From 2e2622a29cb97351bf872ed0a2e6b7a4b6d7c922 Mon Sep 17 00:00:00 2001 From: Andreas Buzer <andreas.buzer@student.reutlingen-university.de> Date: Tue, 25 Jun 2024 12:29:08 +0200 Subject: [PATCH] fixes for articles with errors in formatting --- .../neues_notebook.ipynb | 3 +-- .../neues_notebook.ipynb | 2 +- .../notebook.ipynb | 8 ++++---- 3 files changed, 6 insertions(+), 7 deletions(-) diff --git a/Insurance/Prediction Interest for car insurance/neues_notebook.ipynb b/Insurance/Prediction Interest for car insurance/neues_notebook.ipynb index 8d6a58f..00bf9db 100644 --- a/Insurance/Prediction Interest for car insurance/neues_notebook.ipynb +++ b/Insurance/Prediction Interest for car insurance/neues_notebook.ipynb @@ -5121,9 +5121,8 @@ "pygments_lexer": "ipython3", "version": "3.10.11" }, - "repoLink": "https://gitlab.reutlingen-university.de/ki_lab/machine-learning-services/-/blob/main/Insurance/Prediction%20Interest%20for%20car%20insurance/notebook.ipynb?ref_type=heads", + "repoLink": "https://gitlab.reutlingen-university.de/ki_lab/machine-learning-services/-/blob/main/Insurance/Prediction%20Interest%20for%20car%20insurance/neues_notebook.ipynb?ref_type=heads", "dataSource": "https://www.kaggle.com/datasets/jassican/janatahack-crosssell-prediction", - "skipNotebookInDeployment": false, "title": "Vorhersage für das Interesse an Auto Versicherungen", "Teaser": "Ein bedeutendes Ziel für jedes Unternehmen ist die Umsatzsteigerung, Kostensenkung und Verbesserung der Kundenzufriedenheit. Problematisch ist dabei oft die Identifikation potenzieller Interessenten für spezifische Produkte wie KFZ-Versicherungen. Dieses Machine Learning Modell nutzt Kundendaten und Algorithmen, um die Wahrscheinlichkeit des Interesses präzise zu berechnen." diff --git a/Rating/What Quality does the Red wine have/neues_notebook.ipynb b/Rating/What Quality does the Red wine have/neues_notebook.ipynb index 14aa14f..f123cce 100644 --- a/Rating/What Quality does the Red wine have/neues_notebook.ipynb +++ b/Rating/What Quality does the Red wine have/neues_notebook.ipynb @@ -3875,7 +3875,7 @@ "skipNotebookInDeployment": false, "title": "Effiziente Unterscheidung zwischen guten und schlechten Wein", "teaser": "Eine Weinmanufaktur möchte die Qualität und den Geschmack ihrer Weine durch den Einsatz eines maschinellen Lernmodells vorhersagen, um den teuren und subjektiven Prozess der professionellen Verkostung zu ersetzen.", - "repoLink": "" + "repoLink": "https://gitlab.reutlingen-university.de/ki_lab/machine-learning-services/-/blob/main/Rating/What%20Quality%20does%20the%20Red%20wine%20have/neues_notebook.ipynb?ref_type=heads" }, "nbformat": 4, "nbformat_minor": 5 diff --git a/Success Predicition/Prediction of Successful or Failed Startups/notebook.ipynb b/Success Predicition/Prediction of Successful or Failed Startups/notebook.ipynb index b09ec02..a7a6826 100644 --- a/Success Predicition/Prediction of Successful or Failed Startups/notebook.ipynb +++ b/Success Predicition/Prediction of Successful or Failed Startups/notebook.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": { "editable": true, - "include": true, + "include": false, "paragraph": "business", "slideshow": { "slide_type": "" @@ -36,7 +36,7 @@ "cell_type": "markdown", "metadata": { "editable": true, - "include": true, + "include": false, "paragraph": "daten", "slideshow": { "slide_type": "" @@ -1356,7 +1356,7 @@ "cell_type": "markdown", "metadata": { "editable": true, - "include": true, + "include": false, "paragraph": "datenmodell", "slideshow": { "slide_type": "" @@ -7186,7 +7186,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.4" + "version": "3.11.3" }, "repoLink": "https://gitlab.reutlingen-university.de/ki_lab/machine-learning-services/-/blob/main/Success%20Predicition/Prediction%20of%20Successful%20or%20Failed%20Startups/notebook.ipynb?ref_type=heads", "skipNotebookInDeployment": false, -- GitLab