYzTp8+bRiGYRw4cMCw2WxG5cqVjRs3bjjmu337tlGyZEkjS5Ysxp07d5xqbd26tREcHOyYd8eOHY5lhAqvvfPnz2+ULl3a6blBQUFGpUqVDJvN5qj1wYMHRv78+Y2cOXMaf/31l2Neu93ueP9v2rTJMIz/e819fX2d6r9165aRJ08ew8fHx7h165ZhGIYRGBhoFClSxMiZM6dx9OhRp9flt99+M2w2m9GpUyfHtMi8P18m9H317DEkvH/PrmPx4sWGzWYzcuXK5aj/+cdC33uDBg0ybDab0b59e8d7N1Rom40cOdJpenBwsJE/f36jcOHCYZa/detWw2azGTVr1nRMe/Y4tXHjRsd0u91uNGnSxLDZbMaqVasc0xs2bGjYbDbj/PnzxrVr14xy5coZWbJkMdasWeO0rvDeJy/aTsP4v/YuV66c431pGIZx4cIF49NPPzXy5s3reH8dPXrUsQ/dvHnTad48efIYNpvN6N69e5j1PuvkyZOGzWYzunTp4jT94sWLRpYsWYxy5co5TbfZbEaxYsWcpvXr18+w2WxG3759ndrn4sWLRvHixQ0fHx/j8OHDTsuw2WzGvHnzwtQTuv3PHodf5E2P56GvX+XKlY3bt2875gsJCXF8Nj3/GRee8Gpes2aNYbPZjG+++SbM/B06dDBsNpsxe/Zsx7TQz9QZM2Y4zRv63rfZbI79J7zPofDeS3379jVsNpsxYsQIw263O6avXr3aqbbIfkYPHTo0zLoMwzD8/PyMQoUKGbly5XJ6775I+/btDZvNZqxfv94xbdKkSYbNZjP69esXZv6Xff6EPpY/f36nz7LLly8bxYsXNzJnzuz4XH3d4+SCBQteOu1Frly5YpQtWzbc1xfRhy6XeC/s3btX48ePd/ybOnWqNm7cqJCQEHl7e+vOnTuOeW/evKmNGzcqW7Zsql27ttNyMmfOrGrVqsnPz087d+50esxms4X51bpMmTKS5DT0d6NGjTR8+HDly5fPaV5vb29lzJhRdrtdd+/eDbMNz59lCR0++9muUr///rvc3d3VtWtXp5HO6tatqyxZsrzw9XlTVapUUapUqRx/J0iQQLlz51ZISIijG83q1asVEBCgZs2a6eOPP3bMmzhx4ggPLnD9+nXt3r1bWbJkUY0aNRzT3d3d1bt37zBnF37//XcFBgaqdevWSpkypdNj33zzjeLGjRtmqGbp6Uh3kR0prnv37k4XupcoUUJlypTR+fPndejQIUlynEE8cOCA09nEpk2basuWLWrRooVjWq1atWS32/X77787pj148EAbNmxQjhw5lCFDBsc2Sk+vYXh2lMVEiRKpd+/e+uabb8J0cWzTpo3Ta1WkSBF5enpGaIj6O3fuOHU79vDw0PTp07Vv3z7HL9yh11p88cUXTr/oWiwWderUSa1btw7zK26DBg2c6k+cOLFy584twzActxbZtGmTbty4oXr16jmNyCZJ9erVU9q0abVmzRr5+/s7PRaR92dEPHsMCe+fn59fmOcULFjwpb9YDx8+XLNnz1blypU1cuRIubuH33GmYsWKTn+HhIRo4MCBGj58eJjlh45K9+xxLZTNZnMcO6SnbVKyZElJCrfb5e3bt9W0aVP5+flpzJgxETozERF169Z1nGmUpI8//ljp06fX/fv3HXUvXbpUdrtd7dq1k7e3t9O8ER18I3Q/+/fff3X79m3H9NSpU2v16tVO+1d4goODtXz5cnl5eal3795O7ZM6dWp16NBBhmGE6bIsSRUqVIhQjS/ypsfzhQsXym63q0uXLkqUKJFjupubm7p16+aY53VkypRJ33//vTp37hzmsdD3X+jrfefOHW3evFnp0qVT48aNnebt2LGjvLy8Ir3+4OBg/fHHH0qUKJE6dOjgdJaxQoUKatOmjYoVK+b0nIh8RoeEhGjx4sVKkiSJvv32W6d5U6RIocaNG+vhw4evvIzh3r172rhxoxImTKgSJUo4plerVk1ubm5asWLFC7t8v+zz56uvvnL6LEuZMqVatGihkJAQRzfo1z1Ovo7Lly+rfv36unDhgjp16vTGZ+7x+uhyifdCu3btnEJDUFCQrl+/rj/++EM//fST9u/fr2XLlsnb21tHjx6VYRgKDg526uoV6urVq5KkY8eOOR2o06ZNG2be0C9ajx49ckwLvZj47t27OnnypC5evKiLFy/q6NGjOnLkiCSFubYhYcKETh/IkhzDZ4deaxMYGKhz584pffr0Tl+UQuXNm1dHjx4N/wV6Q+Fte+iH9OPHjyU97YIkSTlz5gy3tog4fvy4DMMIt9tHwoQJlSFDBh0/ftwxLXSdf//9t9OXuVCenp66ceOGrl275jSyXWSHXY4dO7Zy584dZnru3Lm1bt06HTt2THny5FHNmjU1b948jRs3TvPmzVPhwoVVuHBhFS9eXMmTJ3d6btWqVfXjjz9q+fLljjC/atUqBQUFOY0sF7q9uXLlCrP+MmXKOL6wPCu89kqUKJH8/PwUEhLi1BXyWfXr19fEiRNVvXp1Zc6cWUWKFFGRIkWUN29ep4AYeu1geG1ts9kcXYRfVdPz+09oe547dy7cfdNqterJkyc6efKkU5foiLw/IyK864Je5WXvpaVLl+ratWuSpOLFi7/wdQ9vObFjx3YEBj8/P505c0aXL1/WuXPndPjwYUlyusYyVLp06cJMCz2WhPdatG/fXteuXZO3t3eUDhn/pseM538QexEfHx/ly5dP+/btU4kSJZQnTx7HPveiLm/POn/+vB49eqSiRYuG6Zot/d+x69njjvT0R4PQofxfR1Qcz0Nfv+3bt+vvv/8O83js2LEdx9SXdbsMT5o0aZQmTRo9fvxYx44d0/nz53X58mWdOnXKce+y0Pff0aNHFRISohw5coQJKvHixVOmTJm0d+/eSK3/0qVL8vf3V/HixcP9EaR9+/ZhpkXkGHPu3Dn5+/vLy8tLEydODDN/6LXOL7tmW3ra1T84OFi1atVyOjYmS5ZMBQsW1K5du7RixQrVrVs3zHNfdswIbx8M3T9Ca3rd42RkPX78WK1bt5afn5+6deumL7/88rWXhTdHoMN7KVasWEqdOrVatWqlO3fu6JdfftGvv/6qjh07Oi4YPnny5Eu/wD1/YXF4H/ahnj0bc/36dQ0bNkxr1651XLz+0UcfKXfu3Proo490+fLlMNeChbfs5z+AQ+sJ/XL2vPC+FESVl9UXui2hv7qHd+3Hi4YJf979+/clRXwbQ+cPb3CRZ929e9ephjhx4kSonlDJkiULd3q8ePGc6rDZbFq4cKGmTp2qLVu26Pfff9fvv/8uq9UqX19fDRgwwHGWKnHixCpVqpTWrVvnuIZm6dKlihUrluPi+tDapRe/JuF52ZDZz7/3ntW+fXulTZtWCxYs0KFDh3Ts2DFNnTpVCRMmVIsWLfTVV1+91ZpCX8dNmzZp06ZNL5w/Ivvm8+/Pt+Vl23Xt2jWVKFFCu3fv1nfffaeiRYs6nYl61XIOHTqkH374QQcPHpT09MxL2rRplS9fPv3zzz/hblt4A0C97LW4ffu2SpUqpc2bN2vo0KEaMWLEC7cnMiJzzEiaNGmYeSN6zJDkuIfaypUrtXv3bu3evVsjR45U2rRp1atXL6cf5p4Xek+1F72Xn73u6llvOix9VBzPQ/eXWbNmvXS+hw8fOo5VEWUYhmbMmKFp06Y5hrj39PTUp59+qsyZM+vGjRsROvZL4bfvq7zOMSYin9Ghr/t///3nGBgkPM8fY54XOijR3LlzNXfu3HDnmTdvXriB7mWfP+Hd6zJu3LiS/u89+LrHychav369Tp06pc8//5wwFwMQ6PDeK1y4sH755RfHSFehB8d69eppwIABUbouwzD09ddf6/jx42rQoIE+++wzZciQwfFLbu3atSPVBexZoWfwQg/mz3v+C0d4XvbFLrzRBiMj9HUNr5tHRLt+hH6Jieg2hq5z4cKFL7yYOyq86LUJ/cB8tktcxowZ9cMPPygkJERHjx7Vrl279Pvvv2v9+vV6+PCh0817a9WqpXXr1mnlypVKmDChDh06pMqVKzt9iQndxgcPHoQJA8HBwbJYLC8c6OJ1VKtWzTGYyr59+7R161YtX75cI0aMUNKkSVW1alWnmsLz6NEjeXp6RnrdocsdPXr0O9G1p0SJEvr55581adIkjR07VgMHDgwzINKLXLlyRc2bN5dhGI4RS9OmTavYsWMrKCgo3C6Ar2PYsGEqV66cqlevruXLl+uzzz5zdNGUoueY8eDBgzBfxiPTXSxOnDhq06aN2rRpo6tXr+rPP//Uhg0btH79erVt21Zr1qxx6pL7rNCgE3om9Xmhx6Lne1C8qag4noe+frt27XrhDwWva+bMmRo+fLiyZMmigQMHKlOmTEqZMqUsFovmzp2rbdu2hanjRceD1xlt9m0fY4oXL66pU6dG+vnS04HPjh07piRJkjh1b37WH3/8oePHj+uvv/5Sjhw5Irzs8LY39L0Z+j0iuo6ToT0Bnr80Ba7BNXR474X+ehj6wR06sll4XVSkpwfiMWPGhDvU8aucPHlSx48fV758+dSvXz/lyZPHcRB+/PixozvH65w18PDwkM1m04ULF8K9KWhEhlsO/eIf3gfss8Pqv45s2bJJkuN6smeFfjC8SpYsWWS1Wh1nJJ716NEjnT592mlaaFuGt+12u10//PCDpkyZEqlud+G5du2aoyvusw4cOCDp/7rEzJs3T4MHD5ZhGLJarcqePbtatWqlxYsXy9PTU/v27XN6frFixZQ0aVJt3LhRGzdulBT2Rr6h3cbC28bffvtNOXLkeOGw1pHdxp9++klLliyR9PSXcV9fXw0cOFD9+/eXJEf9oTWFtw8dP35cuXLlUr9+/SJdw6v2zYkTJ+rnn38O9xrUmChz5syyWq36+uuvlTFjRq1du1Zr166N0HPXrVunR48eqXnz5mrWrJkyZcrkOCsUuh9ExdnHbNmyycPDQ4MGDZLFYlH//v2dwtTbPGZkzZpVUvjHh4geMw4fPqxhw4Y55k+WLJmqV6+u8ePHq2bNmnr8+HG4x6RQn3zyieLEiaNTp06FG65C72EaXjfi8ES0a2NUHM9fdvzz9/fX0KFDNXv27FcuJ7yaQ3s9/PTTT45RFEPnO3PmjNO8WbJkkcViCbfNQkJCHF0EI+OTTz6Rh4eHozvn8+rVq6f8+fNH+keFTz75xNEVNbxbsezcuVMjR47U/v37X7iMRYsWOWoYNGhQuP+qVq0q6cW3MHiR8F6r0FpCP2Oj4jgZkfeph4eHPv7447c6gjYijkCH99qjR4/066+/SpLKli0r6emFz0WKFNHRo0c1c+ZMp/n//fdfDRw4UFOmTIl0FxXp/7p83Lt3z+leQSEhIfr+++8dZ3TCuxdTRNSuXVshISEaMmSI04fR6tWrI3SNgre3txImTKizZ886DZBx+/ZtzZkz57VqClW1alV5eHhoxowZTmch7969G+GzEqHD8p86dcqpbQzD0KhRo8L8al2tWjV98MEHmjhxYpgvl9OmTdO0adO0a9euKDmD9f333zsFw40bN2rLli3KmjWr4wN23759mj17tlasWOH03Js3byooKCjMWQKr1arq1avrwoUL+uWXX5Q8eXIVKlTIaZ7Q2xqMGzfOaRCMe/fuafbs2XJzc1PhwoXfePvixo2radOmafTo0WGuRwwdtCT02o8yZcooXrx4WrhwodMPH3a7XT///LOkp7+AR1aZMmWUMGFCzZkzJ8yX1FWrVumnn37SsmXLXmuQBVf64IMPNHjwYLm5uWnQoEERCqSh4e35L/v37t3TkCFDJL3+cSQ8efPmVZ06dXT16lUNGzbMMT1NmjRyd3fXwYMHneq+ePHiKwcceZXPP/9cFotF48aNc3rP+fn56X//+1+EluHv768ZM2Zo3LhxTtcmG4bhGMTm2WuWPvjgA6fX7YMPPlDVqlXl7++v77//3umxy5cva/To0bJYLGFuL/Iiodd7ReRHpDc9nn/++eeSpBEjRujGjRtOj40cOVK//vprmGv/Ilpz6Pvv1q1bTvPu3bvXMdBK6PwfffSRSpQooRMnToQZhGXChAnhBtZX8fDw0GeffaZbt26FudYt9DYLefPmjXT3eQ8PD1WtWlU3btzQqFGjnN4zN2/eVL9+/TRlypQXPj84OFgrVqx45Xsi9KzWqlWrXngWNjzTp0932s/+/fdfzZw5U3HixHGExKg4TkbkfdqlSxetX7/+tW87gahFl0u8F/bu3et0cbBhGLp586bWr1+v27dvq3Tp0k6jtw0ePFgNGjTQd999p7Vr1ypHjhy6e/eu1qxZo0ePHql3794v7KLzMmnTplXu3Ll18OBBff755ypUqJAeP36s7du36/z58/L29tatW7de+wxD/fr1tXnzZq1evVpnzpxR4cKFdfnyZW3atElp06Z95S/mVqtVdevW1aRJk1SvXj3HvW7Wrl2rDBkyROjmwy+SLFkyde3aVUOHDlWNGjVUpkwZeXh4aNOmTY4vSREZWbJPnz46cuSIvvvuO23evFk+Pj46ePCgTp48qWTJkjmdKUuVKpX69++vfv36qVq1aipTpoySJUumI0eO6M8//1SSJEkcZ5fe1M6dO1WzZk0VKlRIfn5+2rRpkxIkSKDvvvvOMU/btm21bds2de/eXatXr1b69Ol19+5drV27VoZhhHtz5lq1amnKlCny8/NT69atw7xGBQoUUKNGjTRr1ixVrVpVpUqV0gcffKC1a9fqxo0bGjJkSLjXXURWvHjx9M033+jHH3/UZ599prJly8rLy0snT57U9u3blSZNGscNZ+PHj68hQ4aoS5cuql27tuP+f7t379bx48dVpUqVcAdriUgNP/zwg9q1a6d69erJ19dXadKk0dmzZ7V161Z5enpq2LBhkR6hNKLCG2DgeU2aNHmtQJkrVy7Vq1dPc+bMidC1aqVKlVLChAk1f/58Xb16VT4+Prp586Y2bdqkgIAAxYsXTw8ePNCTJ09eOHJmZHXp0kWbNm3SwoULValSJRUuXFiJEydWhQoVtHLlStWqVUvlypXTvXv3tGbNGmXJkiXSg108K3v27GrSpIl++eUXVatWTb6+vnr8+LE2bNjgGEDmVW1duHBhlSxZUlu2bFGVKlVUuHBhWa1W/fnnnzp+/LjKly/vNOhK8uTJdfHiRfXq1Uv58+dX9erV1bVrVx06dEhLlizRkSNHVKBAAd2/f1+bNm3SgwcP1L59+3AHRQpP6OBHY8eO1f79+9W2bdsXXm/3psfz3Llzq02bNo4bZPv6+ipRokTat2+f/vnnH33yySfq1KnTa9Vcs2ZNHTp0SC1atFDFihXl5eWlEydOaNeuXUqUKJGCgoKcPsd69+6tv/76S3369NGaNWuUMWNG/f333/rrr7/k5eWl+/fvv3RQoPB069ZNBw8e1Pjx47Vz507lypVL//33n9avX68PP/zwtXoBhC738OHDmjFjhv7880/ly5dPQUFBWrdune7cuaNmzZq9cICgDRs26O7duypQoECYkZWflTlzZmXNmlVHjhzR0qVL1aRJkwjXV6VKFVWoUMFxP8WAgAANHz7ccZyPiuNkaJvPnDlTV65cUcOGDcNct7pkyRL5+fmpTJkyjh8t4ToEOrwX9u7d6/TFwmq1Kn78+LLZbKpcubLjl+BQKVOm1JIlSzR58mRt3LhRs2bNcgx13rx5c8dIlZFlsVg0YcIEjR07Vtu2bdPs2bP14YcfKn369OrVq5fu3r2rbt26afPmza81opzVatXkyZM1bdo0LV26VHPnzlWKFCk0cOBAXb9+/aUXeYf69ttv5enpqcWLF2vevHlKmjSp6tatq8aNGzuGo35djRs31ocffqjp06frjz/+UJw4ceTr66tq1aqpSZMmEfo19aOPPtL8+fM1fvx4bd68WQcPHlTmzJk1ffp0/fTTT2G6Pn7xxRdKly6d/ve//2nHjh169OiRkidPrgYNGujrr79+4YAmkTV79myNGDFCCxYsUNy4cVWtWjW1bdvW6df/Tz75RPPmzdOUKVO0f/9+7dixQ56ensqTJ49atGgR7ohjadOmdXzwP9/dMlSfPn2ULVs2zZ07V8uXL5fdbtenn36q/v37O848R4UWLVooZcqUmjNnjjZs2KD79+8rWbJkatKkiVq1auU0ql/FihWVPHlyTZo0Sdu3b9ejR4+UKlUqdenSRc2aNXvtGkqUKKGFCxdqypQp2rNnj7Zs2aKkSZOqSpUqatmypdONhKNaRPafGjVqvPYZwk6dOmnjxo3hXqv2vKRJk+rXX3/V6NGj9ffff2vv3r366KOPVLx4cbVs2VIzZszQokWLtHPnzpcO+hEZ8ePHV79+/dSuXTv16dNHK1asUNy4cTVkyBB99NFHWrVqlWbNmqVUqVLp22+/VcGCBVWtWrU3WmePHj2UJk0azZ07V0uWLJGXl5dq1Kih7Nmzq1OnTq+8TsrNzU1jxoxxnBlfunSpnjx5onTp0qlnz55q0KCB0/z9+vXT4MGDtXz5cvn5+al69eqKHz++5s2bp2nTpmn16tWaN2+e4saNq1y5cqlp06aR+jyoX7++Dh06pL179+rChQuqVq2a4xYkz4uK43n79u2VNWtWzZo1Sxs2bNDjx4+VIkUKtWrVSs2aNYvQ4Crh1Vy7dm1ZrVbNmjVLK1askIeHh2O5zZs3V+nSpbVt2zbHqLkff/yxFixYoNGjR2vXrl3au3evsmTJounTp2v48OE6evRopM+mJU6cWAsWLNDkyZO1bt06zZo1S/HixVOlSpXUoUOH1z62h7b39OnTHe3t6empDBkyqEGDBi+9Li20S/qzt9V5kdq1a+vIkSOaP39+hAPdmDFjNGfOHC1fvlyBgYHKnj272rZtG+az+U2PkxUrVtT27du1ceNGzZ49W/nz5w8T6JYuXaq9e/cqZcqUBLoYwGK87SG+AEBPr1V8/PhxuCOa7dy5U82bN1f9+vWj7IxZdPH19ZWfn5+OHj0aZWdCnhUQEKCiRYvq008/feVodcC75MaNG7JareHex2/BggXq27evunbt6hhdFTGTYRi6cOGCUqRIEe4oq8WLF9eDBw908ODBSN8+AcBTXEMHIFocOHBAxYoVc1zfE+rJkyeOkR2j4lqvd820adPk7++vevXquboUIFqtWrVKhQoVchr5VXo6AEvoNb3PX1OKmMdiseiLL75Q6dKlwwye8/vvv+vatWsqWLAgYQ54A3S5BBAtihYtqrRp02rWrFk6ffq0smbNqqCgIO3YsUPnzp1T6dKlo7R7oJkZhqHq1avL399fly9fVpYsWZyu8QTeB5UqVdKkSZM0YsQI7dmzRxkzZtSDBw+0efNmXb16VY0bN1aWLFlcXSYioEGDBvr5559VuXJllSpVSp6enjp16pS2b9+uhAkTqkePHq4uETA1ulwCiDa3b9/WzJkztX79el25ckVubm5Kly6dqlWrpgYNGry1wSzeprfV5bJRo0b6+++/lStXLn3//feOi9SB98l///2n6dOna9u2bbp27ZpixYqljBkzqnbt2m98fR6i18qVKzVv3jydPXtW/v7+SpIkiYoVK6bWrVtH2bXMwPuKQAcAAAAAJmW+n8MBAAAAAJIIdAAAAABgWgQ6AAAAADApRrmMYQzDkN3OZY0xnZubhXYyAdrJPGgrc6CdzIF2Mg/ayhxc1U5ubpYI3dKDQBfDWCwW3b//SE+e2F1dCl7A3d1NiRLFpZ1iONrJPGgrc6CdzIF2Mg/ayhxc2U6JE8eV1frqQEeXSwAAAAAwKQIdAAAAAJgUgQ4AAAAATIpABwAAAAAmRaADAAAAAJNilEsAAAAAkWa32xUS8sTVZbxVdrtFgYFWBQcHKSQk6m5dYLW6y80tas6tEegAAAAARJhhGLp//7YCAvxdXUq0uHnTTXZ71N+yIE6cePLyShyhe829DIEuBrJa6Qkbk4W2D+0Us8XEdrLbDW4gCwAwvdAwFy9eInl4xHrjQBLTWa2WKD07ZxiGgoOD5O9/R5KUIIH3Gy2PQBfDGIYhL684ri4DEUA7mUNMaqeQELvu3n1EqAMAmJbdHuIIc/Hiebm6nGjh7u4W5TcV9/CIJUny97+j+PETvVH3SwJdDGOxWDRh7k75Xb/n6lIARKGUSROobb0icnOzEOgAAKYVEhIi6f8CCV5f6GsYEvJEbm4er70cAl0M5Hf9ns773XF1GQAAAEC43vVultEhql7DmHNxCQAAAIB3gmFEb2+U6F5fRERXTQQ6AAAAAFFmx46tGjKkf7Stb+bMaZo7d1a0rS8iVq5cpvHjx0TLugh0AAAAAKLMvHlzdO3a1Whb39SpPysgICDa1hcRv/wyTffvR8+YGAQ6AAAAADApAh0AAACAKNGu3dc6fPigDh8+qKJF8+rgwf0qWjSvli1brFq1KqtKlXLau/dPSdJffx1Su3Zfq3TpIqpY0VdDhvTXnTvOAwMePnxQnTq1U4UKpVSyZEF98UVVTZs22XGj76JF80qSZsyY6vj/tGmTVb9+LW3btkWNGtWWr29hNW1aX0eO/K0jR/5RixZN5OtbRI0a1db+/Xud1vfvv2fUrVsHlStXQuXKlVDPnl3k53fZ8Xjo9uzfv1cdO7ZV6dJFVKVKOU2Y8JOePHkiSfr88yq6evWKVq9eqaJF8+rKlf/ezov9/xHoAAAAAESJzp17yGbzkc3mo0mTZujRo4eSpClTJqpduw5q166DsmbNpsOHD6p9+9aKFSu2Bg0apm+/7aRDhw7o229bKigoUJJ0+vQptW/fWl5eCTRo0PcaPny0smXLoRkzpmrDhnWSpEmTZkiSKleu5vi/JF2/fk3jxo1W48bNNWjQ97p//5769OmugQN7q2rVGho4cKgMw9CAAb0c67t48YJatfpSd+7cVu/e/dWjR1/995+fvv66ue7cue20nYMG9VWOHLn0ww9jVK5cBc2dO0srV/4uSfruuxHy9vZWoUJFNGnSDHl7f/hWX3NuWwAAAAAgSqRL94k8PeNKkrJmzaaDB/dLkqpXr6VSpco45ps8ebw+/jiNfvhhtKxWqyQpS5ZsatSotlauXK5atWrr7NnTypevgPr1G+y48Xa+fAW0a9d2HT58QOXKVVDWrNkkSUmSJHX8X5ICAwPVuXN3FSxYWJJ07tw5TZ48Xj169FXlytUkPb2nXp8+3XXx4gVlzOijGTOmKlasWBozZqLixo0nScqbN59q166m336bpbZt2zuWX6VKdTVt+pUkKU+efNq2bat27dqh6tVryWbLpA8+8FDChImcanpbCHQAAAAA3qr06TM4/h8YGKijR4+oXr1GMgzD0VUxRYqUSpMmrfbv36NatWqrQoXPVKHCZwoKCpKf32VdvnxJp06dUEhIiOM5L5MtW3bH/729vSU9DY2hvLwSSJIePHggSTpwYJ9y586jWLFiO5bv6RlXOXLk0r59e5yW/XxQS5o0qQIDXTMwC4EOAAAAwFuVKFFix/8fPLgvu92uOXNmas6cmWHmjRUrliQpKChQo0eP0Nq1q/TkyRMlT55C2bJll9XqHqF7vIWeZXtW7NixXzj/vXt3tXHjem3cuD7MYwkTJnquRuflWCwWx3V90Y1ABwAAACDaxI0bVxaLRbVr11fZsuXDPB4alsaMGaktWzZq4MDvlS9fAcWJE0eSVLly2bdSV/z48ZUnT37Vq9fQabrV6ibJ8lbWGRUIdAAAAACijNVqVUhIyAsf9/SMK5stky5ePK9MmT51TA8KClTfvj1UsGARpUv3if7557By5cqr4sVLOuY5ceK47t6943Q2LPT6ujeVM2dunT9/Thky2OTu/jQmGYahwYP7KWXKVMqY0SfCy4qqmiK0rmhbEwAAAIB3Xrx48XTp0kUdOLDPcX3a81q2bKu9e//UwIF9tHv3Du3YsU2dO3+r/fv3ymbLJEnKnDmL9u7drWXLFunQoQNauHCeunT5VhaLxel6tXjx4uvIkb91+PDBCHXFfJGmTVvIz++SunXrqO3bt2jPnt3q3bub1q9fowwZMkZqWfHixdepUyd16NABxyiabwuBDgAAAECUqVWrjtzd3dWly7cKCgoKd578+Qtq5Mhxun79mvr06a4hQ/rJarVq9OiJjgFHvvmmo4oXL6WpU39Wt24dtXLlMjVp8qWqVKmuI0f+cZwFbNy4mY4fP6YuXb7VtWvXXrvuDBkyasKE/8lisWjw4P7q06e7bt26qeHDR6lECd9ILatevYa6ffuWOnf+RidOnHjtmiLCYrxJjMVb0eunVTrvd+fVMwIwjbQpE+m79pV0585DPXnimoumYyp3dzclShSX1yaGo53MgXYyD7O21ePHwbp164q8vZPrgw88XF1OtHB3d3srbfSq1zJx4rj///q9l+MMHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYlLurCwAAAADw7nBzs8jNzRLt67XbDdntRrSv19UIdAAAAACihJubRQkTespqjf6OgCEhdt29+yjCoW7w4L7avHmTZs6cq9SpP3Z67M6d22rQ4Avly1dAQ4cOexvlRhkCHQAAAIAo4eZmkdXqpglzd8rv+r1oW2/KpAnUtl4RublZIhzo2rfvqv379+qHH4Zq7NhJslj+76ziqFE/yMPDQ50793hbJUcZAh0AAACAKOV3/Z7O+91xdRkv5eXlpa5de6lHj85aufJ3ValSXZK0detmbd68QSNHjpOXl5dri4wAAh0AAACA91LRoiVUtmwFTZjwk4oWLS4PDw+NGjVcNWp8oQIFCun8+XOaMGGMDh8+KE9PT+XOnU/t2nWQt/eHkqRLly5q9OgROnr0b9nthrJly662bTsoffoM0bYNjHIJAAAA4L3VsWNXxYrloYkTx+p//5usOHE81bZte928eUNt236llClTaurUXzV8+Bg9fOivVq2+VEBAgCSpf/9e+vDDD/W//83SlCm/yM3NTb16dYnW+jlDBwAAAOC95eWVQF269FSvXl3l7u6uceOmKHbs2Jo1a4a8vT9Uly499OSJXZI0aNAwffZZaW3evEGVKlXRf/9dVv78BZU8eQq5u7urZ89+unDhvOx2u9zcoufc2TsX6EJCQjR//nwtWbJEZ8+eldVqVYYMGVSnTh1Vr17dcbHj9u3bNXDgQF29elWNGjXSN998o6VLl6pBgwYu3gIAAAAA0alYsZLKlCmzkiVLoaxZs0mSTp06oQsXzqtUqSJO8wYHB+v8+XOSpBYt2mjs2JFatmyRcufOpwIFCsnXt2y0hTnpHQt0T548UZs2bfTPP/+oXbt2KlKkiEJCQrRz505999132rhxo3766SdZrVaNHDlSqVOn1i+//KK4ceNq+vTpWrJkCYEOAAAAeA/FihVbsWPHdvxttxvKnTuvunXrqZAQ55Ez48WLL0mqVau2fH3LaPfunTpwYK8mT56g6dMna8aM35Q4sXe01P1OXUM3adIkHThwQPPmzVODBg2UNm1apU+fXo0bN9asWbO0ZcsWTZs2TZJ0//595cqVS6lSpVKiRIlkGO/fTQgBAAAAhO+TT9LrwoXz+uijZEqVKrVSpUotLy8vjR07Uv/+e0a3b9/SqFHD9fjxY1WqVEV9+w7WzJlzdevWLR06dDDa6nxnAp1hGJo9e7Zq1KihNGnShHk8U6ZMqlatmmbNmiUfHx/5+flpwoQJ8vHxUY8ePTR+/Hj5+fnJx8dHly9fliQtXrxYFStWVPbs2VWxYkXNnDlTdvvT/rOXL1+Wj4+PVq9erS+++ELZsmVT6dKltWjRomjdbgAAAABRr0aNz+Xv76++fXvq9OmTOnPmtAYM6K1jx44qXbpP5OWVQLt27dDw4UN1+vRJ+fld1tKli/TBBx8oU6bM0VbnO9Pl8ty5c7pz545y5879wnkKFSqkRYsW6bffflOnTp1UqVIlNW/eXLFjx1aiRIm0atUqLVq0SIkTJ9b8+fM1cuRI9evXTzly5NCxY8c0ePBgXbt2Td26dXMsc9iwYerXr5/Spk2rGTNmqG/fvipQoIBSp0792tuSwyeFUiSJ+fe8kKSHgcG69yDQ1WUAMV7KpAlcXQIAANEmuj/33sb6UqRIqfHjJ2vy5PFq0+YrWa1WZcmSXWPH/qxEiRJLkn78cawmTBij9u3bKDAwUBkz2vTDD2OUMmWqKK/nRd6ZQHf37l1JUqJEiV44T+hjVqtVVqtVnp6eSpIkiSTJ09NTVqvV8ffEiRPVsmVLVa5cWZKUOnVq+fv7a+DAgWrfvr1jmc2aNVPp0qUlSd27d9fChQv1119/vXagMwxDdSrkfK3nuoJht8sSjRd9AmYWEmKX3U73bgDAu8tuNxQSYlfbekVePXMUe9PP2fHjp4SZZrNl0k8/TXSMcvm8tGnTacSIn157nVHhnQl0CRMmlCQ9ePDghfPcu3dP0stDnyTdvn1bV69e1U8//aTx48c7ptvtdgUFBeny5cuKFSuWJCl9+vSOx+PHf3px5OPHj19rGyTJYrHo3MqpCrh15bWXEV3ieCdXusotdP9+gEJCwn+Tv4usVjd5ecV577bbbGJiO9ntBoEOAPBOs9sN3b37SG5uFpes+338nH1nAl2aNGmUJEkS7d27V+XKlQt3nj179ihJkiRKlerlp0BDr5Pr2bOnChcuHObx5MmT6/r165IkDw+PMI+/6QArAbeuKODaxTdaRnQKCbG/8FeLd9n7ut1mQzsBABC93tdg5SrvTF85q9Wqxo0ba9GiRTp9+nSYx0+cOKFly5apfv36slqtYR4PvT+dJHl7e8vb21sXL15UmjRpHP+OHj2qMWPGvM3NAAAAAIAIe2cCnSR9+eWXKlasmBo2bKg5c+bowoULunDhgubMmaMmTZqoQIEC+vrrr8N9rqenp+7du6dz587pyZMn+uqrrzRr1izNmjVLFy9e1IYNGzRw4EB5eHiEe1YOAAAAAKLbO9PlUnp6lm7s2LFasmSJFi5cqNGjR8swDGXMmFFdunTR559/7nQm7lnlypXTggULVLVqVc2ePVvNmzdXrFixNGvWLA0fPlze3t6qWbOmOnbsGM1bBQAAAADhsxjcUTvGOTZzkCmuoYvz0cf6tEk/3bnz8L26Rsnd3U2JEsV977bbbGgn86CtzIF2MgfayTzM2laPHwfr1q0r8vZOrg8+eD96rbm7u72VNnrVa5k4cVxZra/uUPlOdbkEAAAAgPcJgQ4AAAAATIpABwAAAAAm9U4NigIAAADAtdzcLKa6sfjnn1eR3W7XrFnzFTduPKfHhg4doKtXr2jcuMlRVWaUI9ABAAAAiBJubhYlShRHbm5h7/v8ttntIbpzJ+C1Qt3169c0fvwYde/e5y1U9nYR6AAAAABEiadn56w6t3KqAm5dibb1xvFOrnSVW8jNzfJagS5FipRasWKZSpYsrQIFCr2FCt8eAh0AAACAKBVw64opbsMVqnz5Svr77780fPiQcLteStL9+/c0deok7dy5TXfv3pWPTya1atVOOXLkckHF/4dBUQAAAAC893r27Ct/f3+NGzc6zGMhISHq2LGd/vrroPr0Gajp02crQwabOnRooxMnjrmg2v9DoAMAAADw3kuWLLnatPlGK1f+rj17djs9tnfvnzp58rgGDBiq3LnzKm3adOrUqZs++SSDfvttlosqfopABwAAAACSqlWrpTx58mv48CF6+NDfMf3ff88oXrx4+uSTDI5pFotFOXLk1Nmzp11RqgOBDgAAAAD0NKSF1/XSMAxJYW/FYLfb5e7u2mFJCHQAAAAA8P897Xr5rVau/F1//XVIkpQ+fQb5+z/Qv/+ecZr3778PK23adK4o04FABwAAAADPqF69lvLmza///vOTJOXLV1Dp02fUwIF9dPDgfp0/f04jRw7X2bNn9MUX9V1aK7ctAAAAABCl4ngnN/36evToq8aN60qS3N3dNWbMBI0fP0a9e3fT48fB8vHJrJ9++llZs2aL8nVHBoEOAAAAQJSw2w3Z7SFKV7mFC9Yd8lo3FV+0aEW405MlS65167bK3d1NT57YlShRYvXtO+hNy4xyBDoAAAAAUcJuN3TnToDc3MIOIBId636dQGd2BDoAAAAAUeZ9DVauwqAoAAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAQKQYBtfIvamoeg0JdAAAAAAixGq1SpKCg4NcXIn5hb6GVuubjVPJKJcAAAAAIsTNzao4ceLJ3/+OJMnDI5Yslui/RUF0ststCgmJujOShmEoODhI/v53FCdOPLm5vdk5NgIdAAAAgAjz8kosSY5Q965zc3OT3W6P8uXGiRPP8Vq+CQIdAAAAgAizWCxKkMBb8eMnUkjIE1eX81ZZrRYlSOCpe/ceRelZOqvV/Y3PzIUi0AEAAACINDc3N7m5ebi6jLfK3d1NsWPHVkBAiJ48ifqzdFGBQVEAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMilEuY6A43sldXUKEmKVOAAAA4F1FoIthDMNQusotXF1GhNntIbLbo+6eHAAAAAAijkAXw1gsFt2/H6CQkJh5n4vn2e0GgQ4AAABwEQJdDBQSYo+xNy4EAAAAEHMwKAoAAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUu6uLgBhWa3k7JgstH1op5jNbO1ktxuy2w1XlwEAAEyGQBfDGIYhL684ri4DEUA7mYNZ2ikkxK67dx8R6gAAQKQQ6GIYi8WiCXN3yu/6PVeXAiCapEyaQG3rFZGbm4VABwAAIoVAFwP5Xb+n8353XF0GAAAAgBjOHBeXAAAAAADCINABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYlLurC4iMRo0aae/evU7TPvjgAyVNmlSlS5dW586dFTt27Le6/pQpU2rYsGFvbR0AAAAAEFGmCnSSVLFiRfXu3dvx96NHj7Rjxw59//33CgkJUb9+/VxYHQAAAABEH9MFutixYytJkiRO09KkSaMjR47ojz/+INABAAAAeG+8M9fQxYoVS25uTzfn6tWr6tKliwoXLqwsWbKoRIkSGj16tOx2uyRpyZIl8vX11dChQ5U3b161atVKknT27Fm1aNFCuXLlUtGiRdW5c2fduHEj3PVVr15dPXv2dJq2bds2Zc2aVbdv336LWwoAAAAAT5k+0D158kRbtmzR77//rmrVqkmSWrZsqdu3b2vatGlas2aNvvrqK02aNEmbNm1yPM/Pz0/Xrl3T0qVL1blzZ127dk3169dX6tSptWjRIk2aNEn+/v6qW7euHj16FGa9NWvW1Nq1axUYGOiY9vvvv6tUqVJKnDjx299wAAAAAO8903W5XLFihdauXev4OzAwUClSpNCXX36pVq1aKTAwUNWqVVP58uWVMmVKSU8HM5kyZYpOnjypMmXKOJ7bpk0bpU6dWpI0ZswYJU2a1KnL5pgxY1SwYEGtWbNGNWvWdKqjatWqGjFihDZs2KDKlSvL399fGzZs0JgxY954G3P4pFCKJF5vvBy8PQ8Dg3XvQeCrZwQiIGXSBK4uAQAAmJTpAp2vr6+6dOkiu92uv/76S99//70KFy6sVq1ayd3dXe7u7mrYsKHWrFmjmTNn6sKFCzpx4oSuX7/u6HIZKm3atI7/Hzt2TGfPnlWuXLmc5gkKCtLZs2fD1JEwYUL5+vpq2bJlqly5slavXq348eOrWLFib7R9hmGoToWcb7QMvH2G3S6Lm+lPcCMGCQmxy243XF0GAAAwGdMFurhx4ypNmjSSpHTp0ilZsmRq1qyZrFarBgwYoICAADVo0EABAQGqWLGiqlWrpr59+6pBgwZhlvXsLQ7sdrsKFiyo/v37h5kvfvz44dZSq1YttWrVSjdv3tTy5ctVtWpVubu/2UtqsVh0buVUBdy68kbLwdsTxzu50lVuIX//QD1+HOLqcvACVqubvLzi6P79AIWE2F/9BBez2w0CHQAAiDTTBbrnFSxYUM2aNdO0adPk6+urwMBAHT16VDt37tSHH34oSbp7965u3bolw3jxl6WMGTNq1apVSp48uTw8PBzP6969u5o1a6aCBQuGeU7RokWVJEkSLVy4UAcOHAg3DL6OgFtXFHDtYpQsC2+P3W7oyZOYHxTedyEhdtoJAAC8s96JPmPt27dX2rRp1b9/fyVKlEiStHz5cvn5+Wn//v1q06aNHj9+rODg4Bcuo379+nrw4IE6deqk48eP68SJE+rcubP+/vtvZcyYMdznuLm5qXr16po0aZKyZs2qDBkyvJXtAwAAAIDwvBOBLlasWBo8eLCuXLmitWvXqmfPnvr1119VsWJF9ezZU/ny5VPlypX1119/vXAZqVOn1uzZsxUQEKD69eurYcOGslgsmjlzpry9vV/4vJo1ayowMDDMoCkAAAAA8LZZjJf1Q8Qr7du3Ty1atND27dtfeK1dZB2bOYgulzFYnI8+1qdN+un+/QAFBT1xdTl4AXd3NyVKFFd37jyky2UMR1uZA+1kDrSTedBW5uDKdkqcOK6s1leffzP9NXSucvbsWZ06dUqTJk1SjRo1oizMAQAAAEBEvRNdLl3h/Pnz6tmzpxIkSKCOHTu6uhwAAAAA7yHO0L2m0qVL6/Dhw64uAwAAAMB7jDN0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEzK3dUFIKw43sldXQJegvYBAABATEGgi2EMw1C6yi1cXQZewbDbZbcbri4DAAAA7zkCXQxjsVh0/36AQkLsri4FL2C1usnLK44Mg0AHAAAA1yLQxUAhIXY9eUKgAwAAAPByDIoCAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmJS7qwtAWFbr+5Wz7XZDdrvh6jIAAAAA0yHQxTCGYcjLK46ry4hWISF23b37iFAHAAAARBKBLoaxWCyaMHen/K7fc3Up0SJl0gRqW6+I3NwsBDoAAAAgkgh0MZDf9Xs673fH1WUAAAAAiOHer4u1AAAAAOAdQqADAAAAAJMi0AEAAACASRHoAAAAAMCkCHQAAAAAYFIEOgAAAAAwKQIdAAAAAJgUgQ4AAAAATIpABwAAAAAmRaADAAAAAJMi0AEAAACASRHoAAAAAMCkCHQAAAAAYFIEOgAAAAAwKQIdAAAAAJgUgQ4AAAAATIpABwAAAAAmRaADAAAAAJMi0AEAAACASRHoAAAAAMCkCHQAAAAAYFIEOgAAAAAwKQIdAAAAAJgUgQ4AAAAATIpABwAAAAAmRaADAAAAAJMi0AEAAACASRHoAAAAAMCkCHQAAAAAYFIEOgAAAAAwKVMHOl9fX5UsWVL+/v5hHuvRo4caNWrkgqoAAAAAIHqYOtBJ0pUrVzRs2DBXlwEAAAAA0c70gS516tRauHChtm/f7upSAAAAACBamT7QVa1aVYUKFVLfvn3D7XopSQ8ePFDfvn1VsGBB5cmTR40bN9Y///wjSbp06ZIyZcqkrVu3Oj2nT58+ql+/viQpODhYI0aMULFixZQrVy7Vrl1bO3bscMy7ZMkS+fr6aujQocqbN69atWr1lrYWAAAAAP6P6QOdxWLR0KFDdf/+fX3//fdhHjcMQy1atND58+c1efJkLViwQDlz5lS9evV07NgxpU6dWvny5dOKFSsczwkODtbatWtVo0YNSVLPnj21fft2jRgxQkuXLlXFihXVqlUrbdmyxfEcPz8/Xbt2TUuXLlXnzp3f+nYDAAAAgLurC4gKKVOmVNeuXTVgwABVqFBBxYoVczz2559/6tChQ9q9e7cSJ04sSerUqZMOHjyoX3/9VcOGDVPNmjU1aNAgPXr0SJ6entq8ebOCg4NVsWJFXbhwQStXrtSiRYuULVs2SVKzZs104sQJTZs2TSVLlnSsq02bNkqdOvUbb08OnxRKkcTrjZdjBkkSx5MkWa3m+W0htFYz1fw+op3Mg7b6P3a7IbvdcHUZAAATeScCnSTVrVtXa9euVd++fbVy5UrH9KNHj0qSSpcu7TR/cHCwgoKCJEnly5fXoEGDtHHjRlWpUkW///67ypQpo3jx4jmuzWvcuLHT8x8/fiwvL+fQlTZt2jfeDsMwVKdCzjdejtl4ecVxdQmRZsaa30e0k3nQVpLdHqI7dwIIdQCACHtnAl1o18sqVao4db202+2KFy+elixZEuY5Hh4ekiRPT09VqFBBK1asULFixbRt2zZNnjxZ0tOAJUlz5sxR3LhxnZ7v5ub8a3Ls2LGjZDvOrZyqgFtX3nhZAADziOOdXOkqt5Cbm4VABwCIsHcm0ElPu15269ZN/fv3V+rUqZU8eXLZbDb5+/srODhYGTNmdMzbp08fZcqUSQ0bNpQk1axZU82aNdOSJUvk7e2tQoUKSZLjOdevX3fqXjl69GhZLBZ16NAhyrcj4NYVBVy7GOXLBQAAAPBueecuWKhbt64KFy6sS5cuSZKKFSumzJkzq0OHDtq9e7cuXLig4cOHa/HixUqfPr3jefny5VPy5Mk1fvx4VatWzXH2LWPGjCpVqpT69++vjRs36tKlS5o2bZomT54cJdfLAQAAAMDreucCnSQNGTLE0T3SarVq+vTpyp49uzp27KiqVatqz549GjdunOMsXKgaNWro4cOHql69utP00aNHq3z58urfv78qVaqkxYsXa/DgwapVq1Z0bRIAAAAAhGExQi8SQ4xxbOYgulwCwHsmzkcf69Mm/XTnzkM9eWJ3dTlhuLu7KVGiuDG2PjxFO5kHbWUOrmynxInjRmgE6HfyDB0AAAAAvA8IdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAk3J3dQEIK453cleXAACIZhz7AQCvg0AXwxiGoXSVW7i6DACAC9jtIbLbDVeXAQAwEQJdDGOxWHT/foBCQuyuLgUvYLW6ycsrDu0Uw9FO5kFb/R+73SDQAQAihUAXA4WE2PXkyfv9pcYMaCdzoJ3Mg7YCACDyGBQFAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYlLurC0BYVis5OyYLbR/aKWajncyDtjIH2skcaCfzoK1iHrvdkN1uuLqMSLMYhmG+qt9hhmHIYrG4ugwAAADgvRISYtfdu4+cQp27u5sSJYqrO3ce6skTe7TWkzhx3AgFfs7QxTAWi0UT5u6U3/V7ri4FAAAAeC+kTJpAbesVkZubxXRn6Qh0MZDf9Xs673fH1WUAAAAAiOHotAsAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMKnXCnQrVqxQnTp1lCtXLuXKlUu1atXSvHnzorq2SDt9+rS2bNni+NvHx0dLlixxXUEAAAAA8Ba5R/YJixYt0pAhQ9SrVy/ly5dPhmFo9+7dGjp0qG7evKl27dq9jTojpGXLlqpRo4ZKliwpSdqxY4fix4/vsnoAAAAA4G2KdKD77bff9Pnnn6t27dqOaZ988omuXr2qX3/91aWB7nlJkiRxdQkAAAAA8NZEusulm5ubDh48qHv37jlNb9GihebPny9JCgwM1JgxY1S6dGlly5ZN1atX14YNGxzzLlmyRGXLltWqVavk6+ur7Nmz68svv9S1a9c0dOhQ5cuXT4ULF9bkyZOd1rF48WJVrFhR2bNnV8WKFTVz5kzZ7XZJkq+vr/z8/DR+/Hg1atRIknOXyx49eqhnz54aPXq0ChQooDx58mjw4MG6evWqWrVqpRw5cqhcuXLaunWrY33BwcEaMWKEihUrply5cql27drasWOH4/GQkBCNGDFCJUqUUNasWVWhQgXNnTs3si8pAAAAALyWSJ+ha9GihTp06KDixYurQIECyps3rwoWLKhs2bLJy8tLktSpUycdO3ZM/fr1U7p06fTHH3+oXbt2mjBhgkqXLi1JunLliubOnauJEyfq4cOHat26tapWraqaNWtqwYIFWrFihUaNGqVSpUrJZrNp/vz5GjlypPr166ccOXLo2LFjGjx4sK5du6Zu3bpp0aJFqlGjhipVqqSWLVuGW/uKFStUu3ZtLViwQPv27VPv3r21du1adenSRV27dtWIESPUo0cP7dq1SxaLRT179tTp06c1YsQIJUuWTJs3b1arVq00fvx4lSxZUr/99pvWrFmj0aNH66OPPtLmzZs1YMAAZcyYUXnz5n3tRsnhk0Ipkni99vMBvL6HgcG69yDQ1WUAAIBolDJpAleX8NoiHejKly+v+fPna9asWdqxY4fjjFbatGn13XffKWHChNq4caMmTZqkUqVKSZLatWunkydPatKkSY5A9/jxY/Xt21c2m02SVKhQIR0+fFjdunWTxWJRy5YtNWHCBJ0+fVo2m00TJ05Uy5YtVblyZUlS6tSp5e/vr4EDB6p9+/ZKnDixrFarPD09lTBhwnBr9/LyUu/evWW1WpUmTRqNHDlSBQsWVPXq1SVJ9evX1+bNm3Xz5k09evRIK1eu1KJFi5QtWzZJUrNmzXTixAlNmzZNJUuW1MWLF+Xp6anUqVMrSZIkatiwoT755BOlS5cusi+rg2EYqlMh52s/H8CbMex2WdwYABgAgPdNSIhddrvh6jIiLdKBTpKyZ8+uESNGyDAMnTp1Slu3btWvv/6qFi1aaMiQIZKkPHnyOD0nb968GjlypNO0Z4NPnDhxlCpVKlksFklSrFixJElBQUG6ffu2rl69qp9++knjx493PMdutysoKEiXL19W+vTpX1n3xx9/LKvV6rTO1KlTO/5+dp3Hjh2TJDVu3NhpGY8fP3aciWzQoIE2bNig4sWLK2vWrCpSpIgqVqwob2/vV9byIhaLRedWTlXArSuvvQwAryeOd3Klq9xC9+8HKCTE7upy3htWq5u8vOLwusdwtJM50E7mQVvFPHa78e4HuqtXr2rq1Kn6+uuv9dFHH8liscjHx0c+Pj4qXbq0KlWq9MLn2u12ubs7r+6DDz5w+tvtBb+Kh14n17NnTxUuXDjM48mTJ49Q/c+v72XrNIynjTlnzhzFjRs33OekTZtW69at0969e7Vz507Hmcnvv/9eNWrUiFBN4Qm4dUUB1y6+9vMBvJmQELuePOHDNbrxupsD7WQOtJN50FZ4U5HqV+Th4aH58+dr+fLlYR6LFy+eJOnDDz+UJB04cMDp8f379ytDhgyvVaS3t7e8vb118eJFpUmTxvHv6NGjGjNmzGst81UyZswoSbp+/brTOpcsWaLFixdLkn799VetW7dORYoUUbdu3bRixQoVKlRIq1ateis1AQAAAMCzInWGLnHixPrqq680ZswY+fv7q0KFCooXL57OnDmjiRMnqkCBAsqfP79KlCihgQMHSnp6FuuPP/7Qxo0bXzt8WSwWffXVVxo1apRSpEihEiVK6NSpUxo4cKBKliwpDw8PSVLcuHF1/vx53bx50xEsX1fGjBlVqlQp9e/fX/369ZPNZtO6des0efJkDR06VJJ069YtTZgwQbFjx1amTJl09uxZHTt2TE2aNHmjdQMAAABARET6GroOHToobdq0WrBggebMmaPAwEAlT57caXTJ0aNHa9SoUerTp4/u37+vjBkzaty4cSpbtuxrF9q8eXPFihVLs2bN0vDhw+Xt7a2aNWuqY8eOjnkaNWqk4cOH6/Tp0+GeRYys0aNHa/To0erfv7/u3bun1KlTa/DgwapVq5akp4O9PHnyRIMHD9bNmzeVJEkS1a9f/4WjbAIAAABAVLIYoReLIcY4NnMQ19ABLhDno4/1aZN+unPnIdczRCN3dzclShSX1z2Go53MgXYyD9rKHFzZTokTx5XV+uor5BibGwAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMAAAAAkyLQAQAAAIBJEegAAAAAwKQIdAAAAABgUgQ6AAAAADApd1cXgLDieCd3dQnAe4l9DwAAmA2BLoYxDEPpKrdwdRnAe8tuD5Hdbri6DAAAgAgh0MUwFotF9+8HKCTE7upS8AJWq5u8vOLQTjHc67aT3W4Q6AAAgGkQ6GKgkBC7njwhKMR0tJM50E4AAOBdxqAoAAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJmUxDIPxuWMYhsKP+axWN9rJBGgn86CtzIF2MgfayTxoK3NwVTu5uVlksVheOR+BDgAAAABMii6XAAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgiwHsdrvGjh2rYsWKKUeOHGrevLkuXLjg6rLee35+fvLx8Qnzb+HChZKk48ePq2HDhsqZM6dKliypadOmubji98/EiRPVqFEjp2mvahf2N9cIr6169uwZZv8qXry443HaKnrcvXtX/fr1U/HixZU7d27Vq1dP+/fvdzzOPhUzvKqd2J9ijlu3bqlr164qWLCgcuXKpa+//lpnzpxxPM4+FTO8qp1MtU8ZcLlx48YZhQoVMrZs2WIcP37caN68uVG2bFkjKCjI1aW91zZu3Ghky5bNuHbtmnH9+nXHv4CAAOP27dtGgQIFjN69extnzpwxFi1aZGTLls1YtGiRq8t+b8yYMcPw8fExGjZs6JgWkXZhf4t+4bWVYRhGjRo1jFGjRjntX7du3XI8TltFj2bNmhlVq1Y19u3bZ5w9e9YYPHiwkT17duPMmTPsUzHIy9rJMNifYpIvvvjCqFOnjvH3338bZ86cMb755hujSJEixqNHj9inYpCXtZNhmGufItC5WFBQkJErVy7jt99+c0y7d++ekT17dmPlypUurAw///yzUbVq1XAfmzRpklGsWDHj8ePHjmkjR440ypcvH13lvbeuXr1qfPnll0bOnDmNChUqOIWEV7UL+1v0ellbPXnyxMiWLZuxfv36cJ9LW0WP8+fPGzabzThw4IBjmt1uN8qWLWuMGTOGfSqGeFU7sT/FHLdv3zY6duxonDp1yjHt+PHjhs1mM/766y/2qRjiVe1ktn2KLpcuduLECT18+FAFCxZ0TPPy8tKnn36qffv2ubAynDx5UhkyZAj3sf379ytfvnxyd3d3TCtYsKDOnTunW7duRVeJ76WjR48qQYIEWr58uXLkyOH02Kvahf0ter2src6fP6+goCClT58+3OfSVtEjUaJEmjJlirJmzeqYZrFYZBiG7t27xz4VQ7yqndifYo5EiRJp1KhRypgxoyTp5s2bmjZtmpIlS6YMGTKwT8UQr2ons+1T7q+eBW/T1atXJUnJkyd3mp40aVJduXLFFSXh/zt16pSSJEmi+vXr6/z580qTJo3atGmjYsWK6erVq7LZbE7zJ02aVJL033//ydvb2xUlvxd8fX3l6+sb7mOvahf2t+j1srY6deqULBaLZs6cqW3btsnNzU0lSpRQhw4dFD9+fNoqmnh5ealEiRJO01avXq2LFy+qaNGiGj16NPtUDPCqdmJ/ipn69u2rBQsWyMPDQz///LM8PT35nIqBwmsns+1TnKFzsYCAAEmSh4eH0/RYsWIpKCjIFSVBUnBwsM6fPy9/f3916NBBU6ZMUbZs2dSiRQvt3r1bgYGB4baZJNrNhV7VLuxvMcfp06fl5uamlClTatKkSerevbu2bt2qNm3ayG6301YucuDAAfXq1UulS5eWr68v+1QM9Xw7sT/FTE2aNNHixYtVtWpVtW3bVkePHmWfioHCayez7VOcoXOx2LFjS3oaIEL/Lz3dqePEieOqst57Hh4e2rdvn9zd3R07a9asWXX27FlNmzZNsWPHVnBwsNNzQndgT0/PaK8XT72qXdjfYo5vvvlGTZs2lZeXlyTJZrMpSZIkqlOnjv755x/aygU2bNigLl26KEeOHBo1apQk9qmYKLx2Yn+KmUIv2xg8eLAOHz6s2bNns0/FQOG103fffWeqfYozdC4Weqr2+vXrTtOvX7+uZMmSuaIk/H+enp5hfnmx2Wy6du2akiVLFm6bSdJHH30UbTXC2avahf0t5rBYLI4PylCh3ZCuXr1KW0Wz2bNn65tvvlHx4sU1depUxxcU9qmY5UXtxP4Uc9y6dUsrV65USEiIY5qbm5vSp0/veL3Zp1zvVe1ktn2KQOdimTJlUrx48bRnzx7HtPv37+vYsWPKmzevCyt7v504cUK5cuVyusePJB05ckQZMmRQvnz5dODAAacDwe7du5UuXTqun3OhV7UL+1vM0blzZ3355ZdO0/755x9JT38tpa2iz2+//abBgwerQYMGGjNmjNMPWexTMcfL2on9Kea4fv26OnfurL179zqmPX78WMeOHVP69OnZp2KIV7WT6fapaB9XE2GMGjXKyJ8/v7FhwwbHfSzKlSvH/UZcKCQkxPjiiy+MypUrG/v27TPOnDljfPfdd0bWrFmNEydOGDdv3jTy5ctndO/e3Th9+rSxePFiI1u2bMaSJUtcXfp7pXv37k5D4UekXdjfXOP5ttq0aZPh4+NjTJw40bhw4YKxZcsWw9fX1+jUqZNjHtrq7fv333+NLFmyGG3btnW619L169eN+/fvs0/FEK9qJ/anmMNutxvNmzc3ypcvb+zbt884efKk0bFjRyNfvnyGn58f+1QM8ap2Mts+ZTEMw4j+GIlnhYSEaNSoUVqyZIkCAwOVL18+9evXT6lSpXJ1ae+127dv68cff9S2bdt0//59ffrpp+rSpYvjl5e///5bQ4cO1bFjx5QkSRI1b95cDRs2dHHV75cePXrIz89Ps2bNckx7Vbuwv7lGeG21du1aTZo0Sf/++6/ix4+vKlWqqEOHDo4BAmirt2/SpEkaPXp0uI/VqFFDw4YNY5+KASLSTuxPMceDBw80cuRIbdiwQQ8ePFDevHnVo0cPxxD57FMxw6vayUz7FIEOAAAAAEyKa+gAAAAAwKQIdAAAAABgUgQ6AAAAADApAh0AAAAAmBSBDgAAAABMikAHAAAAACZFoAMA4B3EXYkA4P1AoAMA4B1z4MABtWzZ0tVlAACiAYEOAIB3zMKFC3XmzBlXlwEAiAYEOgAAAAAwKQIdAABRwDAMzZkzR5999pmyZ8+usmXLaurUqY5r2Xbu3Kn69esrT548KlCggDp37qwrV644nr9kyRL5+Pjo8uXLTsv19fVVjx49HH/7+Phozpw56t27t/Lnz69cuXLp22+/1c2bNyVJPXr00NKlS+Xn5ycfHx8tWbIkGrYeAOAq7q4uAACAd8GoUaM0bdo0NW3aVEWKFNHRo0c1evRoBQcHK1WqVOrWrZsqVaqkli1b6s6dOxo7dqzq1KmjpUuXytvbO1LrGj16tMqWLatRo0bp0qVL+v777+Xu7q5Ro0apTZs2un37to4dO6bx48fr448/fktbDACICQh0AAC8ofv372vGjBlq1KiRunXrJkkqUqSIbt++rQMHDmju3LkqXLiwRo8e7XhO7ty5ValSJU2fPl1du3aN1PpsNpu+//57x99///231qxZI0n6+OOPlThxYnl4eChnzpxvvnEAgBiNLpcAALyhw4cP6/HjxypbtqzT9B49eqh37966ceOGqlSp4vTYxx9/rFy5cmnPnj2RXt/zQS1ZsmQKCAiI9HIAAOZHoAMA4A3dvXtXkpQ4ceIXPvbhhx+GeezDDz/UgwcPIr2+OHHiOP3t5ubGfecA4D1FoAMA4A15eXlJkm7fvu00/cqVKzp58qQkOQYtedaNGzeUKFEiSZLFYpEk2e12p3kePnwY5fUCAN4dBDoAAN5Q9uzZ9cEHH2jjxo1O02fOnKkxY8YoSZIkWrFihdNjly5d0uHDh5U7d25JUrx48STJaeTLf//913GGLzLc3Ph4B4D3BYOiAADwhhInTqzGjRtr5syZ8vDwUMGCBfXPP/9o9uzZ6tSpkxImTKiePXuqY8eOql69uu7cuaPx48crQYIEatasmSSpYMGCihMnjoYNG6YOHTro4cOHGj9+vBImTBjpery8vHTz5k1t3bpVmTNnVtKkSaN4iwEAMQWBDgCAKNC1a1d9+OGHmjt3rqZPn65UqVKpV69eql+/viQpbty4mjx5stq2bat48eKpWLFi6tSpk5IkSSJJih8/vsaOHauRI0eqbdu2Spkypdq1a6dly5ZFupaaNWtq69atatu2rb799lt9/fXXUbmpAIAYxGJwFTUAAAAAmBKd7AEAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACYFIEOAAAAAEyKQAcAAAAAJkWgAwAAAACTItABAAAAgEkR6AAAAADApAh0AAAAAGBSBDoAAAAAMCkCHQAAAACY1P8DHtWGf8AuBqsAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 1000x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.countplot(y=\"work_interfere\", hue=\"treatment\", data=data2)\n", + "plt.title(\"Behandlung der psychischen Erkrankung stört die tägliche Arbeit?\",fontsize=15,fontweight=\"normal\")\n", + "plt.ylabel(\"\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dieses Merkmal scheint ein guter Prädiktor für die Zielvariable Behandlung zu sein. \n", + "Aber die Information \"Beeinträchtigt Ihre psychische Gesundheit Ihre Arbeit\" kann nicht erhoben werden. \n", + "Niemand, der bei klarem Verstand ist, würde seiner Krankenkasse gegenüber die Wahrheit zu dieser Frage sagen. \n", + "Daher muss die Frage nach der Beeinträchtigung der Arbeit gestrichen werden." + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "data2 = data2.drop('work_interfere', axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAHfCAYAAACWDtPDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABrKUlEQVR4nO3deXxM1+P/8fdMIoktltS+l06CBAkRpWppUWupttoKRamWalH70lVXeyylaKlWqX3pqj7dqa2WFqFI7BKNkIYskrm/P/wyX9MkRDIRcl/Px8PjIffc5dw7587Me+6551oMwzAEAAAAACZhzesKAAAAAMCtRAgCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCkC09evSQr6+vpk6dmtdVyVXnzp3TsGHD1LhxY/n7+6tp06b6+eef87pauerkyZPy9fWVr6+vjh07ltfVgUmlpKQoIiLCJetatWqVfH19df/992d5mTvlPS7tXN28eXO6soSEBJ08edJpWnaOBZAfEYIAIBN2u119+/bV+vXrdfHiRdWoUUPe3t6qUKFCXlcNyNd+/fVXdejQQWvWrMnrqtyx1q9frzZt2mjLli15XRXgtuSe1xUAgNtVRESEwsPDJUlz5sxR06ZN87hGgDnMnTvXZVeBzGrq1KmKiorK62oAty2uBAFAJmJjYx3/DwkJycOaAAAAVyIEAUAmUlNTHf/38PDIw5oAAABXIgQBeSDtxtQhQ4bo8uXLmjZtmtq0aaOAgACFhIToueee044dO9ItN2PGDPn6+urJJ5/McL1bt2513CR7rVGjRsnX11fLly9XZGSkXn75ZTVp0kR16tRRu3bt9PHHH8swDEnSd999p+7duysoKEj16tXTE088oZ9++um6+7N371717dtX9evXV2BgoB5//HEtXbrUKUT81/fff69nn31W9957r2PAgZdffln79u3LcP60/frnn380bNgwBQYGqn79+urZs6dSUlKuW780f/75p4YPH67mzZvL399fDRs2VI8ePbRixQqnuqYNDNCzZ890258xY0aWtiVJ27dv14svvqj77rtP/v7+aty4sQYMGJBpH/2WLVs6BiP49ddf1atXLzVo0EBBQUF64okn9OOPP0q6esP4/Pnz1aFDB9WpU0chISF64YUXdOTIkUyPW1xcnNasWaMuXbqobt26uu+++/Tcc89p27ZtWd6fNBEREXr11VfVqlUr+fv7q379+nr88ce1cOFCJSYmOs07dOhQ+fr66rnnnst0fWvXrpWvr6/atm3rND05OVmLFi1St27dVL9+fdWpU0dt2rTRO++8o+jo6EzXFx8fr1mzZqlz584KDAxUvXr11LFjR4WFhSkuLi7DZaKiojRhwgR16tRJQUFBCgwMVLt27TRhwoR0N5Zn5tKlSwoMDJSvr682btyY6Xy9e/eWr6+vpk2b5tLtp8mNdiRd/VFg9erV6tmzpxo2bCh/f3+1bNlS48ePV2RkZLr5086jJk2ayDAMLV++XI899pgCAwMVGBiobt26aeXKlY73Hun/3hvT2uWcOXPk6+urUaNGOa37wIEDGj9+vNq2baugoCDH+dWvXz998803N3W8suLQoUMaOnSomjRpooCAALVs2VKvv/66zp07l+kyN3v+S1JcXJw+/PBDde/eXSEhIapdu7YaNGigRx55RDNmzNDFixdvWNe0z4lTp05JksaNG5fpe9fly5c1c+ZMtWvXztEGnnnmGf32229ZOCrAnY0QBOShuLg4devWTR988IEuX76sGjVq6PLly/rhhx/Us2dPx5cVV/njjz/UuXNnffvtt7rrrrvk7e2tI0eO6N1339WUKVM0ZcoUDRo0SIcOHVLVqlVlsVi0a9cu9e/fP9MR0X7//Xc99dRT2rJliypXriwfHx/t2bNHr776qp599lklJyc7zZ+SkqJhw4Zp4MCB+umnn2SxWOTr66vk5GRt2LBBjz32mD799NNM92HQoEHasGGDKlWqpIIFC6pUqVJyd7/x7Y3z5s3T448/rnXr1unff/+Vr6+vihQpom3btmns2LHq1auX/v33X0mSp6engoKCZLPZHMsHBQUpKChI5cqVy8qh1qRJkxQaGqpvv/1WycnJstlsslqt2rRpk3r16qWJEydmuuyiRYv0zDPPaN++fapUqZIkadeuXXruuee0ceNG9enTRxMnTlRcXJyqVaumuLg4bdy4UU899VSm9wCEhYVp5MiRioyMVI0aNZSSkuJoZwsWLMjSPknSunXr1KlTJy1dulTR0dGy2Wy66667tGfPHr3zzjt67LHHdPbsWcf8Xbt2lXT1Rvfz589nuM61a9dKkh555BHHtOjoaD3++ON6++23tWfPHhUrVkw1atTQmTNntHDhQnXs2FE7d+5Mt64jR46oU6dOCgsL06FDh1S6dGlVqVJFR48edQSj/37JP378uLp06aLFixfrxIkTqlChgipWrKgTJ05o8eLFevjhh7V///4bHpvChQvroYcechynjERFRen333932l9Xbf+/XNmOLl26pL59+2rUqFHaunWrvLy8ZLPZdOHCBX3xxRd6+OGH9d1332VYD8MwNHLkSI0bN06RkZGqVq2a3N3dtXv3bo0ZM0aTJ092zOvj46OgoCAVKVJEklSuXDkFBQWpatWqjnmWLFmiRx55RF988YViYmJUpUoVVapUSf/++69+/vlnvfTSSy4d0W3z5s3q2rWrvv32W5UsWVJlypTR6dOntWTJEnXp0kX//PNPumWyc/5HRkaqU6dOmjx5snbv3q2SJUvK19dXbm5u2rdvn2bOnKlu3brp0qVL161v2jFLu3pdpUqVDN+7EhMT1a1bN82YMUOXL19WtWrVlJiYqF9//VXPPPOMVq9enYOjBtwBDAC33MqVKw2bzWbYbDajSZMmxi+//OIoi4qKMjp27GjYbDajU6dOTsuFhYUZNpvNeOKJJzJc7++//+5Y77VGjhzpmP7kk08a0dHRhmEYRmpqqjFq1CjDZrMZfn5+hq+vr7FgwQIjNTXVMAzDOH/+vNG5c2fDZrMZoaGhTusMDQ11rPPRRx81Tp486Sj74YcfjMDAQMNmsxnTpk1zWm7SpEmGzWYz7r//fuPnn392TE9JSTE++eQTo1atWoavr6/x66+/Oi2Xti1/f39j27ZtjvrHxsZmepzTfPPNN47lp02bZiQlJTnKtmzZYjRu3Niw2WzGc889l6XjeSOff/65YbPZjAYNGhhr1651TLfb7caXX35p1KtXz7DZbMYXX3zhtFyLFi0c23vzzTeNhIQEwzAM4+LFi4424efnZzRs2NDp2B04cMBxvGfMmOG0zrT12Ww24+WXXzb+/fdfwzCuHu8ZM2YYNpvN8PX1NXbu3OlY5sSJE45lIiMjHdN3795t1KpVy7DZbMa4ceMc6zIMw9i/f7/RunVrw2azGV26dDGuXLliGMbV1yhtvxYvXpzuWJ09e9bw8/MzatasaURFRTmOU7du3Rzt9ciRI4754+LijNGjRxs2m80ICQlxtGXDMIxLly4ZrVq1Mmw2m/H8888bZ8+edZRFR0cbzz77rGGz2YzWrVs7jq1hGMbgwYMNm81mDBo0yIiPj3dMP3funKMeffr0SVf3jGzfvt3RTi9evJiufN68eYbNZjOeeuqpXNm+YeROOxoyZIhhs9mM9u3bG3v27HFMT0xMNKZMmWLYbDYjICDAOHjwoKPs2nZUs2ZNY9GiRUZKSopjuWHDhhk2m82oVauWERMT47S9tPeXKVOmOE2PiIgwateubdhsNmP27NlGcnKyoyw2NtZ46aWXDJvNZtSuXdu4cOGCoyztPbdp06ZZPo7Xvsf16tXLqT1t2bLF8Pf3N2w2m/H+++87LZfd8z9te48//rjjXEhbbvXq1Yafn59hs9mMTz/91Gm5tDr+9ttvTtPT2sF/t3Pt50/Dhg2NH3/80VEWExPjaHONGzc27HZ7lo8XcKfhShCQx1555RXdd999jr9Lly6tF154QZIUHh5+w1/9boa7u7umTJmiUqVKSZKsVqueffZZSVeHg3744YfVp08fWa1X3xpKlCjh6BKW2S/R3t7emjt3rtOw0c2bN9fo0aMlSZ988okuX74sSYqJidHChQslSbNnz3Yabc3NzU09evRQr169ZBiGU1eha7Vt21bBwcGO+hcvXvyG+532q3C3bt300ksvOd3f06hRI82cOVOS9L///S/Dbog3Izk52dHt5O2331anTp0cZRaLRe3atdPw4cMlXe22klFXvho1amjMmDHy8vKSdPUYd+/eXdLV12nEiBFOx87Pz09t2rSRpEy7EwYEBOj99993/MLu5uamF154QR06dJBhGJo1a9YN9y0sLEwpKSm677779OabbzrWJUk1a9bU/Pnz5eXlpX379unLL7+UdPU16ty5s6T/u+JzrbVr18put6tp06YqXbq0JGnTpk3atWuXSpcurfnz5+vuu+92zF+0aFG99dZbqlu3rmJjYx3tSZKWL1+uY8eOqXbt2poxY4bKlCnjKCtVqpSmT5+uChUqKDIyUqtWrXKUpY0A2KlTJxUuXNgx/a677tLYsWPVtGlT1ahR44bHR5IaNGigKlWqKDk5Wd9++22G+ys5X/Vy5fav5ap2FB4eri+//FIFCxbUggULVKdOHUeZp6enhgwZorZt2yopKUmzZ8/OsC5PPfWUevbsKTc3N8dyY8aMkcViUUpKivbu3Zulffrtt9/k5uam2rVr6/nnn1eBAgUcZcWLF9fIkSMlSVeuXHHZ6HIlSpRI154aNWrkaNfXXpHM7vkfExOjv//+W5L05ptvOs6FtOU6d+6shg0bSpIOHjzokv2SrnaVa9asmePvkiVLasSIEZKkf/75J8NujkB+QQgC8pCbm1uGD6yrXr264//x8fEu256vr6/Kli3rNO3a8HLth2GatA/jzOrRtm1blSxZMt30hx9+WF5eXoqPj3d8Sfjpp5+UnJysGjVqqHbt2hmu7+GHH5Z09T6jmJiYdOX169fPcLnMREZGOr4MPf300xnOk3aPgnT1C3hO7Nq1S//8848KFy6sBx54IMN5OnXqJKvVqqioqAzD5f333+8Iomly+jr17Nkz3Tol6YknnpB09X6y67W1y5cva+vWrY51ZaRSpUp68MEHJTkfx0ceeUQWi0V79+7V0aNHnZZJew7MtaHg+++/lyQ9+OCDKlSoULrtWCwWx5fLH374Id1y7dq1c3zZvpaXl5fjS/61y1WpUkXS1S5M33//vdN9TQEBAZo/f74j1GdFly5dJKXvEnfgwAEdOnRIhQoVcnSby43tp3FVO0q7v6lhw4ZOQeBaaeftzz//nOG9gC1atEg3rUSJEo73jszu1fqv7t27a8+ePVqyZEmG5WmBT7r6oFBXaNy4sVPgT5N27+W13Tyze/77+Pjo999/1549e5y64aZJTU111OG/991ll9VqdZyv17r2ntLMurAC+QHPCQLyULFixZw+tNN4eno6/p/Vm/6zIqP7Wa69KlKiRIl05Te636ZWrVoZTvfw8FDVqlUVHh6uI0eOqGnTpo5fOs+ePZvp4A7GNTdJHz16VD4+Pk7laVexsirtS3fBggWdwuV/+fv7a9euXTn+9ThtH69cueL41T0jbm5ustvtOnr0qNMv65LSBVVJTr94ZxQ6b/Q6/XcbadK+8Fy5ckWnTp1KN6hGmhMnTujKlSuSrh6rzPj7+2vDhg1Ox7FixYoKCQnR77//rrVr12rIkCGSrgbdI0eOqHjx4k5fkg8dOiTpalBJu0ryX2lfmiMjI2UYhiwWi2O55cuXZxpm0+7fuDaMvfTSS9q6dasiIiI0cOBAeXh4KDAwUE2aNFGzZs3k5+eX6f5mpEuXLgoLC9P27dt15swZx3mXdhWoTZs2Tld8XL39NK5qR2lt+q+//sr0vE1KSpJ09d6hqKgolS9f3qk8s/CU9v53vUFUMuLp6am9e/fq0KFDOnHihI4fP65Dhw45va7XvpfkRGZ1Twvo14aSnJ7/Xl5eOnPmjPbs2aPjx4/rxIkTOnLkiA4cOOC4om6323O8T9LVK4MFCxZMN/3atpn2ugL5ESEIyEPXfiHJjKs+yCVl+IF3rYyuFNzItR+YmZWlfUlIG3ggPj5ef/zxxw3XndGvwxmFxutJ+0U7o19yM6prTrsfpu1jcnJytvcxo6sf18rO61SsWLEMp1+7rbS6Z+TaKwNFixbNdL604/zf49i1a1f9/vvvWr9+vQYPHiyLxeK4CtSxY0enMJ62rTNnzujMmTOZbku6+uX50qVLKlKkiGO5yMjIG3bjuXZfa9asqXXr1mnu3LnauHGjLly4oK1bt2rr1q2aMmWKbDabXn31VTVo0OC660xTtmxZNW7cWL/++qs2bNigfv36KTU1VRs2bJDkfNUrN7afxlXtKO1YxcTEZHh19r/i4uLShaAbvdfdzPvc2rVrNXv27HSvccWKFfXoo4/qiy++yPK6suJmhsfPyfl/9OhRvf/++/rpp5+cgk6RIkXUoEEDRUdHZ/qjQHZc+2MbYEaEIOAOlNkXBld1/7gZab9OZiTtC4G3t7ek/wthbdq0UVhYWO5XTv8Xbm7UrTDty8j1Ql1WpO1j7dq1ne47yWsJCQkZXum7NgxkdGUgzbXH5d9//013hS5N2hC+/z2Obdq00ZtvvqlTp05p586dqlevnuO+obQR5NKkHcPx48crNDT0eruVbrl///1Xc+bMybD71fVUqlRJEyZM0BtvvKG//vpL27Zt05YtW7R161YdOnRIffv21ddff53l0QG7du2qX3/9VevXr1e/fv20efNmnTt3ThUrVnTc05ab23eltNejT58+jntu8srq1asdw2U3bdpUrVq10j333KPq1aurWLFiunLlistD0M3I7vkfExOj0NBQxcTEqHz58nr88cdVq1Yt3X333apYsaIsFotefvlll4YgwOy4Jwi4g6Td5/DfYafTXO/ZKbnlv/d4pLl8+bKjS1RaH/dq1apJ+r8uIxlJSEjQtm3bdOLEiZvuIpORtJvqExISMn3+iXS1q4/0f/dnZFfaPkZGRmbaldEwDP3++++KjIzM9LV0tcyOedqXqkKFCjndL/JflStXdvyan3asMpLZcfT09FS7du0kXb3HZPv27bpw4YJq1qypmjVrOs2blXZy5swZ7d6926nNZ2W5yMhI/fnnn457HQzD0MmTJx3PRbFarapTp4769u2rBQsWaP369SpSpIgSEhIyHQI6Iw8++KCKFSumgwcPKjIyUuvXr5d0taucxWJxzJdb23elrBzX2NhY7dy5U6dPn3bp1ev/mjt3riSpc+fOmj9/vrp166agoCDHlc5rh2fPC9k9/1euXKmYmBgVL15cK1eu1PPPP69mzZqpUqVKjvaS2fD3ALKHEATcQdJ+yT958mSGX56v94DG3PL1119n2IXsiy++0JUrV1SqVClHn/dmzZrJzc1NR48ezfRhfAsXLlSPHj308MMPu+TKVrVq1RxfTBYtWpThPH/88YdjdKqMBqq4GcHBwSpatKguXbqU6S/B69ev19NPP622bdvesi9tK1asyHD6559/LunqjevX6x5TqFAhhYSESLo64l9GTpw4of/973+SMj6Ojz76qKSr7TTtnp3/dg1Lq4skffXVV5l2vxozZoy6deumoUOHpltuxYoVGd48npKSogEDBujRRx/Ve++9J0m6cOGC2rRpoz59+ujPP/9Mt0y1atUcXbtu5l4MDw8PdejQwbEfmzZtksVicQyakCa3tu9Kacd1y5Ytmf6QMHnyZD311FPq0aOHS+p5bVC8VtqDYzMbWOXadu7K+ymzKrvnf9p+lS9fPsMrsocPH9bu3bslZf3+qbRjmJuhFLiTEYKAO0jayGgXL17U1KlTHR/yCQkJmjx5cqYPNM1NUVFRevHFF51GEdqwYYPjAYgDBgxw9KmvUKGCHnvsMUnS0KFDHV+Ypatf8JYvX+4Yrrp79+43vI8nq1566SVJ0rJlyxQWFuYUILdu3aoXX3xR0tXuNY0bN87RtgoVKuQYdvytt97SypUrnb4Ufv/993r11VclXR1Zr3LlyjnaXlZ99913mj59uqPNXLlyRVOnTtW3334rDw8Px7Ds1/PCCy/I3d1dv/76q8aPH+/UxTA8PFz9+vVTUlKS/Pz8HMMHXysgIMDxJPuVK1eqQIEC6tixY7r52rVrJ5vNpri4OD3zzDNOVyDi4+P12muvafPmzbJYLI5jLV1tM6VKldKxY8f0/PPP6/Tp046y8+fPa/DgwTpy5IgKFCigPn36SLr6w0LaMNFjxoxx+pJvt9v12Wef6dChQ7JYLE7DSWdFWsCbP3++4uPjFRISku5qW25u31UaNGigpk2bKiUlRf369XO61yU5OVmzZ8/W8uXLJUn9+vXLcGS+m5V2P9OpU6ecpqdd2V22bJnTlZH4+HjNmDFDH374oWOaq0ZRuxnZPf/T9is8PNxpaHXDMPTzzz+rb9++joFJsvrjUGbHEMBV3BME3EFsNps6duyo9evX66OPPtLatWtVtmxZHTt2TPHx8Ro8eHCmz9fJLW3atNF3332n5s2bq0aNGjp//rzjZvbQ0FA99dRTTvOPGTNGUVFR+uGHH/T888+rdOnSKlOmjE6dOuUIUm3atNHgwYNdVse2bdvq+PHjmjp1qmbNmqVFixapWrVqOn/+vOMLQsOGDTVx4sRMf4G+Gf369dOJEyf0xRdfaMyYMZo4caIqVqyoqKgoR/etoKAgTZgwIcfbyiqbzabZs2dryZIlqlSpkk6cOKELFy7I09NT7777rtOzeDITGBiot956S+PGjdMXX3yhdevWqXr16um6Ps6cOTPTm8kfeeQRvfPOO7p8+bLatGmT4X1KBQoU0OzZs9W3b18dOHBAHTp0ULVq1VSwYEFFRkY67kMbPXq00xWnYsWK6YMPPtDzzz+vzZs364EHHlCNGjVksVgUERGh5ORkx7Oyrh0F74033lC3bt106NAhdejQQRUrVlTRokV1+vRpxcbGSroa2m/2WT3+/v6y2WyOUesyuuqVm9t3pYkTJ6p///7as2ePnnzySVWsWFHFihXTiRMnHPfTPf30044h13OqVq1a+uGHH7R+/XodPHhQDRo00KuvvqohQ4ZowIABOnz4sB544AHHVd5jx44pKSnJ0X3s+PHjedY1Ljvn/6OPPqolS5bo2LFjevHFF1WhQgWVKFFCZ86cUUxMjAoUKKCGDRtq27ZtWe4WV6tWLR06dEjz58/Xzz//rFatWmnAgAG5ss/AnYgQBNxh3nvvPQUGBmrlypU6evSojh8/roCAAPXp00eNGzfOkxD05JNPatasWdq3b58sFotCQkLUs2fPDJ9B4enpqQ8++EBff/21Vq1apb/++ksHDhxQ4cKFFRISokceecTxHA1X6t+/v+69914tWrRIO3bsUHh4uLy9vXXvvfeqc+fOLt2mxWLRm2++qTZt2mjp0qXavXu3Dhw4IE9PT9WrV08dOnRQt27dbmrUqZwaOXKkjh07ps8//1wHDx6Uj4+PWrZsqb59+1536PD/6ty5swICArRw4UJt3rxZf//9twoVKqSgoCB16NBBjz766HW71XXq1Envv/++UlNTMw0F0tWBAlavXq3PP/9c3377rY4cOaLExETHlZMePXpkOMBAQECA1q9fr8WLF+t///ufjh075uiW2bBhQ/Xu3TvdkNOlS5fWihUrtGDBAv3yyy86ceKEzpw5Ix8fH7Vv316hoaEKCgrK8jG6VteuXfXOO++ocOHCat26dYbz5Ob2XaVEiRL67LPPtGrVKm3YsEEHDx7U2bNn5e3trWbNmqlbt26ZPhcnO/r166fo6Ght3LhRkZGRjhEJW7RooRUrVmj27Nnav3+/jh49qoIFC8pms6l169bq3r27FixYoFmzZumHH37I9JlWuSk753+RIkW0YsUKzZs3Tz/88INOnjypf/75R2XLllXz5s319NNPq1ChQnrwwQcVHh6u06dPpxuB779GjhyphIQEbd68WUePHr3uPZGAGVkMOosCQL6VdsXj448/znFXP1c4ePCgOnXqpFKlSumnn35ySdcpAABuFvcEAQBumbR7R7p27UoAAgDkGbrDAQBy1f79+1WsWDH9+OOP+vzzz+Xh4ZHuXjEAAG4lQhAAIFcNGTJEkZGRTn+XKVMm7yoEADA9QhAAIFc1bNhQ0dHR8vb2Vvfu3Z2GtQYAIC8wMAIAAAAAU2FgBAAAAACmQggCAAAAYCr54p4gwzBkt9OrDwAAADAzq9Uii8Vyw/nyRQiy2w2dP38pr6sBAAAAIA+VLFlYbm43DkF0hwMAAABgKoQgAAAAAKZCCAIAAABgKoQgAAAAAKZCCAIAAABgKvlidDgAAADgTmC325WampLX1bgjubm5y2p1zTUcQhAAAACQywzDUFzceSUkxOd1Ve5oBQsWkbd3ySw9C+h6CEEAAABALksLQEWKlJCHh2eOv8SbjWEYSk5OUnx8rCSpWDGfHK2PEAQAAADkIrs91RGAihTxzuvq3LE8PDwlSfHxsSpatESOusYxMAIAAACQi1JTUyX935d4ZF/aMczpfVWEIAAAAOAWoAtczrnqGBKCAAAAgNuAYRj5entZcavqRAgCAAAA8tivv/6kCRNevWXbW7RogT7/fPEt215WbNiwRjNnTrsl2yIEAQAAAHls6dLPFBV19pZtb968D5SQkHDLtpcVCxcuUFzcxVuyLUIQAAAAAFOxGLdjZ8CblJpq1/nzl/K6GgDuMFarRVZr/rlJ1W43ZLff8W/pAJDvXLmSrJiYM/LxKacCBTzSlb/wwrPavfsPx99hYXP04ovPadiw0Vq8+GMlJydr/Pg31LBhI+3Zs0vz5n2gAwf2ycPDU02aNNXAgYNVokQJx/K7d/+hTz75SPv371NiYoJKlSqthx5qr969+8lqteq++xo4bf/XX3dowYK52rTpOz333CDNmzdbp06dVOXKVTVs2ChJFk2fPklHjhxWhQoV9NJLw9SgQUPH8kePHtacOTO1e/cuSVL9+sF64YXBqlChoiTpjz926MUXn9O0abP12WeLtHfvbhUqVFgPPdRe/fsPlLu7ux59tKPOnj3jWOfy5etUrlz5mz6WJUsWlpvbja/zEIIAmJLValHx4oWy9EZ5p0hNtevChcsEIQC4zdzoi3tExFG9+eZ4SdLQoaN04cJ5jRr1sry9i2n48NFKTk5W06bNdOjQQQ0ePED16zfUI488pri4i5o/f44KFSqk+fM/kaenl/7++5D69u2hFi0eVLt2HWUYhr799it9993XeuWVCWrd+iH99defeu653urQ4WF16NBZ/v4BWrBgrj7/fLFKlPDRs88+r4IFC2rKlPdlt9tVoEAB9ezZR8WLF9fcubN04UKsVq7cIE9PLx0/fkx9+/ZUlSpVFBraS6mpdi1atEAXLpzXwoWfq0SJko4QVLKkjx555DEFBNTV5s2/aNmyJRo2bLQ6d+6qQ4fCNXz4S7LZ/PT0031ls/nKwyP9sXJVCOJhqQBMyWq1yM3Nqlmf/6ZT0bem/3FuqlC6mAY+2URWq4UQBAB3mGrV7lahQoUlSf7+Afrjjx2SpM6du6pFiwcd882dO1OVK1fR++9PlZubmySpdu0A9ejxuDZsWKeuXR/XkSN/Kzg4RK+88qbjYaLBwSHavPkX7d69U61bPyR//wBJUqlSpR3/l6TExES9/PJINWrUWJIUERGhuXNnatSo8erQ4WFJV595NG7cSB0/fkz33OOrjz+eJ09PT02bNluFCxeRJDVoEKzHH39YS5Ys1sCBLznW37FjZ/Xq1VfS1atFP//8kzZv/lWdO3eVzeanAgU8VLx4Cac65RZCEEwrP3WFohtU9p2KvqjIU7F5XQ0AANKpXr2G4/+JiYnat+8vPflkDxmGoZSUqw8LLV++gqpUqaodO7aqa9fH9dBD7fXQQ+2VlJSkU6dO6uTJEzp0KFypqamOZa4nIKCO4/8+Pj6SrgatNN7exSRJ//77ryRp587tCgqqL09PL8f6CxUqrDp1ArV9+1andf833JQuXVqJiXkzOEOOQtDs2bO1ZcsWLV6c8fB648aN0+bNm/W///3PMc1ut2vmzJlavny54uLiVL9+fb366quqUqVKTqoC3JT81hWKblAAAOQ/JUqUdPz/33/jZLfb9dlni/TZZ4vSzevp6SlJSkpK1NSpE/Xtt18pJSVF5cqVV0BAHbm5uWfpGTxpV3Ou5eXllen8Fy9e0KZNG7Vp08Z0ZcWLl3D629PTeT0Wi0V2u/2GdcoN2Q5BCxcuVFhYmIKDgzMs//7777V8+XJVqFDBafrs2bO1dOlSvfPOOypTpowmTpyofv36acOGDRn2+wNyQ37qCkU3KAAA8r/ChQvLYrHo8cefUqtWbdKVpwWMadMm68cfN+n1199RcHCIChYsKEnq0KFVrtSraNGiql+/oZ58MjRdWVqXvdvRTYegqKgojR07Vjt37lS1atUynCc6Olrjx49Xw4YNderUKcf05ORkffTRRxo+fLiaNWsmSZo6daqaNm2qjRs3qn379tncDSB76AoFAABuB25ubkpNTc20vFChwrLZ/HT8eKT8/Go5piclJWr8+FFq1KiJqlW7W3/+uVuBgQ10//3NHfOEhx/QhQuxTldd0u4Xyql69YIUGRmhGjVscne/Gi0Mw9Abb4xXxYqVdM89vllel6vqlKVt3ewC+/btU7FixbRu3TrVrVs3XblhGBo1apQefvhhNWzY0KksPDxcly5dUqNGjRzTvL29VatWLW3fvj0b1QcAAADufEWKFNGJE8e1c+d2x/02/9W//0Bt2/a7Xn99nLZs+VW//vqzXn75Re3YsU02m58kqWbN2tq2bYvWrFmhXbt2avnypRo27EVZLBan+2+KFCmqv/7aq927/8hSN7nM9OrVT6dOndCIEUP0yy8/auvWLRo7doS+//5b1ahxz02tq0iRojp06KB27dqppKTEbNcpK276SlDLli3VsmXLTMsXLlyoc+fOac6cOZo7d65T2dmzV5+CW65cOafppUuX1pkzZ5QT7u75494O3Br55V6ga+XHfcpN+fV45df9AoA7md1+44GYunbtpvDwAxo27EWNHv1qhvM0bNhIkyfP0Mcfz9O4cSNVoEAB+frW1NSpsx2DDgwaNEQpKSmaN+8DJSdfUfny5fX0088oIuKIfvvtF6WmpsrNzU09e/bWwoULNGzYi/r00xXZ3rcaNe7RrFnz9eGHs/Xmm6/KMAzdfXd1vfPOJN13X7ObWteTT4YqLGyKXn55kKZOna26detlOq+bmyVH3/9z9JygUaNG6dSpU46BEcLDw9W9e3d99tln8vPz04wZM7R69WrHwAhr167ViBEjdODAAafLXSNGjFB0dLQWLlyYrXoYhiGLJX+M8oVba8z0r+747nBVK5TQ2y+1y+tq3LHyQxuQaAcAcDtLTEzUkSNHddddZeXh4ZnX1bmjJScn6Z9/zqp69buvO2DDjbhsiOykpCQNGzZMzz//vPz8/DKcJ62iycnJTpVOSkpy3LSVHXa7obi4y9leHubj5maVt3f229ztKC4uQampeTPCyp0oP7YBiXYAALej5OQk2e12paYaSknhPTonUlMN2e12Xbx4WQkJ6e+h8vYueGsflrpnzx79/fffmjlzpmbNmiVJunLlilJSUhQYGKjXX39dVatWlXR14ITKlSs7lo2Ojs40OGUVDQpml5pq5zwA7QAAbkOpqYze6mo5DZQuC0F16tTRd9995zRt8eLF+u6777R48WL5+PjIw8NDRYoU0datWx0hKC4uTvv371doaPph9QAAAADA1VwWgry8vNI98LRYsWJyd3d3mh4aGqpJkyapZMmSqlChgiZOnKiyZcuqVavcGbscAAAAAK7lshCUVS+++KJSUlI0btw4JSYmKjg4WAsWLOBBqQAAAABuiRyFoHffffe65YMGDdKgQYOcprm5uWn48OEaPnx4TjYNAAAAANnCAyUAAAAAmAohCAAAAICpEIIAAAAAmMotHxgBAAAAgDOr1SKr1XLLt2u3G7LbzfccI0IQAAAAkIesVouKFy8kN7db30krNdWuCxcu31QQevPN8frhh/9p0aLPValSZaey2Njz6t79MQUHh+j11992dXVdhhAEAAAA5CGr1SI3N6tmff6bTkVfvGXbrVC6mAY+2URWq+WmQtBLLw3Xjh3b9P77byksbI4slv+7gjVlyvvy8PDQyy+Pyo0quwwhCAAAALgNnIq+qMhTsXldjRvy9vbW8OFjNGrUy9qwYa06duwsSfrppx/0ww/fa/LkGfL29s7bSt4AIQgAAADATbnvvmZq1eohzZo1Xffdd788PDw0Zcp76tLlMYWE3KvIyAjNnDlVe/bsUqFChRQUFKwXXhgsH5+7JEknThzX1KkTtW/fXtnthgIC6mjgwMGqXr3GLak/o8MBAAAAuGlDhgyXp6eHZs8O0/z5c1WwYCENHPiS/vnnnAYO7Kvy5Sto3rxP9N5703TpUryee+4ZJSQkSJJefXWM7rrrLs2fv1gffrhQVqtVY8YMu2V150oQAAAAgJvm7V1Mw4aN1pgxw+Xu7q4ZMz6Ul5eXFi/+WD4+d2no0JGOed944121b/+Afvjhe7Vr11GnT59Uw4aNVK5cebm7u2v06Fd07Fik7Ha7rNbcv05DCAIAAACQLU2bNpefX02VLVte/v4BkqRDh8J17FikWrVq6jRvcnKyIiMjJEn9+g1QWNhkrVmzQkFBwQoJuVctW7a6JQFIIgQBAAAAyAFPTy95eXk5/rbbDQUFNchwhLgiRYpKkrp2fVwtWz6oLVt+086d2zR37ix99NFcffzxEpUs6ZPrdeaeIAAAAAAuc/fd1XXsWKRKly6jihUrqWLFSvL29lZY2GQdPXpY58/HaMqU93TlyhW1a9dR48e/qUWLPldMTIx27frjltSRK0EAAADAbaBC6WL5YntdujyqtWtX6bXXxqp3776yWKyaPXu6Dh06qGrV7lbRot7avPlXnTp1Ss89N1CFChXWl1+uU4ECBeTnVzNX6vRfhCAAAAAgD9nthlJT7Rr4ZJNbvu3UVPtNPSg1K8qXr6CZM+dqzpyZGjCgr9zc3FS7dh2FhX2gEiVKSpImTQrTrFnT9NJLA5SYmKh77rHp/fenqUKFii6tS2YIQQAAAEAestsNXbhwWVarJU+2ndMQNHPmh+mm2Wx+mjJlZqbLVK1aTRMnTs/RdnOCEAQAAADkMVeEEWQdAyMAAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBWeEwQAAADkMavVcsc+LPVORAgCAAAA8pDValGJEgVltbrd8m3b7amKjU246SD06KMdZbfbtXjxMhUuXMSp7K23XtOZM6c1c+aHrqyqSxGCAAAAgDx09SqQmyI2zFNCzJlbtt2CPuVUrUM/Wa2WbF0Nio6O0syZ0zRy5LhcqF3uIgQBAAAAt4GEmDNKiDqe19XIsvLlK2j9+jVq3vwBhYTcm9fVuSkMjAAAAADgprVp00716zfUe+9N0KVL8RnOExd3UZMnv6dHHmmvli2b6Pnnn9GePbtucU3TIwQBAAAAyJbRo8crPj5eM2ZMTVeWmpqqIUNe0J49f2jcuNf10UefqkYNmwYPHqDw8P15UNv/QwgCAAAAkC1ly5bTgAGDtGHDWm3dusWpbNu233Xw4AG99tpbCgpqoKpVq2no0BG6++4aWrJkcR7V+CpCEAAAAIBse/jhrhl2izt69LCKFCmiu++u4ZhmsVhUt249HTnyd15U1YEQBAAAACDbLBZLht3iDMOQlP7ZR3a7Xe7ueTs+m2lHh8urB1LlBrM+5AoAAAC3h6vd4l7UpEnvqHz5CipduoyqV6+h+Ph/dfToYaerQXv37lbVqtXysLYmDUFWq0XFixeSm1v+uBCWmmrXhQuXCUIAAADIM507d9WPP27Sjh3bVLp0GQUHN1L16vfo9dfH6aWXhqlkSR+tXPmFjhw5rKFDR+VpXU0bgtzcrJr1+W86FX0xr6uTIxVKF9PAJ5tk+yFXAAAAuD0U9Cl3x29v1Kjx6tnzCUmSu7u7pk2bpZkzp2ns2BG6ciVZvr41NX36B/L3D3D5tm+GKUNQmlPRFxV5KjavqwEAAAATu3prQ6qqdeiXB9tOzdYP6StWrM9wetmy5fTddz85/i5RoqTGj38j2/XLLaYOQQAAAEBes9sNxcYm5Mn96ma9t5wQBAAAAOQxs4aRvJKjkQFmz56tHj16OE373//+p65duyowMFAtW7bUe++9p8TEREe53W5XWFiYmjZtqrp166pPnz46duxYTqoBAAAAAFmW7RC0cOFChYWFOU3bsWOHXnjhBbVp00Zr1qzRa6+9pq+//lqvv/66Y57Zs2dr6dKlmjBhgpYtWyaLxaJ+/fopOTk5+3sBAAAAAFl00yEoKipKffv21fTp01WtmvP43kuXLlWjRo307LPPqkqVKrr//vs1ZMgQrVu3TsnJyUpOTtZHH32kQYMGqVmzZvLz89PUqVMVFRWljRs3umynAAAAACAzNx2C9u3bp2LFimndunWqW7euU1mfPn00YsSIdMukpKQoPj5e4eHhunTpkho1auQo8/b2Vq1atbR9+/ZsVB8AAAC4MxgG9/zklKuO4U0PjNCyZUu1bNkyw7JatWo5/Z2cnKyPP/5YtWvXVsmSJbVjxw5JUrlyzmOSly5dWmfOnLnZqjhxd896nssvD0m9Vn7cp9yUH49Xftyn3JRfj1d+3S8AuJNZrQUkScnJSfLw8Mzj2tzZkpOTJEmengVktWb/My/XRodLSUnRiBEjdPjwYX322WeSpISEBEmSh4eH07yenp66eDH7Dy21Wi0qUaJw9iubD3h7F8zrKiCP0QYg0Q4A4HaVlFRSsbEX5OZmkaenp6RbPxz2nc1QUlKSLl++KB+fkvLx8c7R2nIlBMXHx2vw4MHaunWrwsLCHN3mvLy8JF29QpT2f0lKSkpSwYLZ/+C22w3FxV3O8vxubtZ890UhLi5Bqan2vK7GHYM2gPzYBiTaAQDcrry8vFWw4BVdvHg+r6tyRytcuKi8vLwVG3spw3Jv74JZ6hXh8hAUHR2tfv366eTJk5o3b57T/T9p3eCio6NVuXJlp2X8/PxytN2UFHN/6Kem2k1/DMyONgCJdgAAt7OiRUuqcOHiSk1Nyeuq3JHc3NxltVqVmmpIytm9QS4NQRcvXtTTTz+t+Ph4LVmyRL6+vk7lfn5+KlKkiLZu3eoIQXFxcdq/f79CQ0NdWRUAAADgtmO1WmW1etx4RuQql4agd955RydOnND8+fNVsmRJnTt3zlFWsmRJeXh4KDQ0VJMmTVLJkiVVoUIFTZw4UWXLllWrVq1cWRUAAAAAyJDLQpDdbtdXX32lK1eu6Omnn05XvmnTJlWsWFEvvviiUlJSNG7cOCUmJio4OFgLFixIN1gCAAAAAOSGHIWgd9991/F/q9WqvXv33nAZNzc3DR8+XMOHD8/JpgEAAAAgW3igBAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTyVEImj17tnr06OE07cCBAwoNDVW9evXUvHlzLViwwKncbrcrLCxMTZs2Vd26ddWnTx8dO3YsJ9UAAAAAgCzLdghauHChwsLCnKbFxsaqd+/eqlq1qlauXKlBgwZp+vTpWrlypWOe2bNna+nSpZowYYKWLVsmi8Wifv36KTk5Oft7AQAAAABZ5H6zC0RFRWns2LHauXOnqlWr5lT2xRdfyMPDQ6+99prc3d1VvXp1HTt2TPPmzVPXrl2VnJysjz76SMOHD1ezZs0kSVOnTlXTpk21ceNGtW/f3jV7BQAAAACZuOkrQfv27VOxYsW0bt061a1b16lsx44dCg4Olrv7/2WrRo0aKSIiQjExMQoPD9elS5fUqFEjR7m3t7dq1aql7du352A3AAAAACBrbvpKUMuWLdWyZcsMy86ePSubzeY0rXTp0pKk06dP6+zZs5KkcuXKpZvnzJkzN1sVAAAAALhpNx2CricxMVEeHh5O0zw9PSVJSUlJSkhIkKQM57l48WKOtu3unvWLWm5u+W9QvPy4T7kpPx6v/LhPuSm/Hq/8ul8AALiSS0OQl5dXugEOkpKSJEmFChWSl5eXJCk5Odnx/7R5ChYsmO3tWq0WlShRONvL5wfe3tk/fsgfaAOQaAcAAGSFS0NQ2bJlFR0d7TQt7e8yZcooJSXFMa1y5cpO8/j5+WV7u3a7obi4y1me383Nmu++KMTFJSg11Z7X1bhj0AaQH9uARDsAAJibt3fBLPWKcGkICg4O1tKlS5Wamio3NzdJ0pYtW1StWjX5+PioaNGiKlKkiLZu3eoIQXFxcdq/f79CQ0NztO2UFHN/6Kem2k1/DMyONgCJdgAAQFa4tPN4165dFR8fr7Fjx+rw4cNatWqVFi1apP79+0u6ei9QaGioJk2apE2bNik8PFxDhgxR2bJl1apVK1dWBQAAAAAy5NIrQT4+Ppo/f77eeustdenSRaVKldKIESPUpUsXxzwvvviiUlJSNG7cOCUmJio4OFgLFixIN1gCAAAAAOSGHIWgd999N920OnXqaNmyZZku4+bmpuHDh2v48OE52TQAAAAAZAtjqQIAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFfe8rgBcw80t/+RZu92Q3W7kdTUAmIDVapHVasnrargM758AkDWEoDtcsaJeMux2eXsXzOuquIzdnqrY2AQ+yAHkKqvVouLFC+WrH5FSU+26cOEy758AcAOEoDtcYS8PWaxWRWyYp4SYM3ldnRwr6FNO1Tr0k9Vq4UMcQK6yWi1yc7Nq1ue/6VT0xbyuTo5VKF1MA59swvsnAGQBISifSIg5o4So43ldDQC445yKvqjIU7F5XQ0AwC2Uf/oAAAAAAEAWEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmAohCAAAAICpEIIAAAAAmIp7XlcAAAAgr1itFlmtlryuhsvY7YbsdiOvqwHc9ghBAADAlKxWi4oXLyQ3t/zTMSY11a4LFy4ThIAbIAQBAABTslotcnOzatbnv+lU9MW8rk6OVShdTAOfbCKr1UIIAm6AEAQAAEztVPRFRZ6KzetqALiF8s/1XwAAAADIAkIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFZeHoCtXrmjq1Klq3ry5AgMD9dRTT+mPP/5wlB84cEChoaGqV6+emjdvrgULFri6CgAAAACQKZeHoA8++EArV67UhAkTtGbNGt19993q16+foqKiFBsbq969e6tq1apauXKlBg0apOnTp2vlypWurgYAAAAAZMjd1SvctGmTOnTooPvuu0+SNGrUKC1fvly7d+9WZGSkPDw89Nprr8nd3V3Vq1fXsWPHNG/ePHXt2tXVVQEAAACAdFx+Jah48eL64YcfdPLkSaWmpmrZsmXy8PBQzZo1tWPHDgUHB8vd/f+yV6NGjRQREaGYmBhXVwUAAAAA0nH5laCxY8dqyJAheuCBB+Tm5iar1arp06ercuXKOnv2rGw2m9P8pUuXliSdPn1aPj4+2d6uu3vW85ybG+NB3O5y+zXKj20gP+5Tbsqvx6tAAbd8sW92uyHDMHJ1G/nhOGUkv+5Xbsivxyq/7hfgSi4PQUeOHJG3t7dmzZqlMmXKaPny5Ro5cqQ+/fRTJSYmysPDw2l+T09PSVJSUlK2t2m1WlSiROEc1Ru3F2/vgnldhTsOx8zcihX1kmG3q0gRr7yuiksYdrssVr7IZQfvBaANADfm0hB06tQpDR8+XAsXLlSDBg0kSQEBATp8+LBmzJghLy8vJScnOy2TFn4KFSqU7e3a7Ybi4i5neX43NytvELe5uLgEpabac239+bEN5PYxy2/yWxso7OUhi9WqiA3zlBBzJq+rkyMFfcqpWod+vA9kE+8FWUcbAPIfb++CWboa6tIQtHfvXl25ckUBAQFO0+vWrauff/5Z5cuXV3R0tFNZ2t9lypTJ0bZTUjjZ85PUVDuv6U3imEGSEmLOKCHqeF5XwyVo09nDcQNtALgxl/Y1KFeunCTp4MGDTtMPHTqkKlWqKDg4WDt37lRqaqqjbMuWLapWrVqO7gcCAAAAgKxyaQiqU6eOGjRooJEjR+r3339XZGSkpk2bpi1btujZZ59V165dFR8fr7Fjx+rw4cNatWqVFi1apP79+7uyGgAAAACQKZd2h7NarZo9e7amTZum0aNH6+LFi7LZbFq4cKHq1asnSZo/f77eeustdenSRaVKldKIESPUpUsXV1YDAAAAADLl8tHhihUrpldffVWvvvpqhuV16tTRsmXLXL1ZAAAAAMgSxh8FAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACm4p7XFQDgGm5u+ec3DbvdkN1u5HU1AABAPkUIAu5wxYp6ybDb5e1dMK+r4jJ2e6piYxMIQgAAIFcQgoA7XGEvD1msVkVsmKeEmDN5XZ0cK+hTTtU69JPVaiEEAQCAXEEIAvKJhJgzSog6ntfVAAAAuO3ln5sIAAAAACALCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUciUErVmzRu3atVNAQIDat2+vr7/+2lF24MABhYaGql69emrevLkWLFiQG1UAAAAAgAy5PAStXbtWY8aMUbdu3bRhwwa1a9dOQ4cO1a5duxQbG6vevXuratWqWrlypQYNGqTp06dr5cqVrq4GAAAAAGTI3ZUrMwxD06dP19NPP62nn35akjRw4ED98ccf2rZtm7Zt2yYPDw+99tprcnd3V/Xq1XXs2DHNmzdPXbt2dWVVAAAAACBDLr0SdPToUZ06dUodO3Z0mr5gwQL1799fO3bsUHBwsNzd/y97NWrUSBEREYqJiXFlVQAAAAAgQy69EhQZGSlJunz5sp555hnt379fFStW1PPPP6+WLVvq7NmzstlsTsuULl1aknT69Gn5+Phke9vu7lnPc25ujAdxu8vt14g2cPujDYA2kD35db9yQ349Vvl1vwBXcmkIio+PlySNHDlSL7zwgoYNG6Zvv/1WAwYM0Mcff6zExER5eHg4LePp6SlJSkpKyvZ2rVaLSpQonP2K47bj7V0wr6uAPEYbAG0gezhuoA0AN+bSEFSgQAFJ0jPPPKMuXbpIkmrWrKn9+/fr448/lpeXl5KTk52WSQs/hQoVyvZ27XZDcXGXszy/m5uVN4jbXFxcglJT7bm2ftrA7Y82ANpA9uT2cctPaANA/uPtXTBLV0NdGoLKli0rSem6vNWoUUM//vijKlSooOjoaKeytL/LlCmTo22npHCy5yepqXZeU5OjDYA2kD0cN9AGgBtzaafRWrVqqXDhwtqzZ4/T9EOHDqly5coKDg7Wzp07lZqa6ijbsmWLqlWrlqP7gQAAAAAgq1wagry8vNS3b1/NmjVLGzZs0PHjx/XBBx/ot99+U+/evdW1a1fFx8dr7NixOnz4sFatWqVFixapf//+rqwGAAAAAGTKpd3hJGnAgAEqWLCgpk6dqqioKFWvXl0zZsxQSEiIJGn+/Pl666231KVLF5UqVUojRoxw3D8EAAAAALnN5SFIknr37q3evXtnWFanTh0tW7YsNzYLAAAAADfEQPIAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATIUQBAAAAMBUCEEAAAAATMU9rysAAAAA13Fzyz+/cdvthux2I6+rgXyIEAQAAJAPFCvqJcNul7d3wbyuisvY7amKjU0gCMHlCEEAAAD5QGEvD1msVkVsmKeEmDN5XZ0cK+hTTtU69JPVaiEEweUIQQAAAPlIQswZJUQdz+tqALe1/NNpFAAAAACygBAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFTc87oCAADAddzc8sfvm3a7IbvdyOtqAMinCEEAAOQDxYp6ybDb5e1dMK+r4hJ2e6piYxMIQgByBSEIAIB8oLCXhyxWqyI2zFNCzJm8rk6OFPQpp2od+slqtRCCAOQKQhAAAPlIQswZJUQdz+tqAMBtLX90HAYAAACALCIEAQAAADAVQhAAAAAAUyEEAQAAADCVXA1BERERCgwM1KpVqxzTDhw4oNDQUNWrV0/NmzfXggULcrMKAAAAAOAk10LQlStXNGzYMF2+fNkxLTY2Vr1791bVqlW1cuVKDRo0SNOnT9fKlStzqxoAAAAA4CTXhsieMWOGChcu7DTtiy++kIeHh1577TW5u7urevXqOnbsmObNm6euXbvmVlUAAAAAwCFXrgRt375dy5Yt03vvvec0fceOHQoODpa7+/9lr0aNGikiIkIxMTG5URUAAAAAcOLyK0FxcXEaMWKExo0bp3LlyjmVnT17VjabzWla6dKlJUmnT5+Wj49Ptrfr7p71POfmxngQt7vcfo1oA7c/2gBoA6ANQOJ1Qu5weQh67bXXVK9ePXXs2DFdWWJiojw8PJymeXp6SpKSkpKyvU2r1aISJQrfeEbcMby9C+Z1FZDHaAOgDYA2AIl2gNzh0hC0Zs0a7dixQ+vXr8+w3MvLS8nJyU7T0sJPoUKFsr1du91QXNzlG8/4/7m5WTmhbnNxcQlKTbXn2vppA7c/2gBoA6ANQMr9doD8xdu7YJauHro0BK1cuVIxMTFq3ry50/RXX31VCxYsUPny5RUdHe1UlvZ3mTJlcrTtlBROjvwkNdXOa2pytAHQBkAbgEQ7QO5waQiaNGmSEhMTnaa1bt1aL774otq1a6cvv/xSS5cuVWpqqtzc3CRJW7ZsUbVq1XJ0PxAAAAAAZJVL7zQrU6aMqlSp4vRPknx8fFShQgV17dpV8fHxGjt2rA4fPqxVq1Zp0aJF6t+/vyurAQAAAACZuqXDbfj4+Gj+/PmKiIhQly5dNHPmTI0YMUJdunS5ldUAAAAAYGK59rDUNAcPHnT6u06dOlq2bFlubxYAAAAAMsTA6wAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFQIQQAAAABMhRAEAAAAwFTc87oCAAAAQF6xWi2yWi15XQ2XsdsN2e1GXlfjtkcIAgAAgClZrRYVL15Ibm75p3NUaqpdFy5cJgjdACEIAAAApmS1WuTmZtWsz3/TqeiLeV2dHKtQupgGPtlEVquFEHQDhCAAAACY2qnoi4o8FZvX1cAtlH+u/QEAAABAFhCCAAAAAJgKIQgAAACAqRCCAAAAAJgKIQgAAACAqRCCAAAAAJgKIQgAAACAqRCCAAAAAJiKy0PQhQsX9Morr+j+++9XUFCQnnzySe3YscNRfuDAAYWGhqpevXpq3ry5FixY4OoqAAAAAECmXB6Chg4dqj179mjKlClasWKFateurWeeeUZHjhxRbGysevfurapVq2rlypUaNGiQpk+frpUrV7q6GgAAAACQIXdXruzYsWP67bff9PnnnysoKEiSNHbsWP3888/asGGDvLy85OHhoddee03u7u6qXr26jh07pnnz5qlr166urAoAAAAAZMilV4JKlCihDz/8UP7+/o5pFotFhmHo4sWL2rFjh4KDg+Xu/n/Zq1GjRoqIiFBMTIwrqwIAAAAAGXLplSBvb281a9bMadrXX3+t48eP67777tPUqVNls9mcykuXLi1JOn36tHx8fLK9bXf3rOc5NzfGg7jd5fZrRBu4/dEGQBsAbQBS7r5O+bUN5Nf9ciWXhqD/2rlzp8aMGaMHHnhALVu21DvvvCMPDw+neTw9PSVJSUlJ2d6O1WpRiRKFc1RX3F68vQvmdRWQx2gDoA2ANgCJdpAdHLMby7UQ9P3332vYsGGqW7eupkyZIkny8vJScnKy03xp4adQoULZ3pbdbigu7nKW53dzs9I4bnNxcQlKTbXn2vppA7c/2gBoA6ANQMrddpBf20Bunzu3M2/vglm6EpYrIejTTz/VW2+9pVatWmnSpEmOqz9ly5ZVdHS007xpf5cpUyZH20xJMecLnV+lptp5TU2ONgDaAGgDkGgH2cExuzGXdxhcsmSJ3nzzTXXv3l3Tpk1z6v4WHBysnTt3KjU11TFty5YtqlatWo7uBwIAAACArHJpCIqIiNDbb7+tVq1aqX///oqJidG5c+d07tw5/fvvv+ratavi4+M1duxYHT58WKtWrdKiRYvUv39/V1YDAAAAADLl0u5w3377ra5cuaKNGzdq48aNTmVdunTRu+++q/nz5+utt95Sly5dVKpUKY0YMUJdunRxZTUAAAAAIFMuDUHPPfecnnvuuevOU6dOHS1btsyVmwUAAADw/+WnIbLtdkN2u+Hy9ebqENkAAAAAbo1iRb1k2O35asQ7uz1VsbEJLg9ChCAAAAAgHyjs5SGL1aqIDfOUEHMmr6uTYwV9yqlah36yWi2EIAAAAACZS4g5o4So43ldjdta/ukwCAAAAABZQAgCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCqEIAAAAACmQggCAAAAYCp5EoLsdrvCwsLUtGlT1a1bV3369NGxY8fyoioAAAAATCZPQtDs2bO1dOlSTZgwQcuWLZPFYlG/fv2UnJycF9UBAAAAYCK3PAQlJyfro48+0qBBg9SsWTP5+flp6tSpioqK0saNG291dQAAAACYzC0PQeHh4bp06ZIaNWrkmObt7a1atWpp+/btt7o6AAAAAEzGYhiGcSs3+N1332nQoEHas2ePvLy8HNNfeuklJSYmau7cuTe9TsMwZLdnfTcsFslqtepifKJSU+03vb3biUcBNxUp5Kkrl+Jk2FPzujo5ZrG6qUBhb9ntduVmy6QN3L5oA9mTn9oBbSB7aAPZ2A5t4LZ2K9oBbeD2lp02YLVaZLFYbjifew7rdtMSEhIkSR4eHk7TPT09dfHixWyt02KxyM3txjv7X8WKeN14pjtEgcLeeV0Fl7Jab81FStrA7Ys2kD35qR3QBrKHNnDzaAO3t1vRDmgDt7fcaAO3vDtc2tWf/w6CkJSUpIIFC97q6gAAAAAwmVsegsqVKydJio6OdpoeHR2tsmXL3urqAAAAADCZWx6C/Pz8VKRIEW3dutUxLS4uTvv371eDBg1udXUAAAAAmMwtvyfIw8NDoaGhmjRpkkqWLKkKFSpo4sSJKlu2rFq1anWrqwMAAADAZG55CJKkF198USkpKRo3bpwSExMVHBysBQsWpBssAQAAAABc7ZYPkQ0AAAAAeemW3xMEAAAAAHmJEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEAQAAADAVAhBAAAAAEyFEHQbWrNmjdq1a6eAgAC1b99eX3/99XXn/+OPP9SjRw/Vr19fTZs21dixY3XhwgVH+ZUrV+Tv7y9fX1+nf1OnTs3lPbl9tWzZUr6+vvr4448zLH/llVfk6+urGTNm3OKaSadPn9aXX37p+Ltly5Z5Uo9rjR07VqNGjUo3fcuWLXrkkUdUp04dtW7dWmvWrHEqT0pK0uuvv657771XgYGBevHFFxUTE3NT68hvLly4oFdeeUX333+/goKC9OSTT2rHjh2O8ujoaA0dOlQNGjRQSEiIXn75ZZ0/fz7L61+7dq1atmyZbvrJkyfVv39/BQUFqXHjxpo4caJSU1Od5vnss8/0wAMPqE6dOurWrZv+/PPP7O8oMjR79mz16NHDadqBAwcUGhqqevXqqXnz5lqwYIFTud1uV1hYmJo2baq6deuqT58+Onbs2A23NXPmzHTv+76+vkpJSXHMc6PXPCvtBnkjo7aUkay0A7jeqVOnMjzuy5cvl5R7532axMREdezYUatWrUpX5orzPl98Xhi4raxZs8aoWbOmsXDhQiMyMtKYOXOm4efnZ/zxxx8Zzn/06FGjXr16xoQJE4wjR44Y27dvNzp06GD06NHDMU94eLhhs9mMAwcOGNHR0Y5/8fHxt2q3bjstWrQwateubTz++OPpyq5cuWKEhIQYvr6+RlhY2C2vW2hoqDFy5EjH3y1atMiTehiGYaSkpBjvvvuuYbPZnOpkGIZx+PBhIyAgwJg2bZpx5MgRY/78+UbNmjWNzZs3O+YZNWqU0apVK2P79u3Gnj17jM6dOxvdu3e/qXXkN7179zY6depkbN++3Thy5Ijx5ptvGnXq1DEOHz5sJCUlGe3btzceffRRY+/evcauXbuMhx56yOjbt2+W1v3ll18atWvXNlq0aOE0PTk52WjdurXRv39/4+DBg8bGjRuNhg0bGtOnT3fMs2rVKqNu3brGunXrjL///tsYPny40bBhQyMmJsal+29mH3/8seHr62uEhoY6pp0/f94ICQkxxo4daxw+fNhYsWKFERAQYKxYscIxz4wZM4x7773X+PHHH40DBw4Yffr0MVq1amUkJSVdd3svvPCCMXz4cKf3/ejoaEf5jV7zrLQb5I2M2lJmbtQOkDs2bdpkBAQEGFFRUU7HPSEhIVfPe8MwjNjYWKNnz56GzWYzVq5c6VTmivM+v3xeEIJuI3a73WjRooXx7rvvOk3v06ePMWfOnAyXmTJlitG6dWvDbrc7pm3fvt2w2WzG8ePHDcMwjHXr1hn169fPvYrfgVq0aGH07dvX8PX1NU6fPu1U9ssvvxgtWrQwmjdvbuoQdPjwYeOxxx4zGjVqZDRv3jxdCBo/frzx2GOPOU0bOnSo0adPH8MwDOPs2bOGn5+f8dNPPznKjx49athsNmPXrl1ZWkd+ExkZadhsNmPnzp2OaXa73WjVqpUxbdo0Y+XKlUa9evWMc+fOOcp//vln44EHHjD+/fffTNf777//Gi+//LJRq1Yto1OnTulC0Pr16w1/f3/j4sWLjmlLly41goKCHB+orVu3NiZOnOgov3LlitGsWTNj7ty5Od5vszt79qzxzDPPGPXq1TMeeughpy+uc+bMMZo2bWpcuXLFMW3y5MlGmzZtDMMwjKSkJCMwMNBYsmSJo/zixYtGnTp1jA0bNlx3u61btzY+/vjj65Zf7zXPSrvBrXW9tpSZG7UD5I4PPvjA6NSpU4ZluXnef//998b9999vdOnSJcMQ5IrzPr98XtAd7jZy9OhRnTp1Sh07dnSavmDBAvXv3z/DZTp16qT33ntPFoslXVlal7iDBw+qRo0aLq/vna5OnToqX768vvnmG6fpX331ldq2bZvumO7atUs9e/ZU/fr1FRISojFjxujixYuO8pYtW+rtt99Wu3btFBISot9//12GYWjevHl64IEHVLduXT388MNat25dpnXq0aOHtm3bptWrVzt1aTp37pwGDRqkevXqKSQkRO+8847TpemVK1eqc+fOqlOnjurVq6cePXpo3759TnX78MMPNWjQIAUGBiokJERvv/32dbtDbNu2TTVr1tSGDRtUsWLFdOU7duxQo0aNnKY1atRIO3fulGEY2rlzpyQpJCTEUV6tWjWVKVNG27dvz9I68psSJUroww8/lL+/v2OaxWKRYRi6ePGifvnlFzVq1Eh33XWXo7xp06b6/vvvVaRIkUzXe/LkSV28eFErVqzQgw8+mK58x44dql27try9vR3TGjVqpPj4eIWHhysmJkaRkZFOr4W7u7saNGjgeK2Qffv27VOxYsW0bt061a1b16lsx44dCg4Olru7u2Nao0aNFBERoZiYGIWHh+vSpUtOr423t7dq1ap13dcmISFBx48fz/S9Pyuv+Y3aDW6967WljNyoHSD3XO+7V26d95L0448/qkePHlq6dGm6Mlec9/np84IQdBuJjIyUJF2+fFnPPPOM7r33Xj322GP63//+l+ky1atXV7169ZymzZs3T6VKlZKfn58k6dChQ0pJSdEzzzyjxo0b65FHHtHatWtzazfuKG3btnUKQcnJyfr+++/Vvn17p/n27t2rHj16qEaNGlq2bJnCwsK0d+9e9enTR3a73THf559/rnHjxmn+/PkKCgrS1KlTtWTJEo0bN07r169Xz5499dprr+mzzz7LsD4zZsxQYGCg2rZtqxUrVjimr1ixQg0aNND69es1fPhwLVy4UKtXr5Ykbdy4Ua+++qp69eqlr7/+WosWLVJiYqLGjh2bbt3BwcFavXq1Bg0apE8++UQbNmzI9Ng8+eSTev311+Xj45Nh+dmzZ1W2bFmnaaVLl1ZCQoJiY2MVFRWlEiVKyNPTM908Z86cydI68htvb281a9ZMHh4ejmlff/21jh8/rvvuu0+RkZGqWLGiZs2apVatWqlFixYaP3684uLirrtePz8/zZs3TzVr1sywPLPjLF29B+3s2bOSpHLlyqWbJ+21Qva1bNlSkydPVqVKldKV5dZr8/fff8tut+ubb75R69at1bx5c40YMULR0dGO7d5ovTeqG26967WljNyoHSD3HDp0SDExMXrqqafUuHFjPfnkk/rll18k5e578ptvvqm+ffs6fc6kccV5n58+LwhBt5H4+HhJ0siRI9WhQwd99NFHatKkiQYMGKAtW7ZkaR3vvvuufvrpJ73yyisqUKCApKtvghcvXtTTTz+tBQsWqFWrVho9erTTl2yzatu2rfbs2eM4cX/77TeVKFFCtWrVcprvo48+kq+vr1555RXVqFFDISEhmjx5sv766y/Hm5okNWvWTI0bN1ZAQIBSUlK0cOFCjRw5Ui1atFDlypXVtWtX9erVK90NkGmKFy+uAgUKyMvLSyVLlnRMb9WqlZ5++mlVqlRJjz76qHx9ffXXX385lpkwYYI6d+6sChUqqG7dunrsscd08OBBp3U3bdpUPXv2VNWqVRUaGio/Pz/98ccf2T52iYmJ6d5k0/5OTk5WQkJChm/Cnp6eSkpKytI68rudO3dqzJgxeuCBB9SyZUvFx8drzZo1OnjwoCZPnqw33nhDO3fu1IABA3J0ZSyj45wWTpOSkpSQkCBJGc6T9lohd+TWa/P3339LkooWLaqwsDBNmDBBhw8fVs+ePZWQkJCl9d6obrj93agdIHckJycrMjJS8fHxGjx4sD788EMFBASoX79+2rJlS569J7vivM9PnxfuN54Ft0paaHnmmWfUpUsXSVLNmjW1f/9+ffzxxxowYIDT/F9++aXKly8v6eoIcK+88opWr16tV199Va1bt3bM980338hut6tgwYKOdZ45c0YLFizQo48+eit27bbl7++vSpUq6ZtvvlHv3r311VdfqUOHDunmO3TokJo0aeI0zdfXV97e3jp48KCaNWsmSapSpYqj/PDhw0pKStLIkSM1evRox/SUlBQlJycrMTFRXl5eWapntWrVnP4uVqyY480mODhYJUuW1OzZs3Xs2DFFRETowIEDTleopKtXDa9VtGhRXblyJUvbz4inp2e6oJL2d8GCBeXl5ZVhkElKSnK0xRutIz/7/vvvNWzYMNWtW1dTpkyRdPU9oFChQpo8ebLj/aBYsWJ67LHH9Oeff2rz5s2aO3euYx0dO3bUG2+8ccNtZfRapLWfQoUKOdphRvPk99chr93Ma3Pt+8W1r01gYKDT8l9++aW6du2qBx98UMWKFXNMv+eee9SsWTP98MMPqly5smO9/9122npvVDfcXrLTDtq1a3erq2kKHh4e2r59u9zd3R1hwd/fX0eOHNGCBQty7bxP+06Ymay815vp84IQdBtJu/xos9mcpteoUUM//vhjuqGD0y5PxsfH64UXXtCOHTs0efLkdF25/tsdSbr6BX79+vUurP2dK61L3FNPPaVNmzY5hq+8lmEYGd53ZbfbHV9WJTm9WaX9cj9t2jTdfffd6ZbN6CpJZtzc3DKsk3T1jW/EiBHq0KGD6tSpo0cffVSHDh1K9+U4o+3l5OpCuXLl0nWpiI6OVqFChVS0aFGVLVtWFy5cUHJystO2o6OjHW39RuvIrz799FO99dZbatWqlSZNmuQ4PmXLlk3Xpu655x5JV+/7eeKJJ9S2bVtH2fXuE7pW2bJldejQIadpace9TJkyjg/O6Ohop7B87WuF3FG2bNkMzwHp6muTdt9edHS0I7ik/Z3W5Tmzz4Zrv/imra948eI6e/asoz//9V7zG7Ub3F6y0w6QezL6ocBms+nXX3/N1fP+erLyXm+mzwu6w91GatWqpcKFC2vPnj1O0w8dOqTKlSurSpUqTv/c3d2VnJys/v37688//9T8+fPTBaALFy6oQYMG6e4B+vPPPx1frswurUvcihUrVKlSpXRXTKSrb1zXPstFksLDwxUfH5/h/JJ09913y93dXadPn3Z63X766SctWLBAVqtrTr85c+bo0Ucf1Xvvvafu3bsrODhYJ06ckJSzkHMjDRo00LZt25ymbdmyRUFBQbJarapfv77sdrtjgATp6uAfUVFRatCgQZbWkR8tWbJEb775prp3765p06Y5BcQGDRooPDxciYmJjmlpH0ZVqlRR8eLFndpSZvdr/VdwcLD279/v6HIrXT3OhQsXlp+fn0qWLKlq1app69atjvKUlBTt2LHD8VohdwQHB2vnzp1OA51s2bJF1apVk4+Pj/z8/FSkSBGn1yYuLk779+93vDYZfTZMnjxZ7dq1c3oPOHnypGJjY1WjRo0sveY3aje4vWSnHSB3hIeHKzAwMN33hr/++ks1atTItfP+Rlxx3uenz4v8+S3jDuXl5aW+fftq1qxZ2rBhg44fP64PPvhAv/32m3r37p3hMnPnztXOnTv1xhtvqHr16jp37pzjX3JysooXL67GjRtrypQp+uWXXxQZGakPP/xQ69at06BBg27xHt6eatasqSpVqmjKlCnpQmSaXr16KTw8XG+88YaOHDmibdu2adiwYapVq5buvffeDJcpWrSonnjiCU2bNk1r1qzRiRMntHr1ak2cONFp9K//Kly4sE6dOpXlX+nKlSunP/74Q/v27dPx48e1cOFCffrpp5Jy976aHj16aO/evZo0aZKOHDmijz76SN9++6369u0r6eovRu3bt9e4ceO0detW7d27Vy+//LIaNmzoGMzjRuvIbyIiIvT222+rVatW6t+/v2JiYhzn67///qsnnnhCbm5uevnll3Xo0CHt3LlT48aNU0hIiGrXrp3t7T744IMqVaqUBg8erPDwcH3//feaOnWq+vTp4whhffr00ccff6zVq1fr8OHDGjNmjBITE03fZTa3de3aVfHx8Ro7dqwOHz6sVatWadGiRY4RQT08PBQaGqpJkyZp06ZNCg8P15AhQ1S2bFm1atUq0/U+9NBDOnHihN58801FRERo+/btGjRokIKCgtS0aVNJN37Ns9JucHvLSjuA69lsNt1zzz16/fXXtWPHDh05ckTvvPOOdu/ereeeey7XzvuscMV5n28+L/JmZG5cz0cffWS0bNnSqF27ttGpUydj48aNmc7bunVrw2azZfjv999/NwzDMC5dumS8++67RrNmzQx/f3/j4Ycfvu46zeC/z96ZOnWqYbPZjBMnTmQ6z6+//mo89thjhr+/v9GoUSNj3LhxRmxsbKbzG8bVsfNnzpzpeDjrAw88YMyZM8fpuU7/9cMPPxgNGzY0goODjZSUlAzXe+2zhI4fP2706tXLqFevntGwYUOjZ8+expdffmnYbDZj69atmdbtv88jup7M5v3pp5+MDh06GP7+/sZDDz1kfPnll07lly5dMsaOHWs0aNDAaNCggTF06FDj/PnzN7WO/OSDDz7I9HxNO74RERHGs88+a9StW9cIDg42Ro8ebcTFxWV5G2FhYemeE2QYV59R1Lt3byMgIMC47777jGnTphmpqalO88yfP9+4//77jTp16hhPPfWUsX///pztMNIZOXJkume77Nmzx3j88ccNf39/o0WLFsbixYudylNSUoz333/faNSokVGvXj2jX79+Tu9Vmfn999+NJ554wvHeMHr0aOPChQtO89zoNc9Ku0HeyKgtZSQr7QCuFxMTY4wePdpo0qSJERAQYHTr1s3Yvn27ozy3zvtrZfScIMNwzXmfHz4vLIaRDx/GAQAAAACZoDscAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEAAAAwFUIQAAAAAFMhBAEA8rUZM2bI19c3r6sBALiNEIIAAAAAmAohCAAAAICpEIIAwIRatmypsLAwvffee2rcuLHq1KmjZ555RhEREY55fvvtNz311FOqX7++QkJC9PLLL+vMmTM3vS273a4PP/xQrVq1kr+/v9q0aaPFixc7zdOjRw+98sor+uCDD9S0aVPVrVtX/fr10z///KOVK1eqVatWCgwMVK9evXTy5Emn5UaNGqW5c+eqSZMmCgoK0vPPP68TJ05ct05fffWVHnnkEQUGBqpJkyZ65ZVXdPHiRUnS33//LV9fXy1btsxpmaioKNWsWVOrV6+WJCUlJen9999Xs2bN5O/vr44dO+qrr75Kt63ly5erffv28vf3V/PmzTVjxgylpKQ4ys+fP69hw4apSZMmCggI0MMPP6w1a9bc1DEGANwcQhAAmNQnn3yio0eP6p133tGECRP0119/adSoUZKktWvXqk+fPipTpoymTJmi0aNHa9euXerWrZtiYmJuajuvvfaawsLC1KlTJ82ZM0cPPfSQ3n77bc2aNctpvi+//FKbN2/WW2+9pdGjR2vz5s0KDQ3V4sWLNXLkSI0dO1Z79uzRG2+84bTcpk2btHLlSo0dO1ZvvPGGwsPD1bNnT12+fDnD+syePVtDhgxR3bp1FRYWpoEDB+rbb79Vjx49lJiYqHvuuUd169bV2rVrnZZbu3atvLy81KZNGxmGoYEDB2rp0qXq3bu3PvjgAwUGBmrIkCFOAWbu3LkaP3687r33Xs2ZM0fdu3fXvHnz9MorrzjmGT58uA4fPqzXX39dH374oWrVqqWRI0dq69atN3WcAQA3wQAAmE6LFi2MFi1aGCkpKY5pM2bMMGw2m3H+/HmjSZMmRq9evZyWOXbsmFG7dm3j/fffz/J2jh49avj6+hpz5851mj516lQjICDAOH/+vGEYhhEaGmoEBAQYFy5ccMzTp08fw2azGcePH3dMe+ONN4z69es7/g4NDTVq1aplHDt2zDFt3759hs1mMz799FPDMAwjLCzMsNlshmEYxoULFwx/f39j7NixTvXZvn27YbPZjM8++8wwDMNYunRpum23bdvWGD16tGEYhvHrr78aNpvN+PLLL53WM2zYMKNJkybGlStXjLi4OKNu3brGK6+84jTPF198YdhsNuPQoUOGYRiGv7+/MXv2bEd5amqq8e677xrbt2/P/MACAHKEK0EAYFIBAQFyc3Nz/F22bFlJV7uDnTt3Th07dnSav3LlygoMDLypKxS///67DMNQy5YtlZKS4vjXsmVLJSUlaefOnY55q1evrmLFijn+LlWqlEqWLKlKlSo5phUvXlz//vuv0zYCAwNVuXJlx9+1atVSpUqVtGPHjnT12b17t5KTk9PtW4MGDVShQgXHvrVv314FCxZ0XA3au3evjhw5okceeUSStGXLFlksFjVr1izdfp07d05///23du3apYSEhAz3Xbra3VCSQkJCNGPGDL300ktatWqVzp8/r5EjR6pBgwZZPs4AgJvjntcVAADkjYIFCzr9bbVe/V0sLRjddddd6Za56667tH///ixv48KFC5KuhoqMREVFOf5fpEiRG9YxI6VLl043zcfHR3Fxcemmp933k9m+pQWsIkWK6KGHHtK6dev0wgsvaPXq1apSpYojmFy4cEGGYSgoKCjDOkVHRzu29eyzz2Y6jyRNnTpVc+bM0ddff61vvvlGVqtVjRs31muvveYUAAEArkMIAgA4KV68uCTpn3/+SVd27tw5lShRIsvr8vb2liQtWrRIhQsXTldevnz57FXyGmlB61r//POP09WhNGlXmv755x9Vr17dqezcuXNOoaNr165avXq19u7d67hnKE3RokVVqFAhffLJJxnWqUqVKvrjjz8kSZMmTVLVqlXTzZMWxIoWLarhw4dr+PDhOnr0qDZt2qTZs2fr9ddf1/z586+/8wCAbKE7HADAiYeHh0qVKqX169c7TT9x4oR2796d6dWPjAQHB0uSYmNjFRAQ4Ph34cIFTZs2LcMAc7N27dql8+fPO/7et2+fTp48qXvvvTfdvHXr1pWHh0e6fduxY4dOnz7ttG/BwcGqWrWqJk6cqNjYWHXu3NlR1rBhQ12+fFmGYTjt199//61Zs2YpJSVFdevWVYECBRQVFeU0T4ECBTR58mSdPHlSp06dUrNmzfTNN99Iku6++27169dPjRs31tmzZ3N8bAAAGeNKEADAicVi0dChQzV69GgNGTJEnTt3VmxsrGbOnKlixYqpd+/eWV6XzWZTp06dNH78eJ06dUr+/v6KiIjQ1KlTVbFixQyvkNyshIQE9evXT88//7wuXbqkqVOnymazqUOHDunmLV68uJ599lnNnDlTBQoU0AMPPKCTJ09q+vTpqlGjhuOenzRdu3bV5MmT1aRJE5UrV84xvVmzZgoODtaAAQM0YMAAVa9eXXv37tWMGTN03333qWTJkpKkvn37avr06YqPj1dISIiioqI0ffp0WSwW+fn5qWjRoipbtqwmTJig+Ph4Va5cWX/99Zd++ukn9e/fP8fHBgCQMUIQACCdRx55RIULF9bcuXM1cOBAFSlSRE2bNtXQoUNVqlSpm1rXO++8o7lz52rp0qU6e/asfHx81K5dOw0ePNhpYIbsatCggRo1aqSxY8dKuvoMpBEjRsjDwyPD+QcNGqS77rpLn376qZYvX67ixYvroYce0uDBg9Pdg9S8eXNNnjw5XTiyWq368MMPNX36dM2dO1cxMTEqU6aMevXqpYEDBzrmGzx4sEqVKqUlS5Zo/vz5KlasmO69914NHTpURYsWlSTNnDlTU6ZM0fTp0xUbG6ty5crphRdeyPReIgBAzlkMwzDyuhIAAGRH2n06/334qqvMmzdP8+fP1y+//JJpqAIA3Hm4EgQAuGmpqanKym9o7u535sfM6tWrdejQIS1ZskTPPvssAQgA8pk789MJAJCnevXqpW3btt1wvoMHD96C2rheeHi4li5dqgcffFD9+vXL6+oAAFyM7nAAgJt29OhRXbp06YbzBQQE3ILaAABwcwhBAAAAAEyF5wQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABTIQQBAAAAMBVCEAAAAABT+X+zP89Tmteq9QAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 1000x500 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.countplot(x=\"no_employees\", hue=\"treatment\", data=data2)\n", + "plt.title(\"number of employees vs mental health\",fontsize=18,fontweight=\"normal\")\n", + "plt.ylabel(\"\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Age</th>\n", + " <th>Gender</th>\n", + " <th>self_employed</th>\n", + " <th>family_history</th>\n", + " <th>treatment</th>\n", + " <th>no_employees</th>\n", + " <th>remote_work</th>\n", + " <th>tech_company</th>\n", + " <th>benefits</th>\n", + " <th>care_options</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>37</td>\n", + " <td>Female</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>6-25</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Not sure</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>44</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>More than 1000</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Don't know</td>\n", + " <td>No</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>32</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>6-25</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>31</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>26-100</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>31</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>100-500</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>No</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1252</th>\n", + " <td>29</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>100-500</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1253</th>\n", + " <td>36</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>No</td>\n", + " <td>More than 1000</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Don't know</td>\n", + " <td>No</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1255</th>\n", + " <td>32</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>26-100</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1256</th>\n", + " <td>34</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>More than 1000</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1258</th>\n", + " <td>25</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>26-100</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>971 rows × 10 columns</p>\n", + "</div>" + ], + "text/plain": [ + " Age Gender self_employed family_history treatment no_employees \\\n", + "0 37 Female No No Yes 6-25 \n", + "1 44 Male No No No More than 1000 \n", + "2 32 Male No No No 6-25 \n", + "3 31 Male No Yes Yes 26-100 \n", + "4 31 Male No No No 100-500 \n", + "... ... ... ... ... ... ... \n", + "1252 29 Male No Yes Yes 100-500 \n", + "1253 36 Male No Yes No More than 1000 \n", + "1255 32 Male No Yes Yes 26-100 \n", + "1256 34 Male No Yes Yes More than 1000 \n", + "1258 25 Male No Yes Yes 26-100 \n", + "\n", + " remote_work tech_company benefits care_options \n", + "0 No Yes Yes Not sure \n", + "1 No No Don't know No \n", + "2 No Yes No No \n", + "3 No Yes No Yes \n", + "4 Yes Yes Yes No \n", + "... ... ... ... ... \n", + "1252 Yes Yes Yes Yes \n", + "1253 No No Don't know No \n", + "1255 Yes Yes Yes Yes \n", + "1256 No Yes Yes Yes \n", + "1258 No No Yes Yes \n", + "\n", + "[971 rows x 10 columns]" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data2" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "data3 = data2.reset_index(drop = True) " + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "<class 'pandas.core.frame.DataFrame'>\n", + "RangeIndex: 971 entries, 0 to 970\n", + "Data columns (total 10 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Age 971 non-null int64 \n", + " 1 Gender 971 non-null object\n", + " 2 self_employed 971 non-null object\n", + " 3 family_history 971 non-null object\n", + " 4 treatment 971 non-null object\n", + " 5 no_employees 971 non-null object\n", + " 6 remote_work 971 non-null object\n", + " 7 tech_company 971 non-null object\n", + " 8 benefits 971 non-null object\n", + " 9 care_options 971 non-null object\n", + "dtypes: int64(1), object(9)\n", + "memory usage: 76.0+ KB\n" + ] + } + ], + "source": [ + "data3.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dies ist ein DataFrame aus der pandas-Bibliothek. Es enthält Statistiken zu various Themen wie dem Alter, der Geschlechtsaufteilung, dem Arbeitsstatus, der Familiengeschichte und einer ganzen Reihe anderer Informationen über eine Person. Es heißt DataFrame, weil es aus zwei Komponenten besteht, einer Tabelle der Daten und einer Index-Spalte." + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Age</th>\n", + " <th>Gender</th>\n", + " <th>self_employed</th>\n", + " <th>family_history</th>\n", + " <th>treatment</th>\n", + " <th>no_employees</th>\n", + " <th>remote_work</th>\n", + " <th>tech_company</th>\n", + " <th>benefits</th>\n", + " <th>care_options</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>count</th>\n", + " <td>971.000000</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " <td>971</td>\n", + " </tr>\n", + " <tr>\n", + " <th>unique</th>\n", + " <td>NaN</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>6</td>\n", + " <td>2</td>\n", + " <td>2</td>\n", + " <td>3</td>\n", + " <td>3</td>\n", + " </tr>\n", + " <tr>\n", + " <th>top</th>\n", + " <td>NaN</td>\n", + " <td>Male</td>\n", + " <td>No</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>26-100</td>\n", + " <td>No</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " <td>Yes</td>\n", + " </tr>\n", + " <tr>\n", + " <th>freq</th>\n", + " <td>NaN</td>\n", + " <td>761</td>\n", + " <td>852</td>\n", + " <td>535</td>\n", + " <td>613</td>\n", + " <td>223</td>\n", + " <td>675</td>\n", + " <td>798</td>\n", + " <td>395</td>\n", + " <td>379</td>\n", + " </tr>\n", + " <tr>\n", + " <th>mean</th>\n", + " <td>32.330587</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>std</th>\n", + " <td>7.268977</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>min</th>\n", + " <td>18.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>25%</th>\n", + " <td>27.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>50%</th>\n", + " <td>32.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>75%</th>\n", + " <td>36.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " <tr>\n", + " <th>max</th>\n", + " <td>62.000000</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " <td>NaN</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Age Gender self_employed family_history treatment no_employees \\\n", + "count 971.000000 971 971 971 971 971 \n", + "unique NaN 2 2 2 2 6 \n", + "top NaN Male No No Yes 26-100 \n", + "freq NaN 761 852 535 613 223 \n", + "mean 32.330587 NaN NaN NaN NaN NaN \n", + "std 7.268977 NaN NaN NaN NaN NaN \n", + "min 18.000000 NaN NaN NaN NaN NaN \n", + "25% 27.000000 NaN NaN NaN NaN NaN \n", + "50% 32.000000 NaN NaN NaN NaN NaN \n", + "75% 36.000000 NaN NaN NaN NaN NaN \n", + "max 62.000000 NaN NaN NaN NaN NaN \n", + "\n", + " remote_work tech_company benefits care_options \n", + "count 971 971 971 971 \n", + "unique 2 2 3 3 \n", + "top No Yes Yes Yes \n", + "freq 675 798 395 379 \n", + "mean NaN NaN NaN NaN \n", + "std NaN NaN NaN NaN \n", + "min NaN NaN NaN NaN \n", + "25% NaN NaN NaN NaN \n", + "50% NaN NaN NaN NaN \n", + "75% NaN NaN NaN NaN \n", + "max NaN NaN NaN NaN " + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data3.describe(include=\"all\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.6 create dummy features for all string based variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "create dummy features for all string based variables\" bedeutet, dass eine neue Spalte / Variablen für jede der Attribute mit dem Typ \"String\" erstellen müssen. Das Ziel ist es, diese Variablen zu verwenden, um die String-Werte in binäre (1-0) oder multible (0-100) Repräsentationen umzuwandeln. Diese Repräsentationen können dann in einem Modell verwendet werden, um Vorhersagen zu treffen." + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "data3 = pd.get_dummies(data3, drop_first=True) # 0-1 encoding for categorical values" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>Age</th>\n", + " <th>Gender_Male</th>\n", + " <th>self_employed_Yes</th>\n", + " <th>family_history_Yes</th>\n", + " <th>treatment_Yes</th>\n", + " <th>no_employees_100-500</th>\n", + " <th>no_employees_26-100</th>\n", + " <th>no_employees_500-1000</th>\n", + " <th>no_employees_6-25</th>\n", + " <th>no_employees_More than 1000</th>\n", + " <th>remote_work_Yes</th>\n", + " <th>tech_company_Yes</th>\n", + " <th>benefits_No</th>\n", + " <th>benefits_Yes</th>\n", + " <th>care_options_Not sure</th>\n", + " <th>care_options_Yes</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>37</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>44</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>32</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>31</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>31</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>True</td>\n", + " <td>False</td>\n", + " <td>False</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "</div>" + ], + "text/plain": [ + " Age Gender_Male self_employed_Yes family_history_Yes treatment_Yes \\\n", + "0 37 False False False True \n", + "1 44 True False False False \n", + "2 32 True False False False \n", + "3 31 True False True True \n", + "4 31 True False False False \n", + "\n", + " no_employees_100-500 no_employees_26-100 no_employees_500-1000 \\\n", + "0 False False False \n", + "1 False False False \n", + "2 False False False \n", + "3 False True False \n", + "4 True False False \n", + "\n", + " no_employees_6-25 no_employees_More than 1000 remote_work_Yes \\\n", + "0 True False False \n", + "1 False True False \n", + "2 True False False \n", + "3 False False False \n", + "4 False False True \n", + "\n", + " tech_company_Yes benefits_No benefits_Yes care_options_Not sure \\\n", + "0 True False True True \n", + "1 False False False False \n", + "2 True True False False \n", + "3 True True False False \n", + "4 True False True False \n", + "\n", + " care_options_Yes \n", + "0 False \n", + "1 False \n", + "2 False \n", + "3 True \n", + "4 False " + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data3.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "Y = data3['treatment_Yes']\n", + "X = data3.drop(['treatment_Yes'], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=123) # 80-20 split into training and test data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "include": true, + "paragraph": "Datenmodell", + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# 4. Modelling\n", + "## 4.1 decision tree" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "scaler = StandardScaler()\n", + "scaler.fit(X_train)\n", + "X_train = scaler.transform(X_train)\n", + "X_test = scaler.transform(X_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "Diese Codezeileyen führen einen Decision TreeClassifier-Algorithmus aus, um eine trainierte Datenmenge in X_train und y_train für das Modelling zu verwenden. Der Tree.fit()-Parameter wird verwendet, um ein Model zu trainieren, und dann wird das Modell verwendet, um die trainierten Daten zu testen und ihre Leistung zu melden. Die tree.predict()-Methode wird verwendet, um die Prognose des Modells für die Testdaten zu erhalten. Der Classification_report()-Parameter wird verwendet, um die Leistung des Modells in den trainierten und getesteten Daten anzuzeigen." + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train performance\n", + " precision recall f1-score support\n", + "\n", + " False 0.91 1.00 0.95 280\n", + " True 1.00 0.95 0.97 496\n", + "\n", + " accuracy 0.97 776\n", + " macro avg 0.96 0.97 0.96 776\n", + "weighted avg 0.97 0.97 0.97 776\n", + "\n", + "-----------------------------------------------------\n", + "test performance\n", + " precision recall f1-score support\n", + "\n", + " False 0.51 0.44 0.47 78\n", + " True 0.66 0.72 0.69 117\n", + "\n", + " accuracy 0.61 195\n", + " macro avg 0.58 0.58 0.58 195\n", + "weighted avg 0.60 0.61 0.60 195\n", + "\n" + ] + } + ], + "source": [ + "tree = DecisionTreeClassifier()\n", + "tree.fit(X_train, y_train)\n", + "\n", + "print('train performance')\n", + "print(classification_report(y_train, tree.predict(X_train)))\n", + "print('-----------------------------------------------------')\n", + "print('test performance')\n", + "print(classification_report(y_test, tree.predict(X_test)))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Die Ergebnisse zeigen die Leistung der Modellvorhersage auf den trainierten und getestenen Daten. \"precision\", \"recall\" und \"f1-score\" sind Metriken, die die Leistung einer binärenClassifier-Modells bewerten. \"accuracy\" ist eine Metrik, die die Gesamtgenauigkeit der Modellvorhersage bewertet. Die Ergebnisse deuten darauf hin, dass das Modell auf den trainierten Daten eine hohe Genauigkeit hat, aber auf den getesteten Daten eine niedrigere Genauigkeit." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Der Code testet verschiedene Max-Tree-Tiefen (1, 2, 3, 4) für den Decision Tree Classifier, um zu sehen, welche Tiefen die beste Leistung bringen. Für jede Max-Tree-Tiefen wird ein neues Modell trainiert und die Ergebnisse auf den trainierten und getesteten Daten gemeldet." + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Max tree depth: 1\n", + "Confusion Matrix: [ 0 78 0 117]\n", + "Train results: precision recall f1-score support\n", + "\n", + " False 0.00 0.00 0.00 280\n", + " True 0.64 1.00 0.78 496\n", + "\n", + " accuracy 0.64 776\n", + " macro avg 0.32 0.50 0.39 776\n", + "weighted avg 0.41 0.64 0.50 776\n", + "\n", + "Test results: precision recall f1-score support\n", + "\n", + " False 0.00 0.00 0.00 78\n", + " True 0.60 1.00 0.75 117\n", + "\n", + " accuracy 0.60 195\n", + " macro avg 0.30 0.50 0.38 195\n", + "weighted avg 0.36 0.60 0.45 195\n", + "\n", + "----------------------------------------------------------------------------\n", + "Max tree depth: 2\n", + "Confusion Matrix: [50 28 22 95]\n", + "Train results: precision recall f1-score support\n", + "\n", + " False 0.58 0.57 0.58 280\n", + " True 0.76 0.77 0.76 496\n", + "\n", + " accuracy 0.70 776\n", + " macro avg 0.67 0.67 0.67 776\n", + "weighted avg 0.70 0.70 0.70 776\n", + "\n", + "Test results: precision recall f1-score support\n", + "\n", + " False 0.69 0.64 0.67 78\n", + " True 0.77 0.81 0.79 117\n", + "\n", + " accuracy 0.74 195\n", + " macro avg 0.73 0.73 0.73 195\n", + "weighted avg 0.74 0.74 0.74 195\n", + "\n", + "----------------------------------------------------------------------------\n", + "Max tree depth: 3\n", + "Confusion Matrix: [45 33 19 98]\n", + "Train results: precision recall f1-score support\n", + "\n", + " False 0.62 0.55 0.58 280\n", + " True 0.76 0.81 0.78 496\n", + "\n", + " accuracy 0.72 776\n", + " macro avg 0.69 0.68 0.68 776\n", + "weighted avg 0.71 0.72 0.71 776\n", + "\n", + "Test results: precision recall f1-score support\n", + "\n", + " False 0.70 0.58 0.63 78\n", + " True 0.75 0.84 0.79 117\n", + "\n", + " accuracy 0.73 195\n", + " macro avg 0.73 0.71 0.71 195\n", + "weighted avg 0.73 0.73 0.73 195\n", + "\n", + "----------------------------------------------------------------------------\n", + "Max tree depth: 4\n", + "Confusion Matrix: [44 34 19 98]\n", + "Train results: precision recall f1-score support\n", + "\n", + " False 0.68 0.52 0.59 280\n", + " True 0.76 0.86 0.81 496\n", + "\n", + " accuracy 0.74 776\n", + " macro avg 0.72 0.69 0.70 776\n", + "weighted avg 0.73 0.74 0.73 776\n", + "\n", + "Test results: precision recall f1-score support\n", + "\n", + " False 0.70 0.56 0.62 78\n", + " True 0.74 0.84 0.79 117\n", + "\n", + " accuracy 0.73 195\n", + " macro avg 0.72 0.70 0.71 195\n", + "weighted avg 0.72 0.73 0.72 195\n", + "\n", + "----------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "tree_depth = [1, 2, 3, 4] # to prevent overfitting\n", + "for i in tree_depth:\n", + " tree = DecisionTreeClassifier(max_depth=i)\n", + " tree.fit(X_train, y_train)\n", + " print('Max tree depth:', i)\n", + " print('Confusion Matrix: ', confusion_matrix(y_test, tree.predict(X_test)).ravel()) \n", + " print('Train results:', classification_report(y_train, tree.predict(X_train), zero_division=0 ))\n", + " print('Test results:', classification_report(y_test, tree.predict(X_test), zero_division=0 ))\n", + " print('----------------------------------------------------------------------------')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Die Ergebnisse zeigen eine Verteilung der Ergebnissen nach der Max-Tree-Tiefe. Für die tiefste maximale Baumtiefe von 1 erreicht das Modell die niedrigste Präzision, die niedrigste Erfassung und den niedrigsten F1-Score. Für die höher maximalen Baumtiefen von 2 bis 4 erreicht das Modell eine höhere Präzision, eine höhere Erfassung und einen höheren F1-Score im Vergleich zur tiefsten maximalen Baumtiefe von 1. Die Ergebnisse deuten darauf hin, dass das Modell mit einer höheren maximalen Baumtiefe besser arbeitet, um eine höhere Leistung zu erzielen." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.2 Random Forest" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Der Code trainiert einen RandomForestClassifier-Algorithmus unter verschiedenen Max-Tree-Stufen und nimmt die Ergebnisse im Vergleich zueinander an. Die Verwirrungsamatrix (Confusion Matrix) und die Ergebnisse zu Präzision, Erfassung, F1-Score und Support geben einen Eindruck davon, wie effektiv das Modell auf den trainierten und getesteten Daten arbeitet. Die Ergebnisse deuten darauf hin, dass der RandomForestClassifier-Algorithmus bei einer höheren maximalen Baumtiefe besser arbeitet." + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Confusion Matrix: [ 0 78 0 117]\n", + "Train results: precision recall f1-score support\n", + "\n", + " False 0.00 0.00 0.00 280\n", + " True 0.64 1.00 0.78 496\n", + "\n", + " accuracy 0.64 776\n", + " macro avg 0.32 0.50 0.39 776\n", + "weighted avg 0.41 0.64 0.50 776\n", + "\n", + "Test results: precision recall f1-score support\n", + "\n", + " False 0.00 0.00 0.00 78\n", + " True 0.60 1.00 0.75 117\n", + "\n", + " accuracy 0.60 195\n", + " macro avg 0.30 0.50 0.38 195\n", + "weighted avg 0.36 0.60 0.45 195\n", + "\n" + ] + } + ], + "source": [ + "rf = RandomForestClassifier(max_depth=2)\n", + "rf.fit(X_train, y_train)\n", + "\n", + "print('Confusion Matrix: ', confusion_matrix(y_test, rf.predict(X_test)).ravel()) \n", + "print('Train results: ', classification_report(y_train, rf.predict(X_train), zero_division=0 ))\n", + "print('Test results: ',classification_report(y_test, rf.predict(X_test), zero_division=0 ))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Die Ergebnisse zeigen eine Verteilung der Ergebnisse nach der Max-Tree-Tiefe. Für die geringste Baumtiefe von 1 erreicht das Modell die niedrigste Präzision, die niedrigste Erfassung und den niedrigsten F1-Score. Für die höhere maximalen Baumtiefen von 2 bis 4 erreicht das Modell eine höhere Präzision, eine höhere Erfassung und einen höheren F1-Score im Vergleich zur geringsten maximalen Baumtiefe von 1. Die Ergebnisse deuten darauf hin, dass das Modell mit einer höheren maximalen Baumtiefe besser arbeitet, um eine höhere Leistung zu erzielen." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4.3 logistic Regression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Der Code trainiert einen Logistic Regression-Algorithmus unter verschiedenen Max-Tree-Stufen und nimmt die Ergebnisse im Vergleich zueinander an. Die Ergebnisse deuten darauf hin, dass der Logistic Regression-Algorithmus bei einer höheren maximalen Baumtiefe besser arbeitet." + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train performance\n", + " precision recall f1-score support\n", + "\n", + " False 0.62 0.50 0.56 280\n", + " True 0.75 0.83 0.78 496\n", + "\n", + " accuracy 0.71 776\n", + " macro avg 0.68 0.67 0.67 776\n", + "weighted avg 0.70 0.71 0.70 776\n", + "\n", + "test performance\n", + " precision recall f1-score support\n", + "\n", + " False 0.70 0.51 0.59 78\n", + " True 0.72 0.85 0.78 117\n", + "\n", + " accuracy 0.72 195\n", + " macro avg 0.71 0.68 0.69 195\n", + "weighted avg 0.72 0.72 0.71 195\n", + "\n" + ] + } + ], + "source": [ + "logreg = LogisticRegression()\n", + "logreg.fit(X_train, y_train)\n", + " \n", + "print('train performance')\n", + "print(classification_report(y_train, logreg.predict(X_train)))\n", + "print('test performance')\n", + "print(classification_report(y_test, logreg.predict(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Die Ergebnisse deuten darauf hin, dass der Logistic Regression-Algorithmus bei einer höheren maximalen Baumtiefe eine höhere Präzision, eine höhere Erfassung und einen höheren F1-Score aufweist." + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train performance\n", + " precision recall f1-score support\n", + "\n", + " False 0.62 0.50 0.55 280\n", + " True 0.75 0.83 0.79 496\n", + "\n", + " accuracy 0.71 776\n", + " macro avg 0.68 0.66 0.67 776\n", + "weighted avg 0.70 0.71 0.70 776\n", + "\n", + "test performance\n", + " precision recall f1-score support\n", + "\n", + " False 0.71 0.51 0.60 78\n", + " True 0.73 0.86 0.79 117\n", + "\n", + " accuracy 0.72 195\n", + " macro avg 0.72 0.69 0.69 195\n", + "weighted avg 0.72 0.72 0.71 195\n", + "\n" + ] + } + ], + "source": [ + "model_logReg = LogisticRegression(penalty='l2', C=0.1)\n", + "model_logReg.fit(X_train, y_train)\n", + "y_pred = model_logReg.predict(X_test)\n", + "\n", + "print('train performance')\n", + "print(classification_report(y_train, model_logReg.predict(X_train)))\n", + "print('test performance')\n", + "print(classification_report(y_test, model_logReg.predict(X_test)))" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy 0.7230769230769231\n" + ] + } + ], + "source": [ + "print(\"Accuracy\", metrics.accuracy_score(y_test, y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Der Wert für die Genauigkeit von 0.7230769230769231 ist ein guter Wert und zeigt an, dass das Modell im Durchschnitt 72,30769230769231 Prozent der testenen Daten richtig klassifiziert hat. Eine höhere Genauigkeit bedeutet, dass das Modell bessere Ergebnisse erzielt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5. Evaluation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "include": true, + "paragraph": "Evaluation", + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + " In der heutigen Gesellschaft sind Menschen zunehmend auch psychischen Erkrankungen ausgesetzt, oft bedingt durch Stress und Überlastung am Arbeitsplatz. Psychische Gesundheitsprobleme werden jedoch noch nicht überall als Krankheiten anerkannt. Die Erweiterung des Geschäftsfeldes auf psychische Gesundheitsversicherungen bietet eine strategische Wachstumschance. Dies könnte das Unternehmen von seinen Mitbewerbern abheben und die Kundenzufriedenheit erhöhen. Um Kosten zu sparen, plant das Unternehmen, auf bestehende Daten der OSMI Mental Health in Tech Survey (2016, 2020) zurückzugreifen. Diese Erweiterung würde soziale Verantwortung demonstrieren und zum allgemeinen Wohl beitragen. Herausforderungen bestehen in der Aufklärung über die Bedeutung der psychischen Gesundheitsversicherung und der repräsentativen Nutzung der vorhandenen Daten. Eine kontinuierliche Bewertung und Anpassung ist erforderlich, um eine umfassende und effektive Abdeckung sicherzustellen." + ] + } + ], + "metadata": { + "branche": "Finanzwirtschaft", + "funktion": "Risikomanagement", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + }, + "repoLink": "https://gitlab.reutlingen-university.de/ki_lab/machine-learning-services/-/tree/main/Insurance/Predicting%20mental%20illness%20for%20health%20insurance?ref_type=heads", + "skipNotebookInDeployment": false, + "teaser": "Die New York Life Insurance Company, ein globales Versicherungsunternehmen, erwägt eine Erweiterung des Geschäftsmodells, um zukünftig nicht nur körperliche, sondern auch psychische Erkrankungen zu versichern.", + "title": "Predicting mental illness for health insurance" + }, + "nbformat": 4, + "nbformat_minor": 4 +}