diff --git a/Forecast/Sales Forecast for retail store/notebook_Multiple Linear Regression.ipynb b/Forecast/Sales Forecast for retail store/notebook_Multiple Linear Regression.ipynb
deleted file mode 100644
index c9c1c6054aca7f73b84405e84a91bd938074f675..0000000000000000000000000000000000000000
--- a/Forecast/Sales Forecast for retail store/notebook_Multiple Linear Regression.ipynb	
+++ /dev/null
@@ -1,5577 +0,0 @@
-{
-    "cells": [
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# 1. Business Understanding"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "Ein Einzelh\u00e4ndler braucht einen sehr hohen Umsatz und eine Just-in-time-Lieferung von Produkten, um erfolgreich zu sein. Dazu werden sehr genaue Prognosen ben\u00f6tigt, die genaue Aussagen dar\u00fcber erlauben, welche Filialen in welchen Abteilungen wie viel Umsatz pro Woche machen. Die Fragestellung lautet daher wie folgt: Wie hoch ist die w\u00f6chentliche Umsatzprognose f\u00fcr alle Filialen eines fiktiven Marktes, wenn wir die Daten der letzten drei Jahre, demographische Informationen (VPI, Arbeitslosigkeit, Temperatur, etc.) ber\u00fccksichtigen? Wie hoch ist dann der Wochenumsatz pro Abteilung in einer dieser Filialen?"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# 2. Daten und Datenverst\u00e4ndnis"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "Die f\u00fcr das Notizbuch verwendeten Daten sind in drei Dateien unterteilt. Sie enthalten verschiedene Merkmale und die gemeinsamen Attributsspeicher. "
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 2.1. Import von relevanten Modulen"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 1,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "import pandas as pd\n",
-                "import numpy as np\n",
-                "import matplotlib.pyplot as plt\n",
-                "import seaborn as sns\n",
-                "import statsmodels.api as sm\n",
-                "import sklearn  \n",
-                "from sklearn.linear_model import LinearRegression\n",
-                "%matplotlib inline\n",
-                "sns.set()"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 2.2. Trainingsdaten einlesen"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 2,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "walmart_features_data = pd.read_csv('https://storage.googleapis.com/ml-service-repository-datastorage/Sales_Forecast_for_retail_store_features.csv') \n",
-                "walmart_train_data = pd.read_csv('https://storage.googleapis.com/ml-service-repository-datastorage/Sales_Forecast_for_retail_store_train.csv')\n",
-                "walmart_stores_data = pd.read_csv('https://storage.googleapis.com/ml-service-repository-datastorage/Sales_Forecast_for_retail_store_stores.csv')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 3,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Dept</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Weekly_Sales</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-05</td>\n",
-                            "      <td>24924.50</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-12</td>\n",
-                            "      <td>46039.49</td>\n",
-                            "      <td>True</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-19</td>\n",
-                            "      <td>41595.55</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-26</td>\n",
-                            "      <td>19403.54</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-03-05</td>\n",
-                            "      <td>21827.90</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   Store  Dept        Date  Weekly_Sales  IsHoliday\n",
-                            "0      1     1  2010-02-05      24924.50      False\n",
-                            "1      1     1  2010-02-12      46039.49       True\n",
-                            "2      1     1  2010-02-19      41595.55      False\n",
-                            "3      1     1  2010-02-26      19403.54      False\n",
-                            "4      1     1  2010-03-05      21827.90      False"
-                        ]
-                    },
-                    "execution_count": 3,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_train_data.head(5)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 4,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "<class 'pandas.core.frame.DataFrame'>\n",
-                        "RangeIndex: 421570 entries, 0 to 421569\n",
-                        "Data columns (total 5 columns):\n",
-                        " #   Column        Non-Null Count   Dtype  \n",
-                        "---  ------        --------------   -----  \n",
-                        " 0   Store         421570 non-null  int64  \n",
-                        " 1   Dept          421570 non-null  int64  \n",
-                        " 2   Date          421570 non-null  object \n",
-                        " 3   Weekly_Sales  421570 non-null  float64\n",
-                        " 4   IsHoliday     421570 non-null  bool   \n",
-                        "dtypes: bool(1), float64(1), int64(2), object(1)\n",
-                        "memory usage: 13.3+ MB\n"
-                    ]
-                }
-            ],
-            "source": [
-                "walmart_train_data.info()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 5,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Dept</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Weekly_Sales</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>count</th>\n",
-                            "      <td>421570.000000</td>\n",
-                            "      <td>421570.000000</td>\n",
-                            "      <td>421570</td>\n",
-                            "      <td>421570.000000</td>\n",
-                            "      <td>421570</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>unique</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>143</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>top</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2011-12-23</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>freq</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3027</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>391909</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>mean</th>\n",
-                            "      <td>22.200546</td>\n",
-                            "      <td>44.260317</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>15981.258123</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>std</th>\n",
-                            "      <td>12.785297</td>\n",
-                            "      <td>30.492054</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>22711.183519</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>min</th>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>-4988.940000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25%</th>\n",
-                            "      <td>11.000000</td>\n",
-                            "      <td>18.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2079.650000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>50%</th>\n",
-                            "      <td>22.000000</td>\n",
-                            "      <td>37.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>7612.030000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75%</th>\n",
-                            "      <td>33.000000</td>\n",
-                            "      <td>74.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>20205.852500</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>max</th>\n",
-                            "      <td>45.000000</td>\n",
-                            "      <td>99.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>693099.360000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                Store           Dept        Date   Weekly_Sales IsHoliday\n",
-                            "count   421570.000000  421570.000000      421570  421570.000000    421570\n",
-                            "unique            NaN            NaN         143            NaN         2\n",
-                            "top               NaN            NaN  2011-12-23            NaN     False\n",
-                            "freq              NaN            NaN        3027            NaN    391909\n",
-                            "mean        22.200546      44.260317         NaN   15981.258123       NaN\n",
-                            "std         12.785297      30.492054         NaN   22711.183519       NaN\n",
-                            "min          1.000000       1.000000         NaN   -4988.940000       NaN\n",
-                            "25%         11.000000      18.000000         NaN    2079.650000       NaN\n",
-                            "50%         22.000000      37.000000         NaN    7612.030000       NaN\n",
-                            "75%         33.000000      74.000000         NaN   20205.852500       NaN\n",
-                            "max         45.000000      99.000000         NaN  693099.360000       NaN"
-                        ]
-                    },
-                    "execution_count": 5,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_train_data.describe(include='all')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 6,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Index(['Store', 'Dept', 'Date', 'Weekly_Sales', 'IsHoliday'], dtype='object')"
-                        ]
-                    },
-                    "execution_count": 6,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_train_data.columns"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 7,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Dept</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Weekly_Sales</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "Empty DataFrame\n",
-                            "Columns: [Store, Dept, Date, Weekly_Sales, IsHoliday]\n",
-                            "Index: []"
-                        ]
-                    },
-                    "execution_count": 7,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_train_data[walmart_train_data.duplicated(keep=False)] # existieren duplizierte Reihen ?"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 8,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Store           0\n",
-                            "Dept            0\n",
-                            "Date            0\n",
-                            "Weekly_Sales    0\n",
-                            "IsHoliday       0\n",
-                            "dtype: int64"
-                        ]
-                    },
-                    "execution_count": 8,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_train_data.isnull().sum() # existieren Nullwerte ? --> keine vorhanden"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 2.2.1. Deskriptive Analyse"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 9,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "C:\\Users\\eebal\\Anaconda3\\lib\\site-packages\\seaborn\\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
-                        "  warnings.warn(msg, FutureWarning)\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:xlabel='Weekly_Sales', ylabel='Density'>"
-                        ]
-                    },
-                    "execution_count": 9,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEUCAYAAAAstV3AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoPklEQVR4nO3deVhV5b4H8O/aIyAbB0RzvJp51TQVMw0ziTQQURGcNbVjafWYpnWP4lhZWtFAmqfznGOmZTZIiUNpT15t0CRFT2mlF02FRBQRB+Y9vvePzd6ADG6GJdu1vp/nOQ+w3Hu9Pzj65e233vUuSQghQEREqqFp6AKIiOjWYvATEakMg5+ISGUY/EREKsPgJyJSGQY/EZHKeHXw5+fnY/jw4cjIyKjV+8+fP4/g4GBER0cjOjoajz/+eD1XSER0+9E1dAFVOXr0KJYsWYK0tLRan+P333/HiBEjsHz58vorjIjoNue1M/7NmzfjhRdeQIsWLdzHtm7dipiYGERHR2PRokUwm83VnuO3337DyZMnER0djalTpyI1NVXusomIvJ7XBv+KFSvQt29f99enTp3C5s2b8dlnn2Hbtm0IDAzEunXrqj2H0WjEyJEjkZSUhMcffxyzZs2CxWKRu3QiIq/mta2eGx08eBDp6ekYN24cAMBqteLuu+/GxYsX3cfK2rFjB2bPnu3+OjQ0FG+99RbOnDmDrl273rK6iYi8zW0T/Ha7HZGRkViyZAkAoKCgAHa7HQEBAfjxxx8rfc/GjRsxfPhwNG3aFAAghIBOd9t8y0REsvDaVs+N+vfvj927dyMnJwdCCLz44ov48MMPq31PSkoKvvjiCwDAoUOH4HA4cOedd96KcomIvNZtM/3t2rUrnnnmGUybNg0OhwPdunXDzJkzq33P4sWLERcXh23btsFoNOKtt96CRnPb/K4jIpKFxG2ZiYjUhdNfIiKVYfATEakMg5+ISGW89uLu1asFcDjqfvkhMNAfOTn59VCR/FirPFirPFirPGpbq0YjoWnTRh691muD3+EQ9RL8rnPdLlirPFirPFirPOSula0eIiKVYfATEakMg5+ISGUY/EREKsPgJyJSGQY/EZHKKD749x4+h7xCPnyFiMhF0cFfUGxFwqf/wc/Hsxq6FCIir6Ho4LeX3ARhsdobuBIiIu+h6OB3bThttTkathAiIi+i6OB33fZsYfATEbkpOvhdz5jhjJ+IqJTCg9/5kcFPRFRK4cHvmvHz4i4RkYuig981z+eMn4iolKKD3zXj58VdIqJSCg9+50fO+ImISik8+Lmqh4joRooOftc6fgY/EVEpRQe/u9VjZ/ATEbkoOvgdgnv1EBHdSNbg37t3L2JjYxEZGYlXXnlFzqEqxRk/EVFFsgX/uXPn8MILL+C9997D9u3bcfz4cfzwww9yDVcpgZIev5XBT0TkopPrxLt378awYcNwxx13AAASEhJgNBrlGq5SnPETEVUkW/Cnp6dDr9fjqaeewoULF/DQQw9h7ty5Hr8/MNC/zjVcKbQCcK7qad7cH5Ik1fmccgsKMjV0CR5jrfJgrfJgraVkC3673Y7Dhw9j48aN8PPzw9NPP42kpCTExsZ69P6cnHz3cszaunKl0P35hYvXoddp63Q+uQUFmZCdndfQZXiEtcqDtcpDDbVqNJLHE2bZevzNmzdHSEgImjVrBh8fHwwZMgTHjh2Ta7hKuVb1AFzLT0TkIlvwh4WFYf/+/cjNzYXdbse+ffvQvXt3uYarlCgT/Nyvh4jISbZWT69evfDEE09g0qRJsFqteOCBBzB69Gi5hqtUmdznjJ+IqIRswQ8AY8aMwZgxY+Qcolqc8RMRVaTsO3fLfG5j8BMRAVB48Jef8XPbBiIiQPHBX/o5e/xERE6KDv6y9wGwx09E5KTo4C8742ePn4jISeHBzxu4iIhupOjgL7vjAy/uEhE5KTr4OeMnIqpI2cFf5nMGPxGRk7KDnzN+IqIKFB38Dm7ZQERUgaKDX5TJes74iYicFB385fbj5+MXiYgAKDz4y23ZYOVyTiIiQPHB70x+g07DGT8RUQllB3/JR4NeC4uVwU9EBCg8+F09fqOeM34iIhdFB7+rx2/Qa9njJyIqofDgL+nx67Wc8RMRlVB08Lv24zfqNFzHT0RUQtHB7271GLS8c5eIqITCg98149dyxk9EVEIn58mnTJmCK1euQKdzDrN8+XL06tVLziHLcZS9uMvgJyICIGPwCyGQlpaG7777zh38t5ooWclvNGj5IBYiohKytXrOnDkDAJg+fTpGjhyJjz/+WK6hquTu8es0sNtF9S8mIlIJ2abiubm5CAkJwdKlS2G1WjF16lR07NgRDzzwgFxDVuDq8et1GtgdAg4hoJGkWzY+EZE3ki34g4ODERwc7P56zJgx+OGHHzwO/sBA/zrX4OtrAAA0bewLAGjStBGMem2dzyunoCBTQ5fgMdYqD9YqD9ZaSrbgP3z4MKxWK0JCQgA4Z9816fXn5OS71+HXVn6+GQBgMdsAABcvXoefj75O55RTUJAJ2dl5DV2GR1irPFirPNRQq0YjeTxhlq3Hn5eXh/j4eJjNZuTn5yMpKQmPPPKIXMNVylGm1QMANvb5iYjkm/GHhYXh6NGjGDVqFBwOByZNmlSu9XMrCAFIUtng55JOIiJZ11nOnTsXc+fOlXOIagkISJIEndZ5QZf79RARKf7OXUAjSdBpS2b8vImLiEjZwe9cvgnotezxExG5KDr4hQAkjQStlj1+IiIXRQe/w+Ga8Tt7/Ax+IiKFB79zVY8EXcmqHl7cJSJSfPC7VvW4Lu6yx09EpPDgxw0XdznjJyJSdPA7Stbxa7mOn4jITdHBL4Rz/wrO+ImISik8+J2renTcq4eIyE3xwS/xzl0ionIUHfwOh3M5J1s9RESlFB38rlYPL+4SEZVSdPA7Sm7g0mokSGCPn4gIUHjwCzifseu6e5etHiIipQd/yYNYAECn1fDiLhERFB/8AhqNM/n1WokzfiIiKDz4XT1+ANBqNby4S0QEhQe/a1UP4Nyvx86Lu0REyg5+h0O4Z/w6HWf8RESAwoPf9cxdANBpJV7cJSKC4oNfQCr5DvVaLuckIgKUHvy48eIue/xERLIH/+uvv464uDi5h6mUo9zFXQl2zviJiOQN/uTkZCQlJck5RLXK9/h5cZeICJAx+K9du4aEhAQ89dRTcg1xU65tmQGUbNnAVg8RkWzBv2zZMsybNw8BAQFyDXFTDkfZO3e5ZQMREQDoPHnR7NmzMXHiRAwYMMCjkyYmJqJVq1YICQnBli1balVYYKB/rd5Xlk6vBQAEBZnQqJEBDiEQFGSq83nl5O31lcVa5cFa5cFaS3kU/I888gjee+89vPTSSxg3bhxGjx6NJk2aVPn6nTt3Ijs7G9HR0bh+/ToKCwuxcuVKLFq0yOPCcnLy4XDUrTVjMdvg46NHdnYe7FY7LFY7srPz6nROOQUFmby6vrJYqzxYqzzUUKtGI3k8YfYo+EeOHImRI0fi9OnT+PLLLzFmzBgEBwdjypQp6NmzZ4XXr1+/3v35li1bcOjQoRqFfn1xoPzunFzOSURUgx6/w+FAeno60tLSYLfbERgYiBdffBGrV6+Ws746qXhxlz1+IiKPZvwJCQnYsmUL2rVrh0mTJmHVqlXQ6/UoLCxEWFgY5syZU+V7Y2NjERsbW28Fe8rmAOx2AZvNgQKzDQLOh61b7QL6kkcxEhGpkUfBf+XKFaxduxZdu3Ytd9zPzw9vvfWWLIXVldlqQ16RFQJAyoksZOUUQAAoMluh9zM0dHlERA3Go1aP3W6vEPquWf7AgQPrv6r6UqbV41rWybX8RKR21c74X3jhBWRlZeHIkSO4cuWK+7jNZsO5c+dkL66uyi4K0mqcv+NsDvb5iUjdqg3+MWPG4NSpU0hNTUVERIT7uFarRe/eveWurV64VvW4Z/y8iYuIVK7a4L/nnntwzz334IEHHkDLli1vVU31puyqHi1bPUREAG4S/M8++yxWrVqFJ554otI/37FjhyxF1RcBwLV+p7THzxk/EalbtcE/Y8YMAMDSpUtvSTH1TpS2erQMfiIiADdZ1dOjRw8AQL9+/dCqVSv069cPhYWFSElJQbdu3W5JgXUhKlnVwweuE5HaebScc9myZVi7di1Onz6NJUuWICMjo0G2YKgp5xO4nJ9zxk9E5ORR8P/+++948cUXsXv3bsTExODVV1/F+fPn5a6tzoQAJJSf8fNhLESkdh4FvxACGo0GP/30E+6//34AQHFxsayF1Qdnq8f5OVf1EBE5eRT87du3x4wZM5CRkYF+/frh+eefR5cuXeSurc4E4F7W43oEI1s9RKR2Hu3V8+qrr2L37t249957odfr0bdvX4waNUrm0upBmVaPlhd3iYgAeDjj9/PzQ9++fZGbm4s//vgDPXv2xJkzZ+Surc4ERMU7dznjJyKV82jGv2rVKnzwwQcIDAx0H5MkCXv27JGtsPogBCq5c5fBT0Tq5lHwb9u2Dd9+++1tuW1DxTt32eohInXzqNXTqlWr2zL0Be/cJSKqwKMZf0hICOLj4zF48GD4+Pi4j3fv3l22wuqDs8d/4378DH4iUjePgn/Lli0AgG+++cZ97Lbp8Zd87prxW7ktMxGpnEfBv3fvXrnrkIUo0+uRJAk6rYRii72BqyIialge9fgLCgqwfPlyTJs2DdeuXcOyZctQUFAgd231wtXjBwC9TguzlcFPROrmUfC/8sorMJlMyMnJgdFoRH5+PpYtWyZ3bXVWttUDAHqdBsVmW4PVQ0TkDTwK/hMnTmDevHnQ6XTw9fXFm2++iRMnTshdW52VXccPlAQ/Z/xEpHIeBb9GU/5ldru9wrHKrFq1CsOGDUNUVBTWr19fuwrroOyduwCg12pgZo+fiFTOo4u79913H9544w0UFxdj3759+Pjjj9G/f/9q33Po0CH8/PPP2L59O2w2G4YNG4bQ0FDceeed9VK4Ryqb8TP4iUjlPJrx/8///A/8/PxgMpnwzjvvoGvXrpg/f3617+nXrx8++ugj6HQ65OTkwG63w8/Pr16K9oQQotwzdwFX8LPHT0TqdtMZ/+7du7Fu3TqkpqbCx8cHXbp0QZ8+fWA0Gm96cr1ej9WrV+ODDz7A0KFDa3T3b2Cgv8evrYw9x7nqSJIAk7/zpjM/Xz0uXS1CUJCpTueWkzfXdiPWKg/WKg/WWqra4N+1axcSEhIwZ84cdO3aFZIk4bfffsOKFStgNpsRHh5+0wHmzJmDGTNm4KmnnsLmzZsxfvx4jwrLycmHw1H7fXUKiqwAnK2evPySh8Y4BIrMNmRn59X6vHIKCjJ5bW03Yq3yYK3yUEOtGo3k8YS52uD/6KOPsGHDBrRu3dp9rFOnTujVqxcWLVpUbfCfPn0aFosF3bp1g6+vL8LDw5Gamurht1B3QlT8paHXaWB3CFhtDuh1HnW5iIgUp9r0KygoKBf6Lh07doTZbK72xBkZGViyZAksFgssFgv27NmDe++9t27V1oAr98uu6tGVhH0R+/xEpGLVzvi1Wm2Vf1bZjLqs0NBQHDt2DKNGjYJWq0V4eDiioqJqV2UtuOoru6rHUBL8xRY7Am7ddWYiIq/i0XLO2po9ezZmz54t5xBVcs/4yxzTaUuCn3fvEpGKVRv8qamp6NOnT4XjQghYLBbZiqoPjkpm/PoyM34iIrWqNvh37959q+qod6WtntJjpcHPGT8RqVe1wd+mTZtbVUe9q+ziriv4i8yc8ROReil2TaO71YPKWj2c8ROReik2+Cud8WvZ4yciUnDwV0x+9zp+ruohIhVTbvCXfCy7nFMjSTDouUMnEambcoO/klU9AOCj17HHT0SqpuDgd36Ubkh+H6OWM34iUjXFBr9rZ88bZ/xGPYOfiNRNscFf2uOvOOPnxV0iUjPlBn+1PX7O+IlIvRQb/I5K1vEDgNGg5cVdIlI1xQZ/6bbRN7R6DFpu2UBEqqbg4Hd+rNDqMfDiLhGpm4KDv4oev1EHm90Bq43hT0TqpNjgd/f4b2j1+PvqAQB5hdZbXRIRkVdQbPBXNeNn8BOR2ik4+J0fb7xz1+TnCn7vfoIYEZFcFBz8rv34y/P3NQAAchn8RKRSCg5+58cbWz2uGX9uAVs9RKROCg7+ig9bB5zLObUaCXlFnPETkTpV+8zdulqzZg127doFAAgNDcX8+fPlHK4c16qeG0mShIBGBuRxxk9EKiXbjP/AgQPYv38/kpKSsHXrVvzxxx/YvXu3XMNVIFD5jB8ATL56XtwlItWSbcYfFBSEuLg4GAzOi6mdOnVCZmamXMNVUNW2zABgamRALpdzEpFKyRb8nTt3dn+elpaGXbt24dNPP5VruAqqurgLAAF+emRdKbxltRAReRNZe/wAcOrUKTz55JOYP38+OnTo4PH7AgP96zSuIf0aAOeduyZ/H/dxPz8jWgT645dTlxEUZKrTGHLwxpqqwlrlwVrlwVpLyRr8R44cwZw5c7Bo0SJERUXV6L05Ofnudk1tFBc7e/iSBOTlF7uPFxaaoZMEii12ZGReg1GvrfUY9S0oyITs7LyGLsMjrFUerFUeaqhVo5E8njDLFvwXLlzArFmzkJCQgJCQELmGqVJVd+4CgMnPed0hr9ACY2PfW1kWEVGDky34161bB7PZjNdee819bMKECZg4caJcQ5ZT1Z27ABDgDn4rmjP4iUhlZAv+JUuWYMmSJXKd/qaqu7jL/XqISM0Ue+euo5rkNzUq2a+HN3ERkQopNvira/WYXFszc9sGIlIhBQe/82NlF3d9DFoYdBpcz2fwE5H6KDb4HVU8iMV5TEJgYx9cvl5c8Q+JiBRO9hu4GkpVLX5JI6HAbENggA8uXilEgdkGADDqddAp9tcgEVEpBQe/q8cvASi9EcxstePoyWzYHQKXrhbi0PGLkCQJ93VrCZ1RsT8OIiI3xc5xq1vOCTiXdNrsAkVm+60riojICyg4+Kvu8QNl7t7lyh4iUhnlBr/7s8qT33UTVz63ZyYilVFs8Fe3Hz8ANPLVQ5LAffmJSHUUG/yuHr+miuTXaiQ08uGTuIhIfRQc/K6ru1W/xuSnZ6uHiFRHscHvKPlYTe7D5KdHLmf8RKQyig3+0lU9VUe/yc8Ai9UBs5VLOolIPRQc/M6P1eR+me2Z2e4hIvVQcPCXvXO3cmWfxEVEpBaKDX6HBzN+f1+u5Sci9VFs8Huyqkev08DXqOUFXiJSFQUHv/NjVev4XUx+Bs74iUhVFBz8VT+BqyyTn54Xd4lIVRQc/CWfeDDjLzTbYLFxSScRqYOCg7/6vXpcXM/fzbnGp3ERkTooNvgdN7+2CwAwNXIGPx/DSERqIWvw5+fnY/jw4cjIyJBzmEp5cucuAJh8nWv5s68VyV4TEZE3kC34jx49iokTJyItLU2uIaolhLjpbB8AjAYtDHoNg5+IVEO24N+8eTNeeOEFtGjRQq4hquUQuHmfp0RTkxHnLuXLWg8RkbeQ7eniK1askOvUHhHi5m0el8AAH5w8dw02uwM6rWIvexARAZAx+OsqMNC/Tu/X6TTQlOS+yd/HfVyv15X7GgDatgzA8bSrKLAJ3HWHqU7j1lVQUMOOXxOsVR6sVR6stZTXBn9OTr778Ym1YSmz1XJefumKHavVVu5rAGhkdM7yfzl+EY2N2lqPWVdBQSZkZ+c12Pg1wVrlwVrloYZaNRrJ4wmzYvsazou7nrV6/H31aOSjw9kLuTJXRUTU8BQc/PD44q4kSWjf0oS0i7fHjICIqC5kD/69e/eibdu2cg9TgRDipnftltW+pT/OZxfwaVxEpHiKnfE7atDqAYA72zSGQwik/nVVxqqIiBqeYoPfuZzT89d3btsEvkYtjqRmy1cUEZEXUHDw16zVo9dp0KtTc/xy6jLsDod8hRERNTDFBr/NLjy+gculz38HIb/IilPnrstUFRFRw1Ns8BeZbTDoavbt9bizGfQ6DVL+75JMVRERNTzFBn+h2QaD3vObsSSNBLtwzvr3HctExuV8FJhtsLHrQ0QKo9zgL7bBWIPgN1vtSDmRhTZBjeBwAB/tSkXKiSyYrTYZqyQiuvUUG/xFZhsM+pp/e/6+enRp3wSnz1/HZW7VTEQKpNjgLyy2waCr3b47Pe8KhJ+PDj/8mon8Ij6InYiURZHBb7M7YLbaYazFjB8AjHotQoPboMhsx6f/e7KeqyMialiKDP7CYmdfviYXd2/UvLEPet4ViGN/5uDkuWv1VBkRUcNTZPAXFDvbM3UJfgC4u0NTNG5kQOJ3f7qf4UtEdLtTZPCXzvjr9u3ptBpEDfgvnM7Mxfe/ZtZHaUREDU6RwV9QEvzGWl7cLat/9zvQo2MzfPq/J5F2kfv1E9HtT5HBX+hu9dT929NIEmaMuBsmPwNWJR7jQ9mJ6LanyOAvqIeLuy6SRoJGq8HTMT0gScBrm47g2Jkc3tFLRLctRQZ/YT1d3AVK7+jNuJSPh+9tC71Oi3e/OIbD/5dV53MTETUERQZ/QbHzrl2tpma7c96Mv68eQ/u3QxN/I9Zu/wNb952p0wPhiYgagq6hC5BDYbENfkZ5vjUfgw4R/dvhz4zr2P5TGg4ez0L0wI7of3fLGm8DTUTUEBQ647fCz0cv2/l1Wg2mRHbFEyPuhl6nwb93HEf8p78gPSuPvX8i8nqKDH45Z/wuFpsDFqsdYX3aoP/dLXDmfC5e+fAwtu07zc3diMirKbLVU1BsQ9MA4y0ZS5IkdGnfFG1b+OPg8Uv4OjkdXyeno31Lf/TpHIR7OgXiv+4wQcM2EBF5CUUGf6HZijbGRrd0zEY+ejzcpw06tmmMoyezcfTPHGzbfxZb95+FyU+PHh0D0bNTILp3bAZ/X/naUERENyNr8O/YsQP//Oc/YbPZMG3aNEyePFnO4dwKim3w82mY32kBjQwIaGTAg71a4b5uQci8XICM7AIcPX0ZyX9chCQBnVo3xj2dAtG1fRO0a+EPH4Mif/8SkZeSLXGysrKQkJCALVu2wGAwYMKECejfvz/uuusuuYYEULIls8Uue4/fEz4GHe5s3Rh3tm6Mvt1aIi0zF8fTruB42hUk/XjG/TpfoxYmPwMCG/vC16B1/vLw05d8dP4iMfnp0biRAb5GHVcPEVGdyJaOBw4cwP33348mTZoAACIiIvDNN9/gmWee8ej9mlqswc/JLcaR1Eto0dQXzZv6wtegg69RB7uttLWi02oqXfEj93EB53OAO7QKQIdWASi22HA1zww/Xz0KCq3IL7KiyGJHXoEZaRfzUFRsRWV3CGg1EvQ6DTSSBI3G+T+tJEHSABqN894FSXIec/25RoPyX0uu90jQlvy5JLk+d/45JLivS2ggQZKcr5EkABLg52dAcZHFfUyCBPf/ZTL/Yqrp2f38DCgstMg7SA1JVQzg55dT81obCGutf/6+OgwO9K9V/tXkPbIF/6VLlxAUFOT+ukWLFjh27JjH72/atOY9+sBAf/x3x+aYOPTual93Z9umXnWciKiswEB/Wc8v23JOh8NRriUhhGCLgojIC8gW/HfccQeys7PdX2dnZ6NFixZyDUdERB6SLfgHDBiA5ORkXLlyBUVFRfj2228xaNAguYYjIiIPydbjb9myJebNm4epU6fCarVizJgx6Nmzp1zDERGRhyTBh8kSEamKIvfqISKiqjH4iYhUhsFPRKQyDH4iIpVRdPDv2LEDw4YNQ3h4ODZt2iT7ePn5+Rg+fDgyMjIAOLetGDFiBMLDw5GQkOB+3YkTJxAbG4uIiAgsXrwYNpvz4fCZmZmYPHkyhg4diqeffhoFBQUAgNzcXMycORORkZGYPHmy+/4Ii8WCv//974iMjERMTAxOnz7tUZ1r1qxBVFQUoqKiEB8f79W1rlq1CsOGDUNUVBTWr1/v1bW6vP7664iLi/PqWqdMmYKoqChER0cjOjoaR48e9dpa9+7di9jYWERGRuKVV17x2p9rYmKi++cZHR2Ne++9F8uXL/fKWiEU6uLFiyIsLExcvXpVFBQUiBEjRohTp07JNt6vv/4qhg8fLrp37y7OnTsnioqKRGhoqPjrr7+E1WoV06dPF99//70QQoioqCjxyy+/CCGEWLhwodi0aZMQQoiZM2eKr776SgghxJo1a0R8fLwQQoiXXnpJ/Otf/xJCCJGUlCSeffZZIYQQ77//vli6dKkQQohDhw6JsWPH3rTOn376SYwfP16YzWZhsVjE1KlTxY4dO7yy1oMHD4oJEyYIq9UqioqKRFhYmDhx4oRX1upy4MAB0b9/f7FgwQKv/TvgcDjEwIEDhdVqdR/z1lr/+usvMXDgQHHhwgVhsVjExIkTxffff++VtZZ18uRJ8cgjj4jMzEyvrFWxwb9lyxaxcOFC99dr1qwR7777rmzjLVq0SKSkpIiwsDBx7tw5cfDgQTF16lT3nyclJYm4uDiRkZEhBg8e7D6ekpIipkyZIiwWiwgODnb/Y8zMzBQPP/ywEEKIsLAwkZmZKYQQwmq1iuDgYGGxWMSjjz4qUlJS3OcaPHiwOH/+fLV1njx50v2XTQjnX6Z3333XK2sVQgiLxSKEECIjI0MMGjTIa3+uQghx9epVMXbsWLF+/XqxYMECr631zz//FAMHDhRTpkwRI0aMEBs3bvTaWtetWydWrlzp/vrixYteW2tZkyZNEjt37vTaWhXb6qlsk7isrCzZxluxYgX69u170/FvPB4UFISsrCxcvXoV/v7+0Ol05Y7feC6dTgd/f39cuXKl0nNdvHix2jo7d+6M3r17AwDS0tKwa9cuSJLklbUCgF6vx+rVqxEVFYWQkBCv/bkCwLJlyzBv3jwEBARUOL831Zqbm4uQkBD84x//wIYNG/DZZ58hMzPTK2tNT0+H3W7HU089hejoaHzyySde+3N1OXDgAIqLixEZGem1tSo2+Bt6k7iqxq/qeGX1VVWvEAIajabCe1zHPXHq1ClMnz4d8+fPR7t27by61jlz5iA5ORkXLlxAWlqaV9aamJiIVq1aISQkxH3MW/8OBAcHIz4+HiaTCc2aNcOYMWOwevVqr6zVbrcjOTkZK1euxOeff45jx47h3LlzXlmry2effYa//e1vALz374Big7+hN4mravwbj1++fBktWrRAs2bNkJeXB7vdXqHeFi1a4PLlywAAm82GgoICNGnSBC1btsSlS5cqnOtmjhw5gsceewzPP/88YmJivLbW06dP48SJEwAAX19fhIeH4+DBg15Z686dO/HTTz8hOjoaq1evxt69e5GYmOiVtR4+fBjJycnur4UQaNOmjVfW2rx5c4SEhKBZs2bw8fHBkCFDcODAAa+sFXBeaE1JScHDDz8MwHtzQLHB39CbxPXq1Qtnz551/6fqV199hUGDBqFNmzYwGo04cuQIAGDbtm0YNGgQ9Ho9+vbti507dwIAtm7d6q43NDQUW7duBeAMmL59+0Kv1yM0NBTbtm0D4PzHbDQa0bp162rrunDhAmbNmoU333wTUVFRXl1rRkYGlixZAovFAovFgj179mDChAleWev69evx1VdfYdu2bZgzZw4efvhhvP/++15Za15eHuLj42E2m5Gfn4+kpCQ899xzXllrWFgY9u/fj9zcXNjtduzbtw9Dhw71yloBIDU1FR06dICfnx8A7/23pdiLu0IIsX37dhEVFSXCw8PFv//971sypuvirhDOFR4jRowQ4eHhYsWKFcLhcAghhDhx4oQYPXq0iIiIEM8995wwm81CCOcFzEcffVRERkaK6dOni2vXrgkhnBcNn3zySTFs2DAxfvx49/mLi4vF/PnzxbBhw8SoUaPE77//ftP6Xn75ZdG7d28xcuRI9/8++eQTr6xVCCFWr14tIiMjxfDhw8Xq1au99uda1pdffikWLFjg1bUmJCSIoUOHivDwcLFhwwavrjUxMdH97/ill14Sdrvda2v9+uuvxdy5c8sd88ZauUkbEZHKKLbVQ0RElWPwExGpDIOfiEhlGPxERCrD4CciUhkGP3mlxx9/HB9++KH767Nnz6JLly54++233cdycnLQo0cP5OXl1fj8cXFxWLduncfHPfX9999j/PjxGDlyJKKiovDss896dKv/lClT8M0339R6XKKaYPCTVxo0aBAOHjzo/vq7775DWFgY9uzZ4z72888/o0+fPjCZTA1RYgVZWVlYsGAB3n77bWzfvh1ff/01unbtirlz5zZ0aUTlMPjJKw0aNAiHDx+Gw+EA4Az+mTNnoqCgAH/99RcAIDk5GQ899BD+85//YNKkSYiJicHo0aPx3Xffuc+TmJiI2NhYjBo1Co899lile5WvXLkS06ZNc+97DgDbt2/HhAkT3F9nZmZi4MCBsFgsVdZ89epVWK1WFBYWuo9NmzYNTz75JACgsLAQ8+fPx/jx4xEREYHY2FicOXOmwnmq+n6ys7Mxffp0xMTEICYmBu+8844nP0qiCnQNXQBRZTp27IiAgACkpqaidevWOHv2LHr37o1BgwZh7969eOyxx5CcnIzRo0e72zNt27ZFVlYWxo0bhy5duiAjIwNbt27Fpk2b4Ovri/379+OZZ57Brl27ADj3qFm+fDkuXbqEtWvXwmAwuMcfOnQoXnvtNZw6dQqdO3dGYmIiYmJiyr3mRl27dsW4ceMQExOD9u3bo0+fPggJCUFERAQA4Mcff0RAQAA+//xzAM7dPDdt2oSlS5e6z3H9+nUsXLiw0u8nKSkJbdu2xQcffIDCwkIsXrwYeXl5XvNfPHT7YPCT13K1ewIDAzFgwABoNBqEhYVh06ZNGDJkCCRJQm5uLrKzszFr1iz3+yRJQmpqKlJSUpCenl5u5p6bm4tr164BADZs2ICcnBxs3bq1QqAbDAaMHTsWiYmJWLBgAZKSkrBx48ab1hwXF4cnn3wShw4dQkpKCuLj47Fx40Zs2rQJQ4cORbt27bBx40akp6fj0KFDCA4OLvf+X3/9tcrv58EHH8TMmTNx4cIFDBgwAM8//zxDn2qFwU9ea9CgQfjiiy9gNBoxePBgAEBISAiWLFnibvPY7XZ06tQJiYmJ7vdlZWWhWbNmOHjwIKKjo/H3v/8dgHOL3EuXLqFx48YAgPvuuw99+vTBwoUL8fnnn0Ov15cbf8KECRgzZgz69euHzp07o127dtXWu2fPHly7dg2jR49GREQEIiIiMG/ePISGhuL48eP47bffsHnzZkyePBkjRoxAkyZN3I/pdKnu+9Hr9dizZw+Sk5Px888/Y+zYsVi7di169OhR+x8yqRJ7/OS1+vfvjxMnTuDQoUN48MEHAQA+Pj7o3r07Pv74Y4SGhqJ3795IT09HSkoKAOdzTCMiIpCVlYWBAwfi66+/dm9Z++mnn2LatGnu8/fo0QOPPvooTCYT1qxZU2H8Vq1aoXfv3li5ciUmTpx403obNWqEt99+G3/++af72Llz56DVatG+fXvs378fMTExGDt2LDp27Ii9e/e6t991qe77efPNN/Hee+9hyJAhWLx4Me666y6cOnWqhj9VIs74yYv5+vqiQ4cOsFqt5VoaoaGheOONN9C/f38YDAasXr3avc2wEALx8fFo27Yt2rZtixkzZmD69OmQJAn+/v5Ys2ZNuYdWSJKElStXYtSoUQgNDa1QQ2xsLF5++eVK/+xG999/P5YuXYoFCxYgLy8PWq0WQUFBWLt2LRo3bozp06dj2bJl+OKLLwA4Q/7kyZPlztGsWbMqv59p06YhLi4Ow4cPh8FgQJcuXdxbaxPVBHfnJKqCw+HA8uXL0bp1a8ycObOhyyGqN5zxE1UiPz8fYWFh6NOnD+Li4tzHJ02aVG7ZZ1mbNm2Cv7//rSqRqNY44yciUhle3CUiUhkGPxGRyjD4iYhUhsFPRKQyDH4iIpVh8BMRqcz/A5k2XrFDebBSAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.distplot(walmart_train_data['Weekly_Sales'])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 10,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:>"
-                        ]
-                    },
-                    "execution_count": 10,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAD/CAYAAAAqlAtHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoeUlEQVR4nO3de1RVdf7/8ecJwyIX6qTgT/HrTM4EVIJlDkdRx186qBiXAywqJ2A5o3xNj5emnK+lo2Zq4a0UbbkYrWiy1GUEOBpSXn7F0q+mpVhJl1+o0U+5iMoXDIVz9u8PV8cYEA5ezoHj69Haa/nZl89+79PhvM/ncvY2GYZhICIi4gK3uTsAERG5dSjpiIiIyyjpiIiIyyjpiIiIyyjpiIiIyyjpiIiIyyjpiIjIVVVXV/Poo49SUlLSaNuxY8eIi4tj1KhRzJ49m/r6+hbrU9IREZEmHTlyhCeeeILjx483uX3mzJnMnTuXHTt2YBgGmzdvbrFOJR0REWnS5s2bmTdvHn5+fo22/fjjj9TW1tK/f38A4uLiyMvLa7HODjc6SBERaduqqqqoqqpqtN7X1xdfX19HedGiRVeto6ysjO7duzvK3bt3p7S0tMVzK+ncJHUV37s7hDbj/uBEd4fQZnx//pS7Q2gzenb6lbtDaDNOVh697jpa85mT+e42Vq9e3Wi91Wpl6tSpTtVht9sxmUyOsmEYDcpXo6QjIuIJ7Dand01JScFisTRa/8tWTkt69OhBeXm5o1xRUdFkN9y/U9IREfEEht3pXf+9G+1a9OrVi44dO3Lo0CEGDBhATk4Ow4YNa/E4TSQQEfEEdrvzy3WYOHEiR49e7g5ctmwZL730EqNHj+bChQskJye3eLxJjza4OTSmc4XGdK7QmM4VGtO54kaM6Vz6f186va93z/uv+3zXSt1rIiKewNbyDzPbAiUdERFP0IqJBO6kpCMi4glaMZHAnZR0REQ8wXVOEHAVJR0REQ9gqKUjIiIuo5aOiIi4jK3O3RE4RUlHRMQTqHtNRERcRt1rIiLiMmrpiIiIy6ilIyIirmLYNZFARERcRS0dERFxGY3piIiIy+iGnyIi4jJq6YiIiMtoTEdERFxGD3Fzj7y8PDIyMqivr8cwDGJiYpgwYQKrVq1i8ODBPPzww+4OUUTkxlNLx/VKS0tJS0sjKyuLrl27UlNTQ1JSEr/5zW/49NNPCQsLc3eIIiI3hWFoIoHLnT17lrq6OmprawG46667ePnll8nPz+eLL75gzpw5rF69Gm9vb+bOncu5c+fw8fFh9uzZhISEMGvWLM6dO8eJEyeYOXMm3bp146WXXqK2tpauXbvywgsv0Lt3bzdfpYhIE9TScb2goCBGjBjByJEjCQ4OJiwsjKioKKxWK/v378dqtRIYGEhCQgKpqalERERw+PBhpk+fzo4dOwDo0qULa9eu5dKlSyQkJLB27Vp69uzJJ598wt///nfefPNN916kiEhTNHvNPV544QUmT55MQUEBBQUFJCYmsmzZMsf2mpoaTp48SUREBAD9+/enc+fOfP/99wCEhIQAcPz4cX744Qeeeuopx7HV1dUuvBIRkVbQRALX27NnDxcuXCAyMpL4+Hji4+PZvHkzW7ZscexjGEaj4wzDwGa73B96xx13AGC32wkICCAnJwcAm81GRUWFC65CROQatJPutdvcHcCNdMcdd7B8+XJKSkqAy8nk2LFjBAcH4+Xlhc1mo1OnTgQEBJCfnw/A4cOHqaio4He/+12Duu655x7Onz/PwYMHAXjvvfd49tlnXXtBIiLOMuzOL27kUS0ds9mM1Wpl0qRJ1NVdvuPq0KFDmTJlCv/85z+ZN28eaWlpLF26lPnz55Oens7tt99Oeno63t7eDery9vZm5cqVLFq0iIsXL9KpUyfS0tLccVkiIi1rJy0dk9FUf5Nct7qK790dQptxf3Ciu0NoM74/f8rdIbQZPTv9yt0htBknK49edx0/bXvV6X3vHDvjus93rTyqpSMicsvS7DUREXEZzV4TERGXaSdjOko6IiKeoJ10r3nUlGkRkVuW3e780gpbt24lMjKSiIgINmzY0Gj7l19+SXx8PNHR0fznf/4nVVVVzdanpCMi4gluQtIpLS3llVde4Z133iE7O5tNmzbx3XffNdhn0aJFTJs2jdzcXH7zm9+wfv36ZutU0hER8QSG4fzipL1792I2m+nSpQs+Pj6MGjWKvLy8BvvY7XZqamoA+Omnnxx3dbkajemIiHiCeudnr1VVVTXZDebr64uvr6+jXFZWRvfu3R1lPz8/CgsLGxwza9Ys/vznP7N48WLuvPNONm/e3Oy5lXRERDxBKyYSZGZmsnr16kbrrVYrU6dOdZTtdjsmk+nKKQyjQbm2tpbZs2fz5ptvEhISwhtvvMF//dd/kZGRcdVzK+mIiHiCVozVpKSkYLFYGq3/ZSsHoEePHo77TwKUl5fj5+fnKH/zzTd07NjRcXf+xx57jJUrVzZ7bo3piIh4glaM6fj6+hIQENBo+fekM3jwYPbt20dlZSU//fQT+fn5DBs2zLG9T58+nD592vFomJ07d9KvX79mw1RLR0TEE9yEH4f6+/vz9NNPk5ycTF1dHQkJCYSEhDBx4kSmTZtGv379eOmll5gxYwaGYXD33XezePHiZuvUDT9vEt3w8wrd8PMK3fDzCt3w84obcsPPdX91et87J6y47vNdK7V0REQ8gGFvH+0HJR0REU+ge6+JiIjLtJN7rynpiIh4AnWviYiIy6h7TUREXMZmc3cETlHSERHxBGrpiIiIy2hMR0REXEaz125t+hX+FV8ea/5W57eSJwbMcHcIbcan1cfdHYJnUUtHRERcxdCYjoiIuIxmr4mIiMuoe01ERFxG3WsiIuIyaumIiIjLaMq0iIi4ilGviQQiIuIq6l4TERGXUdIRERGX0ZiOiIi4jFo6IiLiKoaSjoiIuIxmr4mIiMuopSMiIi6jpCMiIq5iGEo6IiLiKmrpiIiIyyjpiIiIqxj1+nGoiIi4SvvIOUo6IiKeoL38OPQ2dwcgIiI3gN1wfmmFrVu3EhkZSUREBBs2bGi0/fvvvycpKYno6Gj+8pe/cP78+WbrU9IREfEE9lYsTiotLeWVV17hnXfeITs7m02bNvHdd985thuGwVNPPcXEiRPJzc0lODiYjIyMZuv02O61kpISRo8eTd++fQGora3loYce4plnnqFbt26tru+5557DarXSq1evGx2qiMh1M+pvfPfa3r17MZvNdOnSBYBRo0aRl5eH1WoF4Msvv8THx4dhw4YBMGnSJKqqqpqt06NbOn5+fuTk5JCTk0NeXh7dunVj2rRp11TX/v37282Pr0Tk1mPYDaeXqqoqSkpKGi3/njDKysro3r27o+zn50dpaamjfPLkSbp168bzzz+PxWJh3rx5+Pj4NBunRyedXzKZTEydOpVvv/2WoqIiMjIysFgsREdHs2TJEgzDoKSkhKioKKZPn87YsWOZOHEi586dIyMjg7KyMlJTUzl79qy7L0VEpLFWdK9lZmYyYsSIRktmZmbDKu12TCaTo2wYRoNyfX09Bw4c4IknnuD999+nd+/evPzyy82GecskHQBvb2/69OlDUVERX3zxBVu2bCE7O5vS0lJyc3MB+Oabbxg3bhzbtm2jb9++rF69mtTUVPz8/MjIyKBr165uvgoRkcYMu/NLSkoKO3fubLSkpKQ0qLNHjx6Ul5c7yuXl5fj5+TnK3bt3p0+fPvTr1w+ARx99lMLCwmbj9NgxnasxmUy89dZbVFZWEhcXB1we7+nZsycDBgzg17/+NWFhYQDExsby7LPPujNcERHntGKCgK+vL76+vi3uN3jwYNLT06msrOTOO+8kPz+fF1980bH9wQcfpLKykqKiIoKCgti1axf3339/s3XeUknn0qVLFBcXExYWRlRUFOPHjwegqqoKLy8vzp49S4cOV14SwzDw8vJyV7giIk67GU+r9vf35+mnnyY5OZm6ujoSEhIICQlh4sSJTJs2jX79+rFmzRrmzJnDTz/9RI8ePViyZEmzdd4yScdut5Oenk5oaCjx8fGsWrWKxMREOnbsyJQpU7BYLPz+97+nuLiYY8eOERwczHvvveeYleHl5YXN1j4ekiQitx6j/ubUGxUVRVRUVIN1//jHPxz/Dg0NZcuWLU7X59FJp6ysjJiYGOBy0gkODmbFihV07tyZoqIiEhMTsdlsDB06FIvFwo8//kjnzp1ZtWoVJ0+eJDAwkIULFwIwfPhwUlNTWbduHb1793bnZYmINHIzWjo3g8nQPGCHkpISkpOT2bVr13XXdW/3h29ARJ7hy2Ob3R1Cm/HEgBnuDqHN+LT6uLtDaDNOnGl+8N0Zpf/7D07v67/7/1z3+a6VR7d0RERuGYap5X3aACWdXwgICLghrRwREVdrL91rSjoiIh7AXq+WjoiIuIih7jUREXEVda+JiIjLGHa1dERExEXay49flHRERDyAWjoiIuIydpuSjoiIuIhaOiIi4jKaMi0iIi6jKdMiIuIydrV0RETEVdS9JiIiLqPZayIi4jKavSYiIi6jMR0REXEZjemIiIjL6N5rIiLiMjb7be4OwSlKOiIiHkAtnVvc9+dPuTuENuOJATPcHUKb8e6hV90dQpsRFJTg7hA8iiYSiIiIy2gigYiIuIxaOiIi4jLtZEhHSUdExBNo9pqIiLhMO3mygZKOiIgnMNCYjoiIuIi9nQzqtI9OQBERaZYdk9NLa2zdupXIyEgiIiLYsGHDVffbs2cPjzzySIv1qaUjIuIBbkb3WmlpKa+88gpZWVl4e3vz+OOPExYWxm9/+9sG+1VUVJCWluZUnWrpiIh4ABsmpxdn7d27F7PZTJcuXfDx8WHUqFHk5eU12m/OnDlYrVan6lRLR0TEA7Rm9lpVVRVVVVWN1vv6+uLr6+sol5WV0b17d0fZz8+PwsLCBse89dZb3HfffYSGhjp1biUdEREP0Jqkk5mZyerVqxutt1qtTJ069Uqddjsm05WWkWEYDcrffPMN+fn5vPnmm5w+fdqpcyvpiIh4gNaM6aSkpGCxWBqt/2UrB6BHjx4cPHjQUS4vL8fPz89RzsvLo7y8nPj4eOrq6igrK2PcuHG88847Vz23ko6IiAewt2Iewb93o13N4MGDSU9Pp7KykjvvvJP8/HxefPFFx/Zp06Yxbdo0AEpKSkhOTm424YAmEoiIeISbMZHA39+fp59+muTkZGJjY3n00UcJCQlh4sSJHD169JriVEtHRMQD3Kzb4ERFRREVFdVg3T/+8Y9G+wUEBLBr164W61PSERHxAHaTboMjIiIu0k7ugqOkIyLiCXSXaRERcZnWzF5zJyUdEREP0JpZae6kpCMi4gHU0hEREZdpL2M6zf44dPz48Xz00UeOclpaGg8++CCXLl1yrBsyZAglJSWtOukjjzzS6JisrCxmzZrVqnp+lpeXR1xcHNHR0URFRbFu3boWj0lKSmL//v3XdD4RkbbGaMXiTs0mHbPZzKFDhxzlvXv30r9/f8e6EydO4OPjQ0BAwM2NshmlpaWkpaWxfv16cnNz2bhxI9u3b2fnzp1ui0lExNXsJucXd2o26QwaNIjPP/8cuPzh7u3tzahRoygoKADg4MGDhIeHk52djcViISYmhueff56LFy8C8PHHH5OQkEBsbCxWq5WzZ882qL+4uJiIiAgOHz7sWLdv3z4ef/xxRzkrK4t58+ZdNcazZ89SV1dHbW0tAHfddRcvv/yy4yFDH3zwAYmJiURHRzN69Gg+++yzRnVkZGRgsViIjo5myZIlGIZBdXU1qampxMXFERcXpyQmIm2avRWLOzWbdO6//35OnjzJxYsXKSgoIDw8nPDw8AZJx8/Pj82bN7Nx40ZycnK4++67Wb9+PZWVlSxfvpz169eTnZ3NkCFDWLZsmaPu06dPY7VaWbx4Mf3793esN5vNlJeXc/LkSQCys7OJi4u7aoxBQUGMGDGCkSNHkpCQwNKlS7Hb7fTp0we73c7GjRtZu3Ytubm5TJgwgYyMjAbHf/zxx3zxxRds2bKF7OxsSktLyc3N5cMPP6RXr15kZWWxaNGiBndaFRFpa2wm5xd3anYigZeXF6GhoRw9epSCggL+9Kc/0bt3b2prazl//jyff/45wcHBnDhxgsTERADq6uq47777OHLkCKdOnSI5ORm4/FyGzp07O+qePn06/fr14+GHH25wTpPJhMViITc3l7i4OM6cOdPiw4FeeOEFJk+eTEFBAQUFBSQmJrJs2TIiIiJYs2YNu3btori4mAMHDnDbbQ3z7L59+ygsLHQkttraWnr27El8fDwrVqygtLSU4cOHM2XKFCdfUhER13N3C8ZZLc5eM5vNfPbZZxQWFrJ06VLgcrfbzp076dq1K4ZhMGbMGObMmQNATU0NNpuNAwcO8NBDD7F27VoALl68SE1NjaPe2bNns2bNGvbs2cPw4cMbnNNisTBhwgS8vb2JiYlpNr49e/Zw4cIFIiMjiY+PJz4+ns2bN7NlyxbCw8NJSEggOjqagQMHEhgYyIYNGxocb7PZSElJYfz48cDlJ+p5eXlx11138cEHH/DJJ5+we/duXn/9dbZv394oaYmItAXtJem0+Ak6aNAgcnJyuPfee+nQ4XKOCg8P54033iA8PJywsDA+/PBDzpw5g2EYzJ8/n8zMTEJDQzl8+DDFxcUAvPbaayxZssRRb0hICPPnz2fBggVcuHChwTl79epFjx492LhxY4tJ54477mD58uWO2XCGYXDs2DGCg4M5fvw4JpOJSZMmOeK02WwNjjebzeTk5FBTU0N9fT1Tpkxhx44dvP3226SnpzNmzBjmzZtHZWUl1dXVTrykIiKu115mr7XY0rn33ns5d+4c48aNc6wzm83MmDGDwYMHExQUhNVqJSUlBbvdTnBwMKmpqXTs2JHFixczY8YM7HY7/v7+jpbSzwYOHEhYWBivvvoqQUFBDbZFRkaSn5+Pv79/s/GZzWasViuTJk2irq4OgKFDhzJlyhS8vLwIDg5mzJgxmEwmhgwZ0mA2Hlyevl1UVERiYiI2m42hQ4disVioqanhr3/9K1FRUXh5eTFz5kynHnokIuIO7p6V5iyTYRjuTnyN1NfX87e//Y3Ro0cTERHh7nCuSQfvXu4Ooc2I/V8D3B1Cm/HuoVfdHUKbERSU4O4Q2oz/W9F4Vm1rLf+PJ53e95mTb1/3+a5Vm7sjgWEYDB06lMGDBzNy5Ejg8iy5Xz4i9ZcyMjJabA2JiHi6Ntd6uIo2l3RMJhP79u1rsO7hhx8mJyfHTRGJiLR97aV7rc0lHRERab32MntNSUdExAOoe01ERFzG3k7SjpKOiIgHsLW8S5ugpCMi4gE0piMiIi6j2WsiIuIyGtMRERGXaR8pR0lHRMQj1LeTtKOkIyLiAdpHylHSERHxCJq9JiIiLqOJBCIi4jLtI+U48eRQERFp++ytWFpj69atREZGEhERwYYNGxpt/+ijj4iJiSE6OprJkydz/vz5ZutT0hER8QA2DKcXZ5WWlvLKK6/wzjvvkJ2dzaZNm/juu+8c26urq5k/fz4ZGRnk5uYSGBhIenp6s3Uq6YiIeAA7htOLs/bu3YvZbKZLly74+PgwatQo8vLyHNvr6uqYN2+e40GagYGBnDp1qtk6NaYjIuIBWjOmU1VVRVVVVaP1vr6++Pr6OsplZWV0797dUfbz86OwsNBR7tq1K3/84x8BqK2tJSMjg6SkpGbPraQjIuIBWtOCyczMZPXq1Y3WW61Wpk6deqVOux2T6cpN3QzDaFD+2f/8z/8wZcoUgoKCsFgszZ5bSUdExAO0ZoJASkpKk8nhl60cgB49enDw4EFHuby8HD8/vwb7lJWV8Ze//AWz2czzzz/f4rmVdG6Snp1+5e4Q2oxPq4+7O4Q2Iygowd0htBlFRVvcHYJHMVrR0vn3brSrGTx4MOnp6VRWVnLnnXeSn5/Piy++6Nhus9mYNGkSY8aMYfLkyU6dW0lHRMQDtGZWmrP8/f15+umnSU5Opq6ujoSEBEJCQpg4cSLTpk3j9OnTfPXVV9hsNnbs2AHAAw88wKJFi65ap8kwjPbym6J25T9+1c/dIbQZTfUB36o6mPQ972dq6Vxxe7d7rruOlF/HO71v5vH3rvt810p/ASIiHsDeTtoPSjoiIh6gfaQcJR0REY+gG36KiIjL3IyJBDeDko6IiAdQS0dERFymNb/TcSclHRERD6Anh4qIiMu0l59cKumIiHgAjemIiIjLaPaaiIi4jFo6IiLiMhrTERERl9HsNRERcRn9TkdERFxGYzoiIuIyNqN9dLAp6YiIeAB1r4mIiMvoIW4iIuIy7SPlKOmIiHgETSQQERGXaS8TCW5zdwAAgYGBzW5PSkpi//79DdbNmjWLrKysZo975JFHKCkpYefOnaxcubLR9v3795OUlNT6gEVE2hg7htOLO90SLZ0RI0YwYsQId4chInLTtJfZa22ipfOz06dP8+STTxIXF0dCQgKHDx926rjdu3cTExNDVFQUkydPpqKiosH2rKwsZs2aBUBBQQFjx44lLi6OzZs3O/Y5cOAATzzxBBaLhREjRvDRRx9RXV1NWFgY1dXVAJSUlBAZGXljLlZE5AYyDMPpxZ3aVEtny5YtDB8+nAkTJvDxxx9z6NAh+vfvD8CcOXPw8fFx7Hvq1Cl+//vfc+bMGebOncu7775LQEAA69atY8GCBaxatapR/ZcuXWLWrFlkZmbSt29fZs+e7dj29ttvs3DhQvr27cu+fftYvHgxI0eOZPjw4eTl5ZGQkEB2djaxsbE3+2UQEWk1d3ebOatNtXQGDRrE66+/zjPPPMO5c+d48sknHdsWLlxITk6OY3nkkUcAKCwsJCQkhICAAAAee+wx/vu//7vJ+r/++mv8/Pzo27cvABaLxbFt6dKlfPvtt6xZs4Y33niDmpoaAOLj48nJyQHgX//6FzExMTf+wkVErlN7aem0qaQzYMAAtm3bxpAhQ9i+fTuTJk1q8Ri7veGMDcMwqK+vb3Jfk8nU4AX38vJy/HvcuHEUFhbywAMPNDjvwIEDKSsrIz8/n4CAAPz9/Vt7WSIiN50Nu9OLO7WppLNkyRJyc3OxWCzMnTuXr776qsVjQkNDOXLkCCUlJQBs2rSJsLCwJvcNDAykoqKCoqIiALZt2wbAuXPnOH78ONOnT2fYsGHs3LkTm80GXE5UsbGxLFy4kLi4uBtxmSIiN5zdMJxe3KlNjekkJSXxzDPPkJWVhZeXF2lpaS0e061bNxYsWIDVaqWuro6ePXuyaNGiJve9/fbbWbFiBTNnzqRDhw7cd999AHTp0oWEhATGjh1Lhw4dMJvN1NbWcuHCBXx8fBg7diyvv/46I0eOvKHXKyJyo7SX2Wsmw90dfG2c3W7n3Xffpbi4mDlz5jh93H/8qt9NjKp9MZlM7g6hzehgalPf89yqqGiLu0NoM27vds911xHs93un9z1WduC6z3et9BfQAqvVyqlTp1i/fr27QxERuar20tJR0mnBa6+95u4QRERa5O6xGme1qYkEIiJybWyG3emlNbZu3UpkZCQRERFs2LCh0fZjx44RFxfHqFGjmD179lVnD/9MSUdExAMYrfjPWaWlpbzyyiu88847ZGdns2nTJr777rsG+8ycOZO5c+eyY8cODMNocKeXpijpiIh4AMOwO71UVVVRUlLSaKmqqmpQ5969ezGbzXTp0gUfHx9GjRpFXl6eY/uPP/5IbW2t484xcXFxDbY3RWM6IiIeoDW3wcnMzGT16tWN1lutVqZOneool5WV0b17d0fZz8+PwsLCq27v3r07paWlzZ5bSUdExAO05tcvKSkpDW4D9jNfX98GZbvd3uAnD4ZhNCi3tL0pSjoiIh6gNRMEfH19GyWYpvTo0YODBw86yuXl5fj5+TXYXl5e7ihXVFQ02N4UjemIiHiAm3EbnMGDB7Nv3z4qKyv56aefyM/PZ9iwYY7tvXr1omPHjhw6dAiAnJycBtuboqQjIuIBbsbsNX9/f55++mmSk5OJjY3l0UcfJSQkhIkTJ3L06FEAli1bxksvvcTo0aO5cOECycnJzdap2+DcJLoNzhW6Dc4Vug3OFboNzhU34jY4/p2DnN639HzRdZ/vWukvQETEA7SXh7gp6YiIeID20mmlpCMi4gFsdvc+nM1ZSjoiIh5A3WsiIuIy6l4TERGXaS+PNlDSERHxAHqIm4iIuIxaOiIi4jL2Vj6czV2UdEREPIAmEoiIiMu0l6Sje6+JiIjL6C7TIiLiMko6IiLiMko6IiLiMko6IiLiMko6IiLiMko6IiLiMko6IiLiMko6IiLiMko6IiLiMko67UxeXh5xcXFER0cTFRXFunXrAFi1ahUHDx50c3SuV1JSwgMPPEBMTAwxMTGMGjWK5557joqKimuq77nnnuPHH3+8wVFeNn78eD766CNHOS0tjQcffJBLly451g0ZMoSSkpJW1fvII480OiYrK4tZs2ZdU5xXe481Jykpif3791/T+ZwVGBjY6hhmzZpFVlZWs8f9/Prt3LmTlStXNtq+f/9+kpKSWh+wNElJpx0pLS0lLS2N9evXk5uby8aNG9m+fTs7d+7k008/xWazuTtEt/Dz8yMnJ4ecnBzy8vLo1q0b06ZNu6a69u/ff9PuYWU2mzl06JCjvHfvXvr37+9Yd+LECXx8fAgICLgp53dGc+8xTzdixAimT5/u7jA8npJOO3L27Fnq6uqora0F4K677uLll1/m2LFjfPHFF8yZM4evv/6a4uJikpKSiIqK4rHHHqOwsBC4/K1v0qRJjBkzhl27dlFYWMgTTzyBxWLhz3/+Mz/88IM7L++GMJlMTJ06lW+//ZaioiIyMjKwWCxER0ezZMkSDMOgpKSEqKgopk+fztixY5k4cSLnzp0jIyODsrIyUlNTOXv27A2PbdCgQXz++efA5Q93b29vRo0aRUFBAQAHDx4kPDyc7OxsLBYLMTExPP/881y8eBGAjz/+mISEBGJjY7FarY1iLC4uJiIigsOHDzvW7du3j8cff9xRzsrKYt68eVeN8Wrvsd/+9rcAfPDBByQmJhIdHc3o0aP57LPPGtXR1GteXV1NamoqcXFxxMXFXVcSO336NE8++SRxcXEkJCQ0uN7m7N69m5iYGKKiopg8eXKj1vAvW4cFBQWMHTuWuLg4Nm/e7NjnwIEDjr+ZESNG8NFHH1FdXU1YWBjV1dXA5dZ3ZGTkNV+fp1PSaUeCgoIYMWIEI0eOJCEhgaVLl2K327FarTzwwAMsXLiQwMBAZs6cSVJSElu3buW5555j+vTpji6cLl268MEHHzBkyBDmzJnD8uXLef/99xk/fjx///vf3XyFN4a3tzd9+vShqKiIL774gi1btpCdnU1paSm5ubkAfPPNN4wbN45t27bRt29fVq9eTWpqKn5+fmRkZNC1a9cbHtf999/PyZMnuXjxIgUFBYSHhxMeHt4g6fj5+bF582Y2btxITk4Od999N+vXr6eyspLly5ezfv16srOzGTJkCMuWLXPUffr0aaxWK4sXL6Z///6O9WazmfLyck6ePAlAdnY2cXFxV43xau+xPn36YLfb2bhxI2vXriU3N5cJEyaQkZHR4PiPP/64ydf8ww8/pFevXmRlZbFo0aLr6gresmULw4cPJysri2nTpjVoPc6ZM8fR1RoTE8OuXbsAOHPmDHPnzmXNmjVs3bqVhx56iAULFjRZ/6VLl5g1axarVq0iKyuLO+64w7Ht7bffZuHChbz//vssXLiQlStX0qlTJ4YPH05eXp7jNY6Njb3m6/N0erRBO/PCCy8wefJkCgoKKCgoIDExscGHT01NDSdPniQiIgKA/v3707lzZ77//nsAQkJCADh+/Dg//PADTz31lOPYn7+peQKTycRbb71FZWWl40O2traWnj17MmDAAH79618TFhYGQGxsLM8+++xNj8nLy4vQ0FCOHj1KQUEBf/rTn+jduze1tbWcP3+ezz//nODgYE6cOEFiYiIAdXV13HfffRw5coRTp06RnJwMgN1up3Pnzo66p0+fTr9+/Xj44YcbvQ4Wi4Xc3Fzi4uI4c+YMoaGhzcZ5tfdYREQEa9asYdeuXRQXF3PgwAFuu63h99Z9+/ZRWFjY6DWPj49nxYoVlJaWMnz4cKZMmXLNr+OgQYOYOnUqx44d4w9/+ANPPvmkY9vChQsd/18BR8ulsLCQkJAQR9flY4891ihh/uzrr7/Gz8+Pvn37AmCxWBxjPUuXLmX37t3k5eVx5MgRampqAIiPjyc9PZ2EhAT+9a9/kZmZec3X5+mUdNqRPXv2cOHCBSIjI4mPjyc+Pp7NmzezZcsWxz5NjUcYhuEY7/n5W5vdbicgIICcnBwAbDbbNQ++tzWXLl2iuLiYsLAwoqKiGD9+PABVVVV4eXlx9uxZOnS48tY3DAMvLy+XxGY2m/nss88oLCxk6dKlwOUP0Z07d9K1a1cMw2DMmDHMmTMHuPwlwmazceDAAR566CHWrl0LwMWLFx0feACzZ89mzZo17Nmzh+HDhzc4p8ViYcKECXh7exMTE9NsfM29x8LDw0lISCA6OpqBAwcSGBjIhg0bGhxvs9lISUlp9JrfddddfPDBB3zyySfs3r2b119/ne3btzdKWs4YMGAA27ZtY8+ePWzfvp3333+fN954o9lj7PaGT9U0DIP6+vom9zWZTA3+jn753hg3bhxhYWGEhYUxaNAgx5eVgQMHUlZWRn5+PgEBAfj7+7f6um4V6l5rR+644w6WL1/umKlkGAbHjh0jODgYLy8vbDYbnTp1IiAggPz8fAAOHz5MRUUFv/vd7xrUdc8993D+/HlHN8d7773nkm/7N5vdbic9PZ3Q0FDi4+PJycmhpqaG+vp6pkyZwo4dO4DL4x/Hjh0DLl/7sGHDAByv480yaNAgcnJyuPfeex2JLzw8nDfeeIPw8HDCwsL48MMPOXPmDIZhMH/+fDIzMwkNDeXw4cMUFxcD8Nprr7FkyRJHvSEhIcyfP58FCxZw4cKFBufs1asXPXr0YOPGjS0mnebeY8ePH8dkMjFp0iRHnP/+WpnN5iZf87fffpv09HTGjBnDvHnzqKysvOaW9ZIlS8jNzcVisTB37ly++uqrFo8JDQ3lyJEjjuvatGlTgxbRLwUGBlJRUUFRUREA27ZtA+DcuXMcP36c6dOnM2zYMHbu3Om4fpPJRGxsLAsXLmy2+1LU0mlXzGYzVquVSZMmUVdXB8DQoUOZMmUK//znP5k3bx5paWksXbqU+fPnk56ezu233056ejre3t4N6vL29mblypUsWrSIixcv0qlTJ9LS0txxWdetrKzM8WFqt9sJDg5mxYoVdO7cmaKiIhITE7HZbAwdOhSLxcKPP/5I586dWbVqFSdPniQwMJCFCxcCMHz4cFJTU1m3bh29e/e+4bHee++9nDt3jnHjxjnWmc1mZsyYweDBgwkKCsJqtZKSkuK4ltTUVDp27MjixYuZMWMGdrsdf39/R0vpZwMHDiQsLIxXX32VoKCgBtsiIyPJz89v8Rt4c+8xLy8vgoODGTNmDCaTiSFDhjQYT4HL04+bes1ramr461//SlRUFF5eXsycORNfX99reg2TkpJ45plnyMrKwsvLy6n3bbdu3ViwYAFWq5W6ujp69uzJokWLmtz39ttvZ8WKFcycOZMOHTpw3333AZfHQxMSEhg7diwdOnTAbDZTW1vLhQsX8PHxYezYsbz++uuMHDnymq7rVqEnh8otp6SkhOTkZMcgs6err6/nb3/7G6NHj3aM9cmNZbfbeffddykuLnZ0jUrT1NIR8WCGYTB06FAGDx7s+AZ+8OBBXnzxxSb3z8jI0HjENbBarZw6dYr169e7O5Q2Ty0dERFxGU0kEBERl1HSERERl1HSERERl1HSERERl1HSERERl1HSERERl/n/RA0sg8ymROgAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 2 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.heatmap(walmart_train_data.corr())  # Betrachtung der Korrelation \u00fcber eine heatmap"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# 2.3.  Merkmaldaten einlesen"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 11,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>Fuel_Price</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "      <th>CPI</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-05</td>\n",
-                            "      <td>42.31</td>\n",
-                            "      <td>2.572</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>211.096358</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-12</td>\n",
-                            "      <td>38.51</td>\n",
-                            "      <td>2.548</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>211.242170</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>True</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-19</td>\n",
-                            "      <td>39.93</td>\n",
-                            "      <td>2.514</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>211.289143</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-26</td>\n",
-                            "      <td>46.63</td>\n",
-                            "      <td>2.561</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>211.319643</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-03-05</td>\n",
-                            "      <td>46.50</td>\n",
-                            "      <td>2.625</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>211.350143</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   Store        Date  Temperature  Fuel_Price  MarkDown1  MarkDown2  \\\n",
-                            "0      1  2010-02-05        42.31       2.572        NaN        NaN   \n",
-                            "1      1  2010-02-12        38.51       2.548        NaN        NaN   \n",
-                            "2      1  2010-02-19        39.93       2.514        NaN        NaN   \n",
-                            "3      1  2010-02-26        46.63       2.561        NaN        NaN   \n",
-                            "4      1  2010-03-05        46.50       2.625        NaN        NaN   \n",
-                            "\n",
-                            "   MarkDown3  MarkDown4  MarkDown5         CPI  Unemployment  IsHoliday  \n",
-                            "0        NaN        NaN        NaN  211.096358         8.106      False  \n",
-                            "1        NaN        NaN        NaN  211.242170         8.106       True  \n",
-                            "2        NaN        NaN        NaN  211.289143         8.106      False  \n",
-                            "3        NaN        NaN        NaN  211.319643         8.106      False  \n",
-                            "4        NaN        NaN        NaN  211.350143         8.106      False  "
-                        ]
-                    },
-                    "execution_count": 11,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_features_data.head(5)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 12,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "<class 'pandas.core.frame.DataFrame'>\n",
-                        "RangeIndex: 8190 entries, 0 to 8189\n",
-                        "Data columns (total 12 columns):\n",
-                        " #   Column        Non-Null Count  Dtype  \n",
-                        "---  ------        --------------  -----  \n",
-                        " 0   Store         8190 non-null   int64  \n",
-                        " 1   Date          8190 non-null   object \n",
-                        " 2   Temperature   8190 non-null   float64\n",
-                        " 3   Fuel_Price    8190 non-null   float64\n",
-                        " 4   MarkDown1     4032 non-null   float64\n",
-                        " 5   MarkDown2     2921 non-null   float64\n",
-                        " 6   MarkDown3     3613 non-null   float64\n",
-                        " 7   MarkDown4     3464 non-null   float64\n",
-                        " 8   MarkDown5     4050 non-null   float64\n",
-                        " 9   CPI           7605 non-null   float64\n",
-                        " 10  Unemployment  7605 non-null   float64\n",
-                        " 11  IsHoliday     8190 non-null   bool   \n",
-                        "dtypes: bool(1), float64(9), int64(1), object(1)\n",
-                        "memory usage: 712.0+ KB\n"
-                    ]
-                }
-            ],
-            "source": [
-                "walmart_features_data.info()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 13,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>Fuel_Price</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "      <th>CPI</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>count</th>\n",
-                            "      <td>8190.000000</td>\n",
-                            "      <td>8190</td>\n",
-                            "      <td>8190.000000</td>\n",
-                            "      <td>8190.000000</td>\n",
-                            "      <td>4032.000000</td>\n",
-                            "      <td>2921.000000</td>\n",
-                            "      <td>3613.000000</td>\n",
-                            "      <td>3464.000000</td>\n",
-                            "      <td>4050.000000</td>\n",
-                            "      <td>7605.000000</td>\n",
-                            "      <td>7605.000000</td>\n",
-                            "      <td>8190</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>unique</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>182</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>top</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2011-09-23</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>False</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>freq</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>45</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>7605</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>mean</th>\n",
-                            "      <td>23.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>59.356198</td>\n",
-                            "      <td>3.405992</td>\n",
-                            "      <td>7032.371786</td>\n",
-                            "      <td>3384.176594</td>\n",
-                            "      <td>1760.100180</td>\n",
-                            "      <td>3292.935886</td>\n",
-                            "      <td>4132.216422</td>\n",
-                            "      <td>172.460809</td>\n",
-                            "      <td>7.826821</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>std</th>\n",
-                            "      <td>12.987966</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>18.678607</td>\n",
-                            "      <td>0.431337</td>\n",
-                            "      <td>9262.747448</td>\n",
-                            "      <td>8793.583016</td>\n",
-                            "      <td>11276.462208</td>\n",
-                            "      <td>6792.329861</td>\n",
-                            "      <td>13086.690278</td>\n",
-                            "      <td>39.738346</td>\n",
-                            "      <td>1.877259</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>min</th>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>-7.290000</td>\n",
-                            "      <td>2.472000</td>\n",
-                            "      <td>-2781.450000</td>\n",
-                            "      <td>-265.760000</td>\n",
-                            "      <td>-179.260000</td>\n",
-                            "      <td>0.220000</td>\n",
-                            "      <td>-185.170000</td>\n",
-                            "      <td>126.064000</td>\n",
-                            "      <td>3.684000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25%</th>\n",
-                            "      <td>12.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>45.902500</td>\n",
-                            "      <td>3.041000</td>\n",
-                            "      <td>1577.532500</td>\n",
-                            "      <td>68.880000</td>\n",
-                            "      <td>6.600000</td>\n",
-                            "      <td>304.687500</td>\n",
-                            "      <td>1440.827500</td>\n",
-                            "      <td>132.364839</td>\n",
-                            "      <td>6.634000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>50%</th>\n",
-                            "      <td>23.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>60.710000</td>\n",
-                            "      <td>3.513000</td>\n",
-                            "      <td>4743.580000</td>\n",
-                            "      <td>364.570000</td>\n",
-                            "      <td>36.260000</td>\n",
-                            "      <td>1176.425000</td>\n",
-                            "      <td>2727.135000</td>\n",
-                            "      <td>182.764003</td>\n",
-                            "      <td>7.806000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75%</th>\n",
-                            "      <td>34.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>73.880000</td>\n",
-                            "      <td>3.743000</td>\n",
-                            "      <td>8923.310000</td>\n",
-                            "      <td>2153.350000</td>\n",
-                            "      <td>163.150000</td>\n",
-                            "      <td>3310.007500</td>\n",
-                            "      <td>4832.555000</td>\n",
-                            "      <td>213.932412</td>\n",
-                            "      <td>8.567000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>max</th>\n",
-                            "      <td>45.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>101.950000</td>\n",
-                            "      <td>4.468000</td>\n",
-                            "      <td>103184.980000</td>\n",
-                            "      <td>104519.540000</td>\n",
-                            "      <td>149483.310000</td>\n",
-                            "      <td>67474.850000</td>\n",
-                            "      <td>771448.100000</td>\n",
-                            "      <td>228.976456</td>\n",
-                            "      <td>14.313000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "              Store        Date  Temperature   Fuel_Price      MarkDown1  \\\n",
-                            "count   8190.000000        8190  8190.000000  8190.000000    4032.000000   \n",
-                            "unique          NaN         182          NaN          NaN            NaN   \n",
-                            "top             NaN  2011-09-23          NaN          NaN            NaN   \n",
-                            "freq            NaN          45          NaN          NaN            NaN   \n",
-                            "mean      23.000000         NaN    59.356198     3.405992    7032.371786   \n",
-                            "std       12.987966         NaN    18.678607     0.431337    9262.747448   \n",
-                            "min        1.000000         NaN    -7.290000     2.472000   -2781.450000   \n",
-                            "25%       12.000000         NaN    45.902500     3.041000    1577.532500   \n",
-                            "50%       23.000000         NaN    60.710000     3.513000    4743.580000   \n",
-                            "75%       34.000000         NaN    73.880000     3.743000    8923.310000   \n",
-                            "max       45.000000         NaN   101.950000     4.468000  103184.980000   \n",
-                            "\n",
-                            "            MarkDown2      MarkDown3     MarkDown4      MarkDown5  \\\n",
-                            "count     2921.000000    3613.000000   3464.000000    4050.000000   \n",
-                            "unique            NaN            NaN           NaN            NaN   \n",
-                            "top               NaN            NaN           NaN            NaN   \n",
-                            "freq              NaN            NaN           NaN            NaN   \n",
-                            "mean      3384.176594    1760.100180   3292.935886    4132.216422   \n",
-                            "std       8793.583016   11276.462208   6792.329861   13086.690278   \n",
-                            "min       -265.760000    -179.260000      0.220000    -185.170000   \n",
-                            "25%         68.880000       6.600000    304.687500    1440.827500   \n",
-                            "50%        364.570000      36.260000   1176.425000    2727.135000   \n",
-                            "75%       2153.350000     163.150000   3310.007500    4832.555000   \n",
-                            "max     104519.540000  149483.310000  67474.850000  771448.100000   \n",
-                            "\n",
-                            "                CPI  Unemployment IsHoliday  \n",
-                            "count   7605.000000   7605.000000      8190  \n",
-                            "unique          NaN           NaN         2  \n",
-                            "top             NaN           NaN     False  \n",
-                            "freq            NaN           NaN      7605  \n",
-                            "mean     172.460809      7.826821       NaN  \n",
-                            "std       39.738346      1.877259       NaN  \n",
-                            "min      126.064000      3.684000       NaN  \n",
-                            "25%      132.364839      6.634000       NaN  \n",
-                            "50%      182.764003      7.806000       NaN  \n",
-                            "75%      213.932412      8.567000       NaN  \n",
-                            "max      228.976456     14.313000       NaN  "
-                        ]
-                    },
-                    "execution_count": 13,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_features_data.describe(include='all')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 14,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Index(['Store', 'Date', 'Temperature', 'Fuel_Price', 'MarkDown1', 'MarkDown2',\n",
-                            "       'MarkDown3', 'MarkDown4', 'MarkDown5', 'CPI', 'Unemployment',\n",
-                            "       'IsHoliday'],\n",
-                            "      dtype='object')"
-                        ]
-                    },
-                    "execution_count": 14,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_features_data.columns"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 15,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Store              0\n",
-                            "Date               0\n",
-                            "Temperature        0\n",
-                            "Fuel_Price         0\n",
-                            "MarkDown1       4158\n",
-                            "MarkDown2       5269\n",
-                            "MarkDown3       4577\n",
-                            "MarkDown4       4726\n",
-                            "MarkDown5       4140\n",
-                            "CPI              585\n",
-                            "Unemployment     585\n",
-                            "IsHoliday          0\n",
-                            "dtype: int64"
-                        ]
-                    },
-                    "execution_count": 15,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_features_data.isnull().sum() # existieren Nullwerte ?"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 16,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>Fuel_Price</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "      <th>CPI</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>column Type</th>\n",
-                            "      <td>int64</td>\n",
-                            "      <td>object</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>float64</td>\n",
-                            "      <td>bool</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>null values (nb)</th>\n",
-                            "      <td>0</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>4158</td>\n",
-                            "      <td>5269</td>\n",
-                            "      <td>4577</td>\n",
-                            "      <td>4726</td>\n",
-                            "      <td>4140</td>\n",
-                            "      <td>585</td>\n",
-                            "      <td>585</td>\n",
-                            "      <td>0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>null values (%)</th>\n",
-                            "      <td>0</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>50.7692</td>\n",
-                            "      <td>64.3346</td>\n",
-                            "      <td>55.8852</td>\n",
-                            "      <td>57.7045</td>\n",
-                            "      <td>50.5495</td>\n",
-                            "      <td>7.14286</td>\n",
-                            "      <td>7.14286</td>\n",
-                            "      <td>0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                  Store    Date Temperature Fuel_Price MarkDown1 MarkDown2  \\\n",
-                            "column Type       int64  object     float64    float64   float64   float64   \n",
-                            "null values (nb)      0       0           0          0      4158      5269   \n",
-                            "null values (%)       0       0           0          0   50.7692   64.3346   \n",
-                            "\n",
-                            "                 MarkDown3 MarkDown4 MarkDown5      CPI Unemployment IsHoliday  \n",
-                            "column Type        float64   float64   float64  float64      float64      bool  \n",
-                            "null values (nb)      4577      4726      4140      585          585         0  \n",
-                            "null values (%)    55.8852   57.7045   50.5495  7.14286      7.14286         0  "
-                        ]
-                    },
-                    "execution_count": 16,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "null = pd.DataFrame(walmart_features_data.dtypes).T.rename(index={0:'column Type'}) \n",
-                "null = null.append(pd.DataFrame(walmart_features_data.isnull().sum()).T.rename(index={0:'null values (nb)'}))\n",
-                "null = null.append(pd.DataFrame(walmart_features_data.isnull().sum()/walmart_features_data.shape[0]*100).T.\n",
-                "                                       rename(index={0: 'null values (%)'}))\n",
-                "null"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 17,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "from statistics import mean\n",
-                "walmart_features_data['CPI'] = walmart_features_data['CPI'].fillna(mean(walmart_features_data['CPI']))\n",
-                "walmart_features_data['Unemployment'] = walmart_features_data['Unemployment'].fillna(mean(walmart_features_data['Unemployment']))\n",
-                "walmart_features_data['MarkDown1'] = walmart_features_data['MarkDown1'].fillna(0)\n",
-                "walmart_features_data['MarkDown2'] = walmart_features_data['MarkDown2'].fillna(0)\n",
-                "walmart_features_data['MarkDown3'] = walmart_features_data['MarkDown3'].fillna(0)\n",
-                "walmart_features_data['MarkDown4'] = walmart_features_data['MarkDown4'].fillna(0)\n",
-                "walmart_features_data['MarkDown5'] = walmart_features_data['MarkDown5'].fillna(0)"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 2.3.2. Deskriptive Analyse"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 18,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:>"
-                        ]
-                    },
-                    "execution_count": 18,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAE/CAYAAAAT0Vc7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABUrUlEQVR4nO3deVyU1f7A8c8ICCop7kt6vWmKWy6ZghsJ5sruihvWLS0TXK75uxRetNTUlCzRNEvTq5kLueGGkZao4HpzRdRMC1OQUAEBhZnn94fXSURyhOcZZ+D77jWv18wzM99zZhK+nPOc53x1iqIoCCGEEBamzNPugBBCCPEokqCEEEJYJElQQgghLJIkKCGEEBZJEpQQQgiLJAlKCCGERZIEJYQQ4olkZmbi5eVFUlJSgecSEhLo27cvPXv2JDQ0lLy8vCK3IwlKCCGEyY4fP87gwYO5dOnSI5+fNGkSYWFhREdHoygK69atK3JbkqCEEEKYbN26dUyZMoUaNWoUeO7KlSvk5OTQunVrAPr27cvOnTuL3JZtkd8phBCiREhPTyc9Pb3A8YoVK1KxYsV8x2bMmFFonJSUFKpXr258XL16dZKTk4vcL0lQZpSbelHT+IPbjtc0/rO68prGP56Xqml8gPJlymoa30Gn/Y9UtiFX0/gVy9hrGn9/xgVN4wN8WK61pvF32t7WND7A6ssbix3D1N85K77ZxoIFCwocDwoKIjg42OT2DAYDOp3O+FhRlHyPn5QkKCGEKKkMepNeNmLECPz9/Qscf3j09Di1atXi+vXrxsepqamPnAo0lSQoIYQoqRSDSS971FReUTz77LPY29tz9OhR2rZty+bNm3FzcytyPFkkIYQQJZXBYNqtmEaOHMnJkycBmDt3LjNnzqRXr15kZWURGBhY5LgyghJCiBJK0Rf9GqTH2b17t/H+F198YbzfpEkTIiMjVWlDEpQQQpRUJk7xWaoSn6B27tzJkiVLyMvLQ1EUfH19eeONN5g/fz4dO3bkpZdeetpdFEIIbZi4SMJSlegElZyczOzZs9mwYQOVK1fm9u3bDB8+nOeee47Dhw/j4uLytLsohBDakRGU5bpx4wa5ubnk5OQAUKFCBWbNmsWuXbs4deoUkydPZsGCBZQtW5awsDBu3rxJ+fLlCQ0NpWXLloSEhHDz5k0uX77MpEmTqFatGjNnziQnJ4fKlSvz/vvvU69evaf8KYUQohAqLIB4mkp0gmrSpAndunXjlVdeoWnTpri4uODt7U1QUBAHDx4kKCgIZ2dn+vfvz6hRo+jRowc//fQT48aNIzo6GgAnJycWL17M3bt36d+/P4sXL6ZOnTrExsby73//m+XLlz/dDymEEIXQcpGEOZToBAXw/vvv8/bbb7Nv3z727dvHwIEDmTt3rvH527dv8+uvv9KjRw8AWrduTaVKlbh48d4V2C1btgTg0qVL/Pbbb4wePdr43szMTDN+EiGEeEIyxWe5fvjhB7KysujTpw/9+vWjX79+rFu3Lt8SSEVRCrxPURT0+nsnFx0cHIB7W3jUrVuXzZs3A6DX60lN1X5rHiGEKDIrXyRRoi/UdXBwIDw83FizRFEUEhISaNq0KTY2Nuj1ehwdHalbty67du0C4KeffiI1NZVGjRrli9WgQQNu3brFkSNHAPj222955513zPuBhBDiSSgG024WqkSPoFxdXQkKCuKtt94iN/feBptdunRhzJgxrFy5kilTpjB79mzmzJnD1KlTiYiIwM7OjoiICMqWzb+paNmyZfn000+ZMWMGd+7cwdHRkdmzZz+NjyWEEKax8kUSOuVRc1xCE7Kb+V+T3cxNI7uZP57sZn7PnVPfmfQ6+xbdi92WFkr0CEoIIUozRa/tHzNakwQlhBAllQWfXzKFJCghhCiprPwclCQoIYQoqWQEJUyl9SKGb45+omn8qS9N1jR+J9safH/3d03bSMzUNn7LZ+prGh/gjqLteYUK2Gkaf6Jja03jA6RoHP+/2Vc0bkElVn4dlCQoYTG0Tk5ClDqy1ZEQQgiLJFN8QgghLJIskhBCCGGRJEEJIYSwRIoiiySEEEJYIhlB5ff+++9z7NgxcnNz+fXXX2nYsCEAgYGB9OvXT+3miiwjI4OQkBAWLlz4tLsihBDakFV8+U2ZMgWApKQkAgMDjfWTLM2tW7dISEh42t0QQgjtyCq+x7t8+TJTp07l5s2bODg48O9//5tmzZoREhJCuXLlOHPmDOnp6fzzn/9k8+bNnD17lldeeYWQkBA2bNjADz/8wB9//MH169dxd3cnJCQEnU7HkiVL2LFjB3q9ns6dOzNp0iSuXLnCG2+8QeXKlXFwcCAiIoL33nuP5ORkUlJS6NChAzNmzGD69OmkpKQwZswY3n33XQIDA9m9ezcAERERAAQHB+Pq6kqLFi24fv06kZGRfPXVVwXa1Ol05vgahRDiycgU3+P961//IiwsjGbNmnHhwgXGjBlDdHQ0ACkpKaxdu5aNGzfy7rvvEh0djb29PW5ubowZMwaAo0ePsnnzZipWrEhgYCDfffcdDg4OnDp1isjISHQ6HZMmTWLLli20bduWX375hS+//JK6deuydetWmjZtyvz587l79y6enp6cPn2ayZMnExgYyMKFC40FDR/lxo0bjBw5EhcXF/bu3fvINn19fc3xNQohxJOREdRfu337NqdOneLdd981HsvKyuLGjRsAuLm5AVCnTh0aNWpE1apVAXBycuLWrVsAdOvWjWrVqgHQp08f4uPjsbe358SJE/Tt2xeAnJwc6tSpQ9u2balatSp169YFwMvLixMnTrB8+XIuXrzIzZs3ycrKwsnJyeTP0KpVKwDi4uIe2aYQQlgkDUZQUVFRLFq0iLy8PEaMGMHQoUPzPX/69GnCwsLIzc2ldu3azJkzh4oVKxapLc0TlMFgoGzZsvnORV27ds2YIOzs/tz3y9b20d2xsbHJF+9+ufYRI0bw2muvAZCeno6NjQ03btzAwcHB+PqVK1cSHR3NwIED6dixI+fOnePhGo06nS7fsby8vHx9uR+vsDaFEMIiqZygkpOTmTdvHhs2bKBs2bIEBATg4uLC888/b3zNjBkzGDt2LC+//DKzZs1i6dKlTJgwoUjtlVGr44V55pln+Pvf/25MUPv37y+QcR8nNjaWjIwM7ty5w7Zt23Bzc8PV1ZXNmzdz+/Zt8vLy8k0bPmj//v0MGjQIHx8f7ty5w9mzZzEYDNja2pKXd2+FS8WKFbl58yZpaWncvXuX2NjYR/bD1DaFEMIi6PNMuqWnp5OUlFTglp6eni/cgQMHcHV1xcnJifLly9OzZ0927tyZ7zUGg4Hbt+9VHM7Ozs43YHhSZjkHNWfOHKZOncqXX36JnZ0d8+bNe6KFBVWqVGHkyJHcuHEDHx8funTpAsDZs2cZOHAger2eLl264O/vz5Ur+XcZHjFiBFOnTmXJkiU4OjrSpk0bkpKSeOmll6hTpw7Dhw9n5cqVvPHGG/Tv359atWrxwgsvPLIfHh4ej2xTCCEskonnoFasWMGCBQsKHA8KCiI4ONj4OCUlherVqxsf16hRgxMnTuR7T0hICP/4xz/48MMPKVeuHOvWrSti50GnPDzfZWE2bNjAoUOHmDVr1tPuSrH1r++jaXxrL7dhjt3ML2dpW4ihJJTbqGZTXtP4nZSinY94Elrvn7A055zGLUBCyqFix8jeaNrvzdxubxcYLcG92aUHzx8tWrSIO3fuMH78eADWrVvHqVOn+OCDD4B75+X79evHzJkzadmyJV999RVxcXEsWbKkSP2XnSSEEKKkMnEE9XAiKkytWrU4cuSI8fH169epUaOG8fG5c+ewt7enZcuWAAwaNIhPP/30CTv9J83PQRVX3759S8ToSQghzM5gMO1moo4dOxIXF0daWhrZ2dns2rXLuBIboH79+ly7do2LFy8C8P333xd6ysQUMoISQoiSSq/uZGfNmjWZMGECgYGB5Obm0r9/f1q2bMnIkSMZO3YsL7zwAjNnzmT8+PEoikLVqlX58MMPi9yeJCghhCipNLgOytvbG29v73zHvvjiC+P9l19+mZdfflmVtiRBmdGzOm1PPmu9iGHqkenaxge2t9D2M0Q5VdM0vjk0Voq+bNcUt3Ta7j4Qcfu0pvEBXij/rKbx65R10jS+amSrIyHUoXVyEqLUka2OhBBCWCQZQQkhhLBIln2Z62NJghJCiJIqTwoWCiGEsERyDkoIIYQlUgwyxSeEEMISySKJoklKSqJXr140bNgw3/HFixdTu3Ztk+OYsplsSEgI8fHxVKpUCYC7d+8ydOhQhg0bVuC1n376KS1atKBbt24m90EIISySTPEVXY0aNfIVMtTS2LFjjZVwU1NT6d69Ox06dCiQIMeNG2eW/gghhOZkik9dISEhtG/f3phMnJ2dSUxM5Pbt23zwwQecP38evV7PyJEj8fLyKlIb1apV47nnnuPChQscP36cjRs3cvPmTdzd3UlJSTG2v3z5cr755htsbGxwd3dn0qRJpKamEhYWxrVr19DpdEycOJGOHTuq+RUIIYQ6ZBVf0aWkpODr62t8/PD+Tg9atGgRzZs3Z/bs2WRmZhIQEECrVq2K1O7Zs2f59ddfad68OYcOHSI5OZnt27dja2tLSEgIACdOnGD16tV8++23lCtXjjfeeINTp06xdOlS+vXrR7du3UhJSWHIkCFs2rQJR0fHIvVFCCE0I9dBFd2jpvjuJ4iHHThwgJycHL799lsAsrKyOH/+vMltzZ8/nxUrVmAwGHBwcOCDDz6gbt26HDp0iGbNmmFrm/+rOHz4MO7u7jzzzDMALF++3NiPixcvMn/+fADy8vL47bffaNq0qcl9EUIIs5BFEurS6XTcL/Kbm/tn5VCDwcCcOXNo3rw5cO88UqVKlYiKijIp7oPnoB7m4FBw801bW9t8ZemTk5MpV64cBoOBFStW4OTkBNwbBVatWtWkPgghhFlZ+TkoiytY6OTkxIULFwCIiYkxHnd1deWbb74B7iUFHx8frl69qlk/XnrpJX788Udu375NXl4eEydO5NSpU7i6urJ69WoALly4gLe3N9nZ2Zr1QwghikwxmHazUBY3gho8eDDjx4/H29sbV1dXqlevDkBQUBBTp07Fy8sLvV7PpEmT+Nvf/pav/LCamjdvzrBhwwgICMBgMNC9e3c6duxIw4YNCQsLM54v++ijj+T8kxDCIil56hYsNDedolj5WTQrMu7vAZrGd9R4QKx1PShzlNuIcrireRtas/Z6UN9kJmgaH7SvB5Vp0P7f0fdJu4od4/aMQJNeVyH0P8VuSwsWN4IqqokTJxqnBh/k4eEh1zYJIUonC56+M0WJSVDh4eFPuwtCCGFZrHyRRIlJUNbgeF6qpvFzDNpelNfeDFNwfU5pO4144cUwTePH6dI1jQ8QvKSrpvGXvhGvafxOFZ7TND5Awt3rmsbvY/83TeOrRpaZC6EOrZOTEKWOjKCEEEJYJL11r+KTBCWEECWUIlN8QgghLJKVT/FZ3E4SQgghVGJQTLs9gaioKPr06UOPHj34+uuvCzx/8eJFhg8fjo+PD6+//jq3bt0qcvclQQkhREml8lZHycnJzJs3j9WrV7Np0ybWrl2b7/pTRVEYPXo0I0eOZMuWLTRt2pQlS5YUufuaJqikpCScnZ0JC8u/tDchIQFnZ2c2bNhgchwPD48CxyMiIujUqRO+vr74+Pjg5eXFqlWrVOn7X0lOTqZz586atyOEEMVi4ggqPT2dpKSkArf09PyXTRw4cABXV1ecnJwoX748PXv2ZOfOncbnT58+Tfny5XFzcwPgrbfeYujQoUXuvubnoJycnIiNjUWv12NjYwPA9u3bqVKliirxAwICCA4OBiAtLY0RI0Zgb2/PgAEDVIn/sB9//JEPP/yQ69e1vc5CCCGKS8kzbXS0YsUKFixYUOB4UFCQ8fcr3Nuo+/7+qHCvZNKJEyeMj3/99VeqVavGe++9R0JCAg0aNODf//53kfuveYKqUKECTZo04fDhw7i6ugKwf/9+YxXaVatWsXnzZrKzs7GzsyM8PJwGDRrg4eFBy5YtSUhIYM6cOcZ40dHRLFy40Fif6UFVqlRh9OjRfPHFFwwYMIDU1FRCQ0P5/fffsbW1ZcKECbRo0QJfX19iY2MB6NKlC++++y59+vTh888/x8bGhuzsbJKTk7l8+TJXrlxhwIABjB49GoDIyEgiIiL+sriiEEJYBBNX8Y0YMQJ/f/8CxytWrPhQOEO+MkSKouR7nJeXx6FDh1i1ahUvvPACn3zyCbNmzWLWrFlF6r5ZzkH17t2b6Oho4F6lWmdnZ+zs7MjMzCQmJoaVK1eydetWunbtmu+km5ubG9HR0cbR1r59+1i4cCHLli0rdATWuHFjLl68CMC0adNwdXUlKiqK+fPn895772EwGKhduzbnzp3j559/Rq/Xc+jQIQBiY2Nxd3cHIDExkaVLl7J+/XqWLFliHOpGRETQuHFjbb4oIYRQk4lTfBUrVqRu3boFbg8nqFq1auWbPbp+/To1atQwPq5evTr169fnhRdeAMDLyyvfCOtJmSVBeXh4sHfvXgwGAzt27KB3794AODo6Eh4ezrZt2wgPD2fPnj1kZWUZ3/dgSfcbN24QHByMn58f1apVK7QtnU5nLEAYHx9P//79AahXrx6tWrXi+PHjuLm5ERcXR3x8PIGBgRw9epSMjAxSU1Np2LAhAC4uLpQtW5aqVavi5ORERkaG6t+LEEJoSuVVfB07diQuLo60tDSys7PZtWuX8XwTQJs2bUhLS+Ps2bMA7N6921hktijMkqDuT/MdPXqU+Ph44/Te1atXGTRoEBkZGbi5ueHv78+D1T/s7e2N93U6HZ999hlLly4lOTm50LYSExONSebhSiKKoqDX6+natStxcXEcPHiQ7t27U6ZMGaKiovItfHi4balKIoSwNoqimHQzVc2aNZkwYQKBgYH4+fnh5eVFy5YtGTlyJCdPnsTBwYGFCxcyefJkPD09OXjwICEhIUXuv9ku1O3duzfh4eG0aNECW9t7zZYvX5769evz6quvkpOTw/z586lVq9Yj3+/k5ESHDh0YPHgw06dPJyIiosBrUlJSWLx4MW+++SZwrwpvZGQkr732Gr/99hvHjh1j6tSpVK9enV9++QV7e3saNmyIi4sLixYtKvI8qRBCWCQTF0k8CW9v7wLn4L/44gvj/VatWhEZGalKW2ZLUO7u7oSGhuarzWRnZ4fBYKBPnz4oikK7du04f/78X8YZNWoUPj4+xnLwa9asISYmxjjKGTRoEJ6engCEhoYSFhZmXM4+ffp043xp27ZtjaXaXV1dWb9+Pe3atVP9cwshxNOiWPlOElJR14y61n1F0/hal9t411BH0/jm2M18fgkot7FySQ9N42tdbuNgmazHv6iYSkK5jQ8uFdyl4UndGtHNpNdVWvF9sdvSguzFJ4QQJZV17xUrCUoIIUoqa5/ikwQlhBAllSQoIYQQlkjJkwQlTFS+TFlN4ydm/q5p/Cinwi+QViX+S/9HU4ODpm2MPfaBpvHj207QND7Ae2/u0zT+HRttT1zkPcHu2UXlZFte0/jP5eoe/yJLIOeghFCH1slJiNJGzkEJIYSwTDKCEkIIYYnMMJuqKUlQQghRQinaXruvOUlQQghRUskISgghhCWy9ik+TcttJCUl4ezsTFhY/v3PEhIScHZ2Nm7iakocDw+PAscjIiLo1KkTvr6++Pj44OXlxapVq1Tp+6Po9XqmTJmCl5cXnp6ej6zqK4QQlkIxmHazVJqPoJycnIiNjUWv12NjYwPA9u3bC62I+6QCAgIIDg4GIC0tjREjRmBvb8+AAQNUif+gDRs2cPPmTbZs2UJOTg79+/enXbt2xSrIJYQQWrHk5GMKzQsWVqhQgaZNm3L48GHjsf379xuLFq5atYoBAwbg5eWFv7+/sVy7h4cH48ePp2fPnqSlpRnfGx0djY+PT75j91WpUoXRo0ezevVqAFJTU3nzzTfx9vbG39+fvXv3kpaWRpcuXYzv6dKlC9u3bwfg888/58svvyQiIoLJkyczfPhwPDw8WLRoEQCNGjVizJgxlClThvLly1OvXj2uXr2q8jcmhBAqUXSm3SyUWSrq9u7dm+joaABOnDiBs7MzdnZ2ZGZmEhMTw8qVK9m6dStdu3bl66//3GLezc2N6Oho42hr3759LFy4kGXLlhU6AmvcuLExyU2bNg1XV1eioqKYP38+7733HgaDgdq1a3Pu3Dl+/vln9Ho9hw4dAiA2NhZ3d3fgXmXepUuXsn79epYsWUJ6ejqtW7emcePGABw7dowTJ05IDSkhhMUy5OlMulkqsyQoDw8P9u7di8FgYMeOHfTu3RsAR0dHwsPD2bZtG+Hh4ezZs4esrD9rxbRq1cp4/8aNGwQHB+Pn50e1aoVvuaPT6XBwuLcjQXx8PP379wegXr16tGrViuPHj+Pm5kZcXBzx8fEEBgZy9OhRMjIySE1NNZaLd3FxoWzZslStWhUnJycyMjKMbRw+fJixY8cyd+5cKlWqpN4XJYQQKrL2c1BmSVAVKlSgSZMmHD16lPj4eOP03tWrVxk0aBAZGRm4ubnh7+/Pg/UT7e3tjfd1Oh2fffYZS5cuJTk5udC2EhMTjUnm4VqMiqKg1+vp2rUrcXFxHDx4kO7du1OmTBmioqLo3LlzoW3fj7Vr1y7GjRtHeHg4nTp1Ksa3IoQQ2lIUnUk3S2WWBAX3pvnCw8Np0aIFtrb31maUL1+e+vXr8+qrr/LCCy8QExODXq9/5PudnJzo0KEDgwcPZvr0R1deTUlJYfHixQwdOhS4V8o9MjISgN9++41jx47RunVrmjdvzi+//MKlS5do2LAhLi4uLFq0yDi9V5gTJ04wdepUli1bhouLS1G/CiGEMAtrH0GZ7Tood3d3QkNDGTdunPGYnZ0dBoOBPn36oCgK7dq14/z5838ZZ9SoUfj4+BATEwPAmjVriImJMY5yBg0ahKenJwChoaGEhYUZl7NPnz6dGjVqANC2bVuys7OBe4ls/fr1jz2ftGjRIvR6Pf/617+Mx8aOHUu3bqaVVRZCCHNSDJY7OjKFTnl4Hkxops/f+mga/7/plzSN7+nUTNP45tjNXOtyG0PMUG6jrq6cpvHvaLz9wA3lrqbxAa4bsjWNP9RQXdP4AK9dKf41nb++ZNofz3878n2x29KC7CQhhBAllCHPbGdxNCEJSgghSihrnx+z7vQqhBCiUIpBZ9LtSURFRdGnTx969OiR77rVh/3www+P3KLuScgISgghSii1l5AnJyczb948NmzYQNmyZQkICMDFxYXnn38+3+tSU1OZPXt2sduTBGVGDjptv+6Wz9TXNL7WEsrkcFPjE+jxGi9iWH10nqbxQfuFGA7YaBrfHCro7DSN/7w+R9P4alF7CfmBAwdwdXXFyckJgJ49e7Jz506CgoLyvW7y5MkEBQURHh5erPYkQQmLoXVyEqK00RtMO4uTnp5Oenp6geMVK1akYsWKxscpKSlUr/7nCsYaNWpw4sSJfO/5z3/+Q7NmzfLtBFRUkqCEEKKEMvX80ooVK1iwYEGB40FBQcZqEQAGgwGd7s+YiqLke3zu3Dl27drF8uXLuXbtWjF6fo8kKCGEKKFMXcU3YsQI/P39Cxx/cPQEUKtWLY4cOWJ8fP36dePmBwA7d+7k+vXr9OvXj9zcXFJSUhgyZIixwsSTkgQlhBAllKkjqIen8grTsWNHIiIiSEtLo1y5cuzatYtp06YZnx87dixjx44F7hWaDQwMLHJyAllmLoQQJZZB0Zl0M1XNmjWZMGECgYGB+Pn54eXlRcuWLRk5ciQnT55Uvf8yghJCiBJKi53Kvb298fb2znfsiy++KPC6unXrsnv37mK1pekIKikpCWdnZ8LCwvIdT0hIwNnZ2biJqylxHnXBV0REBJ06dcLX1xcfHx+8vLxYtar4+1cVRq/XExYWhpeXF97e3kRFRWnWlhBCFJfeoDPpZqk0H0E5OTkRGxuLXq/Hxube9RXbt28vtCLukwoICDCuMklLS2PEiBHY29szYMAAVeI/aMuWLWRmZrJ161bS0tLo3bs37u7uODo6qt6WEEIUlyXXejKF5uegKlSoQNOmTTl8+LDx2P79+41FC1etWsWAAQPw8vLC39/fWK7dw8OD8ePH07NnT9LS0ozvjY6OxsfHJ9+x+6pUqcLo0aONJ+VSU1N588038fb2xt/fn71795KWlkaXLl2M7+nSpQvbt28H4PPPP+fLL78kIiKCyZMnM3z4cDw8PFi0aBEA/v7+fPTRR8C96wHs7Oyws9P2gkAhhCgqRTHtZqnMskiid+/eREdHA/eK/jk7O2NnZ0dmZiYxMTGsXLmSrVu30rVr13x7O7m5uREdHW0cbe3bt4+FCxeybNmyQkdgjRs3Nia5adOm4erqSlRUFPPnz+e9997DYDBQu3Ztzp07x88//4xer+fQoUMAxMbGGosWJiYmsnTpUtavX8+SJUuMF7HZ2toSGhpK//79GThwYL7Ku0IIYUnUXiRhbmZJUB4eHuzduxeDwcCOHTvo3bs3AI6OjoSHh7Nt2zbCw8PZs2cPWVlZxvc9eCXyjRs3CA4Oxs/Pj2rVqhXalk6nw8HhXl2h+Ph4+vfvD0C9evVo1aoVx48fx83Njbi4OOLj4wkMDOTo0aNkZGSQmppqLBfv4uJC2bJlqVq1Kk5OTmRkZBjbmDFjBrGxsezatYt9+/ap90UJIYSKpOS7CSpUqECTJk04evQo8fHxxum9q1evMmjQIDIyMnBzc8Pf358H6yc+ODrR6XR89tlnLF26lOTk5ELbSkxMNCaZh2sxKoqCXq+na9euxMXFcfDgQbp3706ZMmWIioqic+fOhbatKAqnTp3i0qVLAFSuXJkuXbqQmJhY9C9GCCE0JCMoE/Xu3Zvw8HBatGiBre29tRnly5enfv36vPrqq7zwwgvExMSg1+sf+X4nJyc6dOjA4MGDmT59+iNfk5KSwuLFixk6dChwr5R7ZGQkAL/99hvHjh2jdevWNG/enF9++YVLly7RsGFDXFxcWLRokXF6rzDHjx9nzpw5GAwGMjMz2bdvHy+++GJRvxIhhNCUXtGZdLNUZrsOyt3dndDQUMaNG2c8Zmdnh8FgoE+fPiiKQrt27Th//vxfxhk1ahQ+Pj7ExMQAsGbNGmJiYoyjnEGDBuHp6QlAaGgoYWFhxuXs06dPN27L0bZtW7Kz75WFdnV1Zf369bRr1+4v2w4ICCAxMRFvb2/KlCnD0KFDadOmTdG+ECGE0JglT9+ZQqc8PA8mNNO3vo+m8W8bcjWNX8+mgqbxzbGbuQ5tf2Cl3Mbj5aFyDYhHyFLyNI3/zl0HTeMDdLkWWewYsbX6m60tLchOEkIIUUIpGv9BpjVJUEIIUUIZrHx+TBKUEEKUUHor3w9cEpQQQpRQ2p/t05YkKDPK1ngRwx1F2/iNFa1PDDsQvMRV0xbee1PbC6u1XsAA2i/EmNn235rGP81tTeMDZBq0XXCz0+HxtZOKq8vjX/JYcg5KCJVonZyEKG1kBCWEEMIiSYISQghhkWSKTwghhEXK00mCEkIIYYGs/DIoSVBCCFFSWfs5KE2v4kpKSsLZ2ZmwsLB8xxMSEnB2djZu4mpKHA8PjwLHIyIi6NSpE76+vvj4+ODl5cWqVatU6fvjjB07loiICLO0JYQQRWHQ6Uy6WSrNR1BOTk7Exsai1+uxsbm3CeX27dsLrYj7pAICAggODgYgLS2NESNGYG9vz4ABA1SJ/yiRkZEcPHiQRo0aadaGEEIUl7VP8Wm+D0aFChVo2rQphw8fNh7bv3+/sWjhqlWrGDBgAF5eXvj7+xvLtXt4eDB+/Hh69uxJWlqa8b3R0dH4+PjkO3ZflSpVGD16NKtXrwYgNTWVN998E29vb/z9/dm7dy9paWl06fLnJXBdunRh+/btAHz++ed8+eWXREREMHnyZIYPH46HhweLFi0yvv7XX39l48aNDBo0SMVvSQgh1Gcw8WapzLJRU+/evYmOjgbgxIkTODs7Y2dnR2ZmJjExMaxcuZKtW7fStWtXvv76a+P73NzciI6ONo629u3bx8KFC1m2bFmhI7DGjRsbk9y0adNwdXUlKiqK+fPn895772EwGKhduzbnzp3j559/Rq/Xc+jQIQBiY2ONRQsTExNZunQp69evZ8mSJaSnp5OXl0doaCjvv/8+dnZ2mn1fQgihhjydzqSbpTJLgvLw8GDv3r0YDAZ27NhB7969AXB0dCQ8PJxt27YRHh7Onj17yMrKMr6vVatWxvs3btwgODgYPz8/qlWrVmhbOp0OB4d7W/LEx8fTv/+9eij16tWjVatWHD9+HDc3N+Li4oiPjycwMJCjR4+SkZFBamqqsVy8i4sLZcuWpWrVqjg5OZGRkUFERATdu3fn+eefV/07EkIItSkm3iyVWRJUhQoVaNKkCUePHiU+Pt44vXf16lUGDRpERkYGbm5u+Pv782D9RHt7e+N9nU7HZ599xtKlS0lOTi60rcTERGOSebgWo6Io6PV6unbtSlxcHAcPHqR79+6UKVOGqKgoOnfuXGjbiqIQHR1NZGQkvr6+rFmzhjVr1vDll18W78sRQgiNGHSm3Z5EVFQUffr0oUePHvlmvO6LiYkxLlx7++23uXXrVpH7b7a92Hv37k14eDgtWrTA1vbe2ozy5ctTv359Xn31VV544QViYmLQ6/WPfL+TkxMdOnRg8ODBTJ8+/ZGvSUlJYfHixQwdOhS4V8o9MvJepcjffvuNY8eO0bp1a5o3b84vv/zCpUuXaNiwIS4uLixatMg4vVeYnTt3smXLFjZv3kxAQAABAQG88cYbRf1KhBBCU2qfg0pOTmbevHmsXr2aTZs2sXbtWi5cuGB8PjMzk6lTp7JkyRK2bNmCs7NzsVY7m+06KHd3d0JDQxk3bpzxmJ2dHQaDgT59+qAoCu3ateP8+fN/GWfUqFH4+PgQExMDwJo1a4iJiTGOcgYNGoSnpycAoaGhhIWFGZezT58+nRo1agDQtm1bsrOzgXuJbP369bRr1071zy2EEE+LqdN36enppKenFzhesWJFKlb8c+f2AwcO4OrqipOTEwA9e/Zk586dBAUFAZCbm8uUKVOoWbMmAM7OzkRFRRW5/zrl4XkwoZne9XprGj9b43IbfWxqaRrfHLuZa11uI0nJ1jQ+SLkNU6Tqsx7/omJwtS38PLhaZlxaXewYX9QdZtLrcv7lwoIFCwocDwoKMl7GA/dWOmdlZTFhwr2yMuvXr+fEiRNMmzatYMycHIYMGcLw4cPx9/cvUv9lJwkhhCihTJ2+GzFixCOTyIOjJwCDwYDugVV/iqLke3xfRkYGY8aMoUmTJkVOTiAJSgghSizFxAUQD0/lFaZWrVocOXLE+Pj69evG0yb3paSk8Prrr+Pq6sp77733RP19mHUXrBdCCFEotRdJdOzYkbi4ONLS0sjOzmbXrl24ubkZn9fr9bz11lv07t2b0NDQR46unoSMoMyoYhn7x7+oGCqg7cXDt3TaXnM+/c0D1NZr+zfTHRttP4MDNprGB+3PEb17tOD5BDWNemmSpvEBypXR9mfhgqLtOS61qP2vvWbNmkyYMIHAwEByc3Pp378/LVu2ZOTIkYwdO5Zr165x5swZ9Hq9cXOGFi1aMGPGjCK1JwlKWAytk5MQpY0WK+C8vb3x9vbOd+yLL74A4IUXXuDs2bOqtSUJSgghSqg8y93FyCSSoIQQooSy5I1gTSEJSgghSihrv8hVEpQQQpRQT7rPnqWRBCWEECWUtU/xScn3J9StWzd8fX2Nt6tXr2ranhBCFJW1l9uQku9P4MaNG9jZ2bF582bVYwshhNryLDr9PJ6UfH+Cku8nT55EURQCAgLw9/dnx44dKn9bQgihHmsfQUnJ9yco+X737l26dOnC8uXLiYiIYNasWfz888+afW9CCFEcam91ZG5S8v0JSr6/8sorTJ48GQcHB+rWrUv37t3Zt0/b8g1CCFFUWlTUNScp+f4EJd/37NnDyZMn88W8Xx1YCCEsjQHFpJulkpLvT1Dy/cqVKyxcuBCDwUBqaiq7d++ma9euRfxGhBBCW3oTb5ZKSr5jesn3gIAAEhMT8fLywmAw8M477/Dss88W7QsRQgiNWfLoyBRS8t2MBtX30zS+XuPTnc46R03jm2M38zM2dzWNn6HkaRofoBHlNI1fEsptXDfkaBq/gk7bch4Aay9vKnaM//v7YJNe99Glb4rdlhbkBIoQQpRQlrxCzxSSoIQQooSy9ik+SVBCCFFCWXd6kgQlhBAllt7KU5QkKDPan3FB0/gTHVtrGj/i9mlN4wN0qvCcpvHzFGuflYfT3NY0vtaLGJYcmaNpfIBydbo8/kXFMLB2e03jq8Xa/7VLghIWQ+vkJERpI+eghBBCWCTrTk+SoIQQosSSEZQQQgiLJIskhBBCWCRrXyRhts1ihRBCmJdi4n9PIioqij59+tCjR4989fvuS0hIoG/fvvTs2ZPQ0FDy8oq+/ZeMoIDMzEzCw8M5fPgwNjY2VKxYkZCQECpVqkSvXr1o2LAhOp2O3NxcatSowcyZM6lVqxYhISG0b9+evn37Pu2PIIQQBag9gkpOTmbevHls2LCBsmXLEhAQgIuLC88//7zxNZMmTWL69Om0bt2a9957j3Xr1jFkyJAitVfqR1AGg4GRI0dSqVIlNm3axObNmxkzZgwjR47k5s2b1KhRg82bN7Np0ya2bduGs7MzH3300dPuthBCPJZBUUy6paenk5SUVOCWnp6eL96BAwdwdXXFycmJ8uXL07NnT3bu3Gl8/sqVK+Tk5NC6dWsA+vbtm+/5J1XqR1AHDx7k6tWrjB07ljJl7uVrV1dXZs6cicFQ8O8PFxcXPv74Y3N3Uwghnpipk3crVqxgwYIFBY4HBQURHBxsfJySkkL16tWNj2vUqMGJEycKfb569ep/WWD2cUp9gjpz5gxNmjQxJqf7Xn75ZZKSkvIdy83NJTo62vjXgRBCWDJTS/CMGDECf3//AscrVqyY77HBYECn+7NGvKIo+R4/7vknVeoTVJkyZfKVd39YSkoKvr6+ANy9e5eWLVsyceJEc3VPCCGKzNRzUBUrViyQjB6lVq1aHDlyxPj4+vXrxiKw95+/fv268XFqamq+559UqU9QLVq0YPXq1QUy/ccff0z9+vWN56CEEMLaqH2hbseOHYmIiCAtLY1y5cqxa9cupk37s8Dls88+i729PUePHqVt27Zs3rwZNze3IrdX6hdJvPTSS1StWpUFCxag1+sBiI2NZcOGDflWpgghhLVRe5l5zZo1mTBhAoGBgfj5+eHl5UXLli0ZOXIkJ0+eBGDu3LnMnDmTXr16kZWVRWBgYJH7X+pHUDqdjs8++4yZM2fi5eWFra0tlStXZsmSJSYNeYUQwlJpcaGut7c33t7e+Y598cUXxvtNmjQhMjJSlbZKfYICqFKlCnPmPLoEwO7duwt936xZs7TqkhBCFJuiyFZHQgghLFCe7MUnhBDCEj3pNkaWRhKUEEKUUFJuQwghhEWSc1DCZB+Wa61p/BRNo8ML5Z/VNH66cpcrubc0bcPJtrym8Svo7DSND5BpuKtp/HJltP0M5ep00TQ+QPbvsZrGH9HWOi7Wt/ZyG5KghMXQOjkJUdqYutWRpZIEJYQQJZRM8QkhhLBIskhCCCGERZJl5kIIISySQab4hBBCWCLrTk8m7GaelJSEh4dHgePOzs6adOivDB8+nIMHD5q93cIMHz78aXdBCCEKlYfBpJulkhFUMRw6dOhpd0EIIQpVqlfxbdiwgdjYWG7dusVvv/1Gp06dmDp1KgBLlixhx44d6PV6OnfuzKRJk7hy5QpjxoyhQYMGXLhwgWbNmtGmTRs2btzIrVu3WLhwIQ0bNsTDw4NevXpx4MABAD788EOaNWuWr+3FixezZcsWbGxs6NSpE5MmTSIiIgJFUZgwYQIAISEhuLm5sXfvXsqVK8eZM2dIT0/nn//8J5s3b+bs2bO88sorhISEoNfr+eijjzh06BB6vZ6+ffvy6quvcvDgQT7//HMcHBz4+eefcXZ2Zu7cuXz00UcADBgwgPXr1xfnaxRCCE1Y+yq+Yhcs/O9//8v8+fPZsmULe/bsITExkb1793Lq1CkiIyPZtGkTycnJbNmyBYDExERGjhzJ5s2bOXbsGFeuXGHt2rV4eXmxdu1aY9zy5cuzadMmxo4dy7/+9a98bf7444/s3r2bb7/9lo0bN3L58mXWrFlDv379iIqKQlEUsrOziY+Pp1u3bsC90u1r165l1KhRvPvuu7z//vts2rSJdevWkZGRwbp16wDYuHEjkZGRfP/998bSxv/9738JCwtjx44d/P777+zbt4/JkycDSHISQlgstQsWmttjR1BlyhTMYQ+WR2/Tpg2Ojo4A1KtXj1u3bhEXF8eJEyfo27cvADk5OdSpU4e2bdtSrVo142ioVq1adOjQAYA6deqQlJRkbGPgwIEAeHh4EBISQlpamvG5+Ph4PD09KVeuHAD9+vVj06ZNDB06lGeffZbDhw/z+++/8/LLL2Nvbw9gLDtcp04dGjVqRNWqVQFwcnIy9jkhIYH4+HgAsrKySExM5Pnnn6dRo0bUqlULgIYNG3Lrlux4IISwfCV+iq9ixYpkZGTkO/bHH39QqVIlAGMCgHvVaRVFQa/XM2LECF577TUA0tPTsbGx4caNG5QtWzZfLBsbm0d3zPbPrhkMhnyvMxgKntTLy8sD7iWrrVu38vvvvxMcHGx83s7uz/3FHox9n16vZ9KkSfTo0QOAtLQ0KlSowE8//fTIzyiEEJauxE/xOTo6Ur9+faKjo43H1q5daxz5PIqrqyubN2/m9u3b5OXlMWbMmHzvN8W2bdsA+O6772jYsKExId6Pv23bNnJycsjLy+Pbb7/F1dUVgF69ehEXF0dqaiqtWrUyuT1XV1fWrVtHbm4ut2/fZsiQIfz0009/+R4bGxtjYhRCCEujVwwm3SyVSYsk5syZw9SpU1m4cCG5ubk4OzsTFhbGDz/88MjXe3h4cPbsWQYOHIher6dLly74+/tz5coVkzt27NgxIiMjKVeuXIHS6u7u7iQkJNCvXz/y8vLo3Lkzw4YNA8DBwYHWrVvTuHFjk9sCCAgI4PLly/j7+5OXl0ffvn1xcXH5y2Xt3bp1w9fXlw0bNuQbZQkhhCWw5PNLptApFjhf5eHhwX/+8x/q1q37RO9TFIXbt28zaNAgli9fTvXq1TXqYdH859lhmsZPefRsqWpiualpfHPsZi7lNh5P63IbO6/9pGl8KBnlNlZf3ljsGC1qupr0ulPJ8cVuSwvFXsVnSU6ePImHhwcDBw60uOQkhBDmVuJX8T0Nu3fvLtL7WrZsKRfPCiHE/8hefEIIISySJS+AMEWJmuITQgjxJ3NO8f3+++8MHTqUXr16MXr0aG7fvl3gNSkpKbz++uv4+vri7+9PXFzcX8a0yEUSJdWQ+v6axv9vtumrJIuiTlknTeMDdLLV9tzhc7k6TeM/r8/RND7AToeyj39RMVxQsjSNb4O2/w/MYcXRcM3bsKvWoNgxGlZ70aTX/Zx6rNhtvfnmm/j4+ODp6cnChQvJyspi0qRJ+V7zzjvv0KZNG4YOHcrFixcZPnw4e/fuLfR6WBlBCYuhdXISorQx1wgqNzeXw4cP07NnTwD69u3Lzp07C7yue/fueHl5AVC/fn3u3LlDVlbhfxDJOSghhCihFBPPQaWnp5Oenl7geMWKFalYseJj33/jxg0cHR2Nu/RUr16d5OTkAq+7n8AAli5dStOmTXnmmWcKjSsJSgghSihTtzpasWIFCxYsKHA8KCgo35ZxADt27GDmzJn5jtWvX9+4P+t9Dz9+0PLly1m7di2rVq36y35JghJCiBLK1FV8I0aMwN+/4DnyR42eevfuTe/evfMdy83NxcXFBb1ej42NDdevX6dGjRqPbOujjz7ixx9/5OuvvzZuwl0YSVBCCFFCmboGztSpvMLY2dnx0ksvsX37dry9vdm0aZOxgsSDli9fzsGDB/nmm29Mak8SlBBClFDmvFB3ypQphISEsGjRImrXrs3HH38MwDfffENKSgpjx45l4cKFODo6Mnz4cOP7lixZQs2aNR8Z0yITlLOzM4mJiYU+P3z4cIKCgnBxcTEeCwkJoX379sYaVI9yf4+/xMRETp06xbhx4/I9f/DgQRYsWMDKlSuL/yGEEOIpM+c2Rs8+++wjf3cOHjzYeP/w4cNPFNMiE5TWunXrZqy0K4QQJZW1X+Zq0ddBXbt2jWHDhtG3b1/69+//2PpM9+3ZswdfX1+8vb15++23SU1Nzff8hg0bCAkJAWDfvn14enrSt29fY9l3gEOHDjF48GD8/f3p1q0bMTExZGZm4uLiQmZmJgBJSUn06dNHnQ8rhBAqM6CYdLNUFj2CioyMpGvXrrzxxhvs3buXo0eP0rp1awAmT55M+fJ/lk64evUq7du3548//iAsLIxvvvmGunXr8uWXX/LBBx8wf/78AvHv3r1LSEgIK1asoGHDhoSGhhqfW7VqFdOnT6dhw4bExcXx4Ycf8sorr9C1a1d27txJ//792bRpE35+flp/DUIIUST6R1QftyYWPYLq0KEDy5YtY+LEidy8edNYlBBg+vTpbN682Xjz8PAA4MSJE7Rs2dJYS2rQoEHExz+61kliYiI1atSgYcOGAPmWWc6ZM4fz58+zcOFCvvrqK+O+Uv369WPz5s0AbN26FV9fX/U/uBBCqEBRFJNulsqiE1Tbtm3Ztm0bnTt3Zvv27bz11luPfY/hob8YFEUptCy7TqfL9z/nwf2ghgwZwokTJ2jRokW+dtu1a0dKSgq7du2ibt26ha4+EUKIp83ap/gsOkF99NFHbNmyBX9/f8LCwjhz5sxj39OqVSuOHz9OUlISAGvXrs232u9Bzs7OpKamcvbsWQC2bdsGwM2bN7l06RLjxo3Dzc2N77//Hr1eD9xLan5+fkyfPv0vVwwKIcTTZu0jKIs+BzV8+HAmTpzIhg0bsLGxYfbs2Y99T7Vq1fjggw8ICgoiNzeXOnXqMGPGjEe+1s7Ojo8//phJkyZha2tLs2bNAHBycqJ///54enpia2uLq6srOTk5ZGVlUb58eTw9PVm2bBmvvPKKqp9XCCHUZO0FC6XcxhMyGAx88803/PLLL0yePPmJ3ivlNv6aOXYzl3IbjyflNh7PWsptlCtX36TXZWdfLnZbWrDoEZQlCgoK4urVqyxduvRpd0UIIf6StY8/JEE9oc8+++xpd0EIIUxizp0ktCAJSgghSigZQQkhhLBI1p6gZJGEEEIIi2TR10EJIYQovSRBCSGEsEiSoIQQQlgkSVBCCCEskiQoIYQQFkkSlBBCCIskCUoIIYRFkgQlhBDCIkmCEkIIYZEkQQkhhLBIkqCEEOJ/7t69+7S7IB4gCaoUioqKYt68eWRnZ7Np0ybN2snKyuLs2bMoikJWlrZF8NSSkJDA7t27ycjIyHd8z549qrWRlZVl/EV44MABvvrqK44fP65a/IctW7ZMtVjJycnG+xcvXmTlypV88803XL16VbU2zGXQoEH5HhsMBvr166dqG56ennz55Zdcv35d1bilhWwWa2GuXLnC5MmTuXLlCqtWreKdd97hww8/pG7duqrEnzt3LteuXeP06dOsX7+e0aNH07x5c0JCQlSJf19cXBxhYWHo9XrWrl2Ll5cX4eHhdO7cWdV21LRixQrWrVtHvXr1OHnyJHPnzqVDhw4A+Pv7s3HjxmK3sXXrVqZNm0bZsmUZNGgQ0dHRdOnShX379jF8+HAGDBhQrPgLFiwocGzNmjUEBAQA9wpuFsf972Hnzp3MmjWL7t27oygKe/bsYdKkSfTq1atY8R/3B5Ofn1+x4gMEBgZy6NChAsdtbW3x8PBg/vz5xW7jvitXrrBp0ya2bt1KvXr16Nu3L926dcPOzk61Nko0RViUf/zjH0psbKzi5+enGAwGZe3atcqQIUNUi+/r66sYDAbF19dXURRFyc3NVXr37q1a/Pv69++vpKSkGNs5f/684u3tXayYnTp1Upo0aVLg5uzsrDRp0qTYffby8lKysrIURVGUo0ePKp06dVIOHz6sKIpi/BzF5e3traSlpSkJCQlKixYtlJs3byqKoigZGRmKj49PseMHBwcrLi4uyscff6xEREQoERERSqdOnYz3i8vPz09RFEXx9/dXkpKSjMevX7+uyr+jkJCQv7ypadq0aarGe5xdu3Ypbm5uSvv27ZXp06craWlpZm3fGkk9KAtz48YNOnfuzNy5c9HpdAwcOJCvv/5atfhlytyb1dXpdMC9Off7x9RkMBioXr268fHzzz9f7JjffvstgYGBLFy4UJV4j1KuXDkAXnzxRebNm8f48eNZtmyZ8fsqLkVRqFy5MpUrV8bX15dKlSoBUKFCBfR6fbHjz58/n8jISDZt2sT7779Pw4YNiYmJKfbI6WH29vb5/v9WrVpVle9o5syZxY5hqn/961/88MMP3Lx5M99xNUZp992+fZvo6Gg2b95McnIygwcPxtPTk7179/L666+zYcMG1doqieQclIVxcHDg2rVrxh/2I0eOULZsWdXi9+rVi/Hjx3Pr1i2WL1/OsGHD8PLyUi3+fbVq1WLPnj3odDrS09NZtGgRderUKVbMmjVr8t5776k6BfOgtm3bMmHCBC5cuABAu3btCAsL47XXXlPtHEubNm2YOHEiBoOB6dOnA3D58mWCg4Np27atKm3079+fDz/8kKlTp7Jq1SpVYt6XkZFBnz59uHHjBnPmzAHg1KlTjB49WpX+JycnM3HiRHx8fJgyZQrp6enFjlmYd955h4ULFxIfH8/BgweNNzV169aNw4cPExQUxM6dO3nrrbeoV68eQ4YMoXbt2qq2VRLJOSgLc/LkSSZPnsyvv/7K3/72N27dusWnn35Kq1atVImv1+s5cOAABw4cwGAw4Orqiru7uyqxH/THH38wY8YMDhw4gKIouLi4MHnyZGrUqKF6W2oxGAx8++23ODs707JlS+PxEydOsHjxYj777DNV2tiyZUu+v9JPnz7N8ePHCQgIUHU0q9frmT9/Prt27WLHjh2qxb158yYnT57kzp07vPLKK/zwww9cuXKFgIAAbGxsihX79ddfp3Hjxri4uBAdHQ1oN6rq1asXO3fu1CT2fZmZmTg6OuY7lpOTg4ODg6btlhSSoCzMDz/8QKdOnbh06RJ6vZ4GDRqoOoJS62S/Kc6cOUOzZs3IyMjg1KlTxgUHasjMzCQjIyNfSevijtDMGd8cbVhjfC8vL7Zu3QpAbm4ufn5+bNu2rVgxCzNmzBimTJmi6R9Nu3fv5pNPPiErKwtFUTAYDGRnZxMfH69ZmyWJnIOyMHPmzKFr1640atRIk/jVqlXjyJEjtGzZUtXE97C5c+dy5swZli1bRnZ2Np999hlHjhwhODi42LEXL17MkiVLcHJyMh7T6XR8//33xY5tjvjmaOPB+DqdDkVRrCL+g6vb7OzsNF3tlpOTQ69evWjcuHG+n4X//Oc/qrUxc+ZMpk2bxldffcVbb71FTEwM2dnZqsUv6SRBWZh69erx7rvv0qpVq3zTAGqduD158iTDhg3Ld0yn05GQkKBK/Pt++OEHNm/eDECNGjX46quv8Pf3VyVBRUZGEhMTQ5UqVYod62nEN0cb1h7/PrUWpzzKm2++qVns+5555hlcXV05duwYGRkZTJo0iT59+mjebkkhCcrCVK5cGaDAhZtqJShzTS3k5eWRk5NDhQoVgHvTNWqpXbu2cfWbFrSOb442rDX++fPn6datm/FxcnIy3bp1U30ECNC+fXuOHj3KuXPn6NevH8ePH6ddu3aqxYd7i55++eUXGjZsyKFDh3B1dVX1Z6GkkwRlYWbOnElubi6//PILer2eRo0aYWur3v+mR13ICcW/gPNhAQEB9O3bFw8PDwD27t3L0KFDVYn997//nSFDhuDi4pJvakatz6B1fHO0Ya3xo6OjuXnzJnq9nqpVqwJw8OBBnn/+eeNjtaxYsYKYmBhSUlLo1asXYWFh9O/fn9dff121NsaPH88nn3zCnDlzWLJkCWvXrlV9t4qSTBKUhTl16hRjx47FyckJg8FAamoqCxcuVG0V34Nyc3OJjY3VJParr75K27ZtOXz4MLa2tsyZM4dmzZqpErtmzZrUrFlTlVhPI7452rDW+Ldu3eLNN9/kww8/NK6kvHz5MvPmzeOLL75Qta2NGzeybt06Bg4cSOXKlYmMjGTAgAGqJqj27dvTvn174N51fLdu3dJ8dF6SSIKyMNOnT2fevHnGpPHTTz8xbdo0IiMjVYn/8F+4Y8aM4R//+IcqseHennXu7u7GLWvun6M4d+4c586dU2Wqsly5cri7u9OgQYNix3oa8c3RhrXGnz17NuHh4bi4uBiPTZgwgZdeeolZs2axfPly1doqU6ZMvtGfvb19sZfJ3zd8+PC/PH+m5kKMkkwSlIXJysrKN6Jp3bo1d+7c0ay927dv8/vvv6sW7+TJk7i7uxd6waMaCUqv1zNlyhT++OMPOnfujLu7O+3atVNtKlTr+OZow1rjp6en50tO93Xp0oW5c+cWK/bD2rdvz+zZs8nOziYmJoa1a9fi6uqqSuz7i4HWrVuHg4MDfn5+2NrasnXrVk1/nkucp7C9kvgLw4YNU7777jvj4++++04ZNmyYavHd3d0VDw8PxcPDQ3F3d1defPFFZeHCharFv+/jjz9WPebDMjIylNWrVytdunRRXnzxRauLb442rC2+l5eXotfrCxzX6/Wq7xmp1+uVb775RgkODlbGjBmjrFy5UsnNzVW1jb59+xY45u/vr2obJZmMoCzMtGnTmDRpEqGhocC9Zef3t5RRw8qVK433dTodFStWLHCluxr27NnD+PHjNVkmvGPHDg4fPsyRI0ewsbGhd+/eqv3la4745mjDWuO3a9eOBQsWMHbs2HzHP/vsM1q0aFHs+A8qU6YMXl5euLm5GY+lpKSoejHznTt3+OWXX3juuecASExMJC8vT7X4JZ3sJGFhzp8/T6NGjcjKysJgMODo6MhPP/1E69atVYkfHBxMREREvmMjRoxgxYoVqsS/LzAwkOTkZJo3b469vb3xuBrb1ri5uaHX6xkxYgTdu3c3/vCrRev45mjDWuNnZmYyatQorl27RpMmTbC3t+fMmTNUqVKFRYsW5buwubhmz57NunXrjDEVDZay79u3j5CQEGrWrImiKPzxxx+Eh4fz0ksvqdZGSSYJykIcPXoUg8HA5MmTmTFjhnH7mLy8PKZOnWrcl6yogoKCSEhIICUlJd/WLnl5edSuXZs1a9YUK/7DCttOyd/fX5X4Fy9eJD4+nkOHDnHp0iUaNmxIeHi4KrHNEd8cbVhrfEVRiI+PJyEhgTJlytCiRQtNfqH36NGDjRs3Gq/V08rdu3c5d+4cOp0OZ2dnVc9llnTyTVmIAwcOcOjQIVJSUvj000+Be1Nwtra2BSp/FsWsWbO4efMmM2bMYPLkycbjtra2ql9fcvHiRRwdHWnevLnq+9fdZzAYjBcD5+TkGMtkWEt8c7RhrfF1Oh0dOnRQde/GR3F2dubu3buaJKiIiAiCg4N59913H/m8OcuKWDMZQVmQ3bt3k5CQwJgxY/juu++IjIykWbNmvP3226ruSXbmzBnj5pV6vZ6kpCT69++vSuyvv/6auXPn0qBBA3777TemTZtGz549VYl9n5ubG3Xq1MHNzY2XX36Z5s2bW1V8c7Rh7fHNISYmhnfffZfGjRvnW16uxhLw3bt34+HhoflMQkknCcpCLFu2jG3btjF79mzy8vIICAggNDSUhIQEbGxsjIsmimvy5MkcOnSIW7du0aBBA86ePcuLL77I0qVLVYnv6enJf/7zH6pWrcrZs2eZMmUKa9euVSX2fWlpaSiKwokTJ9Dr9bRp00bVUaDW8c3RhrXHNwdPT09GjhxZYJR//8La4njcpRtazSyUNDLFZyE2bdrE2rVrKVeuHHPnzsXDw4MBAwagKIqqm0seOHCA6Ohopk2bRmBgINnZ2cyaNUu1+HZ2dsZfVE2aNCErK0u12PedOXOGd999l9atW2MwGAgLC2PGjBmq1bXSOr452rD2+ObwzDPPqFo990HDhg0z7vL+MLUXYpRkkqAshE6nM87hHzx4kCFDhhiPq6lGjRrY2dnRsGFDEhMT8fT0JCMjQ7X4D/dXixPCH3/8MatXr6ZevXoA/PbbbwQFBan2y1Hr+OZow9rjm0OzZs0IDg7Gzc0t3xS6Gklr9+7dxY4hJEFZDBsbG9LT08nKyiIhIYFOnToBcOXKFVV/ydesWZPPP/+cDh06GK+vunv3rmrxb968adzm6FGP1fjhz8vLM/5ihHvXihkMhmLHNVd8c7Rh7fHNITs7G0dHR44dO5bvuJqjqrS0ND744APi4uLQ6/W4uroydepUqlWrplobJZkkKAsxatQo/Pz8yMvLo3///tSoUYPt27czb948xowZo1o7M2bM4Mcff6Rly5b06NGDrVu3MnXqVNXiu7q65tvm6OHHavzw16lTh+XLlxsXdkRGRvLss88WO6654pujDWuPbw5ubm5069ZN08KdYWFhtGnThunTp2MwGFi7di2hoaF8/vnnmrVZoph34wrxV65du6YkJCQYH//www9KfHy8qm384x//UDVeUcyfP79Y709NTVXGjRunuLi4KO3bt1fGjh2rJCcnq9Q77eObow1rj28OISEhiru7uzJ16lTl+PHjmrTh4+NT4JiXl5cmbZVEsoqvlBkyZAjh4eHUrl37qfXB39+/0OW3QphTdnY2u3btYuvWrfzxxx94enri5+en2opEPz8/Fi1aZPx5+/333xkzZoz8+zeRTPGVMjdu3MDDw4OqVatib2+vyfYuj1Ocv4m+/fZbvv76a3755Rfs7e15/vnnGTp0KL1791alb1rHN0cb1h7fnMqVK8ezzz5L7dq1uXz5MomJibz66qsMGjSIYcOGFTv+uHHjGDRoEK1atUJRFI4fP860adNU6HnpIAmqlPnyyy+fdheKvDLx66+/Zs2aNbz99ts0btwYuLf55uLFi7l16xYBAQHF6pfW8UvCZzDHd2Qu8+bNY+vWrdStW5e+ffsSGhqKvb09mZmZdOvWTZUE5e7uTqtWrThx4gQGg4H333/f6q4Xe6qe6gSjeCq2bNmifPzxx0pWVpayceNGs7fv5+dXpPd5eXkpaWlpBY4nJycXOaY545ujDWuPb06ffPKJ8uuvvz7yueKek9q4ceNf3oRpZARVysydO5dr165x+vRpRo4cybfffsvZs2cJCQl52l17rDJlylC5cuUCxx/c/NaS45ujDWuPb07BwcGsWbOG+Ph48vLycHFxYfjw4ZQpU8ZYbr6oHly5en/bowdpdYFwSSMJqpTZt28fGzduxN/fH0dHR7766it8fHzMmqAaNmxYpPeVKVNG5Z6YN7452rD2+OY0Z84cLl++TL9+/VAUhQ0bNpCUlKTKtmIPbgbr5+cnm8MWkSSoUub+L5j754Hu3r2r6i+dwnZvvm/mzJlFLt19/fp1FixYUOhzxaV1fHO0Ye3xzWn//v1s2rTJ+O+/a9eueHt7q96OFkU7SwtJUKVMr169GD9+PLdu3WL58uVs2bIFLy8v1eKrsdFmYf7qBLwaJ+e1jm+ONqw9vjnp9Xry8vKMF+rq9fp8u5qLp0+ugyqFYmNjOXDgAIqi4OLiotn+aUlJSVy4cIHOnTtz9erVfFvjFMeNGzcKnAd51Dy/pcY3RxvWHt8cFi9ezA8//ICnpycA27Zt4+WXX2b06NHFjn348GHj/YeLkMK90vbi8SRBlUIxMTHExcVha2uLm5ubcd8/NW3fvp1FixaRk5PDmjVr8PHx4f/+7//w9fUtdmw/Pz+WLVtGlSpVuH79OtOmTePChQts375dhZ5rH98cbVh7fHPZu3cvcXFxKIqCq6srXbt2VSXu8OHDC31Op9OpUnOqNJAEVcrMmjWLn376CU9PTwwGA9u2bcPDw4O33npL1Xb8/f1ZuXIlw4YNY9OmTaSkpPDaa6+xbdu2YseOjo5m0aJF+Pn58eWXXzJ48GBGjRqlWlFHreObow1rj6+lB0c3jyKjGwvytNa3i6ejR48eSm5urvFxTk6O0qtXL9Xb6du3r6IoiuLr62s8puYeZPv27VPatGmj+l6F5opvjjasPb5Whg0bVuht+PDhqrZ1/PhxZdmyZcqdO3eU1157TXFxcVF+/PFHVdsoyWSRRClTvXp10tPTqVKlCgC5ubmPvK6luBo1asSqVavIy8sjISGB1atX06RJk2LF9PDwyLciSlEUxowZQ6VKlQCKvV2T1vHN0Ya1xzeHlStX5nt88+ZNbGxseOaZZ1Rva/r06QQHBxMdHY29vT0bNmww1qASjydTfKXM2LFjOXbsGN26dcPW1pbY2FiqVKnCc889B6Da9RpZWVksWrSIAwcOYDAYcHV1ZcyYMTg6OhY55pUrVwD4448/HrldTHHLPWgd3xxtWHt8czp79iz/93//R3JyMoqi0KBBAz766CP+9re/qdZG//79iYyMZOLEiXTp0gU/Pz/8/Pzy1UgThZMEVco8bhdlf39/M/Wk6Hr37s2OHTusNr452rD2+ObQt29fgoODjatYv/vuO7766itWr16tWhvDhw/H3d2dZcuWsW3bNjZv3kx0dDRff/21am2UZDLFV8r4+/uTmZlJenp6vuN16tRRtZ0mTZoUuECxevXq7N27V5XYmzZtomXLljg4OBiPq/UZtI5vjjasPb45KIqS7xKL7t27s3DhQlXbmDt3LuvXr2f+/PlUqlSJ5ORkwsPDVW2jJJMRVCkze/Zs1q1bh5OTE4BZym3k5uYSExPDTz/99NidJkzxqGtt1PwMWsc3RxvWHt8c5syZQ4UKFRg4cCA2NjZs376dY8eOMXHiRMC6km1JJQmqlOnRowcbN26kQoUKZm/b19eXzZs3m71dIR7lry4qLm6yfdQMAvz5B2FCQkKRY5cmMsVXyjg7O3P37l3NE9SDJ4EVReH8+fPY2qrzz+3SpUusWrWKrKwsFEXBYDCQlJSk2ry+1vHN0Ya1xzeH3bt3axb77NmzmsUuTSRBlTK+vr706NGDxo0b59t3TK0r25OTk6lZs2a+cgMAlStX5pNPPlGljX/+85907dqVo0eP4u/vz3fffUejRo1UiW2O+OZow9rjm8PFixdZt24dt27dyndcdh63HJKgSpl58+YRGhqq2fz6W2+9xcaNG5k5cybLli3jH//4h+pt5ObmMnbsWPLy8mjWrBkDBw6kX79+VhPfHG1Ye3xzCAoKok+fPjg7Oz/trohCSIIqZZ555hlNi6U9eEozKipKkwRVrlw57t69y9///ndOnz7NSy+9ZFXxzdGGtcc3h4oVKxIUFPS0uyH+giSoUqZZs2bGK9kf3DdNraT18C4DWvD19eWtt95i7ty5DBo0iNjYWGrVqmU18c3RhrXHNwd/f3/mzZuHq6trvvOjshef5ZAEVcpkZ2fj6OjIsWPH8h3XYlSldqG2+wsvKlSogLu7O3v37sXf35/y5curskmp1vHN0Ya1xzen//73vxw7dizfz4LsNG5ZJEGVMvdPAN+6dcu4f5qazp8/T7du3YB7Cybu31fjequQkBCqVq1Khw4dNPllqHV8c7Rh7fHN6fTp0+zatetpd0P8BbkOqpQ5e/Ys48ePJycnh7Vr1zJs2DA++eQTmjdvrkr8+3u1FaY4e7UlJCSwfft29u/fT5MmTejTpw8dO3ZUrWS91vHN0Ya1xzenf/7zn4waNarYmxgL7UiCKmWGDh3KBx98wMSJE9m0aRP79+9n3rx5REZGPu2uPZGTJ0+yfft2Dh48SIsWLfD09MTFxcVq4pujDWuPrzU/Pz8SExOpXr06dnZ2ZtlVRTwZSVClTN++fdmwYUO+HZV9fHzYsmXL0+1YER05coS5c+eSmJjIf//7X6uLb442rD2+Vgob7VvTjuwlnZyDKiU2btyIv78/Tk5OnD171riAYcuWLZqci9KKoigcPnyYnTt3snfvXpo2bWrcMdoa4pujDWuPby7PPvssUVFRXLhwgbfeeovo6GhNL8EQT05GUKWEv78/Gzdu5PLly4SEhHDy5Ens7e35+9//zpw5c2jQoMHT7uJjTZkyhdjYWJo1a0bv3r3x8PCgXLlyVhPfHG1Ye3xzmjt3LteuXeP06dOsX7+e0aNH07x5c0JCQp5218T/SIIqJe4nqPuysrIwGAzFKiBobk2aNMHJyYny5csDBZexF/fcgdbxzdGGtcc3Jz8/P+PMwqZNm8jLy8PHx4ft27c/7a6J/5EpvlLiweXfj2INv1i07qM5vgNr/wzW8O/EVPdXHt5Psnfv3rXK1YglmSSoUqJ+/fosWbLkaXejWLQ+eW2Ok+PW/hlK0gKCXr16MX78eG7dusXy5cvZsmULXl5eT7tb4gEyxVdKPLhqTwhxT2xsLAcOHMBgMODq6mp1Cz1KOhlBlRIvvvji0+6CEBanVq1adOvWzbhv5OHDh2UvPgsiIyghRKn0/vvvs2fPHurVq2c8JnvxWRYZQQkhSqX9+/ezc+dOHBwcnnZXRCFkyYoQolSqV6+eZiVhhDpkBCWEKJUqVaqEp6cnbdq0oWzZssbjUvLdckiCEkKUSm5ubri5uRkfy2jK8kiCEkKUKk2aNEGn0xkTkk6no1KlSnTs2JGwsLCn3DvxIFnFJ4Qo9f744w/Wrl3LhQsX+Pjjj592d8T/SIISQoj/8fT0ZNu2bU+7G+J/ZBWfEEL8j7WXsS9pJEEJIQSwa9cunJycnnY3xANkkYQQolTx8PAoUCYkMzOT+vXrM2fOnKfUK/Eocg5KCFGqPFzqvUyZMlSsWJEKFSo8pR6JwkiCEkIIYZHkHJQQQgiLJAlKCCGERZIEJYQQwiJJghJCCGGRJEEJIYSwSP8PQFSz9w0XpCQAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 2 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.heatmap(walmart_features_data.corr())  # Betrachtung der Korrelation \u00fcber eine heatmap"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 2.4. Ladendaten einlesen"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 19,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Type</th>\n",
-                            "      <th>Size</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>2</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>202307</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>3</td>\n",
-                            "      <td>B</td>\n",
-                            "      <td>37392</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>4</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>205863</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>5</td>\n",
-                            "      <td>B</td>\n",
-                            "      <td>34875</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   Store Type    Size\n",
-                            "0      1    A  151315\n",
-                            "1      2    A  202307\n",
-                            "2      3    B   37392\n",
-                            "3      4    A  205863\n",
-                            "4      5    B   34875"
-                        ]
-                    },
-                    "execution_count": 19,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_stores_data.head(5)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 20,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "<class 'pandas.core.frame.DataFrame'>\n",
-                        "RangeIndex: 45 entries, 0 to 44\n",
-                        "Data columns (total 3 columns):\n",
-                        " #   Column  Non-Null Count  Dtype \n",
-                        "---  ------  --------------  ----- \n",
-                        " 0   Store   45 non-null     int64 \n",
-                        " 1   Type    45 non-null     object\n",
-                        " 2   Size    45 non-null     int64 \n",
-                        "dtypes: int64(2), object(1)\n",
-                        "memory usage: 1.2+ KB\n"
-                    ]
-                }
-            ],
-            "source": [
-                "walmart_stores_data.info()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 21,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Type</th>\n",
-                            "      <th>Size</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>count</th>\n",
-                            "      <td>45.000000</td>\n",
-                            "      <td>45</td>\n",
-                            "      <td>45.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>unique</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>top</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>freq</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>22</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>mean</th>\n",
-                            "      <td>23.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>130287.600000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>std</th>\n",
-                            "      <td>13.133926</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>63825.271991</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>min</th>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>34875.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25%</th>\n",
-                            "      <td>12.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>70713.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>50%</th>\n",
-                            "      <td>23.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>126512.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75%</th>\n",
-                            "      <td>34.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>202307.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>max</th>\n",
-                            "      <td>45.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>219622.000000</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "            Store Type           Size\n",
-                            "count   45.000000   45      45.000000\n",
-                            "unique        NaN    3            NaN\n",
-                            "top           NaN    A            NaN\n",
-                            "freq          NaN   22            NaN\n",
-                            "mean    23.000000  NaN  130287.600000\n",
-                            "std     13.133926  NaN   63825.271991\n",
-                            "min      1.000000  NaN   34875.000000\n",
-                            "25%     12.000000  NaN   70713.000000\n",
-                            "50%     23.000000  NaN  126512.000000\n",
-                            "75%     34.000000  NaN  202307.000000\n",
-                            "max     45.000000  NaN  219622.000000"
-                        ]
-                    },
-                    "execution_count": 21,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_stores_data.describe(include='all')"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 2.4.1. Deskriptive Analyse"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 22,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<seaborn.axisgrid.PairGrid at 0x215682e9670>"
-                        ]
-                    },
-                    "execution_count": 22,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAFjCAYAAAAepy08AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACBO0lEQVR4nO3dd5xU5b348c8509v22QosvUtXxAJWQGFt0cRyLSlqco2amJiL2K43evXnJWpioibGNDWJmihEAhg1IipSRZp0WGCXLbNldmZ2p57z/P5YWFh2gS2zOzPL884rL5lnzjnznDOz53uergghBJIkSZIUJ2qiMyBJkiT1LTKwSJIkSXElA4skSZIUVzKwSJIkSXElA4skSZIUVzKwSJIkSXFlTHQGkk1tbQBdT3wP7MxMO/X1TYnORlLqjWvjdrtO+F48fyPye25fKlyXk/1GTneyxJKkjEZDorOQtPrStelL5xJP8rqkNhlYJEmSpLiSgUWSpBMyKjEsWgCjoic6K1IKkW0skiS1yxaqxPfZm4QPfoW1+Ayc51xHyJKb6GxJKUAGFkmS2rBofmrfeRrNXwdAcNdaop6DZFz7CGHVnuDcSclOVoVJUooRBg1djaEoPfgZfk9LUDki5q2EgKfnPlTqM2SJ5TQhhCC2ayWRze8hoiGMQ6ZimXQFisGU6KxJHSQUnQPB/Szc8R7BWIg5Qy9mZMYITMIc989STJb2UlFM1rh/ltT3yBLLaSK86i+Ev1iEcdg0zOMvR6/YTnDpMwgtluisSR1UEang6ZUvsrN2LwcbDvHS+lfZ5dvdI5+lOXJxTpzZKs11VglRe06PfJ7Ut8gSy2kgsn0FsdINWKbdiGJufuI0TbqKyPqFhNf+DevZ1yc4h9KpqKrCl5Vb2qS/t2c5oyePBC2+z4gxTJgnX0324MnoPg+G9Fy0jAHEhBxfIp2aLLH0cXpjPeHVb2CeVNISVAAUVcU8bjbRHZ+i1R1MYA6ljhACHOa2jeYOkx2lh/6Mo6qNSPYIYoPOI5w1nJgqq8GkjpGBpY8Lr3kLY/9xqC53m/cUix3TkKmE1/yty8evbQixYuMhNuz0ENPkWIeeIoRgjHsEVuPRtg9FUZjabwJREUlgziSpLVkV1ofpDZXEDmzEesHtJ9zGUDye2Ee/Qasvx5BZ1Knj/2vtAf7xWSmDC9LwNUZ4e8Ve7vvGBDJd7TX8St2l6zpXj5qNLxwgqkdx27NZtON9Ciblk2vMT3T2JKmFDCx9WHjjUowDJpygh08zxWDC0H880a0fYDjv1g4f+19rD/L+ujJuvnQ46U4LQghWb6viZ298ycO3TsFiknXx8SYQ/GXzIuwmGwbVgD8cAEChB/sdS1IXyKqwPkqEG4ntWY1x4MRTbmsYMI7o7lWIWMeqVHaXNbB4ZSnXzhhCurM5aCmKwtRReaQ7zCz6ZF+38i61z2QwMjJnKE3RYEtQmZg/hixzVoJzJkmtyRJLHxXZuRJD7mAUi+OU26q2NNT0fGL7v8Q05KyTbhuN6fx28VdcMrkf6Y7W4ycUReHCiUX8Yel2LppcRE66rVvnIB1lMKh8uOtTBmcNYFj2IMp8FfRPL8Btz8asWNDoG+1bitLcUUFKbbLE0kfFdqzA0O+MDm9vKBxJdPfnp9zuvbUHSHeaGd4/o933nTYT44Zks+Tz/R3+bKljIrEoS3b+mw/3fkp90Mv7ez5hc9X2Hh2B31t0AWV1Tby/vpy1Oz2UVfsTnSWpG2Rg6YO0+nJEsAE1Z0CH9zHkDUM7tA0RDZ9wG39ThGWrD3DBhJM38k8a7mb1V1U0haId/nzp5DRNZ0bx2QA0RYOUessIRkNcOPBcYrHUL63sOuTjkd+s4s//2sGLb2/moZdW4g/Jwbupqk8Elv/3//4f8+bNA2DlypWUlJQwc+ZMnn322QTnLDGiu1ehFoxEUTr+9SpmG2pGAbHytoPwjli66gAj+mecsteX02ZiYEEaq76q6vDnS6dWZC3iv869i/H5oxmXN5qfnPOf9LP2S3S2ui2mC15duq1VWm1DiH0VvgTlSOqulA8sn3/+Oe+88w4AoVCI+fPn88ILL7BkyRK2bNnCxx9/nOAc9j5t3zoMBcM7vZ/BPZhY6YZ23wsEo3y88RBTR+V16FhjBmbxycZDnc6DdGKKMDDAUsx3z7iN7427jWLrQNQkGwkfiunsqvCxbmcNZbVNaB1YwjmmCwLBtqXbcETriSxKvSClA4vX6+XZZ5/lu9/9LgCbNm2iuLiY/v37YzQaKSkpYdmyZQnOZe/SGyoRoQBqRmGn91VzB6OVbUa003r6/tqDjOifQZqjYxMeDsx3UeMLUZXk65anIl1r/n+yiWg6f1y6jSf/uI4X3t7EIy+vYu1OzynbgOxmAyXnDW6VZlAVivPTejC3Uk9K6cDyyCOP8MMf/pC0tOYfYHV1NW730RHmubm5VFWdXtUx0dINqHlDUbrQoqs4MkFR0evLW6WHoxofbShnyoi2o/dPRFUVhvfLYP2O6k7nQ0pNVfVBVm9t/ff2pyXbTtlWouuCc8bmc+ucUeRl2RkzKJv/uWMauelyoG2qStnuxm+99RYFBQVMmzaNt99+G2gemXzsDVUI0ekbbHa2M6757A6329XpfQ4d2oRjyESsGV1bjKmhcAi2hj2kjxjVkrZk5T6KC9IYPKBz4yXGD8/ls02HuLWk473TOqor1yZe4v0bSeS5xNOeqkCbtFBEQ1HVNucYCscorfBRXd9ETrqNQYVpXHvRcGZNHYjJpGI1p+ytSSKFA8uSJUvweDxceeWVNDQ00NTURHl5OQbD0Tpnj8dDbm7nllKtrQ2gd6BeuKe53S48ns51uRSRIKGKvTBmNiFv16qgYq5CwtvXERk0AwBdCP7+4S4umlyEt5PHzHKYOFDlZ+/+Wlz2+K0Z0pVr05XPOJF4/kZ641x6S06aBYvZ0KptZMygbKxGpc05frKlkt8v/qrl9fWXDueSyf1QgRBgTYHr0lceCHpCylaF/f73v2fx4sUsWrSIe+65h4suuojf/va37Nu3j/3796NpGosXL2b69OmJzmqv0Sq2o2YWohi7fhM3ZA9Aq9yF0Ju7sG7ZW4uqKvR3d/4p3WhQGZjnYsveulNvLKW8DLuZR755FsP6Z2Ayqpw/vpDbrxyD4bhaA29TlD8tad0L7I0PdlLnP3FXdym1pGyJpT0Wi4WnnnqKu+++m3A4zIwZM5g9e3ais9VrYmVbULM7PnalPYrFgWJ1odcdwJAzkPfWHGTSsJwutdkADMhzsnlvLdPGykkS4yGsBKkKNrdb5drcWEXyrD8vhKAg08ZPbpxEOKZjN6vQTsGuMRht01tMCGgMRcmRE5j2CX0isFxzzTVcc801AEybNo1//OMfCc5RYsTKtmI+Y+apNzwFNas/2qEdVCtuDlT7uWxq14PVwPw03vxod5fau6TW/DTw/NpXKPdVAlDoyuPuKd8mTclIbMaOY1DAbmo/qABkpVnJSrNS5wu1pDlsJrLT5HovfUXKVoVJrelBH6LJi5LWsXEmJ6NmFhKr3MH7aw8yfkgORkPXfyYZzuZquar6YLfzdTpTFIUvqze3BBWAQ/4q1ldtRFVTK2DbTCo/uWlyS3fiIreDB26ZgsvaJ55zJfpIiUU63L6S1R9F7f6zgprVD99XK1ldX8U3Lxt16h1OQlEU+uc62X6gnvys5Km2STUGg8L2mj1t0rd5dnFpv4vQk3Fgy0nkpluYf8tkmsIx7GYjJoMiJ5/sQ2SJpY/QDu1A7eRCXSei2NJY2TiQwbk2nDZTt49X5HawfX99HHJ2+tI0nUkFY9ukTykch6alVlA5wqQqpNtMmAypVeKSTk0Glj5Cq9iBmh2feaM0AR8HhzMhJ3TqjTugn9vJrrKGuBzrdCUE5NizmNpvIsrh/51ZNB672SbbrqSkIwNLHyAiQXR/NWp6fHperS8NkWYRuKMVcTlelstCOKq1aqyVOkdVFb44tJmGkJ9rRl/GNaMvIxBpYvHOD9EUOQuwlFxkG0sfoFXvRU0vQFG7PyGhEIJlWwKc2c+I7i0/9Q4doCgK/dxOdpc3cJbs+dMlui4YmjWYD/Z9yvaa3S3pc4dfikEY+sgyX1JfIUssfYBWtQs1oyAux9pSHiaqCQb1y0D31yL0+DwNF2TZ2FMuq8O6I50CJuSOb3ldnNafIbaxINe8l5KMDCx9gFa1Oy6BRQjBuxsDnDnQimowodhcCF98JpEsyHbIdpZuUFWFVRu8RPaO4Zqib3J1v1so9F/EX98tIxaH6WUUBcx6I5ZwDSbkCHipe2RVWIoTQqB59mEa2f2pazaXh2kM6wzPbx57ojiy0LyVXZqC/3h5WXbKaxqJaXq3xsWcrnRdMLgonWWr9rP+6BRbXH7OQAyqguhGcFEUgbl2J/Xv/RrNX4c5bzAZs+4gaJWzJUhdI//CU5zwe1BUI4q1exPi6brg7+v9TBtiQz3cy0h1ZqF747NYl8VkINNpodzTGJfjnY5GFmcyetDRGabdmTYumdK/W0EFwByqoead/0PzN8/pFqnaS/0/n8cs5KBWqWtkiSXFadV741IN9smuJowqDM09Om5FcWShVa/v9rGPyM+2s6/CR3G+nBW2K5xmA/dcO56q+iAxXSc/047N1P1nQ+GrBq11W1q0thwl6AW7rUvH1ASEYzo2kypbgE5DMrCkOK16L0p696Zx8QU1Fn3p5+qJrlZjIhR7OqLJi9CiKIbuD5TMzbCxr8LHBRPjM5DzdGQ2KPTPie8MBoq17UqNisUO5s4HFUWBSm+I3//zK3aXNTBhmJubZg4ns4Mrj0p9g6wKS3Fa9Z5ujV8RQvDaqgZGFVjITWv9nKGoBhR7Rtwa8POz7OyrTO41Nk5HmjMP55Q5x6QoZF76baLmzE4fyx/SePwPa9l5wIuuC77YUc2zb3xJVJPztZxOZIklhQmho9eVoU6Yc+qNT+Cj7Y1UNMS4/sz21xdXHBloDZVxmS7GnWGjqq5JNuB3g6JAVBcgiNv8WjHFjGniFeQMORM96EVNyyXqyO/SYmbV3iYag9FWaWXVAeoCYfLS5Rim04UMLClMb6hEMdtRulBlAbCpLMTiTQG+cWYaxhPM16Q6MtG98RmBbzKqZBxuwJftLJ0X0wXbDnh569+7EAKuvWgoY4ozMcZhduOYYiGWPhDSDyd0MWDZLW2rTI0GFaup+4N3pdQhHxtTmF5zALWL7Ssrdzfx+8+8XDHBRYb9xH/0ij0T0VDV1Sy2kZdp40CVrA7rin2VAZ796wbKqgOUewL8/I0v2VPhS3S2WnGnW7j0rNbr99w4cwTpju630UmpQ5ZYUpjmKUVJy+3UPmX1Uf7xpZ+DdTGunewix3nyn4DiSEdvrEfoMRS1+z+XnHQrpVV+zu/2kU4vRqPKR18cbJP+wdoyxhRnEoslx6QuBkXhazMGc/aYfOr8YXIzrRRk2jtdAoppOqgKxGHwp9T7ZGBJYXpNKYZ+badS13VBuTdGlS9GQ1DHF9Tw+DX210UJRwXj+1u46ey0Dk1XfmSMjPDXoMRhksu8TDvrdsanM8DpRAhBdjttFNnp1qRbx8RsUBmU52RQnrNL+5fXNfHSu1vx+sJcfu4gRvVPxyTb5FKKDCwpSgiBVncQ05iLWtIawzpLNwf4bE8TVpNKjsOA3aJiMynkOA2MKjDjdhk6Pc264shEa6iKy+zJ7kwb5Z5GhBAIBF96ttDPWUCu3d3tY/dlmiY4f3wRH6w5SDjavP6K2ahy4aQiNC05SivxUNUQ4tHfrm7pOLDzrxu4+7rxTBqanXQBVDoxGVhSlGjyNv/D0vxUuNcT4cXl9QzMNnH9mWknbTfpLMWeHrd2FrvFiNmk4mkIsap2OeurNxGKhXh46o9xmh1x+Yy+Ki/dyuN3ns3Ogw0IIRjePwN3mhXRR+64igLbSuvb9EZ75+M9jBucjVwPLHXI8mWK0mubG+4VRWGvJ8Lz/67jwpF2LhntiGtQgcM9wxoqT71hB+Vm2tl9qIYVZZ9z1ZDLGJRWzMdln8Xt+H2VEIJsp4Vpo3I5Z3QeOS5LnwkqR5iMbW9JVrMBuZZZapGBJUVpdQdRnTk0BDVe+KieS0c7GOLumdHNij0D3e9BxGnVj5w0K6v37WZwxkAcJgejs0ewtmpDXI4tpS4hYPiADGyW1hUps84eKANLiknpwPLzn/+cyy+/nDlz5vD73/8egJUrV1JSUsLMmTN59tlnE5zDnqN79oPLzR9XNjC60NJjQQVAMVlQjGZEU3ymvc9Jt7KvsoGhGYMAyLO7CcZC1ARr43L804GiNE+l39cEQzG+fslwLj9nIBdM6sc3545m2eeleBujp95ZShop28ayZs0aVq1axT/+8Q9isRiXX34506ZNY/78+bz66qsUFBRw55138vHHHzNjxoxEZzfutLqDbDeOpsIb4+Zp7Y+ajyfFkYXeUIVq7/w0H8dLT1Np8hnp52weza8oCv2cheyq30uOLbvbx+/LFAXq9Tq+8uzAFw5wRu5ICi2FKKJvDEDUdMEf//kVGS4LVrOB5V+UoSj0uSq/vi5lSyxnnXUWf/rTnzAajdTW1qJpGj6fj+LiYvr374/RaKSkpIRly5YlOqtxJ7Qomr+Wt7epnD/chqEXnlwVezq6Lz4N+I1KHSJqRehH853nyGVPQ2lcjt+XefV6nvzseV7f/A7v7nyf//30efY27Ut0tuImP8tOYY4Drz9MZW0TADMm9pOTWKaYlA0sACaTiV/84hfMmTOHadOmUV1djdt9tNtqbm4uVVXxGzWeLHRvBZsYiUFVGJzTOyOaVXsGekN8xp+UBw5htQlq649Wb+TZczjgL4vL8fuyPd5SApHWa9r87at/oqvxWUI60WwmlftvmswNM0cwdnA2d1w1lmsvGCKn3k8xKVsVdsQ999zD7bffzne/+11KS0tbjdEQQnR6zEZ2dtcGdfUEt7v9+bT8lTV82DSC88a5cLm6Nk9YZ2lqLr6Dm8jI6P6U7dW7qsnJHEpjSGk5nt3Vn3d2LyEz245RPXW1zomuTW+I92+kM+cSq2sbQIKxEHanCZel4/kSuka4ch/hij2oJguWomGYs5NjOQM3MHRAJsxKdE6krkrZwLJnzx4ikQijRo3CZrMxc+ZMli1bhsFw9Kbk8XjIze3clCe1tYEuzeoab263C4+n/Tm1tm/ehy/motAFgUCoV/IjhBk9EqS+urbLk14CxPQYnsY6hjgslJYFGNL/aBWH0+Rg6/69FDpPPhDzZNcmXk52s4/nb6Sz5zIofQCqoqKLoz305g67mLAfQr6OH8fq24fnzcdBbx5saXCkk3Xtw4QsOR3PfA/qje+4uxL5cJPsUrYqrKysjIceeohIJEIkEuHDDz/k+uuvZ9++fezfvx9N01i8eDHTp3d/Lfhks2Kvzhi33rKEcG9QFAXVnonu7151WE2oFpfZSWaaGU9t654+2bZMKpvkdC8n4zbm8sB532dc3igGpBdx+6QbGZc1tlON20ZFx7/q7ZagAqA1NhAt/0p265XiImVLLDNmzGDTpk1cddVVGAwGZs6cyZw5c8jKyuLuu+8mHA4zY8YMZs+eneisxlU4qvGlN42bh/dOFVgrjgx0XzWG7OIuH6Kq0UOGJZ10l5Gara0DS4Ylg6pGGVhOSigUmvpx57jbEOiouqHTU50oItayvv2x9KYGQKHLc+bHUb0vxJ4KP4FglIJsO+50q2xnSSEpG1gA7r77bu6+++5WadOmTeMf//hHgnLU8zZsO0S+wYurk7Max4NqT+/2CPzqYA3pljQcNpVQWCcU1rFamgvOmZZ0Khr7XmeLHqEpKBi6FAJiigXHxFl4P/hdq3Rz/zGEk6Bbbyim89t3vuCLHR6guYv1f908hRFFaXK+sBSRslVhp6vPN5Ux1OHvdKeEeGhem6V7JQpPUw0ZlnQURSE9zdiqZ1iGJR1PsKa72ZROQQiBoXgyGRfejMGZiSmriOyrfkQsfcCpd+4F5TWNLUEFmkfkv7xoC6EkWRpAOrWULrGcboLhGDsrgpzTLzF/YC1rswgNRen8gDwdnbqQl3Rzc6NnutNATX2EonwL0BxYaoJtq2ik+IsYHKgjLiFzyDSEaiCCJdFZanH80sYAdb4QkZiORU6fnxLkt5RCNu+tpcgRwepMTJfo5rVZHAh/16ZeaQj7sBqtGA3NY29cTiPVdUdvIjajlZiu0RQNxiW/0snpuiCs2pMqqCgK2G0mjh/zO3VMPk6LfA5OFTKwpJAvdnooNtWh2tJPvXEPUeyZ6L6uVYfVButIMx/topnuMlJzTGBRFIUMSxq1IVlqOV15m6K8tnQbt80dgzvDhqLA5JG5XCMHSaaUpAksoVCIHTt2IIQgGJRPrMfTdJ0te+sYKMrA3vNzg51Id6Z2qQnWkWY+WtpKdxmp8bau9nCZXdTK6rCUJIC6xgh7q/x4m6Jd6rrcGIxxoCrAX/61g4kj3Fx30XBCEQ2fnIQypSRF2fLLL7/k+9//Pkajkb/+9a9ceeWVvPjii0yaNCnRWUsae8p9uOxGHFoDSidGWMebas9A8+zt0r41oToyLUdLWw6bSjjSumeYy+ykLlQfl7xKvUcAG3bX8uLbm9B0gdGgcO83JjK2OKNTPbkyXRYyXRbq/WH+tfoAABazgZx2lmWWkldSlFiefvpp/vCHP5CRkUF+fj5PP/00TzzxRKKzlVQ2761lYKYBxZaWkB5hRyiOTHSfB9GFjq51wfpWVWGKopDuMlJ7TKnFZXLIBvwU5G2K8tI7zUEFIKYJfvm3jTQEOzeHmd3cPFdYfnbzVD9ZaVbm3TyFdFtSPANLHZQU31YoFGLo0KEtr2fMmNGn11Lpis17a5maG0IhcdVgAJisgIIIBVCsHZ/SQhc6DRE/LnPr0lZzz7AoRXnNDcgus0tORpmkTERQGz0oikrM4SYmjt4+GgJhYlrrh41wRMPfGCHN2vHbjBCQn2Hl/+4+n8qaAA6LCZtZleNXUkxSBBaj0UhDQ0PLk/jevV2raumrGkNRquqC5OfVoVgTG1gURUF1ZCIaqqATgaUh4sNmtGJQW//kXE4jnrrI0ddmJ/Vhb7yyK8WJJerF/+HLhA9sBcAx+nys075OxND8G8h0WTEbVSLHjDWxW42kO7s23X2Gy0o01FySlUEl9SRFVdh3v/td/uM//oPKykruu+8+brjhBr73ve8lOltJY/v+evq5HSiNHlRbgkssHF6quKFzDfh1IS9pprZtQ+nO1j3DXGYn3nB8VqqU4kNVFaI7V7YEFYDGrz5BVOxoeZ1uN/LDGyZhP1w6cdhM3HfDJFzW3lnWQUouSVFiOf/88xkyZAifffYZuq5z1113MWTIkERnK2l8tb+e/rlOREUtFIxIdHZQHBloDZV05pZRH/LiNLcNLGkuQ6s2FrvRRigWJqpFMRnkTSkZGNAI7FnXJj18cCum4rPQNB0EjOqfzlPfOwdfY5R0pxmnxdillR8VBWq8QWoDYVw2E2Y5KDLlJEVgufbaa1m0aBHFxV2f3LAv21ZazyWTChB7/Z1q1+gpiiMTUbalU/vUhupxmtuu5eKwGwiGdCJRHbNJRVEUXGYH3rAPt10uU5wMYkLFUnwGkcrWVdTmwuFo+tGqL10XOC3GloGMXVpOWIHdFX5+9bdNeANhCrLt3PP1ieSlJ88gTunUkuJRwGazUVnZvckN+ypfU4T6QJhccwjF5kRRE/+VKVYXIhJERDu+FkxdqL5Nwz2AqiikOQ2t5gxzmmR1WDIRAqyjpmPK6d+SZik+A0PR6Li3f3gbozz92nq8gTAAFbVNPPOXLwjLecJSSlKUWILBIBdffDH5+fnY7Uefat99990E5io57Dropb/bAU21CW+4P+JIA77uq+rQFPoCgTfcgLOdNhaAtMMDJQtym59KnSaHbMBPMEVRMGt+FD1G1JxGyJxN+lUPIPyVKIoB3ZVHWIn/2JKahhDR44KIxxvEG4iQlyHHsqSKpAgsDz74YKKzkLS2H6inKMeB8FegJEHDfQtHcwN+RwJLMBZCCIHV0H51RpqjdYnFbrLTEPbFLatS5xiIoZZvpO7ff0QPBnCccQG2KVcQNmZA+uAe/ew0R9teZDaLEbscx5JSEl+vApx11llYLBbWrFnDZ5991pImwc6DDRS5nej+GhRb4ttXjlDtmejeig5tWx/yNg+MPMHAzrTjuhw7THbqQ954ZFPqAqPvIHWLn0dv8oHQadz0b8KbP6A3amFzXGauv3R4y2tVgTuvPoN0m+zIkUqSIrAsXLiQe+65h4aGBhobG/nRj37Em2++mehsJVwwHKOqron8LDsiUIuSwMknj6c4sjq86Fd9uAGnyXHC99NcRmrqj47Qdpjsso0lgWKeA23SGrd8jElr7PHPVhWFiycWseCe8/nJf0zmqf88lzMGZqLrcjBLKkmK8uUf/vAH3nrrLXJzm1dFvP322/n2t7/N17/+9QTnLLH2VvjIy7JjMECk0YsxiUosii0NEfQjtAiK4eSD4OpDXhzt9Ag7wuUwEGiKEYsJjEYFp8lBQ0RWhSWKwd72AcaYkYviLcOYOZhYpzqad+HzVYURxVlk2WUpJVUlRYlF1/WWoAKQl5eHmgS9nxJtd5mXwhwHosmHYjKjJNG4DkVVUR0dGyhZG6rHdYKGe2gegOdyGKlraG5ncZjsNIT9ccur1DmKexCm/EFHEwxGXGOn4/n70xhq9yQuY1LKSIq7d0ZGBh988EHL6w8++ID09OSp9kmUnQcbKMxOvmqwFvasDgUWb7j9wZHHSjs8Zxg09wrzR/xdGwchdVvYmE7G3PvIuvhWMs67jszzrsO7ahHoGsFdazAcM2DRqOiYlViXpsiX+q6kqAp7+OGH+c///E9++tOfoigKRqORX/3qV4nOVkLpumBfhY+LJhWhH9oJSVQNdoTqyECvL4dBU064jS50/JHASdtYANIcRmrqI4ADo2rEqBppigVxmE5chSb1nKjRRaRyL01bP2mVbkzLQQiBqgjM3n34V7+D1ujFOflylH4TiKq2BOVYSiZJEVjS0tJYtmwZpaWlaJrG4MGDKS0tTXS2Eqqs2o/NYsRhNRH21aAmyRiWYynObLTKXSfdpnnySRsG1XDS7dJcrXuGOU0OvOEGGVgSRNPBMWEWwR2rEbHm70W1OjAPmkxIF1gD5XjefBxE85iT+mW/JvPS76AMPl+WNKXEVoV5vV68Xi+33347gUCA7OxscnNz8Xq9fP/73z/l/r/85S+ZM2cOc+bM4emnnwZg5cqVlJSUMHPmzJSeen/H/noKs5uf8kWgJrnGsBym2NIR4QAiFj7hNvUh70nbV45Ic7Uey+Iw2fHJdpaECjv7k3PD/5A5+06yLvtPsr/x34TteSgKRCt2tASVI/xr38Wkx2/1V4NRlVVsKSqhJZYf/ehHLeNWpk6dCjSP+DUYDMyaNeuk+65cuZJPP/2Ud955B0VR+M53vsPixYtZsGABr776KgUFBdx55518/PHHzJgxo8fPJd62ldaRn21HINADdUnVI+wIRVVQHVno3goMOQPb3aY+3NDuHGHHS3MYaQjE0DSBwaA0D5KUPcMSSghByJYPA/IBiAJH1ndTTG1HwasWO0I10IU14FppCEZZtuQrtuyt5ZwzCpgwNAe7+eQlXim5JDSwvPLKK+i6zoMPPsiTTz5JIBDgs88+Y8SIEQwcOPCk+7rdbubNm4fZ3NzVdciQIZSWllJcXEz//s1zGpWUlLBs2bKUDCzb99dxwfhCRKQJ0A8vsJWEHJknDSy1wfpTNtwDGAwKDpuBel+MnEwTdqMNX0SWWJKVsWA4qs2JHgy0pKWd+3XCons9F4NRnadf+4KK2uYxM1/tq+OCSf24eeZwZOEldSS0Kmz37t1ccsklzJw5k1AoxHXXXcdzzz3HzTff3FKSOZFhw4YxYcIEAEpLS1m6dCmKouB2u1u2yc3Npaqqc+uGJINQpHlgZG6GDRGoQ7VlJHQ54pNRnVlodeUnfL8uVNehqjCAdNeRBvzmaV28ITlIMlmFLG6yr3uEjItuJW3aNbivf5RYzvBT73gKFXWNLUHliI83lFHfGDnBHlIySmiJ5emnn+YHP/gBF154IX//+98RQvDPf/6T6upqfvjDH3Luueee8hi7du3izjvv5Cc/+QkGg6FVo78QotM35Ozsjt0Ee9Lm3TUU5jjJznbSWOdDScvA4UzOEotmKMR3YCPp6bZ2r7U34iM/Ixub+dTTnmdnWvA3QUaGndxwJmW+Ctzu9qsAT5TeG+L9G0nkuXSPC/rHd92ksrq2bTQKYLOaUvg6nX4SGlgqKiq44oorAFi9ejWXXHIJBoOBgoICAoHAKfaG9evXc8899zB//nzmzJnDmjVr8Hg8Le97PJ5WAy87orY2kPDpI77YVkmh24HX20Sk6hDCaCcQ6PgU9b1JCCNC6NRXVqIeN9amKRZE13W0MAQiJ27gP8JqgYOHGvF6HRAxUO2rw+NpWx3mdrvaTY+nk93E4vkb6Y1zSSWZTjNFbiflnqN//zMm9cdqUJLuOslAd2IJrQo7dnT9hg0bOPPMM1teh8MnvxFVVFRw1113sWDBAubMmQPA+PHj2bdvH/v370fTNBYvXsz06dN7JvM9aHd5A/0O/2h1f02bG3YyURQFxZmDXn+ozXt1ofqTTj55vOaqsKOj72UbS/LorZrYWl+Ic8cXUnLeYCaNyOW6i4dhMCiyKizFJLTEkp6ezvbt2wkEAng8npbA8sUXX5CXl3fSfV955RXC4TBPPfVUS9r111/PU089xd133004HGbGjBnMnj27R8+hJ5RW+Lj4zAEgBCJQCwPGJTpLJ6U4s9HryqBwVKv0Ey3udSJpTiMNvuaeYXaTHb8MLAlniTWgV+1G83kw5w9Byygmppx8brju0HXBmx/sJN1pxp1h591P9hKKaMw8s/+pd5aSRkIDy3333cdtt91GIBDgxz/+MXa7nVdeeYWXXnrplCPvH3roIR566KF23/vHP/7RE9ntFd5AmHBUJyvNirfWi4iGUCwnH7WeaKorB+3g5jbptcG6TgUWo0HBYTdQ74uSnWFCRxCKhbEa5bK0iWDWAviW/oJIxdH5wTIu+RbKkOlxXznyiLxMO/nZdiprm2gINJdSzhyVR5ZL/gZSSUIDy4QJE1ixYgWhUIi0tOYBgBMnTuStt946ZXfjvmrfIR+FOXYURWmeI8yelrQ9wo5QnJnogVqEFm01UaYnWMeg9AGdOla6y0hNXZScTDNOkwNfxIfV6D71jlL8ectbBRWAhhV/JnvAeMLGnqmetZlUfnLTZD7eeIgtu2s4e2w+U0fnJcekhlKHJXxKF7PZ3DIWBWDSpEkJzE3i7a3wkZfZPKBQD9Ql5+STx1FUY/NAyfryVuNZ6sJeJpjHdupYaY7mqV1GDnEcbmcJkGuXgSXeVEXH7C9Hq69AsTogawARQ+vG6PZmVBCRMIqu9WjeMuwmvl0yhpraAKqiJLwzjdR5CQ8sUmt7D/kYVZwJgO73oFhTo+eJ4spBrytrCSzNPcI0bMbOdZNOcxmorpMN+D1JUcBYuQXPomc5Mkze3G8krlnfJ2I4WnWpZhaimK2IyNEeifbR5xKzpHd7dP2p86iAAF3OO5aSZAkziQghKK30U5B1uMTir0FNwjnC2qOmudFq97e8rg3WkW5J73R3ovS0oz3DbEYbDWE5rUu8mfQmvP/+A8dGh0jZdqg/2Gq7iCWHnOsexjp4IgZXNq6pV2I/+zpiQk6vIp2cLLEkkWpvELNJxXF4fW/hr4HCkQnOVccorhz0XSsRuoaiGvAEa0izdL60leY04gs0ryZpl4Glw8xaAOrLEFoEQ2YRYUv2CRvYVS2CFvC2SRfhptavBYQcRdgu/T4OPULMYCcsq6WkDpCBJYnsO+SjIKu5B5geiyDCAZQu3JwTQTGaUWzp6N5DGLL6U91UQ7q583k3HF5NsrYh2jwRpQwsp2SJemn453NEq0sBUMw2cr7+MCF7YbvbR01pOEafR+PWFUcTFRVDZiHRdraPCQMoNpBBReogWRWWRPYcaiAvs3mhpJivFsWahqImd4+wY6kuN3rNAQCqm2rIsHSt40G6y4inNoLDKGc47gi9amdLUAEQkSCB1e9gVPR2t9eEiv2sq3GMuwgMRkzZheRcO4+wI7+Xciz1dbLEkkT2HvIzdVTzFDSxhmoUe/L3CDuWmp6LVrUHhk6lIeJvHnXfBelOA566CLn95AzHp6IoCjFv24lWo54D2PUoKO2P/wiZMjFNuxn3mVejqybCivWEDfIGNIxNVYimBlRXDmFLDkLONSydhAwsSSKm6ZR5Alxx7kAAot4qlCRcNfJklLRc9F0rqfdXkmZ2nnLVyBNJTzNy8FCYs0xOfJFTzxl3OhNCYCkc0SbdPvp8oqrlpL23NKGgGU4e/A3EEDs+oubj15sTVCPZV9xLNG+cXClSOiFZFZYkyj2NZDgtWEzNN+NYfRWqPcUCi8GI6szGX72DTGtGl4+TkWbCUx/FZrQRjAXRenjcRKrTMovJuPg2FLMVFBXH2BmYR54fl9HxxsYqGo4EFQA9Rv2ylzBHvd0/uNRnyRJLkthX4SM/6+hKi7EGD2pu99e36G1Keh6KZz8ZxaNOvfEJOGwqkYhOONzcM8wfDXS5veZ0EFMsKEMvILt4IoquEbVkEBbxeWYUTW3XxNFDjRAOQE+MvlfA2xilck8NTosBl9UkS0YpSAaWJLGnvIH8rOaGe6FF0UMBDCnSI+xYakYB6Ye2ErFmdvkYiqKQmW7EUxfFYXLQEPbJwHIKQnB0mpU43odVVw6oBjim1GhwZSNsGfH7kMMEgnU7anl50WZimsBuNXL/f0xmoNvRY3OTST1DVoUlib0VPgqym7saC78HgyMjpXqEHREx2zHoOhmx7t0J0l1GqmsjcvR9goVtbrJL7kW1NJemDa5sskruJaLGf2LUWn+El97ZRExr/u00hWL8/I0vaYq037tNSl6yxJIEguEYNQ0h3OnN05/ovubAkopqQnVoNjtptWUEHV0vZaS7jFTWRHBk2PHKsSwJI4RCrGA8WTc9iQgFwJ5B2ODokSld6nzhNiUTrz+MPxjBZrKiC6hvjKAokOkwy35pSUwGliRQWuknL9OGwdBcgNT9HszODFKxybq6yYPTlYW5Zj/BAWO6fJzMdCMbvwoweqSVhnDben6p9+i6aK5mc8a/qu1YWWkWFIVWwSXDZcFlMxMIa/z5/Z2s2lKBosDMqcVcce4gbCZZ6ZKM5LeSBPYeaiA/+2jVgu6rwuDsehtFIlU3eTBnFGJobECNtF2/vKMyXCbqGmJYDQ5ZYjlNZLvM3HnVGRgNzWURu9XIvd+YgMNiYN2OalZtqQCaA897q/az86A3gbmVTkaWWJLA7rIGBuQ1N9QLBLqvBqMzk0gswRnrpMZoE1E9it3sIprmxuw5QKio7RiLjjAaFRx2Fb3JjldpOwBQ6jmKAiatETUaQrO4iNJzK0a2+lwUzhrpZnj/8whFNZxWY3OvMODzzRVttv9yl4dJw3LQNNkGk2xkiSXBhBDsrfBRmHO44T7cCEKgWOyn2DP5VDRWkWXLah4Nnu7GUrWvW8fLTDPR5DfLxvtepCgCc91OvG88guePPyLw7tPYQr0Y2EXzeixnDHXjtBgRonmM/5hBWW02HdY/E12XQSUZycCSYLW+EEJAmv3wjMY+D6ozM+lXjWzPIX8lWZYMAGJpbgxN9aihxi4fLz3NiM9rkBNR9iJLqJaat59G89cCEKnYTf3SX2EmdIo9e46uC6ZPLCI/++jD1tB+GZwxJEt2Q05SsioswfaU+yjKcbQEEt1XDSmwauTxIlqUuoiX4VlDmhMUlWh6HpaqfQSLO7eK5BFZ6UZ27IsQdDWPvu/qFDFSx+kNVaC1roONeg6gNHnB3ruTVCqKQlNEw2RUybCZePi2s6isa0JVFfKzbFgM8rk4WcnAkmC7y72tRtzr3kpUe0biMtRFhwIVZJozMChHb/7RzAKs5dube4d1oQSWmW7CUxslY0jzWJbuTBMjdYxiazsoV7HYwdy5lUC765AnwBsf7OSTL8vJy7Lz7ZIxFOc6GJTnPPXOUsLJkJ9guw42tLSvQHOPMMWRej3C9vvKcNuyW6Vp9gwQAlNDdZeOaTGrWC0qllgW9bLLca/QnPk4J81ulZZ5ybeJmnvvNykUeG3Zdv697iDRmE5ZdYDHf7+GGl+41/IgdU/KB5ZAIMDcuXMpKysDYOXKlZSUlDBz5kyeffbZBOfu5MIRjYq6ppYSi9CiiKAPJUWWIz4iGA3ijfjIth1381EUotn9sJRt7/Kxs9KNKE2ZeGVg6RUxxYxp0tXkfONRskruxf0f/4tWNAFdFxhVDbMI0tMTQgRCMT7dWN4qTdMFFbVNJ9hDSjYpHVg2btzIDTfcQGlpKQChUIj58+fzwgsvsGTJErZs2cLHH3+c2EyexL4KH7mZNkzG5q9B+KpR7Bkoamp9LQf85eTYslCVtvmOZhZg9h5CDXVt+vuMdBMRv1M24PeimGohnD6IaMFEQvZChGLAFqwg9OGv8f71IfT1b2GN1vfY55sMKunOtuvI2C2y5j5VpNYd7Dhvvvkmjz76KLm5zYtjbdq0ieLiYvr374/RaKSkpIRly5YlOJcntqvMS+ExAyO1hiqUFGtfEQJKfQfIs7nbf99gIpJZhLVsW5eOn51hIthgoz7k7UYupe4wR7zUvPUEwV1r0Py1+Nf9E/+K1zAp7S1k3H02k8odV53RKm3MoGwK3fGfn0zqGSn9CPDEE0+0el1dXY3bffQGl5ubS1VV8g6u23HQy/B+GS2vdW8Faoq1r3jDXjShnXS1yIh7AM6dnxMaMBbdbOvU8bMyjAT8Bmqaeu4JWTo54T2EflyJM7RnPc5z68GaG//PE3D2mHyeuHMaFbWNOG0m+uc6sRlT+jn4tJLSgeV4uq63Gv8hhOj0eJDs7N7pdaLpgn0Vfq6aMRSnvXlkc3WgCvvwszA5m3vgOJ292xOnK7bUH6LIlY/d3v4SuADYzIjsIlwV29DGTOv0Z7gcKh5vFLf7aPA69t+9Ld6/kUSeS0c0Bdo+DCgGE1a7jbTsnsv7uOG5jOuxo0s9qU8Flvz8fDweT8trj8fTUk3WUbW1AXS950dd7a/047QZiUVieCMxhBYl5qsjpNgJB0I4nVYCgcQNSusIXRfsqzvIePdYgsHISbdVsptLLYHc4Wi2zt2YM9KNeKoFHk/zCHy329Xy755yspt9PH8jvXEu3WU3WrEUDiN8aFdLWvrUEgK40Hoo76lwXZL9gSCR+lTZcvz48ezbt4/9+/ejaRqLFy9m+vTpic5Wu3Yc9NLPffQGKw63rygpNAjQE6zBYrRgM566ZCVMViI5xdh2r+305+RmWmist6ILOX1Hb1MUCB/YiqVgCJnnfx3XpFlkXnAjscYGVL39hwlFUTDKaqvTWp8qsVgsFp566inuvvtuwuEwM2bMYPbs2afeMQG2ldbRP/doYNG8FSjOtvMhJbMD/vI2Y1dOJpw7EMeOzzF7DhJx9+/wfrnZFsT2LBrCPjlIMhEMJnzrl4FqQLXY0IONmPOKMStKmyn0faEYX+yoZufBBs4alceIAenYTKnzsCTFR58ILP/+979b/j1t2jT+8Y9/JDA3p6brgp1lDZx7RsHRtPoyVEfqBBZdF1Q0VjIx94xTb3yEohLqNxrHzs+Jped0uCHf5TCAbqC0pobMYzo7SD1PCDAVjkQxWxGREHqwuRE/7ZzrCAtTq22DUZ2nX/uCQzXN26zaUsGccwfxtemDemwNFyk5yfJqAhyo9uOwGnHajv5h6vUVKK6OP/0nmidYi9VgxWroXAcDzZlJNLMAx1efQgerthRFweaKsv1gbVeyelpTFKUrs+m0ErbnkfON/yb93OtwTpxJztcfIuZuuxxCRW1TS1A5YunnpTQ0pdj6D1K39YkSS6r5qrSuZf0VAD3kR8QiKNbUaQw81FjRdqR9B4Xzh2Df+wX2PRtoGjq5Q/u4XIK9ZV2fKfl0o6Jh9h0kfGAzqtWJqd8YwrbcLs0GLASEbPmoZ8zFqEBYa/8gor1iiRAIOQXxaUcGlgTYuq+eEf0zWl7r9eWorpyUmSpfCKhorGR01siuHUBRCRaPw757LbrNQajo1MfJzlLZt1s++XaUqW43nr89xZE6KNXqIPsbjxKydH3cyal6whVkOXBn2vDUH1059OIzB5BhN51kL6kvklVhvSwS1dhzqIHiY0sstQdTqhrMf3jhLbuxc4MdjyWMZpoGTcRWuglL5Z5Tbp+TYSUUVPA1nrxbswQmJYbvs7c4tmFDDzUSLe/6nG0dYTerPHDzFK65YAijB2Vxx5VjufK8QT36mVJykiWWXrazzEteph2L+WhPGb32IIYBqTMUrKKxikxL9xcjExY7TYMnY9+zHoQgXDD0hNumWRwYHRVsP1DPkIGpE4QTQmjNK5EenxwJoSj06OJYGXYTV5wzkCvPG4Su6Z3+LEVRqPGH+XLvfoQQDCxII8thkgt6pRgZWHrZpt21DMw/WloR0RB6Uz3GFOpqfKixinxHXlyOpVsdNA6ZjGPvehRdI1TUtlEYmktHus3L5r21zJl+4gAkQUyx4DyzhPr3fnM0UVEx9xtJqBdu0LouoIsDSKsaQjz68irCUQ0Ah9XIf3/nbLKd5nhmUephsiqsl23cU8uggqPT4ut1B5vbV1JkYGRUj9EQbiDTEr+p/YXFQePgKdj2b8Z2YGu726iqAbsrzJZ9tbIx+BSEAKX/RLJmfw+Tuz+W4jG4v/4gEVe/RGftpFRV4V9rDrQEFYDGUIw126pQe3qufimuZImlF1XUNhKKxMjLPNo2oXlKUVzxn8ivp3iaakgzp7VaKTIehMVO45Ap2PeuB6ETLG47PibNZaS+XKOsOoD1NHskMulNKN4yRNCPISOfiCMfnRN/B1HVhlI8lbTiyeiKSkhXk34siaJAVV3bKjxPfdPhatckPwGphQwsvejLXTUMLUpv1Tah1ZRiHDQlgbnqnMrGajIs6T1ybGG20jTkcJuLohAcMLbV+y6zA7IEa7+q5Pyxvbv+eiKZ9CDBFX8kuHP14RSF7Ct/SDR//ElLb0JABGPK3I81TXDpWcVs3VvXKv2cMwrRNDmdTyo5zZ77EmvdjmqGFh29KeshPyLUmDJLEQsBlU3VZFl7JrBA85xiTUMmYy3fjrV8R6v3nCYHlrQmVm+t7LHPT0ZKQ9kxQQVAUP/+bzHH+t7iZyP7Z3DHVWPJSrPizrRx93XjGSjXuU85ssTSS+p8ISrrmhhw7Pxg1XtRM/JTZvxKY7QRTdexG+09+jnCZKVx0CQce9ahm21E3AMAcJodVFsPcmivk0Aw2mrmgr6svR5eepMPRYtwktqwlGQ2KEwblceUUXnUNoRoCkYIRTVcVqPsGZZCZGDpJWu3VzOsKAOD4WghUavchZqROlU6lU3VZNkyeiUQCoudpoETcO74HJ/FTiwthzSzC1/Uy9B+mWzY5eH8cYU9no9kYEgvAEVtNQWOdeA4NEtaylRzdUYgHOPFhZv56nCVmMtu4uFvTiXHJXuGpQpZFdZLVm2tZMSAjJbXQoui1x1AzUidm2NFYxUZ5p6rBjuebk8j2G8Uri0foYabsBttRPQoQwc4WfNV8q4MGm9hWy45X/svjGnNq6Nah0zCdcGtREXfLLHtKfe1BBUAf1OUhSv2QGoU7CVkiaVXVNQ2UusLtxptr3n2oTqyUEwnWXkxiWi6Tm2ojiHpA3v1c2PpuURDAVxbltMwYRbp5jQysjX2fObD3xTBZe/7T7EChUj2CDK/8ShqqAFdFwhD3zxvRVEoP24iS4DdZV6iMYHJIKNLKpCBpRd8srGCMQMzW/XF18q3oWYl97iCY9UEa3EaHZjU3n9KDucOwrZ/E47da0nPdFEfrmNIYTprtlVz8eTUuYbdYdSaaFr7Do0bPwTA4Mwg++p5BG2pU5XaEUIIhrWzNMK54woxm5SOTogtJZisCuthMU3nsy0VjB18dBoSoUXQPHtQszu+2FWiHWqsTNwiW4pCqP9oTHXlDGoMUe6vYvTATFZsPJSY/CSAUnegJagAaAEvvk//ilHpexNzFuc6uGnWSIyH2yPPGp3HhZOKZFBJIbLE0sPWba8mO81KdtrRdUu0ip2oLjeKqXNrmSRKt2czjkceDCaCxWdQvHc9e2lk4NjzeH9dGfsqfK1mMuirNL+nTVq4fAfOWJCYIXWWW+gIRVWYOiaPcUNzMKiQ4TDLJ+AUIwNLDxJCsGzNAaaMaD2yPrb/Swzu1Jn11Rv2At2bzTgedFsa4fxhnFm+g+iIJsYPzeb9tQe544oxCc1XbzCmt52bzTpwHJrJDn3oSd4XivHrhVvYVlqHosDMqcVcee4grCYZWlKJ/LZ60Ff762kKxRhSeMzcYH4PorEOJbMogTnrnPJAJdnW7KQYbxPL7kfQbKVxwz84Y3AWG/fUUOcLJTpbPU7LHIDr7Kubux0DpuwiXNOuJab3nYEsiqrw0RdlbCtt7hEmBLy3aj97K/reQNC+TpZYeogQgndW7GXqqLxWN+TonjWoeUNR1NSI6ULAQX85I7KSZ0bhuoL+ZJYdxFS+gbGDili6ej83Xdr+rMh9RUyxYhg/l5zh0yAaQjjdBJXEliDbUMDXFEMIQXoXFveKaYJ126rbpO886GXswMxTLjQmJY/UuLuloC931eBvijKq+Oh0LXrQh1a5E0Ne8tykT6U+XI8AnEZHorPSItORxebMNGK7P2eyO8znW6qoaQieescUpwkDYWsuYdcAIkkWVEIxnXdX7udHz3/Cj57/hNc/3EVTRDv1jscwGmDM4LbLRwwqSJNBJcXIwNIDIlGNP3+wiwsmFLbqYhzd8QmGvKEpM3YFYG/DAfLsybVscqYtHY/eBIOnYtz6LhOK7bzx792JztZpbXe5j3c+3oOmC3QBH649yBc7azr1uxE6zJ5aTH720SmDJo/MZVi/3huUK8VHn6wKe/fdd3nxxReJxWLceuut3HTTTb36+W+v2ENupq31uisNlejVuzGNn9OreemOqBajPFDBlNzxic5KKwbFQIY5g0qDTlHxeMYdfJ83guexcXcN44fmJDp7px2DQeWLHW1nQvhkYznnj8vv1LQzGXYTj3zzLOoCEdAF7gwrJrkWS4vHH3+ctWvXArBnzx6KioqwWpt7l77xxhst/060PhdYqqqqePbZZ3n77bcxm81cf/31TJ06laFDe6f6afPeWlZtreKW2Ue75gpdI/LlPzEMGI9iTJ1pOHY3lJJlzcCchKO8c2xZ7PcfZEDR2ViiES4o38Tv/yl47NtTSXemTomwL9B1ncGFGSz/orxV+vABmXRlFRWrUWX8MDcejz9ueewrHnrooZZ/X3TRRSxYsIAzzmi7dlGi9bmqsJUrV3L22WeTkZGB3W5n1qxZLFu2rFc+u8wT4OV3v2LuOQOxW47G7OjWD8FkRc0Z2Cv5iIeoHmN3/R76O5Oz91qOLYu6kJfGaBBj4QgGFGUxWt3Hz99c32oFQqnnCQHjhmbT/5iZu7NcFi6a1E+2jfSCpqYmzjzzTPbt29eSdtttt/HBBx8wb948Hn30Ub7xjW9wySWX8OijjxKNRoHmEs+3vvUtrrnmGq688kr+9re/xS1PfS6wVFdX43a7W17n5uZSVdXzExYeqPKz4C8buGBCIf3cR//AontWo3n2YBxyVlK1U5zK1pptZNkycZh6dor8rjIoBvLtueyoa25bMRaOYuoQJ7aGUn7+2kpCkb43Ij2ZpVmNzLt5Mg/ediYP3DqFx24/m0xH6pTOU5ndbueqq67irbfeAuDAgQOUlpZy4YUXArBp0yZ+97vfsWTJEvbs2cMbb7xBLBbjnnvu4Uc/+hFvv/02r732Gr/73e/48ssv45KnPlcVput6qxu4EKJTN/Ts7M4tKiSE4KP1Zby8aDMl5w3mjCE5h9M1fF9+iLZ/ExmTZ6FaO79YkdOZmPrSMl8FZY2VnNN/MmZDct4cbDYzw8zFfHZgLWPVYWTZM2DoGK7MrGDx6oM88esmHvjO+RQPaDuwsLs6+xs5Fbe774ycH1CYEbdj9aXr0tNuvPFG/uM//oMf/vCHvPHGG1x77bUYDM1jnK6++mocjuZenVdeeSUffvghZ599NgcOHGD+/PktxwiFQnz11VdMmDCh2/npc4ElPz+fdevWtbz2eDzk5nZ8Tfna2kCHiu9CCHaVNfDOir3UB8JcO30wuZl2vN4m9LoyIls/AEXBOPpimmJGCHRuEJ/TaSXQyX3ioaqxhtWV6xidNQItIggS6fU8nIrNZiYYbM7XoLSBfLjnMy7sfx5WowUsmVx6tp2NW0u5/xcrOHeA4LJLziTT3blG/ZPd1Dr6G+no58i2hLZS4bokU+AbNGgQI0aM4MMPP2Tx4sW8+eabLe8dCTDQfN9SVRVN03C5XCxatKjlvZqaGlyu+JxTnwss55xzDs8//zx1dXXYbDb+9a9/8dOf/rTD+6sn6IEihMAbCHOgKsD2A/V8scNDTBNMGZlLycA0CHiI7tmMdugrRLgJY78xzdO2dKP6q/eqzgS+cIBd3n2U+w8xOmsEGT24/HA8HLk2+Y5cIlqEDw+sYJx7NEWuQgwWK5MmjWRofQOrd9Qw/3frGexoZNwAB8MGF1I0qBibq+vnd6LfSLIcr6+Q16VzbrzxRv73f/+XcePGkZd3tKS+dOlSrrvuuuZB2++8wzXXXMOgQYOwWq0sWrSIK6+8koqKCq6++mp+9atfMXny5G7nRRGi7y34+e677/LrX/+aaDTKtddey+23396t4/31/R28vmx7q7R+uU4KHRrhstbpismManWmzJpEAkFd0Nvy2mQwoaRM7o+K6Rq60LAYzDjNrQdzhjXY47MQFEd7t2WqAf47420ABtz7W4zOTCQplVx00UX8/Oc/b+kVpmka5557Lj/72c8499xzAZg3bx41NTV4vV58Ph+zZs3ihz/8Iaqqsn37dp544gm8Xi+xWIxbbrmFG264IS5565OBRZIk6XSzYcMGHnroIRYvXtxSop83bx7Dhg3j29/+dq/mpc9VhUmSJJ1u/uu//os1a9bw7LPPJkXvU1likSRJkuKqz41jkSRJkhJLBhZJkiQprmRgkSRJkuJKBhZJkiQprmRgkSRJkuJKdjc+Tjyn6+iOzEw79fVNic5GUuqNa9NbU7rI77l9qXBdkmlKl56yc+dOSkpK+MUvfsGsWbM6vJ8ssSQpo9Fw6o1OU33p2vSlc4kneV2Sw9///ndmz57NG2+80an9ZIlFkiQpBS1ff5A/Ld1GTX2QnEwbt1w2igsm94/b8aPRKO+++y6vv/46119/PQcOHGDAgAEd2leWWPooRVEIRnW8TVG0xNfsSZIUR8vXH+SXb23EUx9EAJ76IL98ayPL1x+M22d8/PHHFBYWMmjQIC655JJOlVpkYOmDBPDVAS8PvLSS+37xCc+88SXepmiisyVJUpz8aem2NiulhqMaf1q6LW6f8fe//525c+cCcPnll/P2228TiXRsGQ1ZFdYH1fjCLPjzeo5M1rOttI7f/fMr7r1uPLLmWpJSX019sFPpnVVbW8snn3zC1q1b+dOf/oQQAp/Px/vvv8+cOXNOub8ssfRBlXVNHD8D3JY9tTQG5XK9ktQX5GTaOpXeWYsWLeLss89mxYoV/Pvf/+ajjz7iu9/9Ln/96187tL8MLH1QmsPcJi073YrFJL/uvuKuf/8Eb7gh0dmQEuSWy0ZhMbWuf7CYDNxy2ai4HP+dd97hxhtvbJV20003sWnTJvbs2XPK/WVVWB9UkGVjxsQiPt5QDjSvxHfn1WdgNaltSjJS6vJF/GRYknulT6lnHOn91VO9wt599902aVlZWWzcuLFD+8vA0geZDSo3XjKcCyf3J9AUIS/LTo7LLIOKJPUhF0zuH9fuxfEkA0sfZTIoDMixA3YAGVT6oFRcQlo6PchKd0mSJCmuZGDpQxRFoTGiUekN0hTVSIIVSqUecGTRV4EshkrJSVaFpQgBhKI6ZqOKoZ2AoSiwu9LHL974En9TlDSHmR98YyKD8pzEc/Vpb1OUen+YdKeZrHZ6n0k9ryWgyLgiJSkZWFKAtynKm//exYYdHob2T+fm2aPIS7e0ajfxBWP87PUvCEWaR+P6GiP87M/reeo/z8Vh7v6wSFVV+OqAl2f+soGYpjf3NLvqDM4cntPtY0udc+RBQUdPcE4kqX0ysCS5qC74xVsbKa3wAbB1bx1P/GENT9w5Dafl6NdX5w+3BJUjGkMx6v1hHNn2NsdVFKjxh/EHYwRDMXQhKMxxkOUwAQp1jRHKPQFMBpX+eU4aQzGef2sjMa35Zqbrgr9+sJPifBe1DUEyXVYyXBZsRjWuJSSpLf1wUUWX11nqAatXr+a73/0uAwYMQAhBNBrl+uuv59Zbb+3wMWRgSWINwRi1vlBLUAE4b3whAwvS2FpaT1GOg4JMGwZVIc1uwqAqaMesE2I2qrjs7VdXHaxp4rNNFRys9vPVvrqW7R/+1lSMBoX/fmU14cOB6varxuILRAiGj47cN6gK1144lOf++gVzzx/C0lX78frDzDxrAJNHuLGZ5OQxPeVo4JaBReoZY8eO5dVXXwUgEAgwZ84czj33XIYOHdqh/Xu08f6Xv/wlc+bMYc6cOTz99NMArFy5kpKSEmbOnMmzzz7bsu22bdu45pprmDVrFg8++CCxWPNN7NChQ9x0003Mnj2b733vezQ2NgLg8/m44447uOyyy7jpppvweDwARCIR7r//fi677DKuvvrqDo0STUZb99Yw78XP2HnQi/Fwo8qZo/KIxnReW7adX7+zmUdeXsWq7dUoKmQ4zNxx1Rmoh9tfVFXh+9dNQFVhT6WfSm+I2OGgownBa8u2k5NpawkqAJGYzscbyli4Ym9LULFbjVTXNRGOarjsppZtp4zKY/kXZVw6dSB/WLyVLXtqKasO8LvFX7FySxWqKnsO9BQhSywS4N+yggPP38neJ67lwPN34t+yokc+JxwOYzAYcLk6vrBZjwWWlStX8umnn/LOO++wcOFCtm7dyuLFi5k/fz4vvPACS5YsYcuWLXz88ccA3H///TzyyCO89957CCF48803AXjssce48cYbWbZsGWPHjuWFF14A4LnnnmPKlCksXbqU6667jieeeAKAV199FZvNxtKlS5k/fz4PPPBAT51ij4npghff3kw4orFqcwWzpw0EYPiATFZvrWy17atLttHQFEMBpgzP4f/ddR7zbz2T/7vrXLLTLTzw4kqe+MNa5r+0krc/2UtEE0Q1QVV9E9Fo2zr6mKZT7gm0vFZoHgPz4doDfP2S4ThtzcGlIMdBRU2AcFQjdty8/P/4ZA/B46rlpPhp6RUmA8tpy79lBTX/fImYrwYQxHw11PzzpbgFly1btnDllVdSUlLCRRddxFlnnUVubm6H9++xwOJ2u5k3bx5msxmTycSQIUMoLS2luLiY/v37YzQaKSkpYdmyZZSXlxMKhZgwYQIA11xzDcuWLSMajbJ27dqWJTGPpAMsX76ckpISAObOncuKFSuIRqMsX76cK664AoAzzzyTuro6Dh061FOn2SMims6ByubqrwNVfg5WBbj5slFkpVnabhvTW0oXCpDtNDO0wIXLZuLlRVtpCh2tvlr2+X4qapuwmQzMmFiE1dK2usphNXHRMaN5G0MxMtOsBMMab324i0vOGsDXLx7O1DF5nDOuEEM7JRO71SRLLD3oaDdjGVhOV/UfvY6IhVuliViY+o9ej8vxx44dy6JFi3j33Xf57LPPKC0t5Te/+U2H9++xwDJs2LCWQFFaWsrSpUtRFAW3292yTW5uLlVVVVRXV7dKd7vdVFVVUV9fj9PpxGg0tkoHWu1jNBpxOp3U1dW1e6zKytZP+cnOZjIweeTRp4ONuzy8unQbhW4HNkvrZrEhRelkOtu2o4Rjequ2mSPq/WGEEFw6ZQCRqMb1lw7HYW0+5uSRucw8awBnjcrlivMHYzSoOG0m0h0m/uf2szlzVB4HqwIMLkoj22lhzjkDyXRZyEqztvqMm2ePxNxen+hjKIpCRBNEdCHH23RSS68wWWI5bcV8tZ1K7w6n08lll13GF1980eF9erzxfteuXdx555385Cc/wWAwUFpa2vKeEAJFUdB1HeWYu8uR9CP/Pdbxr4/dR1XVNvscSe+o7Gxnh7ftSbfNGYPXH2Z3WQMWs4FvlYxhaL9M/vv2s3l54Wb2ljcweVQet14+moK8tDb7O0NRzhiaw+bdNa3SC3OduN0u3EC/fBd1/jDnTyhqDvqZNqzm5p/Et/LTuOL8wRgMKjkZzVNxnzHMffzHUJjrYnBROrsOevH6w4wblsPwAZktx2lPQyDMig3lvPXhTowGlZtmj+TssQU4bKYT7nM8t7vj9b3xFu/fSGfPJRBp/j2nZ9gSeh16Wl8+t+4ypmUfrgZrmx5vmqaxZs0aRo8e3eF9ejSwrF+/nnvuuYf58+czZ84c1qxZ09LIDuDxeMjNzSU/P79Vek1NDbm5uWRlZeH3+9E0DYPB0LI9NJd2ampqyM/PJxaL0djYSEZGBnl5eVRXV7eszXzkWB1VWxtA1xP/JFhckMZPbpyEtzGCxWQgzWbE7wvidpr5yU2TicR0bCYVBfB4/O0e49bLRvLsXzdQ7mnEZFS5+bJRZDtMrbZXANvh0oW/IcixR1IBoesnPP4RWXYTU0e4Wx4Gjj/O8Tbuq+M3Cze3vH7urxuYf6uRoQUdu5G43a5T5qm7TnZTi+dvpCvnEog2d2Cp9zbiUXv2OiRKb3zH3ZXIwJd54U3U/POlVtVhitFC5oU3xeX4R9pYFEUhFosxYsQIbr/99g7v32OBpaKigrvuuotnn32WadOmATB+/Hj27dvH/v376devH4sXL+ZrX/saRUVFWCwW1q9fz+TJk1m0aBHTp0/HZDIxZcoUlixZQklJCQsXLmT69OkAzJgxg4ULF/Ld736XJUuWMGXKFEwmEzNmzGDRokVMmTKFdevWYbFYKCws7KnT7FFGVSHH1dyucmyth1EBYwfWVslymHn4m2dR7w9jNRvIsJt7tMG3I8dWDQrvrz7QJv3zLRWM6JeOpslBf6ckm1hOe66xzffB+o9eJ+arxZiWTeaFN7Wkd8fUqVPZsGFDt47RY4HllVdeIRwO89RTT7WkXX/99Tz11FPcfffdhMNhZsyYwezZswFYsGABDz30EIFAgDFjxnDLLbcA8OijjzJv3jxefPFFCgoKeOaZZwC49957mTdvHnPmzMHlcrFgwQIAbr75Zh555BHmzJmD2Wxu6eZ8ujKrCnnpzW0gydCLSAHysu18VVrXKj0305YU+UsFLd2N5cj705pr7PS4BJKeoAj519xKslSFpUJVQFdVNYT579+uIhxt7s3msJn4729PJbudTgjtOd2rwnwRPw98+lO+N+6bjM2Jz4qBySYVfv+yDejE5Mh7qdflZ1h5/M5plFb6MagKA/NdZDpMcs2YDpLPglKyk4FF6nVCCLKdZrKHZh+TlsAMpZgjVWFy2nwpWcn1WCQpRcmSi5SsZGCReo2iNM8qEIrpclBkN8iFvqRkJ6vCpF6hCcG2/V5eXbqdplCUkvMHc/64Qmwd6DYttU+GFSlZycAi9Yrymiae+cvRvvF/fX8nNouR6WcUyCqdTjq6gqS8blLPCAQC/OxnP2Pt2rUYDAbS0tKYN28eY8aM6dD+8nFR6nGqqrBlX12b9H+tPkBMl2MxOutIPNFlmUXqAbquc/vtt5Oens7ChQtZtGgRd911F7fffjv19fUdOoYssUg9TtcF2e3MzJybacOgqMhKnc6S0+ZL8Mn+Nfxl0yJqm+rItmdxw7grOb/4rG4fd/Xq1VRUVHDPPfe0zLN49tln8+STT6J38EFQBhapV4wsziIn3UpNQwgAo0HlaxcORQaVzpPT5kuf7F/Dr9e+TkSLAFDTVMev1zZPmd/d4PLVV18xcuTINpP3zpgxo8PHkIFF6hXpNiMPf/MsDlQHiEQ1+uc6cadZZDNBFxy5ZvLSnb7+smlRS1A5IqJF+MumRd0OLKqqYrG0rWHo1DG6tbckdYLLamTMgAwmDskmxyWDSlcJWRV22qttattmebL0zhg7dixfffVVm9/XM888w6pVqzp0DBlYJCnlyHEsp7tse1an0jtjypQpZGdn88tf/hJNa57P75NPPuHtt99m6NChHTqGDCySlGJkOJFuGHclZkPrSVvNBjM3jLuy28dWFIUXXniBAwcOMHfuXEpKSnj55Zf5zW9+Q05OToeOIdtYJCnVCFkVdro70o7SE73CALKysvi///u/Lu8vA4skpRg5CaUEzcElXoEk3mRVmCSlGNnZWEp2MrBIUooRsipMSnIysEhSypKBRUpOMrBIUoqRbSxSspOBRZJSlKwKk5KVDCySlGKOLvQlSclJBhZJSjGinX9JUjKRgUWKO6HIW17Pkr3CpOQmB0hKcaML2Fvp5+3lu4nGdK6aMYQR/dIxqnKB+3g62ngvSclJllj6ADVJbtwHaxr53z+uZfv+evaUN/CzP3/BnkO+drdNljynpJZp82VokZKTDCwprCEYY/X2ahav2s9+TyNaAqtGDAaVlZsPtUlfumo/BsPRIBKK6mw76GXRZ/vYXFpPU1TrzWz2CUfXvE9sPiTpRGRVWIryh2L87x/X4PE2r8j4N3bzw+snMm5QZo+sc2I0qui6QNfbP7gQAqfN3CbdaTe13P90AQs/3cu/Vh9oeX/q6Dy+PXe0rC7rAllikZKVLLEkqVhMQxMnrjI6UB1oCSpH/GnpNsJafG824ZjO5tJ6fv63zbz7+X7qG6Ptbqfrgqlj8jEbj/6kVFXhsmkD0Q/nqb4x0iqoAKz+qorqhtbnIZ2cHCApJbseLbEEAgGuv/56XnrpJfr168cDDzzA+vXrsdlsAHz/+9/n0ksvZdu2bTz44IM0NjYyZcoUHnvsMYxGI4cOHeL++++ntraWQYMGsWDBAhwOBz6fjx//+MccPHiQrKwsnnvuOdxuN5FIhAcffJAtW7ZgtVpZsGABQ4YM6clTjDtFgWpfmN8t3c6+Qz5mTCxi2th8HGZDq+2iMb3Nvk2hWPNNPE5P/4oCn22p5LVl2wFYv72K99cc4Ke3n43L2vank5du5ad3TmPLnlpiuuCMIdnkp1tPmmeAmNZ+utS+lhKp7BUmJakeK7Fs3LiRG264gdLS0pa0LVu28Nprr7Fo0SIWLVrEpZdeCsD999/PI488wnvvvYcQgjfffBOAxx57jBtvvJFly5YxduxYXnjhBQCee+45pkyZwtKlS7nuuut44oknAHj11Vex2WwsXbqU+fPn88ADD/TU6fWYhqYY//PKaj7deIhyT4A//2sH//h0LxwXK/rnOjEZW399JecNwm6J31faGNF469+7WqX5GiMc9ATa3V4Igdtl4aKJhcyc3K9VUAHITrMwfEBGq7T8bDu5Gba45fn0IHuFScmtxwLLm2++yaOPPkpubi4AwWCQQ4cOMX/+fEpKSvjFL36BruuUl5cTCoWYMGECANdccw3Lli0jGo2ydu1aZs2a1SodYPny5ZSUlAAwd+5cVqxYQTQaZfny5VxxxRUAnHnmmdTV1XHoUNsG5WRWXtNIYyjWKu3DdWX4gq3TclxmHv32VCaNdFPkdvLNuaOZMaEIPZ4P/128cwnR/hgLk6rwn9eM44rzB1GQ7WDmWQP4yU2TsRpljWxnHJ02X4YWKTn1WFXYkVLEETU1NZx99tk8+uijuFwu7rzzTv72t78xbNgw3G53y3Zut5uqqirq6+txOp0YjcZW6QDV1dUt+xiNRpxOJ3V1da3Sj+xTWVlJYWFhT51m3B1fCgEwG1UMx1VvCQGFmTa+f/U4NF3HqKpxHzDntBr42gVD+fO/drSkpTnM9Hc7u3zMNKuRq88bzNxzBmIyKAhZC9YFMqBIya3XeoX179+fX/3qVy2vb775ZhYuXMiQIUNQlKM3TSEEiqK0/PdYx78+dh/18I31+GOpaueehrOzu37TjAfFZKQ438X+Sn9L2o2zRlJcmH7C8+9Jl50zkPwcBx+tO8jAwnQunNyPQYXpvZ6P47ndroR9drx/I509l1rsADgc5oReh57Wl8+tr+u1wLJjxw5KS0tbqraEEBiNRvLz8/F4PC3b1dTUkJubS1ZWFn6/H03TMBgMeDyelmq13NxcampqyM/PJxaL0djYSEZGBnl5eVRXVzNgwIBWx+qM2trACbvU9pb7bpjIrrIGyqr8jB6URXGei5qa9ts1esPYARlMGJzV0t3Y4/Gfeqce5Ha7ejwPJ7upxfM30pVzqfc2AuAPhBL+XfSU3viOu0sGvhPrtcptIQT/+7//S0NDA9FolDfeeINLL72UoqIiLBYL69evB2DRokVMnz4dk8nElClTWLJkCQALFy5k+vTpAMyYMYOFCxcCsGTJEqZMmYLJZGLGjBksWrQIgHXr1mGxWFKqGuwIl8XIrLMHctV5gxhakIYpCcZ4xGJ6wgOu1KylylN+HVKS6rUSy8iRI7njjju44YYbiMVizJw5k7lz5wKwYMECHnroIQKBAGPGjOGWW24B4NFHH2XevHm8+OKLFBQU8MwzzwBw7733Mm/ePObMmYPL5WLBggVAc/XaI488wpw5czCbzTz99NO9dXo9ordv5KraXAUpe7EmOzmORUpuipBTpLaSDFVh0LtVASY9iOLZTfjAZkzuYgxFowmbMnvls7vidK8K21m/h59v+DUlg2cxe+DFcclHspFVYalNTulymlMVQeyrD/Gt/FtLmsldTNqV9xNRE9uRQTqRI9PmJzgbknQCcgDBac4Urse3emGrtKhnP3hTa/zP6eRoQJGRRUpOHQosjY2NPPbYY9x66614vV4eeeQRGhsbezpvUm8QOmjtzDCsxdqmSUnhSNuKLgOLlKQ6FFgef/xx0tLSqK2txWKxEAgEeOSRR3o6b1Iv0KyZOMac3ypNtaehZKReb7rTjqwLk5JUhwLLtm3b+OEPf4jRaMRms7FgwQK2bdvW03mTekFMGLBN/Rrp02/EnFuMc/zFZF87n7ApI9FZk05AriApJbsONd4fP3pd07ROj2iXklfYmI46ehbOURehK0ZCcpqV5HZkGIucD0dKUh0KLGeeeSb/93//RygU4pNPPuH111/nrLPO6um8Sb1I1wU6RvkYnAJkG4uU7DpU7Pjxj3+M3W7H5XLx7LPPMmLECObNm9fTeZOSgKoqGA2CBExTJp2A7BQmJbsOlVgqKiq46667uOuuu1rSPvroIy688MIey5jUeUdu/vFq07WGKglu/ohQ1V7sZ1yA2m88EYMc25J4R0ossipMSk4dKrHMnj2bV155pVXaL37xix7JkNR5FiWMvXE/hp0foGx7D2vgIEo3H2etkTpq33qcwIb3CB/aRf17LxPZ8j6qIh+TE01OliEluw6VWPr168fy5cs5ePAgjz76aMu09lLi2YKVaNW7qf73a4jo4bXjFRX3Nx4hlDawy8fV6svQg61nVPav+yc5Yy4ibEz8tPmSDDBS8upQicXhcPDKK69QV1fH9773PYLBoOwVlgTMhGn45HUingNHgwqA0Ams/ycGQ/ONxxKpxXhgFYbdH2EJHERVTl2Foihtv19FNcQt71LXCTkJpZTkOjxXmNls5uc//zmPP/44N998M+FwuCfzJXWAEvKhNXgQjow27+lBH6oAY7iG+r/9FK2x4fBOKu7r5hPKGHryY2f1w+DKRvPXtqSlTbuGqDkdWbWfHGRgkZJVh4odWVlZQPMKjg8//DAzZ85k7969PZoxqQNMNkQkiDlvUJu3nJMuI6oraJU7jgYVAKHT9NUn2IKHMNfuwBKuQWmn3SRszCDraw+QPuMm7GOmk33lfRiGT0eXQSXhjlSByaowKVl1qMRyfMP9HXfcwVVXXdUT+ZE6IWJ0kjnrTnwr/07WRTcT2LYSEYuQdtYV6HmjUBTatJNYCodicKRT/eqDgEAxmMi+6kdEckZhCdei1+5H6DqGnAGErW4YOROzqhDRZERJFkfCiQwsUrI6aWC59957+fnPf05JSUm777/77rs9kimpY4SASM4o0mfdie6rJmPmHQhLGmHF1tzlWIClaCSgcOR2ZB82hfqP/3r0GFqUuqUv4P7aPDx/fwq9yQeAYrKS841HCNkL0bTeuYEZRQSDrwzNW4nqyIDMYiIGR698dmqRbSxScjtpYLn99tsRQjBv3jxMJhN+v59YLIbX62XQoLbVL1LvEyiELLngzj02sUUkrT85X/svfJ++gRb0o9rb9uhSFIVw6ZctQQVAREM0ffkepvO/2e7kx/GmqiB2fU7Nh79vSbMNPwvb9G8RVa09n4EUIkssUrI7aWCxWq1cfPHFPPzww0yePJmrr74agEAgwFNPPdUrGZS6Rxcq4eyROK98AEVoqGEfKGrzdPmHmXIGEPVWt7w2ZuRhyilChBtRhUCj54fdm8L11H78equ04M41OCbOhvTBPf75KeVIG0uCsyFJJ3LSxvunn36aH/zgB1x44YX885//BGDx4sW8+eabPP/8872SQSk+opiJKDYiVjfZc7+PYm4uBRicmbjOvQ7rsLNAUcmc/g1sxWPR/PWYsoswhL29k8FYGBGLtEkWkVA7G5/eWkosMrRISeqkJZaKigquuOIKAFavXs3FF1+MwWCgoKCAQCBwsl2lBDIqMQzBehRVJWLNRNePPj/oqEQLJ5F905OIUADFkUnY4MTgCOP+2k/wLn+NaE0ZAJGqfVjKduK47AdEFUuP5lm3ZWHpN5Jw2faWNMVsRU3P79HPTUUt41jk7MZSkjppieXYQZAbNmzgzDPPbHktx7EkJ0vUS2j5y9T86X48f/ovxMbFmPRgq22EgLApk4irP2HViRAQUywIg7UlqBwRLtuG2ujp8XxHMZN2ye3YR52LYjRjLhxOzrUPErZk9fhnpypZXpGS1UlLLOnp6Wzfvp1AIIDH42kJLF988QV5eXm9kkGp41RVIbrzM4I7Vjcn6DF8n79Ndt5gyB3bkQN0Lj3OQuZszNO/jf2c69GNVkLCJO+e7ZDjWKRkd9LAct9993HbbbcRCARaps5/5ZVXeOmll/jVr37VW3mUOsigh/FvX9kmPVK2DTX/DHT95Dci3ZmLddB4Qvs2tqTZR52LbnfHPa8nogkVzeCSAeWkZHdjKbmdNLBMmDCBFStWEAqFSEtLA2DixIm89dZbDBw4sDfyJ3WCrpowFw4nWlveKt2YM4DYKYIKQFSx4rzw29hGfEWkfAeW/qNR8kcSwdRTWZa64Mg3qcs2FilJnXLkvdlsxmw2t7yeNGlSj2ZI6jpNV7BPnE1wz/qWMSnmgqEYCkcQ6+AxwsY0GHA2pkHnEJWj7ZOTrAKTklyHJ6GUUkPImkfW9T9FeA+hGIyQXkhY7fzoda2bQUVVwSBixDDK+2CcyRKLlOxkYOmDwsZ0yEncminWcA2hrR/RtH8z1iGTsY46n5BJ9u6Kl6PT5ktScpKBRYors95I/bvPEKs7BEDUc4BI2XYcl/+AKD07FuZ0oqDIcSxS0urRfqSBQIC5c+dSVtY8NmLlypWUlJQwc+ZMnn322Zbttm3bxjXXXMOsWbN48MEHicWaWwQOHTrETTfdxOzZs/ne975HY2MjAD6fjzvuuIPLLruMm266CY+neZxFJBLh/vvv57LLLuPqq69mz549PXl6Unt8VS1B5Yhw2TbUQM+PhTldCCGaV3GVZRYpSfVYYNm4cSM33HADpaWlAIRCIebPn88LL7zAkiVL2LJlCx9//DEA999/P4888gjvvfceQgjefPNNAB577DFuvPFGli1bxtixY3nhhRcAeO6555gyZQpLly7luuuu44knngDg1VdfxWazsXTpUubPn88DDzzQU6cnnYBiaH+VScUgC8fxIhCoKOiy8UpKUj0WWN58800effRRcnObZ93dtGkTxcXF9O/fH6PRSElJCcuWLaO8vJxQKMSECRMAuOaaa1i2bBnRaJS1a9cya9asVukAy5cvb5nKf+7cuaxYsYJoNMry5ctbpqA588wzqaur49ChQ0i9R3fmYR00oVWa44wLidlyEpOhPkiALLFISa3HHiOPlCKOqK6uxu0+OtAuNzeXqqqqNulut5uqqirq6+txOp0YjcZW6ccfy2g04nQ6qaura/dYlZWVFBYW9tRpSsdpHgvzLWyjthOt2I25aCRK3nAisjkvfoRAQZW9wqSk1Wt/7bquoyhHp18/Uk98ovQj/z3W8a+P3UdV1Tb7HEnvjOxsZ6e270lutyvRWegiFxQUwcSLe+wTEnlt4v0b6ey5OP1WDKqK2WRI4d/IqfXlc+vrei2w5OfntzSyA3g8HnJzc9uk19TUkJubS1ZWFn6/H03TMBgMLdtDc2mnpqaG/Px8YrEYjY2NZGRkkJeXR3V1NQMGDGh1rM6orQ2ccuqT3uB2u/B4/HE/rkHRMYbqUFCIWjPRROdrQ63ROrS6MhRFRcnsR9iUEfd8nkxPXZvjP+NE4vkb6cq5+P1BQCEUifT4dUiU3viOu0sGvhPrndkFgfHjx7Nv3z7279+PpmksXryY6dOnU1RUhMViYf369QAsWrSI6dOnYzKZmDJlCkuWLAFg4cKFTJ8+HYAZM2awcOFCAJYsWcKUKVMwmUzMmDGDRYsWAbBu3TosFousBjuGOeYntup1av70Ezx/uh9t3d8waZ1b/sAaqqL2r49Qt+gZahcuoP5vP8UarumhHEvtEQhURTbeS8mr1wKLxWLhqaee4u677+byyy9n8ODBzJ49G4AFCxbw5JNPMnv2bJqamrjlllsAePTRR3nzzTe5/PLLWbduHT/4wQ8AuPfee/nyyy+ZM2cOf/7zn3nkkUcAuPnmm4lEIsyZM4cnnniCp59+urdOL+kpCugHNxLY+GHz6pFCx79+CVRs6/AxDAaF4Nbl6MGjwUjz1xLZu+6E1ZRSDxCgoMrGeylpKULOvd1KX60KMxoVgu8+Rehg60BiG34m1kvuJhY7dUOw0aDQ9O7/Ei7b0SrdPvIczBd+t9vTwHTU6V4V9mn5Kv65733y7G5+MOm7cclHspFVYamt10osUmLpOpiKRrZJNxcMQ9M6dpPUdIF9zAVt0m3Dz+q1oCI1dzeWVWFSMpOB5TSh6wLriHMxpB/tjm3MLMQ8aHKHF4wSAtR+Z5B29tUoBhOKyUL69BsQuSN6KttSu2R3Yym5ycEFp5GQJYfMax9G1B8CRUHJKCRk6FxxPmJwoo6/kuzRFwAQNacTlfe3XiUEqIqKjrzwUnKSgeU0EzakQU5at46hi8MzKAPy3tb7BAKDIkssUvKSVWGSlGKauxvLwCIlLxlYJCnVCDAoBjRdS3ROJKldMrBIUooRNE9VpMkSi5SkZGCRpBQjEBgVA5qQJRYpOcnAIkmpRggMqoGYHkt0TiSpXTKwSFKKEYBJNRHVo4nOiiS1SwYWSUoxAoHFYCaiRTo8uFWSepMMLJKUYoQQGBQDqmIgrIUTnR1JakMGlhQmJxQ+vVkNFoKxUKKzIUltyJH3KUhVdMy+g0QqdmGwOjHmDyNkzk50tqRe0lz9pWAymGSJRUpKMrCkIFPNDjx/fxoOr8dhcGaRde2DMricJgQCBTCpRiKyAV9KQrIqLMWYiNDwyV/gmEWetEAdWvXexGVK6lUCgaI0j76PydH3UhKSgSXFqCKG3tR2ASQ9EkxAbqREaO4IpsixLFLSkoElxUQNDpyTL2+dqKgYcwcnJkNSAjRXhRkUVc4XJiUl2caSYnRdYBo6jQxVJfDFMgzOTNLO/ToRVxFyCfTTg44ARUFFldO6SElJBpYUFDU4UUdcQvrQcxGqkZAwyqByGhFCoKCgKDKwSMlJBpYUpeuCiGKVAeU0dCSwGBQ5w7GUnGQbiySlGIEA5fDyxLKNRUpCMrCcZlRVDtdPdUerwhRZYpGSkqwKO02YtUbw7CJctgNT3iAMBSMJG9MSnS2pC5oHSCqosipMSlIysJwGjIpGeP0iAl/+qyXNMnAcjkv/k6hiTWDOpK4QhxvWmte9l1VhUvKRVWGnAUNTDYEv32+VFi7dhOqvTFCOpO4QQqAqCioKuiyxSElIBpbTgdBor/uY0OSo7VSko0NLd2MZWKTkIwPLaUC352AZMKZVmjEjDyUtP0E5krpDCIGiNDfeyxKLlIwS0sZy8803U1dXh9HY/PH/8z//Q2NjI08++SThcJjLLruMH/7whwBs27aNBx98kMbGRqZMmcJjjz2G0Wjk0KFD3H///dTW1jJo0CAWLFiAw+HA5/Px4x//mIMHD5KVlcVzzz2H2+1OxGkmjShm0i7+DuHtnxDctQbLgDHYzriEkMGZ6KxJXdDcKwxZFSYlrV4vsQghKC0tZdGiRS3/HzFiBPPnz+eFF15gyZIlbNmyhY8//hiA+++/n0ceeYT33nsPIQRvvvkmAI899hg33ngjy5YtY+zYsbzwwgsAPPfcc0yZMoWlS5dy3XXX8cQTT/T2KSalkCkTxl2B62uPYjjzBkKW0zvYprLm2Y1VWRUmJa1eDyx79zZP7/6tb32LK664gtdee41NmzZRXFxM//79MRqNlJSUsGzZMsrLywmFQkyYMAGAa665hmXLlhGNRlm7di2zZs1qlQ6wfPlySkpKAJg7dy4rVqwgGpVrVkDzrLhRYUKXo/VTmt6qxCJ7hUnJp9erwnw+H9OmTePhhx8mGo1yyy238J3vfKdVdVVubi5VVVVUV1e3Sne73VRVVVFfX4/T6WypSjuSDrTax2g04nQ6qaurIy8vr0P5y85Onuoht9uV6CwkrURem3j/Rjp7LpZSIxajGRHRsNpMffZ30lfP63TQ64Fl4sSJTJw4seX1tddeyy9+8QsmT57cknakcVLXdZRjFnY/kn7kv8c6/vWx+6hqxwtmtbUB9CR4pHe7XXg8bdddkXrn2pzsphbP30hXzqUpGEYYFSIxDZ/e1GPXQg/6iG77GK1iGwiBoWAEptEXodriP7C2zhfis80VbNxTS0VtI5GojstuYnBhOuedUcC4odmoJ/gbTxQZ+E6s1wPLunXriEajTJs2DWi+8RcVFeHxeFq28Xg85Obmkp+f3yq9pqaG3NxcsrKy8Pv9aJqGwWBo2R6aSzs1NTXk5+cTi8VobGwkIyOjV8/xtKAI/HoDjbEmMszp2HAcXoBK6mlHpnRpHiAZ/zYWIQTRHSsIr34TQ/4wDIWjAAWteg+RN+djnfFNTAMnn/I4HVHnC/HOJ3v5YqeHkcWZTBnuJjerGHe2k/LKBvZX+Xlr+W7e+WQv37x8JAPz5WwRqaDX21j8fj9PP/004XCYQCDAO++8w3333ce+ffvYv38/mqaxePFipk+fTlFRERaLhfXr1wOwaNEipk+fjslkYsqUKSxZsgSAhQsXMn36dABmzJjBwoULAViyZAlTpkzBZDL19mn2aULR2eTdzMMr/o+ffvIcj336DBXRQ906psGgYDAk1xNpstJFc0le7YFp84WuE/7sT0Q2LMYy9RuYz5iFIW8ohrwhmM+YiWXK1YRX/JHIto+79TkxTeefn5fyyO/WoOuC2+eO5tLJ/RlYkIbdYsRkVMlwWhg/JIf/uHQ44wZn87O/fsl7aw4g5BNM0lNEAr6l5557jvfeew9d17nxxhu59dZb+fzzz1u6G8+YMYMHHngARVHYvn07Dz30EIFAgDFjxvDkk09iNpspLy9n3rx51NbWUlBQwDPPPEN6ejper5d58+Zx8OBBXC4XCxYsoF+/fh3Om6wKO7VazcOjHy9omVoEIMeexUPn/BCrYkMIga4LVFUhGNVQjBooGnajDaGBph3dL6qG2dmwmxX7VzO5YCzDsgeTrbpP+h2c7lVhv9/6ZzItGUS0CALBN0ZcHZe8CF0j9O+X0H0ezJOvQjFZ2t1OD9QRWf0GlvNvwzRwUqc/52B1gJff/QqzUeWSKf3IcLb9nIwMO15vU6u0hkCYhZ/uY8SADG6ZNTLhE6rKqrATS0hgSWYysJzarsZdPLf65VZpl/S7FHdsLCs3VTJyQCbnTyhix4F6jOle6vQDGAwGtlbvpDi9iOn9p5GpZhNQfKyr/JJPD6zlkiHnsXzf53hDPi4adC7nF56NDUe7n3+6B5bfbXmdbFsWES1KVI9w48hru50PoWuEPnwJvbGuOagYTl5LrnsrCK/9O/aS+Riyijr0GZqus2TVfv615iDTxxcydlDWCdtG2wssAOGoxqJP95GTbuWOK8ZgNCRujLcMLCcmJ6FMcooC5ogX9BiaNZOYMCQ6S2RYW9dzD8saQn1pAe9+sQ2AQ55GjEYVW3qQ1eVLGeEezAc7PgVgR80eVh5cz4Pn382qsi9YXvo5c0ZczGsb326p4li0/T1UFGb2uwhdDtNoQxf64TaW+EybL3Sd0EcvowdqMU+5+pRBBUDNKMA0cgbB93+B45rHUEwnn8y0oraRl9/9CoCbZ44gzWHuUl4tJgPXTB/Mos/28etFW/nuVWMwdKJzjtQ75DeSxIwijLp7ObWv/Rc1f7yf0PKXscS8ic4W2cYcbjrj6panzXEZU1i5obrl/XHDcvh8cyW62c+kwrF8XLq61f6BSCPlgUoC0UZMBhNN0WCbevMP9n5CUAR7/mRSkI5AVdTmNpZuLvQldJ3Qx79Fb6jEPOXUJZVjGfufgZqWR+jTP51wmyOllCdeXc+wfulcd8GQLgeVls81qFx57iDqA2F+u3gbuqx0STqyxJLEDPUHqPnwDy2vVVWF6t1Y0/PRHG6itF8H3tNUYWBa7lRGzhiGPxLAIXL5s7KaI93CAk1R0p1mVCAqmm+Cx1NQWFP2JTOHzmi3G2m6NQ2DYpBLL7fjSImlu0sTCy1G6KPfoPuqD5dUOt/JxTTmYsKf/ono7lWYhp7d6r39lX5+v2QbqqrwH5cOb7ctpauOBJe3V+zhj0u3c9tlI09YrSb1PlliSWLRqr0t/04/+0pivlpqFv8Sz+sP0fT+i1iiDQnLmyJUstQciq0DybHZmXPuwJb3Nu3ycMGkftRVmjlQX8FFg85ptW+WNYMiZwEui5OdtXvpn1ZIriPn6LFRuGHslRj17j3Z9lW60JunzVcMaHrXZqgWoQDBJQsQTV7MZ16DYuzatVaMZswT5xL67DV0X3OpNRiO8ef3d/KzN75kzKAsrrtgSFyDyhEmo8pV5w9m7yEff/lgl+wtlkRkiSWJGdKbZxBQ7WkILUa4fEfLe6F9X2Id8iXKkBlJMX5k9lkDGFyQztptVQzrn8HIAZkU57nwa24UayNFaflsqdpO/7QiJuadgUtkcM+Z32GTZyury77gjik3Ud/kpSkaYkBaEbmmXFlaOQFdaCiKigGIdaG7caxyF6F/v4QhdwjGUTNQ2ilRdoaano9pyFSa3v8Vm4bdwVsf76M438Vts0dgt/ZsV3+LycDXZgzmreV7eOPfu/nGRUNlySUJyMCSxNTcoZgLh6MaDESq9rV5P7xvI9bhFxKLJb6F22YyMH5wFpOH56BpAiEETosBN27ADbaBnJk9GV0XLT2qXKRzXu65zChQiMV0ClzH9C6SQeWEtMMlFoGBWCdKLLq/hvD6hWgHNmIaeymG/GFxy9MB5xn8ZX064bLNzD1vLEU57ffo6wlWs5FrZwzhbx/vQdN1brhkeNKN0j/dyMCSxMLGNFyX34viryJ2aAehA1+1et8ycDyalvigcqyTBbn23hNCEIvJKNIZmq43t1spEDtJ473QNfSGKrSqXcT2rkOr3o1xwAQsM751yl5cHVXtj/HOF352VkWYNjCH4XXLMQVMkNP58S3dYbMYue6CIby9Yi8v/2Mr3547OqFdkU93MrAkuYjqgPTBWOxZWPZtIlzW3KXXUjwW44DxhOU9+bRjDTeRVV2GrbEBR+1egnW/QkSDoEURsQjEwohwEyLkR7Glo2YUoLoHYRp7SZfbUo5X36SxeJOfdftCTCq28s1z0jEZFfTc84lt/TeKxY6xYGRcPqujrGYj110wlCWr9vP/Xv+Cu645o0fadqRTk4ElRYRNGTgvuxdXoBpQ0J25hBX5R3M6EEJHq9pDbM9qYgc2cl1THTFXNVGbk1ohUNLzUE0WUI1gMDb37jJZUSyOTnUf7ohqX4xlWwOsLw0xtsjCbeemYzcfLRmoVhfGkdOJbn4P9BjGorFx/fxTMRlVrjh3IJ9/VcWjv1vDbZeNZOIwufZQb5OBJYVEFCu4BiQ6G1Iv0f0eojs+JbrjEzAYMOSPwDxhDm+WfcSkvAmoisL2yi84u9+YUx+sG2K6YEtZmI93NrGvJsK4flZuOycdu6X9qibVkYlx5AVEv1qO3lCNaeQMFLX3BvYqisI5Y/Lp73by+vs7+WTjIa67cCgF2b3X7nO6k1O6HEdO6ZL8+vKULlpTA/U7vqBix2aq64PU2YqpN+VSHzXTGNYJRnQawiGMiglFAU2EyHG4cFpUMuwq2Q4DOU4jOS4DbpeBLLuhS3Nq+YIaO6sibCoLs6ksRJbDwJhCCyPyzZg6OFmoiIaJ7V2LCDdiGnUBhvyhKB0c4XCiKV06K6bprN9RzbodHob1y+DCSUWMKs6MS/uLnNLlxGRgOU59fWNSBJbsbCe1tYFEZyMp9ca1OdliXl39jQghiER1AsEoDY0RvA0BmgJ+DhyoorrWT7UvRm3UgqooZNkV0l020m0GXDYVp0XFblaxGBU+PPgRk3LHAAbWVGzkgv4XEIwIAmGdQFDHH9JpCOnUN2k0hnUy7AayHQYyHQbSbSoui4rVpGI8XIiIatAUad6+xq9xyBslGBX0yzAyINvEkFwz6bYuljiEQKs/hFa+FRGNYCwcgSGnGDUtF8XmghN0dU5Ps9Hgi9/MC5GoxtZ9dXxVWketL8SI/pkM659OP7eTvEw7WWkWzKbOnWMyLQqYbGRgkaQ4+OnvVrNma2W3jmFXwmRaYtgMJ+/p1xQJtixep+s6NpP1hGM3YrqCL2aiIWZCEx17Ss82hckwRYhvj12BiEYRHegebc4tRrXY4/nhrfibohys6niJ9/wJRfzk5ik9lp++SAYWSZIkKa5kR29JkiQprmRgkSRJkuJKBhZJkiQprmRgkSRJkuJKBhZJkiQprmRgkSRJkuJKBhZJkiQprmRgkSRJkuJKBpYk8+6773L55Zczc+ZMXn/99URnJ+Fuvvlm5syZw5VXXsmVV17Jxo0bWblyJSUlJcycOZNnn3020Vnssr76Xf/yl79kzpw5zJkzh6effhrghN/Ztm3buOaaa5g1axYPPvggsVjzyPxDhw5x0003MXv2bL73ve/R2NgIgM/n44477uCyyy7jpptuwuPxABCJRLj//vu57LLLuPrqq9mzZ08vn7XUipCSRmVlpbjwwgtFfX29aGxsFCUlJWLXrl2JzlbC6LouzjvvPBGNRlvSgsGgmDFjhjhw4ICIRqPiW9/6lli+fHkCc9k1ffW7/uyzz8Q3vvENEQ6HRSQSEbfccot49913T/idzZkzR2zYsEEIIcQDDzwgXn/9dSGEEHfccYdYvHixEEKIX/7yl+Lpp58WQgjx2GOPiV//+tdCCCHeeecdce+99wohhPjtb38rHn74YSGEEGvWrBHXXXddb52y1A5ZYkkiK1eu5OyzzyYjIwO73c6sWbNYtmxZorOVMHv37gXgW9/6FldccQWvvfYamzZtori4mP79+2M0GikpKUnJa9RXv2u32828efMwm82YTCaGDBlCaWlpu99ZeXk5oVCICRMmAHDNNdewbNkyotEoa9euZdasWa3SAZYvX05JSQkAc+fOZcWKFUSjUZYvX84VV1wBwJlnnkldXR2HDh3q/QsgAbIqLKlUV1fjdh9dlCg3N5eqqqoE5iixfD4f06ZN41e/+hV/+MMf+Otf/8qhQ4f6xDXqq9/1sGHDWgJFaWkpS5cuRVGUds/1+Gvgdrupqqqivr4ep9OJ0WhslQ6tr5vRaMTpdFJXV9fusSoruzcpqNR1cqGvJKLreqtZaoUQJ5y19nQwceJEJk6c2PL62muv5Re/+AWTJ09uSUvVa9TXv+tdu3Zx55138pOf/ASDwUBpaWnLe0fO9UTXoL1rcaJrI4RAVdU2+xxJlxJDXvkkkp+f39IYCeDxeMjNzU1gjhJr3bp1fP755y2vhRAUFRX1iWvUl7/r9evXc9ttt/GjH/2Iq6+++oTnenx6TU0Nubm5ZGVl4ff70TSt1fbQXNqpqakBIBaL0djYSEZGBnl5eVRXV7c5lpQYMrAkkXPOOYfPP/+curo6gsEg//rXv5g+fXqis5Uwfr+fp59+mnA4TCAQ4J133uG+++5j37597N+/H03TWLx4cUpeo776XVdUVHDXXXexYMEC5syZA8D48ePb/c6KioqwWCysX78egEWLFjF9+nRMJhNTpkxhyZIlACxcuLDl2syYMYOFCxcCsGTJEqZMmYLJZGLGjBksWrQIaH4gsVgsFBYW9vLZS0fI9ViSzLvvvsuvf/1rotEo1157Lbfffnuis5RQzz33HO+99x66rnPjjTdy66238vnnn/Pkk08SDoeZMWMGDzzwQEpWI/XF7/rxxx/n73//OwMGDGhJu/766xk4cGC739n27dt56KGHCAQCjBkzhieffBKz2Ux5eTnz5s2jtraWgoICnnnmGdLT0/F6vcybN4+DBw/icrlYsGAB/fr1IxwO88gjj7BlyxbMZjOPP/44Y8aMSeCVOL3JwCJJkiTFlawKkyRJkuJKBhZJkiQprmRgkSRJkuJKBhZJkiQprmRgkSRJkuJKBpY+7ssvv+Tmm2+mpKSEuXPn8p3vfIddu3YBzXNw1dXVJTiHUrI40W9l8+bN3HPPPYnOnpRCZHfjPiwSiXD++efzu9/9rqVP/6JFi3j22Wf58MMPGT16NJ9//jlZWVkJzqmUaKf6rRgMhgTnUEolcq6wPiwYDOL3+2lqampJu+KKK3A6nTz00EMA3HrrrfzmN78hEAjwP//zP3i9XhRF4Vvf+hZXXXUVq1ev5oknnsBut9PY2Mjf//53Pv30U1588UWi0ShWq5X/+q//ajWnl5R6TvZb+fzzz3nqqadYvHgx3/72t1umVGlqauLgwYMsW7aMwsJCFixYwNq1a9E0jdGjR/PQQw/hdDoTdUpSIvX+TP1Sb/rd734nxo0bJy666CLx4x//WLz11luiqalJCCHE8OHDRW1trYhGo+Liiy8W7733nhCiea2Q888/X3zxxRdi1apVYuTIkaKsrEwIIcS+ffvE3LlzRV1dnRBCiJ07d4pzzz1XNDY2JuYEpbg50W9l1apVYs6cOa22DYfD4qabbmpZG+X5558XTz31lNB1XQghxM9+9jPx6KOP9vYpSElCllj6uG9+85tcd911rF27lrVr1/Lyyy/z8ssv87e//a1lm9LSUsLhMDNnzgQgLy+PmTNn8sknnzB16lQKCgooKioC4LPPPqO6uprbbrutZX9FUThw4AAjR47s1XOT4utEv5X777+/1Xa6rvPjH/+YwYMHc8cddwDN66T4/X5WrlwJQDQaJTs7u9fPQUoOMrD0YevXr2fDhg185zvf4cILL+TCCy/kvvvuY+7cuXz22Wct22ma1mauLSFEyzKxdru9JV3XdaZNm8Zzzz3XklZRUSFnkk1xJ/utHPkdHPHEE08QDAZbLTGs6zrz589nxowZADQ2NhIOh3v1HKTkIXuF9WFZWVm8+OKLrFu3riXN4/EQCAQYPnw4BoOBWCzG4MGDMRqN/Otf/wKgqqqK9957j3POOafNMadNm8Znn33Wsqb4xx9/zBVXXEEoFOqdk5J6xMl+K16vtyXtN7/5DRs2bOC5555r1aB/3nnn8frrrxOJRNB1nYcffphnnnmmN09BSiKyV1gft2rVKp5//nkqKyuxWCy4XC7uuusupk+fzn333cfWrVt5/vnn0XWdxx9/nIaGBjRN4+abb+aGG25g9erV/PSnP2Xx4sUtx1y6dCkvvfQSQgiMRiPz589nypQpCTxLKR5O9FuxWCz89Kc/5ZVXXmHGjBkMGjQIq9WKrusA3HPPPZx77rn8v//3/1izZg2apjFq1Ch++tOfysb705QMLJIkSVJcyaowSZIkKa5kYJEkSZLiSgYWSZIkKa5kYJEkSZLiSgYWSZIkKa5kYJEkSZLiSgYWSZIkKa5kYJEkSZLi6v8DVX5ZgDkZY1gAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 407.6x360 with 6 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.pairplot(walmart_stores_data, vars=['Store', 'Size'], hue='Type')   # Betrachtung, ob der Typ an der Size h\u00e4ngt"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 23,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:xlabel='Type', ylabel='Size'>"
-                        ]
-                    },
-                    "execution_count": 23,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEJCAYAAABGw1qNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA1G0lEQVR4nO3de1hVdd7//+c+c9gcxPYGBA9kZgWNltus/AajZWqCltVcBXnXWKP1q2/W3NIgmg5eOt7f4jKmKX7VjP2uyZw7LQvuGsDvdCBrLEWbDnhKURRBOSPsDezj+v3BsGtjKZSbzeH9uK65dH32Wov3aoQXn8NaS6UoioIQQgjhB+pAFyCEEGLokpARQgjhNxIyQggh/EZCRgghhN9IyAghhPAbCRkhhBB+o/XnyV944QWKi4sBSElJ4amnnmLr1q1s3rwZlUpFUlISOTk56PV6XnjhBbZv3054eDgAv/rVr8jIyKCmpobMzEwaGxtJSEggNzeX0NBQWltbWb58OVVVVURFRZGXl4fJZMLhcLBy5UrKy8sJCgoiNzeX8ePH+/MyhRBC/AiVv+6T2bVrF88//zyvvfYaKpWKhx56iOnTp/PWW2/x9ttvExoaSlZWFldeeSUPPPAADz/8MEuXLuWaa67xOc/SpUuZP38+8+bN48UXX6S9vZ3MzEzWrl1LTEwMS5YsoaCggNLSUvLy8ti0aRMnTpxg7dq1lJWV8eyzz7Jt27Ze193cbMPjkVuHhBCiN9RqFSNGhP7o537ryZhMJrKystDr9QCMHz8eh8PBmjVrMBqNAFx++eXU1NQAUF5ezssvv0x1dTVTp07ld7/7HWq1mrKyMl588UUAFi5cyH333UdmZialpaVs2bIFgNTUVNauXYvT6aS0tJRly5YBMHXqVJqamqipqWHUqFG9qtvjUSRkhBDiIvHbnMyECROYPHkyAJWVlRQXF5Oamsr06dMBaGpqYsuWLdx8883YbDauvPJKMjMzeeedd2htbSU/P5/m5maMRiNabVcWmkwmamtrAairq8NkMgGg1WoxGo00NTX5tHcfc+bMGX9dphBCiPPw65wMwJEjR1i6dClPPfUU48aNA6C2tpaHHnqIO++8k2nTpgHw5z//2XvM4sWLyc7OJj09HZVK5XO+ntvdFEVBrVajKIrPPt3tvTVypLHX+wohhDg/v4bMvn37ePzxx8nOzmbevHkAVFRU8NBDD7Fo0SIWL14MQE1NDbt27eKuu+4CuoJBq9USFRVFW1sbbrcbjUZDfX09ZrMZALPZTENDAzExMbhcLmw2G5GRkURHR1NXV8eYMWMAaGho8B7TG42NVhkuE0KIXlKrVef95dxvw2WnT5/m0UcfJTc31xswVquVBx98kGXLlnkDBiAoKIhnn32WqqoqFEVhy5YtzJo1C51Oh8VioaioCICCggKSk5OBrtVqBQUFABQVFWGxWNDpdKSkpFBYWAjA3r17MRgMvZ6PEUIIcXH5bXXZunXr2L59u7dHAXDbbbfxpz/9yWdJ8cyZM1m2bBk7duzgT3/6E06nk2uvvda7tLm6upqsrCwaGxuJjY1l48aNRERE0NLSQlZWFlVVVYSFhZGbm0t8fDx2u53Vq1dTXl6OXq9n3bp1JCYm9rruodiTaXa0U9p4hLOuDq4OG8WUyDEXPkgIIXrhQj0Zv4XMYDXUQsateMg79hHNznZv28KYyVwbOTqAVQkhhoqADZeJgaGm86xPwAB801YdoGqEEMONhMwQF64Noud6vAhdcEBqEUIMPxIyQ1yELpiZl0xE/e+oGakL5ZcjJwS4KiHEcCFzMj0MtTmZbq3ODlpddkYFRaD+kXuNhBCiry40J+P3mzHFwBCuCyZchsmEEP1MhsuEEEL4jYSMEEIIv5GQEUII4TcSMkIIIfxGQkYIIYTfSMgIIYTwG1nCPEyd6WyltPEINredKRFjmBwRH+iShBBDkITMMOJRFNQqFXa3i00nd9HhcQJwvL0RvVrDVWGxP+m8bsVDedtpWpztXGmMwWwIu5hlCyEGMQmZYeBg2xneq/2GNpedxLBYrgqL8QZMt/1tp39yyPx39V4OWbtei/1h/WHuH309l4Ze8rPrFkIMfjInM8C4FQ+nOpppc3VelPN1uJ1sq/mCs65OPCh801ZDha3+nP2idKE/6fz1dqs3YADcKOxqPvaT6xVCDC3SkxlAmhw2/r+qz2l2tqNGxa2mK/lfI8fzVWs1nzUdQ6NSkzLyMi43RtPgsFLacASr287k8PgfnVOps7fhVNw+bc3ODm6KuoxPm46iAPFBkdwYlXDOsS7Fw87Goxyz1TMqKIIZl0wkWKPjs6ZjfHG2CqPWwJSIc99LI09GE0J0k5AZQD5s+Nb77hcPCv+oP8gleiNv1nzh3ef1U2X8P+OS+eupz2lz2QE4aqtHq1JzVVgsR2x1tDg7mGiMJlIXTExQOEFqLZ0el/cc40JGMiViNONDRmLUBhETFM7pzrP8tWo3tfY2JoSauD12Eh81fMtnzccBqOxoosFh4xfhcfy9bn/XiexQ1dHMxFAzh211AGhUam6MurQ//nMJIQYBCZkBpMXZ4bPtRuFA22mfNg8KZS0nvAHTrbythv1tp/mmrQaAkroDPDjmBuKDR5AeN5Wiuv2cdXZwdfgoHB4Xz1a8jwLEGMK5P34ab1Tvo9FpA+CA9Qz6Wi0V7b7DakdsdejUGp+2To+LKZFjmBwxmhZnO1cYYzAZfvyJrEKI4cWvczIvvPAC8+bNY968eTzzzDMA7Nq1i7S0NG699Vaee+45774HDx5k4cKFzJ49m5UrV+Jydf3mXVNTQ0ZGBnPmzOGRRx7BZuv6Qdja2sqSJUuYO3cuGRkZ1Nd3/UB0OBxkZmYyd+5c7rjjDioqKvx5iRfV1eGjfLZNeiPjQqLO2S8uOOKcNoNa6w0YAKfi5tOmCpoc7ZS31RClC+GO2EncGHUpnzRV0P0ygzP2Vj5q/NYbMN1OdDQxQhfi02bUGjDrfVeOqYBoQzhXh4/ippGXScAIIXz4LWR27drFp59+yjvvvENBQQH79+/nvffeIzs7m/z8fIqKiigvL+fjjz8GIDMzk9WrV7Njxw4URWHbtm0A5OTkkJ6eTklJCUlJSeTn5wOQl5eHxWKhuLiYu+++m/Xr1wOwefNmgoODKS4uJjs7mxUrVvjrEi+6aSPGMT/6asaHXIIlcgz3j76eSRHx/CI8DhWgRsX1IxK4NmIMySMv8859RBvCfnBOxulx85eT/2RPywkOWM/wt+q9fN1ac85+Npf9nECJD4pkrjmRUI0eAL1KQ1r01UyPupRLQ7pWjmlVam41XclI/U9bNCCEGPr89tKyI0eOYLPZmDx5MgBr164lKiqKsrIy/vrXvwJQUFDA7t27eeyxx7j//vt5//33Adi7dy/PP/88mzZtYtq0aezZswetVsvp06e57777+OCDD5g5cyZbtmwhNjYWl8vFddddx+7du1m8eDHLli3DYrEAcMstt/Daa68xatSoH6yzp4H60jKry45apSLk3z/0Ac46O7C57cQaIlCpVLx68jOOtTcAXYE003Q579cf9jlPojGWEx1NWN3fDbfdM2oKkboQ3jnzJXX2Ni4LNXFn7DUYtQZcHjdn7G1cog8lSKPz+doGtdanTQgx/ATspWUTJnz3it/KykqKi4u57777MJlM3naz2UxtbS11dXU+7SaTidraWpqbmzEajWi1Wp92wOcYrVaL0WikqanpB8915syZXofMQGXUGs5pi9AFE/G9F5Etir+Of52tosXVQWJYLFqV5pyQidQHc4vpRkobv8XqsjM5Ip6kfw/T/e+EX6IoCqrvvTlTq9YQHxz5g19bCCEuxO8T/0eOHGHp0qU89dRTaDQaKisrvZ91/0DzeDw+P9i623v+wAPO2f7+MWq1+pxjutt763yJPBiMio702Z5hv5yPar4FIDo4jAUTJhGhD+aq+J9246UQQvSFX0Nm3759PP7442RnZzNv3jz27NnjnaAHqK+vx2w2ExMT49Pe0NCA2WwmKiqKtrY23G43Go3Guz909YIaGhqIiYnB5XJhs9mIjIwkOjqauro6xowZ43Ou3hqow2U/1c3hE4lXR/JJ41EcHjcfHjvM9KhLfzSshRCiLy40XOa3if/Tp0/z6KOPkpuby7x58wCYNGkSx48f58SJE7jdbt577z2Sk5OJi4vDYDCwb98+AAoLC0lOTkan02GxWCgqKgK65nCSk5MBSElJoaCgAICioiIsFgs6nY6UlBQKCwuBrrkdg8Ew6IfKfg6X4qHwzNdUdjRRYz9LSf0B9rScCHRZQohhwm8T/+vWrWP79u3eHgXAPffcw7hx49iwYQN2u52UlBRWrFiBSqXi0KFDrFq1CqvVSmJiIhs2bECv11NdXU1WVhaNjY3ExsayceNGIiIiaGlpISsri6qqKsLCwsjNzSU+Ph673c7q1aspLy9Hr9ezbt06EhMTe133UOvJnGxv4pWT//RpuyzUxAOjrw9QRUKIoeRCPRm/hcxgNdRCps3VybNH38fDd9d0feQ4UmOuDmBVQoihImDDZWJgCNMGMdeciE7V9X/1qKAIfnnJ5QGuSggxXEhPpoeh1pPp1ul2YnM75MZJIcRFFbD7ZMTAEqTRyY2TQoh+J8NlQggh/EZCRgghhN9IyAghhPAbCRkhhBB+IyEjhBDCbyRkhBBC+I0sYR4Gmh3tlDYe4ayrg6vDRjElcsyFDxJCiItAQmaIcyseXq36jGZnOwBHbV1Pu5agEUL0BxkuG+JqOs96A6Zbedu5r2AWQgh/kJAZ4sK1QfR8c0ykLiQgtQghhh8JmSEuQhfMzEsmov531IzUhZIy8rIAVyWEGC7kAZk9DNUHZLY6O2l1dTIqKAK1vBVTCHGRyAMyBQDhuiDCdUGBLkMIMczIcJkQQgi/kZARQgjhN34dLrNardxzzz289NJLVFRUsHHjRu9ntbW1TJo0iZdffpkXXniB7du3Ex4eDsCvfvUrMjIyqKmpITMzk8bGRhISEsjNzSU0NJTW1laWL19OVVUVUVFR5OXlYTKZcDgcrFy5kvLycoKCgsjNzWX8+PH+vEQhhBDn4beezFdffcW9995LZWUlACkpKRQWFlJYWMhf/vIXjEYjK1asAKC8vJyNGzd6P8/IyAAgJyeH9PR0SkpKSEpKIj8/H4C8vDwsFgvFxcXcfffdrF+/HoDNmzcTHBxMcXEx2dnZ3vMLIYQIDL+FzLZt21izZg1ms/mcz5555hnuuecexo0bB3SFzMsvv0xaWhpr167FbrfjdDopKytj9uzZACxcuJCSkhIASktLSUtLAyA1NZWdO3fidDopLS1l/vz5AEydOpWmpiZqauTGQyGECBS/DZd19y56qqysZM+ePd7PbTYbV155JZmZmYwdO5asrCzy8/PJyMjAaDSi1XaVaDKZqK2tBaCurg6TydR1AVotRqORpqYmn/buY86cOcOoUaN6Xff5luIJIYTom35fwrx161bS09PR6/UAhIaG8uc//9n7+eLFi8nOziY9PR1Vj/s5em53UxQFtVqNoig++3S398VQvU9GCCH84UL3yfT76rIPPviA2267zbtdU1PDW2+95d1WFAWtVktUVBRtbW243W4A6uvrvUNvZrOZhoYGAFwuFzabjcjISKKjo6mrq/Oeq6Gh4QeH64QQQvSPfg2ZpqYmOjs7GT16tLctKCiIZ599lqqqKhRFYcuWLcyaNQudTofFYqGoqAiAgoICkpOTga5FBAUFBQAUFRVhsVjQ6XTexQUAe/fuxWAw9GmoTAghxMXVryFz6tQpYmJifNqioqJYu3YtjzzyCHPmzEFRFH79618DsGbNGrZt28Ztt93G3r17eeKJJwBYtmwZX375JfPmzeNvf/sbq1evBmDRokU4HA7mzZvH+vXreeaZZ/rz8oQQQvQgzy7rQeZkhBCi9wbcnIwQQojhQ0JGCCGE30jICCGE8BsJGSGEEH4jISOEEMJvJGSEEEL4jYSMEEIIv5GQEUII4TcSMkIIIfxGQkYIIYTf9Puj/kX/qrW38e6Zb6hztHJ5aDSp0UkEaXSBLksIMUxIyAxhiqLwt1NlNDptAHzZegqtWs3tMZMCXJkQYriQ4bIhrNXV6Q2YbsdtjQGqRggxHElPZggL0wYRrg2i1dXpbYsxhPN+/SHqHVYuDzUzJXIMiqJQ1nKCo7Z6og3h/K+o8Rg08k9DCPHzyaP+exhqj/qvbG/kndNf0ei0kRAyEo+icKKjyfv5HNNVuBQ37zcc9rZdHmrmP0ZPC0S5QohB5kKP+peQ6WGohUw3p8dNp8fJ/zn6D5/2aEMYbsVDg8N3WC17wmxCNPr+LFEIMQhdKGRkTGSIOWyt5f/WH8TmcnBNxGhmma5ArVKhU2vwoKBTaXAqbu/+Ro2hK2T4LmQMai06lSYQ5QshhhgJmSHE6rLz39V7cSkeAD5pOsoIXTCJYbHsaj5Gi7ODSeFx7Dt7EgUIUuu4xXQFiqLw2qnddHpcqFEx23QlOrWEjBDi5/NryFitVu655x5eeukl4uPjWbFiBfv27SM4OBiAxx57jFmzZnHw4EFWrlyJzWbDYrGQk5ODVqulpqaGzMxMGhsbSUhIIDc3l9DQUFpbW1m+fDlVVVVERUWRl5eHyWTC4XCwcuVKysvLCQoKIjc3l/Hjx/vzEgeUqo5mb8B0O9beyO6WSmrtbd62NHMSI/ShjA2O8k7wLx9/C1WdzZj1YUTogvu1biHE0OW3JcxfffUV9957L5WVld628vJyXn/9dQoLCyksLGTWrFkAZGZmsnr1anbs2IGiKGzbtg2AnJwc0tPTKSkpISkpifz8fADy8vKwWCwUFxdz9913s379egA2b95McHAwxcXFZGdns2LFCn9d3oAUGxSBGpVPW5jW4BMwAIdtdVxuNPusIAvS6JgQapaAEUJcVH4LmW3btrFmzRrMZjMAHR0d1NTUkJ2dTVpaGs8//zwej4fq6mo6OzuZPHkyAAsXLqSkpASn00lZWRmzZ8/2aQcoLS0lLS0NgNTUVHbu3InT6aS0tJT58+cDMHXqVJqamqipqfHXJQ44kbpgbo+dRKhGjxoV14THc13k2B6xA6EyoS+E6Cd+Gy7r7l10a2ho4Prrr2fNmjWEhYWxdOlS3nrrLSZMmIDJZPLuZzKZqK2tpbm5GaPRiFar9WkHqKur8x6j1WoxGo00NTX5tHcfc+bMGUaNGtXrus+3SmIwmG26ilnjr0RRFDTqrt8hZtgv58OabwEI1wVx+4TJmELCAlmmEGKY6LeJ/9GjR/Piiy96txctWkRBQQHjx49Hpfrud21FUVCpVN4/v6/n9vePUavV5xzT3d4XQ3EJ88zwiVylj+Wsq4OEkJFobCrqbW0XPlAIIS7gQkuY++2xMocPH2bHjh3ebUVR0Gq1xMTEUF9f721vaGjAbDYTFRVFW1sbbnfXctv6+nrv0JvZbKahoQEAl8uFzWYjMjKS6Oho6urqzjmXgJigcCYao9GrZUGhEKL/9FvIKIrCH/7wB86ePYvT6WTr1q3MmjWLuLg4DAYD+/btA6CwsJDk5GR0Oh0Wi4WioiIACgoKSE5OBiAlJYWCggIAioqKsFgs6HQ6UlJSKCwsBGDv3r0YDIY+DZUJIYS4uPx+x//MmTN57bXXiI+PZ8uWLWzZsgWXy8Wtt97K8uXLATh06BCrVq3CarWSmJjIhg0b0Ov1VFdXk5WVRWNjI7GxsWzcuJGIiAhaWlrIysqiqqqKsLAwcnNziY+Px263s3r1asrLy9Hr9axbt47ExMQ+1TsUh8uEEMJf5LEyfSQhI4QQvTdg5mSEEEIMPxIyQggh/EaWGgkxwOmqvsFw9HMUfQgdSTfjiYgJdElC9JqEjBADmLbmMGGlm7zbuuoDtNzxNOiCAliVEL0nw2VCDGCGyi98ttV2G7rT3waoGiH6TkJGiAHMExr5A20j+r8QIX4iCRkhBrDOK5JxjfjuhuLOCTfiHjk6gBUJ0Tdyn0wPcp+MGHAUBU3jSRR9CJ5w04X3F6IfyeuXhRjsVCrcl4wNdBVC/CQyXCaEEMJvehUyNpuNnJwc7r//flpaWli9ejU2m83ftQkhhBjkehUy69atIzw8nMbGRgwGA1arldWrV/u7NiGEEINcr0Lm4MGDPPnkk2i1WoKDg8nNzeXgwYP+rk0IIcQg16uQ6fl2Sbfb3ec3TgohhBh+erW6bOrUqTz77LN0dnbyySefsGXLFq677jp/1yaEEGKQ69V9Mk6nk1deeYXS0lLcbjc33XQTjz76KHq9vj9q7Fdyn4wYjHRV5QQd+BCAzit/iXPMLwJckRguLspLy06ePMmYMWN82j766CNmzJjx8yscYCRkxGCgcnSA4kExhKJpriH877moFA8AikpF623/iTsqPsBViuHgory0bM6cOWzatMmn7fnnn7/gcVarldTUVE6dOgXA1q1bSU1NJS0tjRUrVuBwOAB44YUXmDFjBgsWLGDBggVs2bIFgJqaGjIyMpgzZw6PPPKId9l0a2srS5YsYe7cuWRkZFBfXw+Aw+EgMzOTuXPncscdd1BRUdGbyxNi4PB40FUfQH9sLypH+w/uEvzFu0S+uYrIbasI/WQzulP7vQEDoFIUdKcO9FfFQpxXr0ImPj6e0tJSfv/739Pd8blQB+irr77i3nvvpbKyEoDjx4+zadMm3njjDf7nf/4Hj8fD3/72NwDKy8vZuHEjhYWFFBYWkpGRAUBOTg7p6emUlJSQlJREfn4+AHl5eVgsFoqLi7n77rtZv349AJs3byY4OJji4mKys7NZsWJF3/+LCBEoioLxo1cI+/AVjP98nYjCP6Bua/TZRVt3jOD9H6DyuFGhYKjch6rj7DmnckeY+6tqIc6rVyETGhrKpk2baGpq4pFHHqGjo+OCq8u2bdvGmjVrMJu7/rHr9XrWrFmD0WhEpVJx+eWXU1NTA3SFzMsvv0xaWhpr167FbrfjdDopKytj9uzZACxcuJCSkhIASktLSUtLAyA1NZWdO3fidDopLS1l/vz5QNdihaamJu/XEGKg09YdQ19zyLut7rRiOPxJ199tzajs7WhaTp97oEpD52XXo6hUKKiwXzoV52iZkxEDQ6+fXabX6/njH//IunXrWLRoEXa7/bz7d/cuusXFxREXFwdAU1MTW7ZsYcOGDdhsNq688koyMzMZO3YsWVlZ5Ofnk5GRgdFoRKvtKtFkMlFbWwtAXV0dJlPXgwK1Wi1Go5Gmpiaf9u5jzpw5w6hRoxBioFO5zv2eUjnaCXv//0V3+jCKWoN9wo0oag0qj9u7jzM+EVfs5XRMngeAEhzWbzULcSG9CpmoqCgAVCoVTz/9NK+88grPPffcT/qCtbW1PPTQQ9x5551MmzYNgD//+c/ezxcvXkx2djbp6emoVCqfY3tud1MUBbVajaIoPvt0t/fF+SawhPAnJWoKnn/FQPOZrgaNliBjKFTsAUDlcRN0+BNUM+9DOfQ5uByoJt/MiKQp/z6DhIsYeHoVMj0n/ZcsWcLtt9/e5y9WUVHBQw89xKJFi1i8eDHQNbm/a9cu7rrrLqArGLRaLVFRUbS1teF2u9FoNNTX13uH3sxmMw0NDcTExOByubDZbERGRhIdHU1dXZ13JVxDQ4P3mN6S1WUikFSz/jeGb3ehcrTjSJhC0MGPMfTYp9Wlw3nzY9811Lf1a41CfN/PetT/smXL+OMf/+id/+jp3Xff7XUhVquVBx98kCeeeMInoIKCgnj22WeZNm0a8fHxbNmyhVmzZqHT6bBYLBQVFZGWlkZBQQHJyckApKSkUFBQwMMPP0xRUREWiwWdTkdKSgqFhYVYLBb27t2LwWCQoTIxqCiGUDqvnuXddsQnYThW9t3nWgOe0BEYSzehOVuLY/TVdEyaCxp5a4cYmM57n0x5eTmJiYns2rULnU5HW1sbLpeLlpYWEhISenXX/8yZM3nttdd4//33yc3NZfz48T6fLVu2jB07dvCnP/0Jp9PJtddeS05ODnq9nurqarKysmhsbCQ2NpaNGzcSERFBS0sLWVlZVFVVERYWRm5uLvHx8djtdlavXk15eTl6vZ5169aRmJjYp/8g0pMRgaSrOYi+ogwlyEjnVTPwhI7A8O0uDEc/x2MIoePq2Rg/+xua1nrvMR1Js+i4Zl4AqxbD2c+6GfPo0aMsWbKEp59+mhtuuIE77rgD6OqV/Nd//RfTp0+/+BUHmISMCBRtzSHCPngZFV3//tyhIzi7YCWo1Wgaq1D0IQBEFvouqnGNiKM1NbPf6xUCfuZw2TPPPMMTTzzBjBkz2L59OwDvvfcedXV1PPnkk0MyZIQIFMOxvd6AAdDYmtGdKif4m/+LtrlrKX7n+Gl4dEGonZ3e/dyRMf1eqxC9dd6lV6dPn/bed7J7925uvvlmNBoNsbGxWK3WfilQiOHCE3Tub4O604e9AQMQVLGbjqRb8Py7V+OKiqfjmtR+q1GIvjpvT+b7y3//9a9/sWrVKu/2he6TEUL0TedVv0Rf9Q0aa9dd/vbx01B5POfs5wk303LXWtSdbXhCR/R3mUL0yXlDJiIigkOHDmG1Wqmvr2fq1KkAfPHFF0RHR/dLgUIMF0pIJGfnr0B/fC8qtxP7+Glo645jqNjt3cdjMOKMnQgarQSMGBTOGzK//e1veeCBB7BarSxfvpyQkBA2bdrESy+9xIsvvthfNQoxbAR/VUzw/g+6/v71DlpnPUbbLx/CcPRzFEMIHYk3g67nnTNCDFwXfNS/w+Ggs7OT8PBwoKsXExUVxbhx4/qjvn4nq8tEoKjaW4h8OwfV974l7eOmYLtpUQCrEuL8ftbqMuh6Ztn3X0527bXXXpzKhBA+1PZ2n4ABUHe2YTj0CYajn6HoQ+mYNAdX9PgfOYMQA0/fHuwlhPAbd2Qsrh4vGnNFRBNath1tcw262iOEffgyqk5Z2SkGD3kWhRADhUpF280PE3SwFLW1EcfYyeiryn13cTnQ1h7FOXZyYGoUoo8kZIQYQJQgo899L5q2hnP2kZsvxWAiw2VCDGCdE2/CEXcVAIpGR/vkeXgiJGTE4HHB1WXDjawuEwORqqMVRaMHfVCgSxHCx89eXSaECDwlODzQJQjxk8hwmRBCCL+RkBFCCOE3MlwmxACnrTmE4ehuFENI14vMwi4JdElC9JqEjBADmPbMEZ8XmemrvqFlwUp5fpkYNGS4TIgBTH98n8+LzNQdrejOfBvAioToG7+GjNVqJTU1lVOnTgGwa9cu0tLSuPXWW3nuuee8+x08eJCFCxcye/ZsVq5cicvlAqCmpoaMjAzmzJnDI488gs1mA6C1tZUlS5Ywd+5cMjIyqK/vet+5w+EgMzOTuXPncscdd1BRUeHPyxPC75SgsHPaPD/QJsRA5beQ+eqrr7j33nuprKwEoLOzk+zsbPLz8ykqKqK8vJyPP/4YgMzMTFavXs2OHTtQFIVt27YBkJOTQ3p6OiUlJSQlJZGfnw9AXl4eFouF4uJi7r77btav73rn+ebNmwkODqa4uJjs7GxWrFjhr8sTol90XpGMO9zs3bZfOhW3aVzgChKij/wWMtu2bWPNmjWYzV3fIF9//TVjx45l9OjRaLVa0tLSKCkpobq6ms7OTiZPngzAwoULKSkpwel0UlZWxuzZs33aAUpLS0lLSwMgNTWVnTt34nQ6KS0t9b4ueurUqTQ1NVFTU4MQg5USHMbZtN/ReutjnE19Ctv0jECXJESf+G3iv7t30a2urg6TyeTdNpvN1NbWntNuMpmora2lubkZo9GIVqv1ae95Lq1Wi9FopKmp6QfPdebMGUaNGuWvyxTC/9QaXNGXBboKIX6Sfltd5vF4UKlU3m1FUVCpVD/a3v3n9/Xc/v4xarX6nGO62/vifI9HEEII0Tf9FjIxMTHeCXqA+vp6zGbzOe0NDQ2YzWaioqJoa2vD7Xaj0Wi8+0NXL6ihoYGYmBhcLhc2m43IyEiio6Opq6tjzJgxPufqC3l2mRBC9N6Fnl3Wb0uYJ02axPHjxzlx4gRut5v33nuP5ORk4uLiMBgM7Nu3D4DCwkKSk5PR6XRYLBaKiooAKCgoIDk5GYCUlBQKCgoAKCoqwmKxoNPpSElJobCwEIC9e/diMBhkqEwIIQLI709hnjlzJq+99hrx8fF89tlnbNiwAbvdTkpKCitWrEClUnHo0CFWrVqF1WolMTGRDRs2oNfrqa6uJisri8bGRmJjY9m4cSMRERG0tLSQlZVFVVUVYWFh5ObmEh8fj91uZ/Xq1ZSXl6PX61m3bh2JiYl9qld6MkII0XsX6snIo/57kJARgaJytBOy+0101QdxR8bSPu1u3CNGoWo/i/7ElyiGUBxjJ4FGF+hShfCSkOkjCRkRKCGfvUHQ0c+92+4wE22/fJDwkjzUzk4AXJeMpXXOMlDJwzrEwDBg5mSEEOenqz3qs61pqyfowEfegAHQNpxAe+ZIf5cmxE8mISPEAOEaOcZn2x0S+YNDYyrF008VCfHzScgIMUC0W27HGXM5AO5wM7ab7sc+cTqKVu/dxzUizruPEIOBzMn0IHMyIuDcLtB8dwubuq0BfeW/UAwh2BMs8ph/MaDIxH8fScgIIUTvycS/EEKIgJGQEUII4TcSMkIIIfxGQkYIIYTfSMgIIYTwGwkZIYQQfiMhI4QQwm8kZIQQQviNhIwQQgi/kZARQgjhNxIyQggh/EZCRgghhN9oL7zLxfXmm2/y+uuve7dPnTrFggUL6OjoYN++fQQHBwPw2GOPMWvWLA4ePMjKlSux2WxYLBZycnLQarXU1NSQmZlJY2MjCQkJ5ObmEhoaSmtrK8uXL6eqqoqoqCjy8vIwmUz9fZlCCCEI8FOYjxw5wqOPPsobb7zB/fffz6ZNmzCbzT77pKamsm7dOiZPnkx2djZJSUmkp6ezdOlS5s+fz7x583jxxRdpb28nMzOTtWvXEhMTw5IlSygoKKC0tJS8vLxe1yRPYRZCiN4b0E9h/v3vf8+TTz5JcHAwNTU1ZGdnk5aWxvPPP4/H46G6uprOzk4mT54MwMKFCykpKcHpdFJWVsbs2bN92gFKS0tJS0sDugJq586dOJ3OgFyfEEIMd/0+XNZt165ddHZ2MnfuXKqqqrj++utZs2YNYWFhLF26lLfeeosJEyb4DHWZTCZqa2tpbm7GaDSi1Wp92gHq6uq8x2i1WoxGI01NTURHR/eqrvMlshBCiL4JWMi88cYb/PrXvwZg9OjRvPjii97PFi1aREFBAePHj0elUnnbFUVBpVJ5//y+ntvfP0at7n2HTYbLhBCi9wbkcJnD4aCsrIyZM2cCcPjwYXbs2OH9XFEUtFotMTEx1NfXe9sbGhowm81ERUXR1taG2+0GoL6+3juXYzabaWhoAMDlcmGz2YiMjOynKxPi4lPZbeiP7kZX9Q143IEuR4g+CUjIHD58mHHjxhESEgJ0hcof/vAHzp49i9PpZOvWrcyaNYu4uDgMBgP79u0DoLCwkOTkZHQ6HRaLhaKiIgAKCgpITk4GICUlhYKCAgCKioqwWCzodLr+v0ghLgJ1WwMRhX/A+Nl/E1a6ibD3XwJ5Y7oYRAKyuqyoqIh//OMfPPfcc962LVu2sGXLFlwuF7feeivLly8H4NChQ6xatQqr1UpiYiIbNmxAr9dTXV1NVlYWjY2NxMbGsnHjRiIiImhpaSErK4uqqirCwsLIzc0lPj6+17XJcJkYSIL3FhB8sNSnrXXWo7hiJgSmICF6uNBwWUCXMA9EEjJiIAnZ/SZB3/7Tp61t5hKccVcFqCIhfA3IORkhRO/YJ9yAovluuNcdEY0zdmIAKxKib6Qn04P0ZMRAo245g+H4XhRDKPbx01AMIYEuSQgvGS7rIwkZIYToPRkuE0IIETASMkIIIfxGQkYIIYTfSMgIIYTwGwkZIYQQfiMhI4QQwm8kZIQQQviNhIwQQgi/Cdj7ZIQQvaB4CP7X3zEc/RzFEEL7Nak4x0wKdFVC9Jr0ZIQYwPRH9xC8/wPUdhua1nqMO/+Kqr0l0GUJ0WsSMkIMYLq6oz7bKsWDtr4yMMUI8RNIyAgxgLkuGeuzrahUuKNGB6gaIfpOQkaIAcw+4UY6J9yIotbgCTJiu+EePGEjA12WEL0mT2HuQZ7CLAYkxQMq+Z1QDDzyFGYhhgIJGDFIBWQJ86JFi2hqakKr7frya9euxWazsWHDBux2O3PnzuXJJ58E4ODBg6xcuRKbzYbFYiEnJwetVktNTQ2ZmZk0NjaSkJBAbm4uoaGhtLa2snz5cqqqqoiKiiIvLw+TyRSIyxRCiGGv3389UhSFyspKCgsLvf+bOHEi2dnZ5OfnU1RURHl5OR9//DEAmZmZrF69mh07dqAoCtu2bQMgJyeH9PR0SkpKSEpKIj8/H4C8vDwsFgvFxcXcfffdrF+/vr8vUQghxL/1e8gcO3YMgMWLFzN//nxef/11vv76a8aOHcvo0aPRarWkpaVRUlJCdXU1nZ2dTJ48GYCFCxdSUlKC0+mkrKyM2bNn+7QDlJaWkpaWBkBqaio7d+7E6XT292UKIYQgAMNlra2t3HDDDTz99NM4nU7+4z/+g4ceeshnSMtsNlNbW0tdXZ1Pu8lkora2lubmZoxGo3e4rbsd8DlGq9ViNBppamoiOjq6V/WdbwJLCCFE3/R7yFxzzTVcc8013u277rqL559/nilTpnjbFEVBpVLh8XhQqVTntHf/+X09t79/jFrd+w6brC4TQojeG3Cry/bu3ctnn33m3VYUhbi4OOrr671t9fX1mM1mYmJifNobGhowm81ERUXR1taG2+322R+6ekENDQ0AuFwubDYbkZGR/XBlQggheur3kGlra+OZZ57BbrdjtVp55513+O1vf8vx48c5ceIEbreb9957j+TkZOLi4jAYDOzbtw+AwsJCkpOT0el0WCwWioqKACgoKCA5ORmAlJQUCgoKACgqKsJisaDT6fr7MoUQQhCgmzHz8vLYsWMHHo+H9PR07r//fj777DPvEuaUlBRWrFiBSqXi0KFDrFq1CqvVSmJiIhs2bECv11NdXU1WVhaNjY3ExsayceNGIiIiaGlpISsri6qqKsLCwsjNzSU+Pr7XtclwmRBC9N6Fhsvkjv8eJGSEED3VNrVz8HgzCnDluBHEjAwJdEkDxoVCRt4nI4QQ53HW6uD9Pae8v3zW1FlJvWkcEUZDgCsbHORZFUIIcR5VtW0+oxseBU6esfrl63z8RTVlB+po7xw69/ZJT2aI6XQ7KW+rQQGSwkYRrOla9NDm6qTV1UmsIQL1jyz3FkKcyxh87sKhIL2Gb0+2oFapGBsbhk7b9fu6rcNJp8NNVLjBe1uFw+nmrM3BiDADWk3Xfq1WB6fqrISF6ok3h1JVa+XjL2q856+uszI/OQG1evB/r0rIDCEdbif5lTtpdrYD8HHjER4dl8zu5hN82HAYDwqX6EN5YPQNROqCA1ytEIPDmJgw4qPbOFXb1XuJvSSEr4400GHvuoVi/7Embps+lvKKRvZXNKEAkWF6brluNA0tHXz65WlcbgW9Ts2MKXG4PQoflp2iu3N0aVw4TpfH52u2tTupb+kgOmrwz/1IyAwhX7dWewMGoMXZwefNlXzU8C0euv5FNzhsfNx4hAUxvwhUmUIMKmq1ihlT4jhrdQAKp+psnG747vus1ebg8IlmyiuavG0tbQ72H2vixOk2XO6u7z2H08Peg/UYdGq+v7boWHUrl8aFn/N1g/VD48fz0LgKAYDCuaviOtwOb8B0a/leEImBRWVvJ/jrEjRNp3DGXE5n0i2gkW/TgSDCqAd+eD6m89+9mu+ztjvp6HT5tnU40WnPXTAwYUwEtU3t2Dq69r9i3AjC//31Bjv51zuEXB02io8bj9Lm6gQgTGvgf0WN56C11qeHkxQ2KlAligsI/XQz+pqDAOjqjqF2tNM+dWGAqxLfNz4+nIOVzdgdXcESGqwl8dIRVJ5u9Q6hASSM6uqdVNV+F0pjY8KIM4VS29ju/dVvTIwR84gQFqRcSl1TOyFB2iG1ck3uk+lhsN8nY3XZ+ar1FIoCkyPiMWoNNDnaKW38lrPODq4Oj8MSOSbQZYof4rQT9cbvfJo8wRG03JUDTjuoNdKrGSDaO10cr2lFrYJL4yIw6DW0Wh18U9FIh93FpXER3rmWr4820NjSSczIEBIvjUKjUdN0tpOq2q6J/3GxYYN6gl9uxuyjwR4yYhDzeIh8+/eoO1q9TU7TODyhI9Gf+AJFa6Bj8jzsV9wUwCKF8DXgHpAphPgRajW26+5E0XaNxXuCjLhGjsVQuQ+VoqB2dhJS9jbq1voLnEiIgUP63kIMIM4xk2iOmYimrQ535ChCP9/q87kKBU1zNZ5weaW4GBykJyPEQKMPwj1yDGi0OGMv9/lIUWtxmccHqDAh+k56MkIMYI5Lp9Jua8ZwdDeKPoSOybehBIcFuiwhek0m/nuQiX8hhOg9mfgXQggRMBIyQggh/EZCRgghhN9IyAghhPAbCRkhhBB+I0uYexjMzxASQoj+dqGfmbKEWQghhN/IcJkQQgi/kZARQgjhNxIyQggh/EZCRgghhN9IyAghhPAbCRkhhBB+IyEjhBDCbyRkhBBC+I2EjBBCCL+RkBlGvv32WyZOnMiOHTsCXYropd27d3PNNdewYMEC5s+fz9y5c/nrX/8a6LJEL1mtVnJyckhNTWXBggUsWrSI/fv3B7qsfiXPLhtGtm/fzpw5c9i6dSuzZ88OdDmil5KSkti8eTPQ9UNr3rx5TJ8+ncsuuyzAlYnz8Xg8/OY3v2HatGkUFBSg1Wr5/PPP+c1vfsPf//53RowYEegS+4X0ZIYJp9PJu+++yxNPPMH+/fs5efJkoEsSP4Hdbkej0RAWFhboUsQF7N69m9OnT/P444+j1Xb9Pn/99dezYcMGPB5PgKvrPxIyw8THH3/MqFGjSEhI4JZbbmHr1q2BLkn0Unl5OQsWLCAtLY2ZM2dy3XXXYTabA12WuIADBw5wxRVXoFb7/phNSUlh5MiRAaqq/0nIDBPbt28nNTUVgNtuu423334bh8MR4KpEbyQlJVFYWMi7777LP//5TyorK3nllVcCXZa4ALVajcFgCHQZASchMww0NjbyySef8OqrrzJz5kxWrVpFa2sr//jHPwJdmugjo9HI3Llz+eKLLwJdiriApKQkDhw4QM+3qWzcuJHPP/88QFX1PwmZYaCwsJDrr7+enTt38uGHH/LRRx/x8MMP88YbbwS6NNFHbrebPXv2cNVVVwW6FHEBFouFkSNH8sILL+B2uwH45JNPePvtt4fVog1ZXTYMvPPOOzz55JM+bRkZGfzlL3+hoqKC8ePHB6gy0RvdczIqlQqXy8XEiRP5zW9+E+iyxAWoVCry8/PZsGEDqampaLVaRowYwSuvvMIll1wS6PL6jbwZUwghhN/IcJkQQgi/kZARQgjhNxIyQggh/EZCRgghhN9IyAghhPAbWcIsRACsW7eOsrIyACoqKoiLiyMoKAiArVu3ev8uxGAnS5iFCLCZM2fyxz/+kauvvjrQpQhx0UlPRogBor29nZSUFLZt20ZCQgIADzzwAPfddx/vv/8+BoOBQ4cO0djYyPTp01m1ahU6nY6KigrWr19PS0sLbrebRYsWcddddwX4aoToInMyQgwQISEh3H777bz55psAnDx5ksrKSmbMmAHA119/zauvvkpRUREVFRVs3boVl8vF448/zn/+53/y9ttv8/rrr/Pqq6/y5ZdfBvBKhPiOhIwQA0h6ejqFhYU4nU62bt3KXXfdhUajAeCOO+4gNDQUvV7PggUL+PTTT6msrOTkyZNkZ2ezYMEC7rvvPjo7Ozlw4ECAr0SILjJcJsQAkpCQwMSJE/nggw9477332LZtm/ez7rABUBQFtVqN2+0mLCyMwsJC72cNDQ3yUjMxYEhPRogBJj09nWeeeYZf/OIXREdHe9uLi4txOBzY7XbeeecdZsyYQUJCAkFBQd6QOX36NKmpqZSXlweqfCF8SMgIMcDMmDGD9vZ27rnnHp/2oKAg0tPTSUtLw2KxcOedd6LX68nPz+ett94iLS2NxYsXs2zZMqZMmRKg6oXwJcNlQgTYhx9+6LP99ddfM3LkSG688Uaf9htuuIEHH3zwnOOvuOIKNm/e7NcahfipJGSEGEB+97vfsWfPHp577jlUKlWgyxHiZ5ObMYUQQviNzMkIIYTwGwkZIYQQfiMhI4QQwm8kZIQQQviNhIwQQgi/kZARQgjhN/8/2Xb4y6I5frwAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.swarmplot(x='Type',y='Size',data=walmart_stores_data,palette='Set2')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 24,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "walmart_stores_data.loc[walmart_stores_data.Size < 50000, \"Type\"] = \"C\"\n",
-                "walmart_stores_data.loc[walmart_stores_data.Size >= 50000, \"Type\"] = \"B\"\n",
-                "walmart_stores_data.loc[walmart_stores_data.Size >= 150000, \"Type\"] = \"A\""
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 25,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:xlabel='Type', ylabel='Size'>"
-                        ]
-                    },
-                    "execution_count": 25,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEJCAYAAABGw1qNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA00klEQVR4nO3de3RU9b3//+fcJ8nkQmAmV5CICJgoKIOgnCYFRUQSUJQuDXK0aKF+7Ve0h7QhUCgsKOenWZh6yVJb/K2K9AgVTY42CadeIloUAh6xUUAMBEIScplJSDLJTOayv3/EjA4oBGQykLwfa7no/szeO++NdV7Zn89nf7ZKURQFIYQQIgjUoS5ACCHEwCUhI4QQImgkZIQQQgSNhIwQQoigkZARQggRNBIyQgghgkYbzJM/99xzlJaWApCRkcFvfvMbtm7dyubNm1GpVKSlpbFmzRr0ej3PPfcc27dvJyoqCoCf/exnLFiwgLq6OnJycrDZbKSkpJCfn09ERARtbW0sW7aMmpoaYmNjKSgowGw2093dzYoVK6isrMRoNJKfn8+oUaOCeZlCCCF+gCpYz8ns2rWLZ555hldeeQWVSsXDDz/M1KlTef3113njjTeIiIggNzeXcePG8eCDD/LLX/6SJUuWcP311wecZ8mSJcyZM4fZs2fz/PPP09nZSU5ODmvXriU+Pp7FixdTVFREeXk5BQUFbNq0iWPHjrF27VoqKip46qmn2LZtW5/rbmlx4PPJo0NCCNEXarWKIUMifvDzoN3JmM1mcnNz0ev1AIwaNYru7m5Wr16NyWQC4Oqrr6aurg6AyspKXnzxRWpra5k0aRK//e1vUavVVFRU8PzzzwMwb9487r//fnJycigvL2fLli0AZGZmsnbtWtxuN+Xl5SxduhSASZMmYbfbqaurIzExsU91+3yKhIwQQlwkQRuTGT16NBMmTACgurqa0tJSMjMzmTp1KgB2u50tW7Zwyy234HA4GDduHDk5Obz55pu0tbVRWFhIS0sLJpMJrbYnC81mMw0NDQA0NjZiNpsB0Gq1mEwm7HZ7QHvvMSdPngzWZQohhDiLoI7JABw+fJglS5bwm9/8hpEjRwLQ0NDAww8/zN13383kyZMB+NOf/uQ/ZtGiReTl5ZGdnY1KpQo43+nbvRRFQa1WoyhKwD697X01dKipz/sKIYQ4u6CGzL59+3jsscfIy8tj9uzZAFRVVfHwww+zcOFCFi1aBEBdXR27du3innvuAXqCQavVEhsbS3t7O16vF41GQ1NTExaLBQCLxUJzczPx8fF4PB4cDgcxMTHExcXR2NjIiBEjAGhubvYf0xc2W4d0lwkhRB+p1aqz/nIetO6y+vp6Hn30UfLz8/0B09HRwUMPPcTSpUv9AQNgNBp56qmnqKmpQVEUtmzZwowZM9DpdFitVkpKSgAoKioiPT0d6JmtVlRUBEBJSQlWqxWdTkdGRgbFxcUA7N27F4PB0OfxGCGEEBdX0GaXrVu3ju3bt/vvKADuuOMOnn322YApxdOnT2fp0qXs2LGDZ599FrfbzQ033OCf2lxbW0tubi42m42EhAQ2btxIdHQ0ra2t5ObmUlNTQ2RkJPn5+SQnJ+NyuVi1ahWVlZXo9XrWrVtHampqn+seiHcyLd2dlNsOc8rTxbWRiUyMGXHug4QQog/OdScTtJC5XA20kPEqPgqOvE+Lu9PfNi9+AjfEDA9hVUKIgSJk3WXi0lDnPBUQMAD/aq8NUTVCiMFGQmaAi9IaOX0+XrQuLCS1CCEGHwmZAS5aF8b0YWNQfxM1Q3UR/HTo6BBXJYQYLGRM5jQDbUymV5u7izaPi0RjNOofeNZICCHO17nGZIL+MKa4NETpwoiSbjIhRD+T7jIhhBBBIyEjhBAiaCRkhBBCBI2EjBBCiKCRkBFCCBE0EjJCCCGCRqYwD1InnW2U2w7j8LqYGD2CCdHJoS5JCDEAScgMIj5FQa1S4fJ62HR8F10+NwBHO23o1RquiUy4oPN6FR+V7fW0ujsZZ4rHYoi8mGULIS5jEjKDwIH2k7zd8C/aPS5SIxO4JjLeHzC9vmivv+CQ+a/avRzs6Hkt9ntNh3hg+BSujBj2o+sWQlz+ZEzmEuNVfJzoaqHd47wo5+vyutlW9ymnPE58KPyrvY4qR9MZ+8XqIi7o/E2uDn/AAHhR2NVy5ILrFUIMLHIncwmxdzv4/2s+ocXdiRoVt5nH8W9DR7G/rZaP7UfQqNRkDL2Kq01xNHd3UN58mA6viwlRyT84ptLoaseteAPaWtxd/CT2Kj6yf40CJBtjuDk25YxjPYqPnbavOeJoItEYzbRhYwjT6PjYfoRPT9Vg0hqYGH3me2lkZTQhRC8JmUvIe81f+d/94kPhH00HGKY38be6T/37vHqigv8zMp2/nPiEdo8LgK8dTWhVaq6JTOCwo5FWdxdjTHHE6MKIN0ZhVGtx+jz+c4wMH8rE6OGMCh+KSWsk3hhFvfMUf6nZTYOrndERZu5MGM/7zV/xcctRAKq77DR3O7guKom/N37RcyIX1HS1MCbCwiFHIwAalZqbY6/sj78uIcRlQELmEtLq7grY9qLwZXt9QJsPhYrWY/6A6VXZXscX7fX8q70OgLLGL3loxE0khw0hO2kSJY1fcMrdxbVRiXT7PDxV9Q4KEG+I4oHkybxWuw+b2wHAlx0n0TdoqeoM7FY77GhEp9YEtDl9HibGjGBC9HBa3Z2MNcVjNvzwiqxCiMElqGMyzz33HLNnz2b27Nk8+eSTAOzatYusrCxuu+02nn76af++Bw4cYN68ecycOZMVK1bg8fT85l1XV8eCBQu4/fbbeeSRR3A4er4I29raWLx4MbNmzWLBggU0NfV8IXZ3d5OTk8OsWbO46667qKqqCuYlXlTXRiUGbJv1JkaGx56xX1JY9BltBrXWHzAAbsXLR/Yq7N2dVLbXEasL566E8dwceyUf2qvofZnBSVcb79u+8gdMr2NddobowgPaTFoDFn3gzDEVEGeI4tqoRH4y9CoJGCFEgKCFzK5du/joo4948803KSoq4osvvuDtt98mLy+PwsJCSkpKqKys5IMPPgAgJyeHVatWsWPHDhRFYdu2bQCsWbOG7OxsysrKSEtLo7CwEICCggKsViulpaXMnz+f9evXA7B582bCwsIoLS0lLy+P5cuXB+sSL7rJQ0YyJ+5aRoUPwxozggeGT2F8dDLXRSWhAtSomDIkhRuiR5A+9Cr/2EecIfJ7x2TcPi9/Pv5P9rQe48uOk/y1di+ft9WdsZ/D4zojUJKNMcyypBKh0QOgV2nIiruWqbFXcmV4z8wxrUrNbeZxDNVf2KQBIcTAF7SXlh0+fBiHw8GECRMAWLt2LbGxsVRUVPCXv/wFgKKiInbv3s2vfvUrHnjgAd555x0A9u7dyzPPPMOmTZuYPHkye/bsQavVUl9fz/3338+7777L9OnT2bJlCwkJCXg8Hm688UZ2797NokWLWLp0KVarFYBbb72VV155hcTExO+t83SX6kvLOjwu1CoV4d986QOccnfh8LpIMESjUql4+fjHHOlsBnoCabr5at5pOhRwnlRTAse67HR4v+1uuzdxIjG6cN48+RmNrnauijBzd8L1mLQGPD4vJ13tDNNHYNToAn62Qa0NaBNCDD4he2nZ6NHfvuK3urqa0tJS7r//fsxms7/dYrHQ0NBAY2NjQLvZbKahoYGWlhZMJhNarTagHQg4RqvVYjKZsNvt33uukydP9jlkLlUmreGMtmhdGNHfeRHZwuQb+d9TNbR6ukiNTECr0pwRMjH6MG4130y57Ss6PC4mRCeT9k033f9N+SmKoqD6zpsztWoNyWEx3/uzhRDiXII+8H/48GGWLFnCb37zGzQaDdXV1f7Per/QfD5fwBdbb/vpX3jAGdvfPUatVp9xTG97X50tkS8HiXExAdvTXFfzft1XAMSFRTJ39Hii9WFck3xhD14KIcT5CGrI7Nu3j8cee4y8vDxmz57Nnj17/AP0AE1NTVgsFuLj4wPam5ubsVgsxMbG0t7ejtfrRaPR+PeHnrug5uZm4uPj8Xg8OBwOYmJiiIuLo7GxkREjRgScq68u1e6yC3VL1BiS1TF8aPuabp+X944cYmrslT8Y1kIIcT7O1V0WtIH/+vp6Hn30UfLz85k9ezYA48eP5+jRoxw7dgyv18vbb79Neno6SUlJGAwG9u3bB0BxcTHp6enodDqsVislJSVAzxhOeno6ABkZGRQVFQFQUlKC1WpFp9ORkZFBcXEx0DO2YzAYLvuush/Do/goPvk51V126lynKGv6kj2tx0JdlhBikAjawP+6devYvn27/44C4N5772XkyJFs2LABl8tFRkYGy5cvR6VScfDgQVauXElHRwepqals2LABvV5PbW0tubm52Gw2EhIS2LhxI9HR0bS2tpKbm0tNTQ2RkZHk5+eTnJyMy+Vi1apVVFZWotfrWbduHampqX2ue6DdyRzvtPPS8X8GtF0VYebB4VNCVJEQYiA5151M0ELmcjXQQqbd4+Spr9/Bx7fXNCVmJJnx14awKiHEQBGy7jJxaYjUGpllSUWn6vlXnWiM5qfDrg5xVUKIwULuZE4z0O5kejm9bhzebnlwUghxUYXsORlxaTFqdPLgpBCi30l3mRBCiKCRkBFCCBE0EjJCCCGCRkJGCCFE0EjICCGECBoJGSGEEEEjU5gHgZbuTspthznl6eLayEQmxow490FCCHERSMgMcF7Fx8s1H9Pi7gTga0fPatcSNEKI/iDdZQNcnfOUP2B6Vbaf+QpmIYQIBgmZAS5Ka+T0N8fE6MJDUosQYvCRkBngonVhTB82BvU3UTNUF0HG0KtCXJUQYrCQBTJPM1AXyGxzO2nzOEk0RqOWt2IKIS4SWSBTABClMxKlM4a6DCHEICPdZUIIIYJGQkYIIUTQBLW7rKOjg3vvvZcXXniBqqoqNm7c6P+soaGB8ePH8+KLL/Lcc8+xfft2oqKiAPjZz37GggULqKurIycnB5vNRkpKCvn5+URERNDW1sayZcuoqakhNjaWgoICzGYz3d3drFixgsrKSoxGI/n5+YwaNSqYlyiEEOIsgnYns3//fu677z6qq6sByMjIoLi4mOLiYv785z9jMplYvnw5AJWVlWzcuNH/+YIFCwBYs2YN2dnZlJWVkZaWRmFhIQAFBQVYrVZKS0uZP38+69evB2Dz5s2EhYVRWlpKXl6e//xCCCFCI2ghs23bNlavXo3FYjnjsyeffJJ7772XkSNHAj0h8+KLL5KVlcXatWtxuVy43W4qKiqYOXMmAPPmzaOsrAyA8vJysrKyAMjMzGTnzp243W7Ky8uZM2cOAJMmTcJut1NXJw8eCiFEqAStu6z37uJ01dXV7Nmzx/+5w+Fg3Lhx5OTkcMUVV5Cbm0thYSELFizAZDKh1faUaDabaWhoAKCxsRGz2dxzAVotJpMJu90e0N57zMmTJ0lMTOxz3WebiieEEOL89PsU5q1bt5KdnY1erwcgIiKCP/3pT/7PFy1aRF5eHtnZ2ahOe57j9O1eiqKgVqtRFCVgn9728zFQn5MRQohgONdzMv0+u+zdd9/ljjvu8G/X1dXx+uuv+7cVRUGr1RIbG0t7ezterxeApqYmf9ebxWKhubkZAI/Hg8PhICYmhri4OBobG/3nam5u/t7uOiGEEP2jX0PGbrfjdDoZPny4v81oNPLUU09RU1ODoihs2bKFGTNmoNPpsFqtlJSUAFBUVER6ejrQM4mgqKgIgJKSEqxWKzqdzj+5AGDv3r0YDIbz6ioTQghxcfVryJw4cYL4+PiAttjYWNauXcsjjzzC7bffjqIo/PznPwdg9erVbNu2jTvuuIO9e/fy+OOPA7B06VI+++wzZs+ezV//+ldWrVoFwMKFC+nu7mb27NmsX7+eJ598sj8vTwghxGlk7bLTyJiMEEL03SU3JiOEEGLwkJARQggRNBIyQgghgkZCRgghRNBIyAghhAgaCRkhhBBBIyEjhBAiaCRkhBBCBI2EjBBCiKCRkBFCCBE0/b7Uv+hfDa523jr5Lxq727g6Io7MuDSMGl2oyxJCDBISMgOYoij89UQFNrcDgM/aTqBVq7kzfnyIKxNCDBbSXTaAtXmc/oDpddRhC1E1QojBSO5kBrBIrZEorZE2j9PfFm+I4p2mgzR1d3B1hIWJMSNQFIWK1mN87WgizhDFv8WOwqCR/2sIIX48Wer/NANtqf/qThtv1u/H5naQEj4Un6JwrMvu//x28zV4FC/vNB/yt10dYeHfh08ORblCiMvMuZb6l5A5zUALmV5unxenz83/9/U/AtrjDJF4FR/N3YHdanmjZxKu0fdniUKIy9C5Qkb6RAaYQx0N/E/TARyebq6PHs4M81jUKhU6tQYfCjqVBrfi9e9v0hh6QoZvQ8ag1qJTaUJRvhBigJGQGUA6PC7+q3YvHsUHwIf2rxmiCyM1MoFdLUdodXcxPiqJfaeOowBGtY5bzWNRFIVXTuzG6fOgRsVM8zh0agkZIcSPF9SQ6ejo4N577+WFF14gOTmZ5cuXs2/fPsLCwgD41a9+xYwZMzhw4AArVqzA4XBgtVpZs2YNWq2Wuro6cnJysNlspKSkkJ+fT0REBG1tbSxbtoyamhpiY2MpKCjAbDbT3d3NihUrqKysxGg0kp+fz6hRo4J5iZeUmq4Wf8D0OtJpY3drNQ2udn9bliWNIfoIrgiL9Q/wLxt1KzXOFiz6SKJ1Yf1atxBi4AraFOb9+/dz3333UV1d7W+rrKzk1Vdfpbi4mOLiYmbMmAFATk4Oq1atYseOHSiKwrZt2wBYs2YN2dnZlJWVkZaWRmFhIQAFBQVYrVZKS0uZP38+69evB2Dz5s2EhYVRWlpKXl4ey5cvD9blXZISjNGoUQW0RWoNAQEDcMjRyNUmS8AMMqNGx+gIiwSMEOKiClrIbNu2jdWrV2OxWADo6uqirq6OvLw8srKyeOaZZ/D5fNTW1uJ0OpkwYQIA8+bNo6ysDLfbTUVFBTNnzgxoBygvLycrKwuAzMxMdu7cidvtpry8nDlz5gAwadIk7HY7dXV1wbrES06MLow7E8YTodGjRsX1UcncGHPFabEDETKgL4ToJ0HrLuu9u+jV3NzMlClTWL16NZGRkSxZsoTXX3+d0aNHYzab/fuZzWYaGhpoaWnBZDKh1WoD2gEaGxv9x2i1WkwmE3a7PaC995iTJ0+SmJjY57rPNkvicjDTfA0zRo1DURQ06p7fIaa5rua9uq8AiNIZuXP0BMzhkaEsUwgxSPTbwP/w4cN5/vnn/dsLFy6kqKiIUaNGoVJ9+7u2oiioVCr/n991+vZ3j1Gr1Wcc09t+PgbiFObpUWO4Rp/AKU8XKeFD0ThUNDnaz32gEEKcw7mmMPfbsjKHDh1ix44d/m1FUdBqtcTHx9PU1ORvb25uxmKxEBsbS3t7O15vz3TbpqYmf9ebxWKhubkZAI/Hg8PhICYmhri4OBobG884l4B4YxRjTHHo1TKhUAjRf/otZBRF4Q9/+AOnTp3C7XazdetWZsyYQVJSEgaDgX379gFQXFxMeno6Op0Oq9VKSUkJAEVFRaSnpwOQkZFBUVERACUlJVitVnQ6HRkZGRQXFwOwd+9eDAbDeXWVCSGEuLiC/sT/9OnTeeWVV0hOTmbLli1s2bIFj8fDbbfdxrJlywA4ePAgK1eupKOjg9TUVDZs2IBer6e2tpbc3FxsNhsJCQls3LiR6OhoWltbyc3NpaamhsjISPLz80lOTsblcrFq1SoqKyvR6/WsW7eO1NTU86p3IHaXCSFEsMiyMudJQkYIIfrukhmTEUIIMfhIyAghhAgamWokhBBB4vb4qKyyYTvlJC42nGuujEWj/v5HMQYqCRkhhAiSXZ/Xc/xkBwD1zZ04uz1MuiYuxFX1L+kuE0KIIPD6FGq+CZheR+sG30PQEjJCCBEEahUYDYGdRRHGwdd5JCEjhBBBoFKpmHSNxT8Go9OqmThu8K1AMvhiVQgh+skVCZHEDw2ntcNFbJQRnXbw/V4vISOEEEFk0GuIiw0PdRkhM/hiVQghRL/pU8g4HA7WrFnDAw88QGtrK6tWrcLhcAS7NiGEEJe5PoXMunXriIqKwmazYTAY6OjoYNWqVcGuTQghxGWuTyFz4MABnnjiCbRaLWFhYeTn53PgwIFg1yaEEOIy16eQOf3tkl6v97zfOCmEEGLw6dPsskmTJvHUU0/hdDr58MMP2bJlCzfeeGOwaxNCCHGZ69P7ZNxuNy+99BLl5eV4vV5+8pOf8Oijj6LX6/ujxn4l75MRQvQnr9fHZ4ebqW/qJCbSwA1jhxFu1IW6rD67KC8tO378OCNGjAhoe//995k2bdqPr/ASIyEjhAi2Tqcbg06DRqOm4ssGDla3+j8bFmNk1s1XhK6483RRXlp2++23s2nTpoC2Z5555pzHdXR0kJmZyYkTJwDYunUrmZmZZGVlsXz5crq7uwF47rnnmDZtGnPnzmXu3Lls2bIFgLq6OhYsWMDtt9/OI4884p823dbWxuLFi5k1axYLFiygqakJgO7ubnJycpg1axZ33XUXVVVVfbk8IYS4KJwuD1UnTlHf7OD7fn93dLn5+0fVbH/vCK+/V8Wx+nZONAQ+DtLc6sTp8vRXyUHXp5BJTk6mvLyc3//+9/6/uHPdAO3fv5/77ruP6upqAI4ePcqmTZt47bXX+O///m98Ph9//etfAaisrGTjxo0UFxdTXFzMggULAFizZg3Z2dmUlZWRlpZGYWEhAAUFBVitVkpLS5k/fz7r168HYPPmzYSFhVFaWkpeXh7Lly8//78RIYS4APY2J0UfHGXX5yd5Z88J/rm//ox9PvuqGXubC4But4+P/3WSyIjArjGjXoNep+mXmvtDn0ImIiKCTZs2YbfbeeSRR+jq6jrn7LJt27axevVqLJaeBeH0ej2rV6/GZDKhUqm4+uqrqaurA3pC5sUXXyQrK4u1a9ficrlwu91UVFQwc+ZMAObNm0dZWRkA5eXlZGVlAZCZmcnOnTtxu92Ul5czZ84coGeygt1u9/8MIYQIpi+P2HF7fP7to3XtnOpw4fUptDm68SkKre2ugGPcHh9jRw4hMrwnaPQ6NVOujUc9gF5s1ue1y/R6PX/84x9Zt24dCxcuxOVynXX/3ruLXklJSSQlJQFgt9vZsmULGzZswOFwMG7cOHJycrjiiivIzc2lsLCQBQsWYDKZ0Gp7SjSbzTQ0NADQ2NiI2WzuuQCtFpPJhN1uD2jvPebkyZMkJib29TKFEOKCeLxn9u6ctHWy/5MaXN1eIoxaEoaF++9kACLDdSSZI0jKSKG9002EUYtGM7AeD+lTyMTGxgI9S1f/7ne/46WXXuLpp5++oB/Y0NDAww8/zN13383kyZMB+NOf/uT/fNGiReTl5ZGdnY1KFZjmp2/3UhQFtVqNoigB+/S2n4+zDWAJIcQPmXRtAicaD9M7khA/LIJDx1pxdXsBcDg9OJweJqXFU1XTypAoI+kTkxkSbQRgoL4EoE8hc/qg/+LFi7nzzjvP+4dVVVXx8MMPs3DhQhYtWgT0DO7v2rWLe+65B+gJBq1WS2xsLO3t7Xi9XjQaDU1NTf6uN4vFQnNzM/Hx8Xg8HhwOBzExMcTFxdHY2OifCdfc3Ow/pq9kdpkQ4kJE6NXMnDKC6vp2IoxarkyK4m/vBk4+sp1ycuuNwxk7IhoAT7ebpiZ3KMq9aM41u+ysIbN06VL++Mc/+sc/TvfWW2/1uZCOjg4eeughHn/88YCAMhqNPPXUU0yePJnk5GS2bNnCjBkz0Ol0WK1WSkpKyMrKoqioiPT0dAAyMjIoKiril7/8JSUlJVitVnQ6HRkZGRQXF2O1Wtm7dy8Gg0G6yoQQ/cY8JAzzkDD/dsKwcOqbO/3bwy0mqk6c4mB1CxqNmmtHxZJkGdi9J2d9TqayspLU1FR27dqFTqejvb0dj8dDa2srKSkpfXrqf/r06bzyyiu888475OfnM2rUqIDPli5dyo4dO3j22Wdxu93ccMMNrFmzBr1eT21tLbm5udhsNhISEti4cSPR0dG0traSm5tLTU0NkZGR5Ofnk5ycjMvlYtWqVVRWVqLX61m3bh2pqann9RcidzJCiAvh8fo4cLQFe5uThKERjB4Rjcvt5dODzdhPOYkbGkbCsAje31vrP0atgjnpKURGXL4Ptv+ohzG//vprFi9ezO9+9ztuuukm7rrrLqDnruQ///M/mTp16sWvOMQkZIQQF+KDT2s5frLDv33dVUMZf/UwXN1e/5sxPz/czJdHWwKOuzHVwpgrhvR3uRfNj+oue/LJJ3n88ceZNm0a27dvB+Dtt9+msbGRJ554YkCGjBBCnC+3x0fNdwIGoKr2FDGRBv65vx6vT0GnVTP6m7GY74qJNPRXmSFx1qlX9fX1/udOdu/ezS233IJGoyEhIYGOjo6zHSqEEIOGRq1Cpwv8OjXqtVR82Yj3m54Rt8dHfZODkYmRQE9X2TVXDhnwr2Y+a8h8d/rv//7v/zJp0iT/9rmekxFCiMFCrVZxw1gzvU9QaDUqxl897IzlYTpdXn4yIZH5t4xi/q1XMXHsQJ24/K2zdpdFR0dz8OBBOjo6aGpq8ofMp59+SlxcXL8UKIQQl4PRw2OIjw2nur4Nc0wY8cMiGB5vChinSfnmLsZo6PNz8Je9s17pr3/9ax588EE6OjpYtmwZ4eHhbNq0iRdeeIHnn3++v2oUQohLntPl4b29tbQ5ehb+HRFv4ubrEoiKsH0zuyyca1JiQ1xl/zvnUv/d3d04nU6ioqKAnruY2NhYRo4c2R/19TuZXSaEuBD7Dzfz+WFbQNttk4cTN3SAj7n8mNll0LNm2XdfTnbDDTdcnMqEEGIAcbq8Z7S1Obo5XHMK2ykn8UPDuH6MeUCtsNwXg6djUAghgujKpCgO17T61y4z6jUcqWuj0d4F9ASOx6swdXxCCKvsfxIyQghxEZiHhDFj8nC+rjmFTqtmzIgY/vvD6oB9TjQOvkc/JGSEEOIiiYsND3juJTJcR3vntwtgxpgG9oOX32dgvbhACCEuITddG0+YoWcMJjJcx42pA/+5mNOdc3bZYCOzy4QQF5PPp9Dp8hBh1P7gO7EuZz96dpkQQogLp1arMIXpQl1GyEh3mRBCiKCRkBFCCBE00l0mhBBB0vsiM9spJ3Gx4YwZGYN6AI7LnI2EjBBCBMnH/zpJdV07ADUNHXQ63UwcN7hmmEl3mRBCBIHXp3Csvj2g7UhtW4iqCZ2ghkxHRweZmZmcOHECgF27dpGVlcVtt93G008/7d/vwIEDzJs3j5kzZ7JixQo8np53MNTV1bFgwQJuv/12HnnkERwOBwBtbW0sXryYWbNmsWDBApqamoCexTxzcnKYNWsWd911F1VVVcG8PCGE+EFqFRhOW6csbBAt8d8raCGzf/9+7rvvPqqrqwFwOp3k5eVRWFhISUkJlZWVfPDBBwDk5OSwatUqduzYgaIobNu2DYA1a9aQnZ1NWVkZaWlpFBYWAlBQUIDVaqW0tJT58+ezfv16ADZv3kxYWBilpaXk5eWxfPnyYF2eEEKclUqlwjrOgvqbIRiNpufFZoNN0EJm27ZtrF69Goulp//x888/54orrmD48OFotVqysrIoKyujtrYWp9PJhAkTAJg3bx5lZWW43W4qKiqYOXNmQDtAeXk5WVlZAGRmZrJz507cbjfl5eX+10VPmjQJu91OXV1dsC5RCCHOKiUpinnTR3HLpGTunj6KRHNEqEvqd0G7d+u9u+jV2NiI2fxtilssFhoaGs5oN5vNNDQ00NLSgslkQqvVBrSffi6tVovJZMJut3/vuU6ePEliYmKwLlMIIc4qzKAlzDz4usl69duV+3y+gCUVFEVBpVL9YHvvn9/1Q0syKIqCWq0+45je9vNxtuURhBBCnJ9+C5n4+Hj/AD1AU1MTFovljPbm5mYsFguxsbG0t7fj9XrRaDT+/aHnLqi5uZn4+Hg8Hg8Oh4OYmBji4uJobGxkxIgRAec6H7J2mRBC9N251i7rtynM48eP5+jRoxw7dgyv18vbb79Neno6SUlJGAwG9u3bB0BxcTHp6enodDqsVislJSUAFBUVkZ6eDkBGRgZFRUUAlJSUYLVa0el0ZGRkUFxcDMDevXsxGAzSVSaEECEU9FWYp0+fziuvvEJycjIff/wxGzZswOVykZGRwfLly1GpVBw8eJCVK1fS0dFBamoqGzZsQK/XU1tbS25uLjabjYSEBDZu3Eh0dDStra3k5uZSU1NDZGQk+fn5JCcn43K5WLVqFZWVlej1etatW0dqaup51St3MkII0XfnupORpf5PIyEjhLgQ9c0O9h1ootPpISUpkoljLajVKk7aOr9ZViaMYTFhoS7zopOl/oUQIsi63V7K99Xi8fb8gnqwupVwow6v18f+wzb/flOujWP08JgQVRkasqyMEEL8SLZTTn/A9Dpp6+SLI/aAtsqqwO3BQEJGCCF+pCFRBtTqwEcshkYbOb3jfTCOTkjICCHEj2TUa/m38QmEGbSoVDAyIZK0UbGMvWJIwH7XpMSGqMLQkYH/08jAvxDiQimKgqIQcFdT09CB/ZSTuKHhxA8ND2F1wSGzy86ThIwQQvTdJfMwphBCiMFHQkYIIUTQSMgIIYQIGgkZIYQQQSMhI4QQImgkZIQQQgSNhIwQQoigkZARQggRNBIyQgghgkZCRgghRNBIyAghhAgaCRkhhBBB0+9vxvzb3/7Gq6++6t8+ceIEc+fOpauri3379hEW1vN60l/96lfMmDGDAwcOsGLFChwOB1arlTVr1qDVaqmrqyMnJwebzUZKSgr5+flERETQ1tbGsmXLqKmpITY2loKCAsxmc39fphBCCEK8CvPhw4d59NFHee2113jggQfYtGkTFoslYJ/MzEzWrVvHhAkTyMvLIy0tjezsbJYsWcKcOXOYPXs2zz//PJ2dneTk5LB27Vri4+NZvHgxRUVFlJeXU1BQ0OeaZBVmIYTou0t6Febf//73PPHEE4SFhVFXV0deXh5ZWVk888wz+Hw+amtrcTqdTJgwAYB58+ZRVlaG2+2moqKCmTNnBrQDlJeXk5WVBfQE1M6dO3G73SG5PiGEGOz6vbus165du3A6ncyaNYuamhqmTJnC6tWriYyMZMmSJbz++uuMHj06oKvLbDbT0NBAS0sLJpMJrVYb0A7Q2NjoP0ar1WIymbDb7cTFxfWprrMlshBCiPMTspB57bXX+PnPfw7A8OHDef755/2fLVy4kKKiIkaNGoVK9e0b5hRFQaVS+f/8rtO3v3uMWt33GzbpLhNCiL67JLvLuru7qaioYPr06QAcOnSIHTt2+D9XFAWtVkt8fDxNTU3+9ubmZiwWC7GxsbS3t+P1egFoamryj+VYLBaam5sB8Hg8OBwOYmJi+unKhBAikK3VyaFjLbS2u0JdSkiEJGQOHTrEyJEjCQ/ved+1oij84Q9/4NSpU7jdbrZu3cqMGTNISkrCYDCwb98+AIqLi0lPT0en02G1WikpKQGgqKiI9PR0ADIyMigqKgKgpKQEq9WKTqfr/4sUQgx6XxyxU7LrGHu+aOStD6s5Unsq1CX1u5DMLispKeEf//gHTz/9tL9ty5YtbNmyBY/Hw2233cayZcsAOHjwICtXrqSjo4PU1FQ2bNiAXq+ntraW3NxcbDYbCQkJbNy4kejoaFpbW8nNzaWmpobIyEjy8/NJTk7uc23SXSaEuBh8isK2f3yN2+Pzt0WG67jzp1eGsKqL71zdZSGdwnwpkpARQlwMPp/Ca/9zGO93vk/CjVrunj4qhFVdfJfkmIwQQgx0arWK0SNiAtrGjhwSmmJCKGSzy4QQYqCzjjMzLMaI7ZSTuNhwhscNvkckpLvsNNJdJoQQfSfdZUIIIUJGQkYIIUTQSMgIIYQIGgkZIYQQQSMhI4QQImgkZIQQQgSNhIwQQoigkZARQggRNPLEvxBCBEmbo5tPKhuwtXYRNzScm66NJ8wwuL525U5GCCGC5KPP6mmwdeLxKtQ2OviksiHUJfU7CRkhhAgCr9eH7ZQzoK3R3hmiakJHQkYIIYJAo1EzJNIQ0DYs2hiiakJHQkYIIYJk6vgEhkT1BI1lSBiT0+JDXFH/k1WYTyOrMAshLjafoqBWqUJdRlDIKsxCCBFiAzVg+iIkc+kWLlyI3W5Hq+358WvXrsXhcLBhwwZcLhezZs3iiSeeAODAgQOsWLECh8OB1WplzZo1aLVa6urqyMnJwWazkZKSQn5+PhEREbS1tbFs2TJqamqIjY2loKAAs9kcissUQohBr9/vZBRFobq6muLiYv8/Y8aMIS8vj8LCQkpKSqisrOSDDz4AICcnh1WrVrFjxw4URWHbtm0ArFmzhuzsbMrKykhLS6OwsBCAgoICrFYrpaWlzJ8/n/Xr1/f3JQohhPhGv4fMkSNHAFi0aBFz5szh1Vdf5fPPP+eKK65g+PDhaLVasrKyKCsro7a2FqfTyYQJEwCYN28eZWVluN1uKioqmDlzZkA7QHl5OVlZWQBkZmayc+dO3G53f1+mEEIIQtBd1tbWxk033cTvfvc73G43//7v/87DDz8c0KVlsVhoaGigsbExoN1sNtPQ0EBLSwsmk8nf3dbbDgQco9VqMZlM2O124uLi+lTf2QawhBBCnJ9+D5nrr7+e66+/3r99zz338MwzzzBx4kR/m6IoqFQqfD4fqu8MmPW29/75Xadvf/cYtbrvN2wyu0wIIfrukptdtnfvXj7++GP/tqIoJCUl0dTU5G9ramrCYrEQHx8f0N7c3IzFYiE2Npb29na8Xm/A/tBzF9Tc3AyAx+PB4XAQExPTD1cmhBDidP0eMu3t7Tz55JO4XC46Ojp48803+fWvf83Ro0c5duwYXq+Xt99+m/T0dJKSkjAYDOzbtw+A4uJi0tPT0el0WK1WSkpKACgqKiI9PR2AjIwMioqKACgpKcFqtaLT6fr7MoUQQhCihzELCgrYsWMHPp+P7OxsHnjgAT7++GP/FOaMjAyWL1+OSqXi4MGDrFy5ko6ODlJTU9mwYQN6vZ7a2lpyc3Ox2WwkJCSwceNGoqOjaW1tJTc3l5qaGiIjI8nPzyc5ObnPtUl3mRBC9N25usvkif/TSMiIUNO01GGsfAdVdxeu0TfhHnFdqEsS4gedK2QG14sNhLjEqVydRP7Ps6i7uwDQ1x2g7db/gyfh6hBXJsSFkZAR4mLzeTEe3Im2oQqPeSTOcT8FTd/+U9PVH/QHTC/9sf+VkBGXLQkZIS6y8L1FGA99CID+RCWatkYcN2ejaalDV38IT0wCnsSx/v019hMo+nB8pli8EbFnnM8XERuwTy91ezMqTzfeIYk9DYqCru4AmlMNdCeOwxcT7z+/7uRhPEMS8SSMCeKVC3EmCRkhLjL9kYrA7aP76E4ch+mjV1B9MwTadc00nGkziHz3BbS24yiocI35NzpvvBvn1VMxfLULFQqe2OHoj31G+Gd/D9gnYtd/YajaDYDbciXt05cQ/mkxxq92ARD26Vt0/PQhVG4nER+9iopvfm7qLXTdkNWPfxtisJOQEeIiU8KiwP3tGxF9xkjCvnjXHzAAxoM7UdRatLbjAKhQMB76ENeoG+mcPB9n6nRU3U50J/5F+P6ygH08QxL9AQOgazyC4ctyDIe/ff5MpfgwfvEuqu4uf8AAGA98QNd1M0GrD9r1C/FdstS/EBdZ58S5KJqeZ7MUtYZO652g+AJ3UhQ0DvsZx2pa6wmveIOIf25BV/MvNO22M/dpqTuzrbMFTp8UqfjgjMmjyve0CRE8cicjxEXmTk6l9e7fo7UdxzMkGSUsEpWnG9Ouv/r3cY2egnv4tRiO7vO3+fTh6I/sRX/yK6DnDqU7OS3g3D59OM6xGRiP7EHldgGgoKL7ykmofB4MR/b625zjfoqq24npk9e+83NvBl3gK4GFCCZ5TuY08pyMCBZt4xH/wL97xHWgUqM7th/D1x+j6CNwjk0nuuzpgGN8YdE4Jt2F4fCunn2uvQ3vkAQ0tpqe7jBPN67RN+MengY+H/pjn6Fpa6A7KRXvsBE9P7ehqufnxibhHn4dDOIXaImLTx7GPE8SMiJkfD5i3vg96q42f5PbPBJfxFD0xz5F0RromjAb19ifhLBIIQJdcgtkCiF+gFqN48a7Ub4ZlPcZTXiGXoGheh8qRUHtdhJe8QbqtqZznEiIS4eMyQhxCXGPGE9L/Bg07Y14YxKJ+GRrwOcqFDQttfii5JXi4vIgdzJCXGr0RrxDR4BGi/u0J/0VtRaPZVSIChPi/MmdjBCXsO4rJ9HpaMHw9W4UfThdE+5ACYsMdVlC9JkM/J9GBv6FEKLvZOBfCCFEyEjICCGECBoJGSGEEEEjISOEECJoJGSEEEIEjUxhPo1aLes6CSFEX53rO1OmMAshhAga6S4TQggRNBIyQgghgkZCRgghRNBIyAghhAgaCRkhhBBBIyEjhBAiaCRkhBBCBI2EjBBCiKCRkBFCCBE0EjKDyFdffcWYMWPYsWNHqEsRfdTR0cGaNWvIzMxk7ty5LFy4kC+++CLUZYk+2r17N9dffz1z585lzpw5zJo1i7/85S+hLqtfydplg8j27du5/fbb2bp1KzNnzgx1OeIcfD4fv/jFL5g8eTJFRUVotVo++eQTfvGLX/D3v/+dIUOGhLpE0QdpaWls3rwZ6PmlYfbs2UydOpWrrroqxJX1D7mTGSTcbjdvvfUWjz/+OF988QXHjx8PdUniHHbv3k19fT2PPfYYWm3P74NTpkxhw4YN+Hy+EFcnLoTL5UKj0RAZGRnqUvqNhMwg8cEHH5CYmEhKSgq33norW7duDXVJ4hy+/PJLxo4di1od+J9pRkYGQ4cODVFV4nxVVlYyd+5csrKymD59OjfeeCMWiyXUZfUbCZlBYvv27WRmZgJwxx138MYbb9Dd3R3iqsTZqNVqDAZDqMsQP1JaWhrFxcW89dZb/POf/6S6upqXXnop1GX1GwmZQcBms/Hhhx/y8ssvM336dFauXElbWxv/+Mc/Ql2aOIu0tDS+/PJLTn8bx8aNG/nkk09CVJX4MUwmE7NmzeLTTz8NdSn9RkJmECguLmbKlCns3LmT9957j/fff59f/vKXvPbaa6EuTZyF1Wpl6NChPPfcc3i9XgA+/PBD3njjjUEzaDzQeL1e9uzZwzXXXBPqUvqNzC4bBN58802eeOKJgLYFCxbw5z//maqqKkaNGhWiysTZqFQqCgsL2bBhA5mZmWi1WoYMGcJLL73EsGHDQl2e6KPeMRmVSoXH42HMmDH84he/CHVZ/UbejCmEECJopLtMCCFE0EjICCGECBoJGSGEEEEjISOEECJoJGSEEEIEjUxhFiIE1q1bR0VFBQBVVVUkJSVhNBoB2Lp1q/9/C3G5kynMQoTY9OnT+eMf/8i1114b6lKEuOjkTkaIS0RnZycZGRls27aNlJQUAB588EHuv/9+3nnnHQwGAwcPHsRmszF16lRWrlyJTqejqqqK9evX09raitfrZeHChdxzzz0hvhohesiYjBCXiPDwcO68807+9re/AXD8+HGqq6uZNm0aAJ9//jkvv/wyJSUlVFVVsXXrVjweD4899hj/8R//wRtvvMGrr77Kyy+/zGeffRbCKxHiWxIyQlxCsrOzKS4uxu12s3XrVu655x40Gg0Ad911FxEREej1eubOnctHH31EdXU1x48fJy8vj7lz53L//ffjdDr58ssvQ3wlQvSQ7jIhLiEpKSmMGTOGd999l7fffptt27b5P+sNGwBFUVCr1Xi9XiIjIykuLvZ/1tzcPKheiiUubXInI8QlJjs7myeffJLrrruOuLg4f3tpaSnd3d24XC7efPNNpk2bRkpKCkaj0R8y9fX1ZGZmUllZGaryhQggISPEJWbatGl0dnZy7733BrQbjUays7PJysrCarVy9913o9frKSws5PXXXycrK4tFixaxdOlSJk6cGKLqhQgk3WVChNh7770XsP35558zdOhQbr755oD2m266iYceeuiM48eOHcvmzZuDWqMQF0pCRohLyG9/+1v27NnD008/jUqlCnU5Qvxo8jCmEEKIoJExGSGEEEEjISOEECJoJGSEEEIEjYSMEEKIoJGQEUIIETQSMkIIIYLm/wHi4qnFTmJGbQAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.swarmplot(x='Type',y='Size',data=walmart_stores_data,palette='Set2')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 26,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:xlabel='Type', ylabel='count'>"
-                        ]
-                    },
-                    "execution_count": 26,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbHUlEQVR4nO3de3BU9f3/8dcmIWEgOIW4EcowQKmCFYq0sYK0pISGhFwMIFpIgAYktXjhMgiGJDXCiPCLFJSBtCjotwXUREISoRC14FA1VYFOg/GKqauSMGETLiZoQsie3x/o6ppwsqHZs4k8HzPM7Pl8Puecdziz+9pz22MzDMMQAACXEODvAgAAnRtBAQAwRVAAAEwRFAAAUwQFAMAUQQEAMEVQAABMBfm7AF84ffqcXC5uDwEAbwQE2NS7d89L9n8vg8LlMggKAOggHHoCAJgiKAAApggKAIApggIAYMqnQbFx40bFx8crPj5eOTk5kqTS0lIlJiZq4sSJWr9+favzVVVVKSUlRbGxsZo/f77OnTvnyzIBACZ8FhSlpaV67bXXVFhYqKKiIr3zzjvas2ePMjIylJubq71796q8vFwHDx5sMe+KFSuUnJyskpISDR8+XLm5ub4qEwDQBp8Fhd1uV3p6uoKDg9WtWzcNGTJEDodDAwcO1IABAxQUFKTExESVlJR4zNfU1KRDhw4pJiZGkjR16tQWYwAA1vHZfRTXXnut+7XD4dC+ffs0c+ZM2e12d3t4eLiqq6s95jt9+rRCQ0MVFHSxNLvd3mJMW8LCQr0ad76pWcHdAtu1bLQf/89A1+bzG+6OHTumu+66S8uWLVNgYKAcDoe7zzAM2Ww2j/GttX13ui21tfVe3XBnt/dS8rId7Vo22u+ZnBQ5nXX+LgPAJQQE2Ey/YPv0ZPaRI0eUmpqqJUuWaMqUKerbt6+cTqe73+l0Kjw83GOePn36qK6uTs3NzZccAwCwjs+C4sSJE7rnnnu0du1axcfHS5JGjhypjz/+WJ988omam5u1Z88ejRs3zmO+bt26KSIiQnv37pUkFRUVtRgDALCOzw49bd26VY2NjVqzZo27bfr06VqzZo3uu+8+NTY2KjIyUrGxsZKkzMxMRUVFacKECcrOzlZ6err+/Oc/q1+/flq3bp2vygQAtMFmGMb37tfzOEfRuXCOAujc/HqOAgDQ9REUAABTBAUAwBRBAQAwRVAAAEwRFAAAUwQFAMAUQQEAMEVQAABMERQAAFMEBQDAFEEBADBFUAAATBEUAABTBAUAwBRBAQAw5bMn3ElSfX29pk+frr/85S+qqKjweFJddXW1Ro4cqc2bN3vMU1hYqD/96U8KCwuTJP3617/W4sWLfVkmAMCEz4KirKxMWVlZcjgckqTIyEhFRkZKkpxOp2bMmKHly5e3mK+8vFzp6elKSEjwVWkAgHbw2aGn/Px8ZWdnKzw8vEVfTk6Opk+frkGDBrXoe/vtt1VYWKjExETdf//9Onv2rK9KBAB4wWdBsWrVKkVERLRodzgceuuttzR79uxW57Pb7br77rv1wgsvqF+/flq5cqWvSgQAeMGn5yhak5eXp+TkZAUHB7fav2nTJvfrefPmKTo6ut3rMHtIOPzDbu/l7xIAXCbLg2L//v3aunVrq311dXUqKChQamqqJMkwDAUGBrZ7HbW19XK5jDbH8eFlHaezzt8lALiEgACb6RdsSy+PPXXqlBoaGjRgwIBW+3v06KEtW7aorKxMkrR9+/bL2qMAAHQcS/cojh8/rr59+7Zoz8zMVFRUlCZMmKDHHntMDz30kBoaGjRo0CDl5ORYWSIA4DtshmG0fYymi2nPoafkZTssqOjK9kxOCoeegE6sUx16AgB0PQQFAMAUQQEAMEVQAABMERQAAFMEBQDAFEEBADBFUAAATBEUAABTBAUAwBRBAQAwRVAAAEwRFAAAUwQFAMAUQQEAMEVQAABMERQAAFM+DYr6+nolJCTo+PHjkqTly5dr4sSJSkpKUlJSkl5++eUW81RVVSklJUWxsbGaP3++zp0758sSAQBt8FlQlJWVacaMGXI4HO628vJybd++XcXFxSouLlZ0dHSL+VasWKHk5GSVlJRo+PDhys3N9VWJAAAv+Cwo8vPzlZ2drfDwcEnSl19+qaqqKmVkZCgxMVEbNmyQy+XymKepqUmHDh1STEyMJGnq1KkqKSnxVYkAAC/4LChWrVqliIgI93RNTY1Gjx6tRx55RPn5+Tp8+LB27tzpMc/p06cVGhqqoKAgSZLdbld1dbWvSgQAeCHIqhUNGDBAmzZtck/PmjVLRUVFuuOOO9xthmHIZrN5zPfdaW+EhYVefqHwCbu9l79LQCdz/kKTgoO6+buM77WO+j+2LCg++OADORwO92ElwzDcew5f69Onj+rq6tTc3KzAwEA5nU73oav2qK2tl8tltDmODy/rOJ11/i4BnYzd3kupTy/0dxnfa/8353Gv3nsBATbTL9iWXR5rGIYeeeQRnT17Vk1NTcrLy2txMrtbt26KiIjQ3r17JUlFRUUaN26cVSUCAFphWVAMGzZMv//97zVjxgzFx8fr+uuvV0JCgiQpMzNT+/fvlyRlZ2crPz9fcXFxOnz4sBYtWmRViQCAVvj80NOBAwfcr1NSUpSSktJizKpVq9yv+/fvr23btvm6LACAl7gzGwBgiqAAAJgiKAAApggKAIApggIAYIqgAACYIigAAKYICgCAKYICAGCKoAAAmCIoAACmCAoAgCmCAgBgiqAAAJgiKAAApggKAIApggIAYMqnQVFfX6+EhAQdP35ckpSXl6eEhAQlJiZq+fLlOn/+fIt5CgsL9ctf/lJJSUlKSkrS+vXrfVkiAKANPnsUallZmbKysuRwOCRJH3/8sbZu3apdu3apZ8+eSk9P1zPPPKPU1FSP+crLy5Wenu5+njYAwL98tkeRn5+v7OxshYeHS5KCg4OVnZ2t0NBQ2Ww2XXfddaqqqmox39tvv63CwkIlJibq/vvv19mzZ31VIgDACz4LilWrVikiIsI93b9/f40dO1aSdOrUKe3YsUMTJkxoMZ/dbtfdd9+tF154Qf369dPKlSt9VSIAwAs+O/R0KdXV1Zo3b55uu+023XzzzS36N23a5H49b948RUdHt3sdYWGh/1ON6Hh2ey9/lwBckTrivWdpUFRUVGjevHmaNWuW5s6d26K/rq5OBQUF7vMWhmEoMDCw3eupra2Xy2W0OY4PL+s4nXX+LgGdDO8/a3jz3gsIsJl+wbbs8tj6+nrdeeedWrhwYashIUk9evTQli1bVFZWJknavn37Ze1RAAA6jmV7FDt37lRNTY2efvppPf3005KkqKgoLVy4UJmZmYqKitKECRP02GOP6aGHHlJDQ4MGDRqknJwcq0oEALTCZhhG28doupj2HHpKXrbDgoqubM/kpHDoCS3Y7b2U+vRCf5fxvfZ/cx7vWoeeAABdE0EBADBFUAAATHkVFNXV1S3aPvroow4vBgDQ+ZgGxZkzZ3TmzBmlpaXp7Nmz7umamhrde++9VtUIAPAj08tjlyxZotdff12SPO6iDgoKUkxMjG8rAwB0CqZBsXXrVknS8uXLtXr1aksKAgB0Ll7dcLd69WpVVlbq7Nmz+vZtFzfccIPPCgMAdA5eBcWGDRu0detWhYWFudtsNpv279/vs8IAAJ2DV0FRVFSkl156Sddcc42v6wEAdDJeXR7br18/QgIArlBe7VGMGTNGOTk5mjBhgrp37+5u5xwFAHz/eRUUu3btkiSVlJS42zhHAQBXBq+C4sCBA76uAwDQSXkVFF8/P+K75syZ06HFAAA6H6+C4sMPP3S/Pn/+vA4dOqQxY8b4rCgAQOfh9Q1331ZdXa3MzEyfFAQA6Fwu62fGr7nmGlVWVrY5rr6+XgkJCTp+/LgkqbS0VImJiZo4caLWr1/f6jxVVVVKSUlRbGys5s+fr3Pnzl1OiQCADtLucxSGYai8vNzjLu3WlJWVKSsrSw6HQ5LU0NCgjIwMbdu2Tf369dNdd92lgwcPKjIy0mO+FStWKDk5WfHx8dq0aZNyc3O1dOnSdv5ZAICO4tUexYcffuj+d+zYMfXr109r1641nSc/P1/Z2dkKDw+XJB09elQDBw7UgAEDFBQUpMTERI/LbSWpqalJhw4dcv8y7dSpU1uMAQBYq13nKCorK3XhwgUNHDiwzXlWrVrlMX3y5EnZ7Xb3dHh4eIsHIp0+fVqhoaEKCrpYlt1ub/WhSQAA63gVFJ988onuvvtunTx5Ui6XS71799bmzZs1ZMgQr1fkcrlks9nc04ZheExfqu27094ICwtt9zzwLbu9V4cv03WhSQFB3Tp8ufgG/8ddX0e897wKipUrV2revHmaMmWKJKmgoEArVqzQ3/72N69X1LdvXzmdTve00+l0H5b6Wp8+fVRXV6fm5mYFBga2OsYbtbX1crmMNsf54sMLrXM66zp8mXZ7Lx3Jmdfhy8U3fr5si0+2ncT7zyrebL+AAJvpF2yvzlHU1ta6Q0KSbrvtNp0+fdqbWd1Gjhypjz/+WJ988omam5u1Z88ejRs3zmNMt27dFBERob1790q6+Ku13x0DALCWV0HR3NysM2fOuKdPnTrV7hWFhIRozZo1uu+++xQXF6cf/ehHio2NlSRlZma6fzcqOztb+fn5iouL0+HDh7Vo0aJ2rwsA0HG8OvQ0c+ZM/fa3v9WkSZNks9m0d+9e/e53v/NqBd/+nagxY8bohRdeaDHm2ye++/fvr23btnm1bACA73m1R/H1vQ5NTU2qqKhQdXW1oqOjfVoYAKBz8GqPIj09XSkpKZo9e7YaGxv17LPPKiMjQ08++aSv6wMA+JlXexSnT5/W7NmzJV0815CamupxBRMA4PvL65PZ377xraamRobR9uWnAICuz6tDT6mpqZo8ebJ+9atfyWazqbS0VMuWLfN1bQCATsCroJg2bZqGDx+uN954Q4GBgbrzzjt13XXX+bo2AEAn4FVQSNKwYcM0bNgwX9YCAOiELut5FACAKwdBAQAwRVAAAEwRFAAAUwQFAMAUQQEAMEVQAABMERQAAFMEBQDAFEEBADDl9U94dJTnn39e27dvd08fP35cSUlJevDBB91tGzduVEFBga666ipJ0h133KGUlBSrSwUAyA9Bcfvtt+v222+XJB07dkz33HOP7r33Xo8x5eXlWrdunUaNGmV1eQCA77A8KL7toYce0uLFi9WnTx+P9vLycm3evFmVlZW66aab9MADDygkJMRPVQLAlc1v5yhKS0vV0NCgSZMmebSfO3dO119/vZYuXarCwkJ9/vnnys3N9VOVAAC/7VE899xzmjNnTov2nj17ejyLe+7cucrIyNDixYu9XnZYWGiH1IiOY7f38ncJuExsu66tI7afX4Li/PnzOnTokNasWdOir6qqSqWlpZo2bZokyTAMBQW1r8za2nq5XG0/qpU3gHWczroOXybbzxq+2HYS288q3my/gACb6Rdsvxx6+uCDDzRo0CD16NGjRV/37t316KOP6rPPPpNhGNqxY4eio6P9UCUAQPJTUHz22Wfq27evR1taWprefvtt9enTRytXrtT8+fMVGxsrwzBaPUQFALCGXw49xcXFKS4uzqPt2+clYmJiFBMTY3VZAIBWcGc2AMAUQQEAMEVQAABMERQAAFMEBQDAFEEBADBFUAAATBEUAABTBAUAwBRBAQAwRVAAAEwRFAAAUwQFAMAUQQEAMEVQAABMERQAAFMEBQDAlF+ecDdr1iydOnVKQUEXV79y5UqNHDnS3f/ee+8pMzNT586dU0REhFasWOEeCwCwluWfvoZhyOFw6JVXXrnkh//SpUv18MMP68Ybb1RGRoby8/OVnJxscaUAAMkPh57++9//SpLmzp2rW2+9Vdu3b/for6ysVENDg2688UZJ0tSpU1VSUmJ1mQCAr1i+R/H5559rzJgx+uMf/6impibNnj1bgwcP1tixYyVJJ0+elN1ud4+32+2qrq62ukwAwFcsD4pRo0Zp1KhR7ulp06bp4MGD7qBwuVyy2WzufsMwPKa9ERYW2jHFosPY7b38XQIuE9uua+uI7Wd5UBw+fFhNTU0aM2aMpItB8O1zFX379pXT6XRP19TUKDw8vF3rqK2tl8tltDmON4B1nM66Dl8m288avth2EtvPKt5sv4AAm+kXbMvPUdTV1SknJ0eNjY2qr69XYWGhoqOj3f39+/dXSEiIjhw5IkkqLi7WuHHjrC4TAPAVy/coxo8fr7KyMk2ePFkul0vJyckaNWqU0tLStGDBAo0YMUJr165VVlaW6uvrdcMNN2j27NlWlwkA+Ipfbk5YtGiRFi1a5NH25JNPul8PGzZMO3futLgqAEBruDMbAGCKoAAAmCIoAACmCAoAgCmCAgBgiqAAAJgiKAAApggKAIApggIAYIqgAACYIigAAKYICgCAKYICAGCKoAAAmCIoAACmCAoAgCmCAgBgyi9PuNu4caP27dsnSYqMjNSyZcta9BcUFOiqq66SJN1xxx1KSUmxvE4AgB+CorS0VK+99poKCwtls9k0b948vfzyy4qOjnaPKS8v17p16zRq1CirywMAfIflQWG325Wenq7g4GBJ0pAhQ1RVVeUxpry8XJs3b1ZlZaVuuukmPfDAAwoJCbG6VACA/BAU1157rfu1w+HQvn379Oyzz7rbzp07p+uvv15Lly7VwIEDlZ6ertzcXC1evNjrdYSFhXZozfjf2e29/F0CLhPbrmvriO3nl3MUknTs2DHdddddWrZsmQYNGuRu79mzp5588kn39Ny5c5WRkdGuoKitrZfLZbQ5jjeAdZzOug5fJtvPGr7YdhLbzyrebL+AAJvpF2y/XPV05MgRpaamasmSJZoyZYpHX1VVlXbu3OmeNgxDQUF+yzMAuOJZHhQnTpzQPffco7Vr1yo+Pr5Ff/fu3fXoo4/qs88+k2EY2rFjh8eJbgCAtSz/qr5161Y1NjZqzZo17rbp06frwIEDWrBggUaMGKGVK1dq/vz5ampq0s9+9jPNmTPH6jIBAF+xPCiysrKUlZXVon3GjBnu1zExMYqJibGyLADAJXBnNgDAFEEBADBFUAAATBEUAABTBAUAwBRBAQAwRVAAAEwRFAAAUwQFAMAUQQEAMEVQAABMERQAAFMEBQDAFEEBADBFUAAATBEUAABTBAUAwJRfgmL37t2Ki4vTxIkTtWPHjhb97733nqZOnaqYmBhlZmbqwoULfqgSACD5ISiqq6u1fv16PfPMMyoqKlJeXp4++ugjjzFLly7Vgw8+qBdffFGGYSg/P9/qMgEAX7H8mdmlpaUaPXq0fvCDH0i6+HzskpIS3XvvvZKkyspKNTQ06MYbb5QkTZ06VRs2bFBycrLX6wgIsHk99urePb0ei8vXnm3SHsFXhflkufiGr7adJF0d2sdny8ZF3my/tsZYHhQnT56U3W53T4eHh+vo0aOX7Lfb7aqurm7XOnq348N/w/LJ7Vo2Lk9YWKhPljviD//PJ8vFN3y17SRp7e3ZPls2LuqI7Wf5oSeXyyWb7Zv0MgzDY7qtfgCAtSwPir59+8rpdLqnnU6nwsPDL9lfU1Pj0Q8AsJblQXHLLbfoX//6l06dOqUvv/xSL730ksaNG+fu79+/v0JCQnTkyBFJUnFxsUc/AMBaNsMwDKtXunv3bm3evFlNTU2aNm2a0tLSlJaWpgULFmjEiBF6//33lZWVpfr6et1www1avXq1goODrS4TACA/BQUAoOvgzmwAgCmCAgBgiqAAAJgiKAAApgiKLuTDDz/U0KFD9eKLL/q7FLRDfX29VqxYoYSEBCUlJWnWrFl65513/F0WvPDmm29q1KhRSkpK0q233qpJkybpr3/9q7/LspzlP+GBy1dQUKDY2Fjl5eUpJibG3+XACy6XS2lpabr55ptVVFSkoKAgvfHGG0pLS9Pf//539e7d298log3Dhw/Xtm3bJF0M/fj4eI0dO1Y//vGP/VyZddij6CKampq0e/duLVq0SO+8844+/fRTf5cEL7z55ps6ceKEFixYoKCgi9/LRo8erdWrV8vlcvm5OrRXY2OjAgMD1atXL3+XYimCoos4ePCgfvjDH2rw4MH6zW9+o7y8PH+XBC+8++67GjZsmAICPN9qkZGRCgvjl2+7gvLyciUlJSkxMVFRUVH6xS9+ccX9rBBB0UUUFBQoISFBkhQXF6ddu3bp/Pnzfq4KbQkICFBISIi/y8D/YPjw4SouLtbu3bv1+uuvy+Fw6IknnvB3WZYiKLqA2tpavfrqq3rqqacUFRWlrKwsff7553r55Zf9XRraMHz4cL377rv67g8grFu3Tm+88YafqsLlCg0N1aRJk/Tvf//b36VYiqDoAoqLizV69Gj985//1IEDB/TKK6/oD3/4g5577jl/l4Y2REREKCwsTBs3blRzc7Mk6dVXX9WuXbuuqJOh3xfNzc1666239JOf/MTfpViKq566gMLCQi1evNijLSUlRVu2bFFFRYWGDBnip8rQFpvNptzcXK1evVoJCQkKCgpS79699cQTT+jqq6/2d3nwwtfnKGw2my5cuKChQ4cqLS3N32VZih8FBACY4tATAMAUQQEAMEVQAABMERQAAFMEBQDAFJfHApfp4Ycf1qFDhyRJFRUV6t+/v7p37y5JysvLc78GujoujwU6QFRUlB5//HGNGDHC36UAHY49CqADffHFF4qMjFR+fr4GDx4sSUpNTdXMmTP1j3/8QyEhIXr//fdVW1ursWPHKisrS926dVNFRYVWrVqlM2fOqLm5WbNmzdK0adP8/NcAF3GOAuhAPXr00OTJk/X8889Lkj799FM5HA6NHz9eknT06FE99dRT2rt3ryoqKpSXl6cLFy5owYIFWrJkiXbt2qXt27frqaee0n/+8x8//iXANwgKoIMlJyeruLhYTU1NysvL07Rp0xQYGChJmjJlinr27Kng4GAlJSXptddek8Ph0KeffqqMjAwlJSVp5syZamho0LvvvuvnvwS4iENPQAcbPHiwhg4dqv3792vPnj3Kz893930dGJJkGIYCAgLU3NysXr16qbi42N1XU1NzxT0cB50XexSADyQnJysnJ0c//elPdc0117jb9+3bp/Pnz6uxsVGFhYUaP368Bg8erO7du7uD4sSJE0pISFB5ebm/ygc8EBSAD4wfP15ffPGFpk+f7tHevXt3JScnKzExUREREbrtttsUHBys3Nxc7dy5U4mJiZo7d64WLlyon//8536qHvDEoSegAxw4cMBj+ujRowoLC9Mtt9zi0T5mzBjdeeedLeYfNmyYtm3b5tMagctFUAAd7IEHHtBbb72l9evXy2az+bsc4H/GDXcAAFOcowAAmCIoAACmCAoAgCmCAgBgiqAAAJgiKAAApv4/7ZTzukcgVQYAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.countplot(x='Type',data=walmart_stores_data)   # Betrachtung, wieviele L\u00e4den wir von welchem Type haben"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 27,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "45\n"
-                    ]
-                }
-            ],
-            "source": [
-                "sizes=walmart_stores_data.count()['Size'].round(1)\n",
-                "print(sizes)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 28,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<seaborn.axisgrid.FacetGrid at 0x2156962b730>"
-                        ]
-                    },
-                    "execution_count": 28,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnwAAADMCAYAAADpuH4KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ40lEQVR4nO3de3BU9f3G8Sc3Em2iCG6gUuYng/Yig1ykFQRJgzUQkhgJoSIQhgIFGdpSoFzEWCwQBhAMIuBQpdpS5GKbEElBqzA6YqgkDMJQ1FJGEAQhRCAJCclm9/v7g3FrJJBl92x29/B+zThmz+455zmbfDYPZze7EcYYIwAAANhWZLADAAAAILAofAAAADZH4QMAALA5Ch8AAIDNUfgAAABsjsIHAABgc9HBDoArLViwQKWlpZKkI0eOqEOHDoqLi5Mkbdq0yfN1sGVlZenSpUv6xz/+oYiIiGDHwQ0qHOalsrJSK1as0IcffqjIyEhFRERo5MiRGjZsWLCj4QYU6jNTUFCgvLw8fe9735MxRg0NDerYsaPmz5+vxMTEoGYLZxG8D19oGzBggJ5//nl17do12FEa2b9/v5566ilFRUVp+vTp6t+/f7AjASE5L3V1dRo2bJgyMjL0i1/8QtHR0friiy80ZswYTZgwgdKHoArFmSkoKNBbb72lNWvWeJY988wzamho0IIFC4KYLLxxhi+M1NTUKCkpSZs3b1anTp0kSWPGjNGoUaP0zjvvKDY2Vp988okqKirUt29f5ebmKiYmRkeOHFFeXp7Onz8vl8ulnJwcZWdnX7H94cOHq7a2ttGynj17au7cuVfcdsOGDfrpT3+q2267TX/+858pfAg5oTIv27Zt080336xf/vKXnmUdOnTQ8uXL5XQ6A3DkgG9CZWa+zel0qrq6Wh07drTuYG9EBiEtOTnZHDhwwHN5wYIFZvHixcYYY44dO2aSkpJMQ0ODmTVrlnn00UdNdXW1qaurMyNHjjTr1q0zTqfTDB482Bw8eNAYY0xlZaVJTU01+/bt8znTuXPnTNeuXc2nn35qzpw5Y+655x5z+PBhv44TsEIozsu8efM8GYBQE4oz8/e//9307NnTPPLIIyYjI8P85Cc/MQ8++KA5ceKEX8d6o+MMX5gZMWKERo0apalTp2rTpk3Kzs5WVFSUJGnIkCH6zne+I0nKzMzUjh071Lt3b33++eeaM2eOZxuXLl3SoUOH1L1790bb9vZfXwUFBbrrrrv0/e9/X5L0wAMP6C9/+YvmzZtn9eECfgmFeYmIiJDhlTMIE6EwM5LUq1cvz1O6brdbL774osaPH69t27bxmnEfUfjCTKdOnfSDH/xAO3bsUHFxsTZv3uy57uuhlCRjjCIjI+VyuZSQkKCioiLPdWfPnlVCQsIV2964cWOz+zfGaOPGjbpw4YIGDBggSaqtrdWePXs0depU3Xbbbf4cHmCpYM+LJHXv3l3r16+/YvmOHTtUVlamWbNmXc8hAQEVCjPzbZGRkcrJydGKFStUUVGh22+/3aft3Oh4W5YwNGLECC1ZskT33nuv2rVr51m+fft21dfXq66uToWFhUpOTlanTp0UFxfnGcZTp04pPT1dBw8e9GnfH3zwgSoqKvTOO+9o586d2rlzp95//305HA5t2rTJkuMDrBTMeZGklJQUVVdX66WXXpLL5ZIkHT9+XIsWLVLnzp39OzggAII9M01599131aFDB7Vp08bS7d5IOMMXhpKTk5Wbm6vhw4c3Wh4XF6cRI0aosrJSAwcO1NChQxUZGanVq1crLy9PL7/8shoaGjRlyhTdd999Pu17w4YN+vnPf97oX2/R0dGaOHGiVqxYoXHjxikmJsav4wOsFMx5kaRWrVrplVde0bPPPquMjAxFRUUpKipKkyZNUlZWlr+HB1gu2DMjSWVlZcrMzFRERIQaGhrUunVrrVq1SpGRnKfyFW/LEob27dun3NxcFRcXe17LMHv2bN19990aN25ckNMBoYV5Aa4PM2NPnOELM7NmzdKePXuUn5/PC1eBZjAvwPVhZuyLM3wAAAA2x5PhAAAANkfhAwAAsDkKHwAAgM0F7Y82Kiqq5XZb//LB2267WefO1Vi+3ZZA9uBoyewOx5VvRuoN5uVK4ZxdCu/8zAzft5ZGdu9ca15sd4YvOjqq+RuFKLIHRzhn91c4H3s4Z5fCO384Z/dXOB872YMjVLLbrvABAACgMa8KX3V1tdLT03XixAlJUklJiTIyMpSSkqL8/PyABgQAAIB/mi18+/fv1+OPP66jR49Kki5duqQ5c+Zo9erV2rZtmw4ePKj33nsv0DkBAADgo2YL3+bNmzV37lwlJiZKkg4cOKD/+7//U8eOHRUdHa2MjAy9+eabAQ8KAAAA3zT7V7p5eXmNLp85c0YOh8NzOTExUadPn7Y+GQAAACxx3W/L4na7G32+njHGp8/ba9s2/rrX8Zavf8YfCsjesuqdLklNZ693utQqJjT+uop5aVo4Z5fCO3+oZ2dmmkb24AiF7Ndd+Nq3b6/y8nLP5fLycs/TvdcjUO+R5HAkqLy8yvLttgSytzyHI0EZ04uavG7rskzLjynU3lMsXL9vUnhnl8I7f0tmZ2asQ/bgCJV5ue63ZenWrZs+++wzHTt2TC6XS8XFxerfv79fAQEAABA4132GLzY2VosWLdKvf/1r1dXVKSkpSYMGDQpENgAAAFjA68K3c+dOz9d9+vTRG2+8EZBAAAAAsBaftAEAAGBzFD4AAACbo/ABAADYHIUPAADA5ih8AAAANkfhAwAAsDkKHwAAgM1R+AAAAGyOwgcAAGBzFD4AAACbo/ABAADYHIUPAADA5ih8AAAANkfhAwAAsDkKHwAAgM1R+AAAAGyOwgcAAGBzFD4AAACb86vwFRUVKS0tTWlpaVq8eLFVmQAAAGAhnwtfbW2t8vLytG7dOhUVFamsrEwlJSVWZgMAAIAFfC58LpdLbrdbtbW1amhoUENDg2JjY63MBgAAAAtE+7pifHy8pkyZotTUVN1000368Y9/rJ49e1qZDQAAABaIMMYYX1b85JNPNHv2bK1du1YJCQn63e9+p3vvvVfjx4+3OiMQUBnTi5pcvnVZZgsnAQAgMHw+w7dr1y716dNHbdu2lSRlZWXptdde87rwVVRUy+32qWtek8ORoPLyKsu32xLI3vIcjoRrXm/1MTW3v6thXq4Uztml8M7fktmZGeuQPThCZV58fg3fD3/4Q5WUlKimpkbGGO3cuVNdu3b1dXMAAAAIEJ/P8PXr10+HDh1SVlaWYmJi1LVrV02YMMHKbAAAALCAz4VPkiZMmEDJAwAACHF80gYAAIDNUfgAAABsjsIHAABgcxQ+AAAAm6PwAQAA2ByFDwAAwOYofAAAADZH4QMAALA5Ch8AAIDNUfgAAABsjsIHAABgcxQ+AAAAm6PwAQAA2ByFDwAAwOYofAAAADZH4QMAALA5Ch8AAIDNUfgAAABszq/Ct3PnTmVlZSk1NVULFiywKhMAAAAs5HPhO378uObOnavVq1frjTfe0KFDh/Tee+9ZmQ0AAAAWiPZ1xbfffluDBw9W+/btJUn5+fmKjY21LBgAAACs4fMZvmPHjsnlcumJJ55QZmamXnvtNd16661WZgMAAIAFfD7D53K5VFZWpnXr1unmm2/WpEmTVFhYqKysLK/Wb9s23tddN8vhSAjYtgON7KElVI6JeWlaOGeXwjt/qGdnZppG9uAIhew+F77bb79dffr0UZs2bSRJP/vZz3TgwAGvC19FRbXcbuPr7q/K4UhQeXmV5dttCWRvec0NodXH5OvQMy9XCufsUnjnb8nszIx1yB4coTIvPj+lm5ycrF27dqmyslIul0vvv/++unTp4uvmAAAAECA+n+Hr1q2bxo8frxEjRsjpdKpv374aOnSoldkAAABgAZ8LnyRlZ2crOzvbqiwAAAAIAD5pAwAAwOYofAAAADZH4QMAALA5Ch8AAIDNUfgAAABsjsIHAABgcxQ+AAAAm6PwAQAA2Jxfb7wMfFPCLTcpLrbpH6lLdQ2qqqxt4UQAAECi8MFCcbHRyphe1OR1W5dlKjw/9hoAgPDHU7oAAAA2R+EDAACwOQofAACAzVH4AAAAbI7CBwAAYHMUPgAAAJuj8AEAANgchQ8AAMDmLCl8ixcv1uzZs63YFAAAACzmd+HbvXu3CgsLrcgCAACAAPCr8J0/f175+fl64oknrMoDAAAAi/lV+H7/+99r6tSpuuWWW6zKAwAAAItF+7ri66+/ru9+97vq06ePCgoKrnv9tm3jfd11sxyOhIBtO9DCOXtzwvHYQiUz89K0cM4uhXf+UM/OzDQtENnrnS61iony+Xpvcb/7x+fCt23bNpWXlyszM1MXLlxQTU2NFi5cqDlz5ni1fkVFtdxu4+vur8rhSFB5eZXl220J4Z69OaF4bM3ltjqzr0PPvFwpnLNL4Z2/JbMzM9YJVHaHI0EZ04uuev3WZZl+75f73ft9XY3Phe+VV17xfF1QUKA9e/Z4XfYAAADQcngfPgAAAJvz+QzfN2VlZSkrK8uKTQEAAMBinOEDAACwOQofAACAzVH4AAAAbI7CBwAAYHMUPgAAAJuj8AEAANgchQ8AAMDmKHwAAAA2R+EDAACwOUs+aQNAaEm45SZFR0Xq3LmLwY4CIMwl3HKT4mKpC+GO7yBgQzw4A7BKXGy0MqYXXfX6rcsyWzANfMVTugAAADZH4QMAALA5Ch8AAIDNUfgAAABsjsIHAABgcxQ+AAAAm6PwAQAA2ByFDwAAwOb8enfWlStXavv27ZKkpKQkzZw505JQAAAAsI7PZ/hKSkq0a9cuFRYWasuWLfr3v/+tt99+28psAAAAsIDPZ/gcDodmz56tVq1aSZI6d+6skydPWhYMAAAA1vC58N19992er48ePart27drw4YNXq/ftm28r7tulsORELBtB1o4Z29OuB1bvdPVZOZ6p0utYqJaNIuv8+LNfR5u35dvCufsUnjnD/XsN9rvmOYel+qdLklNZ2+JxzQr7rNQvN+9FQrZ/f6E9cOHD2vixImaOXOm7rzzTq/Xq6iolttt/N39FRyOBJWXV1m+3ZYQ7tmbE4rHdq3crWKimvzA8K3LMn0+Fl+H/nrn5ev9NJcz3H/mwjW7FN75WzJ7S82Mt0L1++ZwJDT5ePW1rcsyJTX9mODtuv7w9z4L1fvdG6EyL379le7evXs1ZswYTZ8+XUOGDPFnUwAAAAgQn8/wnTp1SpMnT1Z+fr769OljZSYAAABYyOfCt3btWtXV1WnRokWeZcOHD9fjjz9uSTAAAABYw+fCl5ubq9zcXCuzAAAAIAD4pA0AAACbo/ABAADYHIUPAADA5ih8AAAANkfhAwAAsDkKHwAAgM1R+AAAAGyOwgcAAGBzPr/xMhAsCbfcpLjYpn90L9U1qKqy9rrWuV71TtdVP6D6avsPtIRbbrpiWb3T1Wh5MHIBN5JrPc7U1bsU2yrqqusG+rGj3ulSq5ioqz52BdK1HjOl4D1u3mgofAg7cbHRyphe1OR1W5dlquo61tm6LPO6998qJuq69x9oTf2SaRXT+JdLMHIBN5LmHpuudt3X1wdyRpt73Aqka+376/3z+BR4PKULAABgcxQ+AAAAm6PwAQAA2ByFDwAAwOYofAAAADZH4QMAALA5Ch8AAIDNUfgAAABszq/Ct3XrVg0ePFgpKSlav369VZkAAABgIZ8/aeP06dPKz89XQUGBWrVqpeHDh+v+++/XXXfdZWU+AAAA+MnnwldSUqLevXurdevWkqSBAwfqzTff1K9+9Suv1o+MjPB110HddqCFc3ZJSrztys90/ZqVx+bLfq62zrW25cs6gfgeWrHNq20jnH/mwjm7FN75Qz17sH7H+PJ44s12vdHc9v3JFujrvTn2UP+Zu5ZQyB5hjDG+rLhmzRrV1NRo6tSpkqTXX39dBw4c0Pz58y0NCAAAAP/4/Bo+t9utiIj/NVZjTKPLAAAACA0+F7727durvLzcc7m8vFyJiYmWhAIAAIB1fC58DzzwgHbv3q2vvvpKtbW1+uc//6n+/ftbmQ0AAAAW8PmPNtq1a6epU6dq9OjRcjqdys7O1r333mtlNgAAAFjA5z/aAAAAQHjgkzYAAABsjsIHAABgcxQ+AAAAm6PwAQAA2FzIFr6cnBylpaUpMzNTmZmZ2r9/v0pKSpSRkaGUlBTl5+d7bvvxxx8rKytLAwcO1FNPPaWGhgZJ0smTJzVy5EgNGjRIkyZN0sWLFyVJlZWVmjBhglJTUzVy5MhG7yfoj+rqaqWnp+vEiROSFPC89fX1mjFjhlJTUzVkyBAdOXLEsuxPPvmkUlJSPPf/22+/HZLZV65cqbS0NKWlpWnJkiWSwut+twrzwrx4i5m5jJlhZrxhq3kxIcjtdpt+/foZp9PpWVZbW2uSkpLM559/bpxOpxk7dqx59913jTHGpKWlmX379hljjHnyySfN+vXrjTHGTJgwwRQXFxtjjFm5cqVZsmSJMcaYP/zhD2bNmjXGGGMKCwvNlClT/M780UcfmfT0dNOlSxdz/PjxFsn78ssvm6efftoYY8yePXvMsGHDLMlujDHp6enm9OnTV9w2lLJ/8MEH5rHHHjN1dXWmvr7ejB492mzdujVs7nerMC/Mi7eYmcuYGWbGG3abl5AsfP/9739Nv379TE5OjsnIyDDr1q0zH374oRk9erTnNoWFhWb27NnmxIkT5qGHHvIsLy0tNTk5Oaa+vt706NHDM9AnT540AwYMMMYYk5ycbE6ePGmMMcbpdJoePXqY+vp6vzLPmTPHlJaWmuTkZHP8+PEWyTtq1ChTWlrq2dZDDz1kvvjiC7+z19TUmJ49e5px48aZ9PR08/zzzxuXyxVy2f/zn/94hsuYy8PzwgsvhM39bhXmhXnxFjNzGTPDzHjDbvMSkk/pVlZWqk+fPlq1apVeffVVbdy4USdPnpTD4fDcJjExUadPn9aZM2caLXc4HDp9+rTOnTun+Ph4RUdHN1ouqdE60dHRio+P11dffeVX5ry8PPXq1ctz+du5ApG3qW19+eWXfmc/e/asevfurYULF2rz5s0qKyvT3/72t5DLfvfdd6t79+6SpKNHj2r79u2KiIgIm/vdKswL8+ItZuYyZoaZ8Ybd5sXnT9oIpB49eqhHjx6ey9nZ2VqxYoXuu+8+zzJjjCIiIuR2uxUREXHF8q///03fvvzNdSIjre2+V8tlZd5vr2PVcXTs2FGrVq3yXM7JydGWLVvUuXPnkMx++PBhTZw4UTNnzlRUVJSOHj16RcZwuN99xbx4l5d5+R9mhpnxJi8zc5ld5iUkz/CVlZVp9+7dnsvGGHXo0KHRC1/Ly8uVmJio9u3bN1p+9uxZJSYmqk2bNqqqqpLL5Wp0e+lyIz979qwkqaGhQRcvXlTr1q0tPYZv5wpE3nbt2unMmTNXbMtfn376qd566y3PZWOMoqOjQzL73r17NWbMGE2fPl1DhgwJ6/vdV8wL83I9mBlmxtu8zIy95iUkC19VVZWWLFmiuro6VVdXq7CwUNOmTdNnn32mY8eOyeVyqbi4WP3791eHDh0UGxurvXv3SpKKiorUv39/xcTEqFevXtq2bZskacuWLerfv78kKSkpSVu2bJEkbdu2Tb169VJMTIylx9CtW7eA501KSlJRUZGkyw9gsbGxuuOOO/zObozRwoULdeHCBTmdTm3atEkPP/xwyGU/deqUJk+erKVLlyotLU1SeN/vvmJemBdvMTOXMTPMjDdsNy++v/wvsPLz882gQYNMSkqKefXVV40xxpSUlJiMjAyTkpJi8vLyjNvtNsYY8/HHH5uhQ4eagQMHmmnTppm6ujpjjDEnTpwwo0aNMqmpqWbs2LHm/Pnzxhhjzp07ZyZOnGgGDx5sHnvsMc9fDVnh6xeltkTeS5cumZkzZ5rBgwebRx991Bw8eNCy7H/9619Namqqefjhh82zzz7ruU0oZZ8/f77p3r27eeSRRzz/vfbaa2F3v1uBeWFevMHM/A8zw8w0x27zEmGMMf7XRgAAAISqkHxKFwAAANah8AEAANgchQ8AAMDmKHwAAAA2R+EDAACwuZD8pA345qOPPtKyZct0/vx5GWPUvn17zZo1S5cuXdJLL72kFStWBDsiEDKYF8B7zEv4421ZbKK+vl4PPvig/vSnP6lLly6SLr/xY35+vnbs2KGoqKggJwRCB/MCeI95sQfO8NlEbW2tqqqqVFNT41n2yCOPKD4+Xrt379aiRYtUXFyscePGeT7KpaamRsePH9ebb76pO+64Q0uXLlVpaalcLpfuuece5ebmKj4+PliHBAQM8wJ4j3mxBwqfTdx6662aMWOGxo8fr9tvv109e/bU/fffr7S0NB04cMBzu7Vr10q6/C+2sWPHatiwYbrzzju1cuVKRUVFqaCgQBEREXruuee0dOlSPfPMM0E6IiBwmBfAe8yLPfCUrs1UV1ertLRUpaWl2rFjhyRpxowZWr58uYqLiyVJbrdbv/3tb9W6dWvNmzdPkpSdna2qqirFxcVJkpxOp9q2bat169YF50CAFsC8AN5jXsIbZ/hsYu/evdq3b5/Gjx+v5ORkJScna9q0aUpPT1dDQ0Oj2+bl5am2tlb5+fmeZW63W3PmzFFSUpIk6eLFi6qrq2vRYwBaCvMCeI95sQfelsUm2rRpoxdffFFlZWWeZeXl5aqurtb58+c9y/74xz9q3759Wr58eaMX2vbr10/r169XfX293G63nn76aT333HMteQhAi2FeAO8xL/bAU7o28q9//UsvvPCCvvzyS8XGxiohIUGTJ09WbGys5s+fr7Vr1yopKUmdOnVSXFyc3G63JOk3v/mN+vbtq8WLF2vPnj1yuVz60Y9+pPnz5/OiWtgW8wJ4j3kJfxQ+AAAAm+MpXQAAAJuj8AEAANgchQ8AAMDmKHwAAAA2R+EDAACwOQofAACAzVH4AAAAbI7CBwAAYHP/D1dYuZYBXzpsAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 648x216 with 3 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "g = sns.FacetGrid(data=walmart_stores_data,col='Type')   # Betrachtung, wie sich inerhalb eines Types dann noch die Gr\u00f6\u00dfe verteilt\n",
-                "g.map(plt.hist,'Size')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 29,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Index(['Store', 'Type', 'Size'], dtype='object')"
-                        ]
-                    },
-                    "execution_count": 29,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_stores_data.columns"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 30,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Store    0\n",
-                            "Type     0\n",
-                            "Size     0\n",
-                            "dtype: int64"
-                        ]
-                    },
-                    "execution_count": 30,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "walmart_stores_data.isnull().sum() # existieren Nullwerte ?"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# 3. Datenaufbereitung"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 31,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "festo_data = walmart_features_data.merge(walmart_stores_data, how='inner', on='Store')\n",
-                "comb_data = walmart_train_data.merge(festo_data, how='inner', on=['Store','Date','IsHoliday']).sort_values(by=['Store',\n",
-                "                                                                            'Dept', 'Date']).reset_index(drop=True)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 32,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Dept</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Weekly_Sales</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>Fuel_Price</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "      <th>CPI</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>Type</th>\n",
-                            "      <th>Size</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-05</td>\n",
-                            "      <td>24924.50</td>\n",
-                            "      <td>False</td>\n",
-                            "      <td>42.31</td>\n",
-                            "      <td>2.572</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>211.096358</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-12</td>\n",
-                            "      <td>46039.49</td>\n",
-                            "      <td>True</td>\n",
-                            "      <td>38.51</td>\n",
-                            "      <td>2.548</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>211.242170</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-19</td>\n",
-                            "      <td>41595.55</td>\n",
-                            "      <td>False</td>\n",
-                            "      <td>39.93</td>\n",
-                            "      <td>2.514</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>211.289143</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-26</td>\n",
-                            "      <td>19403.54</td>\n",
-                            "      <td>False</td>\n",
-                            "      <td>46.63</td>\n",
-                            "      <td>2.561</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>211.319643</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-03-05</td>\n",
-                            "      <td>21827.90</td>\n",
-                            "      <td>False</td>\n",
-                            "      <td>46.50</td>\n",
-                            "      <td>2.625</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>211.350143</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   Store  Dept        Date  Weekly_Sales  IsHoliday  Temperature  Fuel_Price  \\\n",
-                            "0      1     1  2010-02-05      24924.50      False        42.31       2.572   \n",
-                            "1      1     1  2010-02-12      46039.49       True        38.51       2.548   \n",
-                            "2      1     1  2010-02-19      41595.55      False        39.93       2.514   \n",
-                            "3      1     1  2010-02-26      19403.54      False        46.63       2.561   \n",
-                            "4      1     1  2010-03-05      21827.90      False        46.50       2.625   \n",
-                            "\n",
-                            "   MarkDown1  MarkDown2  MarkDown3  MarkDown4  MarkDown5         CPI  \\\n",
-                            "0        0.0        0.0        0.0        0.0        0.0  211.096358   \n",
-                            "1        0.0        0.0        0.0        0.0        0.0  211.242170   \n",
-                            "2        0.0        0.0        0.0        0.0        0.0  211.289143   \n",
-                            "3        0.0        0.0        0.0        0.0        0.0  211.319643   \n",
-                            "4        0.0        0.0        0.0        0.0        0.0  211.350143   \n",
-                            "\n",
-                            "   Unemployment Type    Size  \n",
-                            "0         8.106    A  151315  \n",
-                            "1         8.106    A  151315  \n",
-                            "2         8.106    A  151315  \n",
-                            "3         8.106    A  151315  \n",
-                            "4         8.106    A  151315  "
-                        ]
-                    },
-                    "execution_count": 32,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "comb_data.head(5)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 33,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "<class 'pandas.core.frame.DataFrame'>\n",
-                        "RangeIndex: 421570 entries, 0 to 421569\n",
-                        "Data columns (total 16 columns):\n",
-                        " #   Column        Non-Null Count   Dtype  \n",
-                        "---  ------        --------------   -----  \n",
-                        " 0   Store         421570 non-null  int64  \n",
-                        " 1   Dept          421570 non-null  int64  \n",
-                        " 2   Date          421570 non-null  object \n",
-                        " 3   Weekly_Sales  421570 non-null  float64\n",
-                        " 4   IsHoliday     421570 non-null  bool   \n",
-                        " 5   Temperature   421570 non-null  float64\n",
-                        " 6   Fuel_Price    421570 non-null  float64\n",
-                        " 7   MarkDown1     421570 non-null  float64\n",
-                        " 8   MarkDown2     421570 non-null  float64\n",
-                        " 9   MarkDown3     421570 non-null  float64\n",
-                        " 10  MarkDown4     421570 non-null  float64\n",
-                        " 11  MarkDown5     421570 non-null  float64\n",
-                        " 12  CPI           421570 non-null  float64\n",
-                        " 13  Unemployment  421570 non-null  float64\n",
-                        " 14  Type          421570 non-null  object \n",
-                        " 15  Size          421570 non-null  int64  \n",
-                        "dtypes: bool(1), float64(10), int64(3), object(2)\n",
-                        "memory usage: 48.6+ MB\n"
-                    ]
-                }
-            ],
-            "source": [
-                "comb_data.info()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": null,
-            "metadata": {},
-            "outputs": [
-                {
-                    "ename": "KeyboardInterrupt",
-                    "evalue": "",
-                    "output_type": "error",
-                    "traceback": [
-                        "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
-                        "\u001b[1;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
-                        "\u001b[1;32m<ipython-input-34-288b13584d44>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0msns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpairplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcomb_data\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvars\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Weekly_Sales'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'Dept'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'Store'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'Size'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'CPI'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'Unemployment'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'Fuel_Price'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'Temperature'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'Type'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py\u001b[0m in \u001b[0;36minner_f\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     44\u001b[0m             )\n\u001b[0;32m     45\u001b[0m         \u001b[0mkwargs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m{\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0marg\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0marg\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 46\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     47\u001b[0m     \u001b[1;32mreturn\u001b[0m \u001b[0minner_f\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     48\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\seaborn\\axisgrid.py\u001b[0m in \u001b[0;36mpairplot\u001b[1;34m(data, hue, hue_order, palette, vars, x_vars, y_vars, kind, diag_kind, markers, height, aspect, corner, dropna, plot_kws, diag_kws, grid_kws, size)\u001b[0m\n\u001b[0;32m   1985\u001b[0m     \u001b[1;31m# Add a legend\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1986\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0mhue\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1987\u001b[1;33m         \u001b[0mgrid\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_legend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1988\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1989\u001b[0m     \u001b[0mgrid\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtight_layout\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\seaborn\\axisgrid.py\u001b[0m in \u001b[0;36madd_legend\u001b[1;34m(self, legend_data, title, label_order, adjust_subtitles, **kwargs)\u001b[0m\n\u001b[0;32m    140\u001b[0m             \u001b[1;31m# Draw the plot to set the bounding boxes correctly\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    141\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"get_renderer\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 142\u001b[1;33m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_renderer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    143\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    144\u001b[0m             \u001b[1;31m# Calculate and set the new width of the figure so the legend fits\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[1;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[0;32m     39\u001b[0m                 \u001b[0mrenderer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     40\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 41\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0martist\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     42\u001b[0m         \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     43\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\figure.py\u001b[0m in \u001b[0;36mdraw\u001b[1;34m(self, renderer)\u001b[0m\n\u001b[0;32m   1861\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1862\u001b[0m             \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpatch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1863\u001b[1;33m             mimage._draw_list_compositing_images(\n\u001b[0m\u001b[0;32m   1864\u001b[0m                 renderer, self, artists, self.suppressComposite)\n\u001b[0;32m   1865\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[1;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[0;32m    129\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    130\u001b[0m         \u001b[1;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[1;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 131\u001b[1;33m             \u001b[0ma\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    132\u001b[0m     \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    133\u001b[0m         \u001b[1;31m# Composite any adjacent images together\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[1;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[0;32m     39\u001b[0m                 \u001b[0mrenderer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     40\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 41\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0martist\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     42\u001b[0m         \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     43\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\cbook\\deprecation.py\u001b[0m in \u001b[0;36mwrapper\u001b[1;34m(*inner_args, **inner_kwargs)\u001b[0m\n\u001b[0;32m    409\u001b[0m                          \u001b[1;32melse\u001b[0m \u001b[0mdeprecation_addendum\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    410\u001b[0m                 **kwargs)\n\u001b[1;32m--> 411\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0minner_args\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0minner_kwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    412\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    413\u001b[0m     \u001b[1;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_base.py\u001b[0m in \u001b[0;36mdraw\u001b[1;34m(self, renderer, inframe)\u001b[0m\n\u001b[0;32m   2745\u001b[0m             \u001b[0mrenderer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstop_rasterizing\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2746\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2747\u001b[1;33m         \u001b[0mmimage\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_draw_list_compositing_images\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0martists\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   2748\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   2749\u001b[0m         \u001b[0mrenderer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mclose_group\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'axes'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\image.py\u001b[0m in \u001b[0;36m_draw_list_compositing_images\u001b[1;34m(renderer, parent, artists, suppress_composite)\u001b[0m\n\u001b[0;32m    129\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0mnot_composite\u001b[0m \u001b[1;32mor\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mhas_images\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    130\u001b[0m         \u001b[1;32mfor\u001b[0m \u001b[0ma\u001b[0m \u001b[1;32min\u001b[0m \u001b[0martists\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 131\u001b[1;33m             \u001b[0ma\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    132\u001b[0m     \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    133\u001b[0m         \u001b[1;31m# Composite any adjacent images together\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[1;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[0;32m     39\u001b[0m                 \u001b[0mrenderer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     40\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 41\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0martist\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     42\u001b[0m         \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     43\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\collections.py\u001b[0m in \u001b[0;36mdraw\u001b[1;34m(self, renderer)\u001b[0m\n\u001b[0;32m    929\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    930\u001b[0m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mset_sizes\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_sizes\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdpi\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 931\u001b[1;33m         \u001b[0mCollection\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    932\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    933\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\artist.py\u001b[0m in \u001b[0;36mdraw_wrapper\u001b[1;34m(artist, renderer, *args, **kwargs)\u001b[0m\n\u001b[0;32m     39\u001b[0m                 \u001b[0mrenderer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstart_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     40\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 41\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mdraw\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0martist\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrenderer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     42\u001b[0m         \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     43\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0martist\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_agg_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\collections.py\u001b[0m in \u001b[0;36mdraw\u001b[1;34m(self, renderer)\u001b[0m\n\u001b[0;32m    404\u001b[0m                 mpath.Path(offsets), transOffset, tuple(facecolors[0]))\n\u001b[0;32m    405\u001b[0m         \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 406\u001b[1;33m             renderer.draw_path_collection(\n\u001b[0m\u001b[0;32m    407\u001b[0m                 \u001b[0mgc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtransform\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrozen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    408\u001b[0m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_transforms\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moffsets\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtransOffset\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py\u001b[0m in \u001b[0;36mdraw_path_collection\u001b[1;34m(self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position)\u001b[0m\n\u001b[0;32m    170\u001b[0m                 \u001b[1;34m\"3.3\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmessage\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m\"Support for offset_position='data' is \"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    171\u001b[0m                 \"deprecated since %(since)s and will be removed %(removal)s.\")\n\u001b[1;32m--> 172\u001b[1;33m         return self._renderer.draw_path_collection(\n\u001b[0m\u001b[0;32m    173\u001b[0m             \u001b[0mgc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmaster_transform\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpaths\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mall_transforms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moffsets\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moffsetTrans\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    174\u001b[0m             \u001b[0mfacecolors\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0medgecolors\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlinewidths\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlinestyles\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mantialiaseds\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0murls\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-                        "\u001b[1;32m~\\Anaconda3\\lib\\site-packages\\matplotlib\\path.py\u001b[0m in \u001b[0;36mvertices\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    200\u001b[0m         )\n\u001b[0;32m    201\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 202\u001b[1;33m     \u001b[1;33m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    203\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0mvertices\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    204\u001b[0m         \"\"\"\n",
-                        "\u001b[1;31mKeyboardInterrupt\u001b[0m: "
-                    ]
-                }
-            ],
-            "source": [
-                "sns.pairplot(comb_data, vars=['Weekly_Sales', 'Dept', 'Store', 'Size', 'CPI', 'Unemployment', 'Fuel_Price', 'Temperature'], hue='Type')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 33,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<seaborn.axisgrid.FacetGrid at 0x21569758a60>"
-                        ]
-                    },
-                    "execution_count": 33,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAADMCAYAAAA8nNe2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjo0lEQVR4nO3de1TVdb7/8eeWDWhBGZ69xXsedfQsWZManqKTGy0TCLYIal5Ia5w1WKsxtQ6KaLC0dBwOo45jWNPlNMecyUsjGAHWVGQl4+3M0TxDHXO8o1wE46LABr6/P1zsn6jo1kS+5Ouxlgu+H76X9/fLB198P/vLZ1sMwzAQERFpYx3augARERFQIImIiEkokERExBQUSCIiYgoKJBERMQUFkoiImIICqQ098sgjfP3111ddZ9q0aeTm5jZrO3HiBEOHDr3m/pu2LSoqYvLkyVdcZ8mSJfzud7/zvOibYOfOnfz0pz8lOjq62b8//elPV90uMTGRt9566xZVKa3hduzz3333nbuPjxw5kvvvv9+9/M4779yyOtoDa1sXIK2va9euvPfee21dRjO9e/cmMzOzrcuQHykz9fn+/fu7+/qf//xntm3bxuuvv97GVZmTAskkVq9ezccff4y3tzf33HMPv/rVr7Db7R5t++qrr/Lhhx/i5eVF3759eemll7DZbO6vnzhxAqfTyd/+9jeqqqpYuHAh33zzDXa7HS8vL+6//34APvvsM15//XXq6uooKytj3LhxzJkzh0WLFtGlSxfmzp0LQGZmJh999BGvvvpqszomT57M+fPnm7UNGzaMlJQUj69DY2Mjy5YtY9++fVRXV2MYBq+88oq7xmtdr0OHDrF06VLOnj1LQ0MD06ZNY8KECR4fX24d9fkLgoKCePTRR/nmm29IS0tjwoQJ5OfnExAQAMDAgQPdy59++ilr167F5XLRsWNH5s+f79GdY3uhQDKBU6dO8Yc//IH8/Hx8fHx4++232b9/P6NHjwYgNTWVtWvXutd3uVzuz99//32++OILNm/ezB133MHvfve7qw5trV69mo4dO5Kbm0t5eTkxMTHcf//9GIbB22+/zfLly7n33nspKipi1KhRTJ8+nbi4OH7xi18wa9YsrFYrGzdu5Jlnnrls39fzG+mxY8eIjo52L3fr1o3XXnuNffv2UVxczIYNG+jQoQO///3veeONN5oFUkvXa+TIkTz//POkpqYyePBgKisrmTRpEv3792fIkCEe1yat73bs8y1xuVyMGjWK3/72t1dd78iRI6xcuZL/+q//4p577uHgwYP87Gc/46OPPuKOO+74wXWYgQLJBLp27cqgQYOIiYnB4XDgcDgICQlxf33evHmEh4e7l5t++wPYvn07sbGx7g45ffp0XnvtNerq6q54rPz8fJKSkrBYLAQEBPDYY48BYLFYeO2118jLyyMrK4tDhw5hGAbnz5/nX/7lX+jZsyd5eXn07duX4uJiHn744cv2fT2/LbY0ZDd06FDuvvtu3nvvPY4fP87OnTu58847Pbpe3333HceOHSMpKcm9bk1NDX//+98VSCZzO/b5qwkODr7mOl999RXFxcU8/fTT7jaLxcKxY8cYNGjQdR3PrBRIJtChQwfeffddvv76a/Lz81m2bBkjRoxg3rx519y2sbERi8XSbLm+vv6q21w8faGXlxcA586dIyYmhtGjRxMcHMz48eP5y1/+4l43Li6O999/n3vvvZcnnnii2TGb3IzfFvPy8li6dCk/+9nPePTRR/nnf/5ntm7d2mydlq5XdHQ0/v7+zYKutLQUf3//H1yX3Fzq8821dIdzccg2NjYSEhLCqlWr3G2nTp3yeJizPdBTdibwzTffEBUVRb9+/Zg5cyZPP/30NZ9EajJixAjef/99zp07B8C6desYPnw4Pj4+La6/efNmGhsb+f777/nkk08AOHr0KFVVVcyZM4dHHnmEnTt3UldXR2NjIwBhYWEUFBSwbds2xo8ffxPO+sq++uorRo0axdSpUwkKCuIvf/kLDQ0NzdZp6Xr17duXjh07ugPp1KlTREVFceDAgVarV26M+nzLAgIC3NciKyvL3R4SEsJXX33FoUOHAPj8888ZO3YsNTU1t6y21qY7JBMYNGgQERERjB8/njvuuIOOHTuyaNEij7adMGECp06dYuLEiTQ2NtKnTx/S0tJaXH/WrFmkpKQQERFBQEAAP/nJT4ALL5yOHDmSiIgIfHx8+MlPfkL//v05evQovXv3xsfHh7CwMEpLS90vtraGyZMn8+KLL+J0Oqmvr+ff/u3f+Oijj9z/SUDL18vHx4f09HSWLl3Km2++SX19PbNnz77sgQhpe+rzLVu0aBFLlizhrrvu4qGHHnI/rNG/f3+WLFnCCy+8gGEYWK1W1q5de9mQdntm0dtPiCfOnTvHk08+SXJysl6PkduC+vytpyE7uaYvvviCkSNHMmLECP1gym1Bfb5t6A5JRERMQXdIIiJiCgokERExBQWSiIiYwo/2se8zZ6pobGz55bF77rmD8vJzt7Cim6M91q2aPWOz3dgf8P4Y+7pqvjXM1s9v2zskq9WrrUu4Ie2xbtXcttrjuajmW8NsNd+2gSQiIuaiQBIREVNQIImIiCkokERExBQUSCIiYgq3ZSD539UJuPD4YdPnIiLStn60f4d0NR19rThfvPCeOR/8JprKNq5HREQ8vENas2YNkZGRREZGkpqaCsCOHTtwOp2MGTOGlStXutctKCggNjaWsLAwFi5c6H4nx8LCQuLi4ggPD+fZZ5+luroagIqKCuLj44mIiCAuLo6SkhLgwjslJiQkEBERQUxMjPtNqURE5MfpmoG0Y8cOvvzyS7Zs2UJGRgb/+7//S1ZWFklJSaSnp5Odnc2BAwf4/PPPAUhISCA5OZlt27ZhGAYbN24EYPHixUydOpXc3FyCgoJIT08HYNWqVQQHB5OTk8PEiRNZunQpcOFdIDt16kROTg5JSUksWLCgta6BiIiYwDUDyWazkZiYiI+PD97e3vTr148jR47Qp08fevXqhdVqxel0kpuby8mTJ6mpqXG/f0hsbCy5ubm4XC52795NWFhYs3aAvLw8nE4nAFFRUWzfvh2Xy0VeXh5jx44FYPjw4ZSVlVFYWNga10BEREzgmoE0YMAAd8AcOXKEnJwcLBaL+211Aex2O0VFRRQXFzdrt9lsFBUVUV5ejp+fH1artVk70Gwbq9WKn58fZWVlV9zX6dOnf/gZi4iIKXn8UMPBgweZOXMm8+bNw8vLiyNHjri/ZhgGFouFxsZGLBbLZe1NHy926fLF23To0OGybZraPdWli5/H697opJZtpb3VC6q5NXnS19vLuVxMNd8aZqrZo0Dau3cvzz//PElJSURGRrJr1y73wwcAJSUl2O12AgMDm7WXlpZit9sJCAigsrKShoYGvLy83OvDhbur0tJSAgMDqa+vp7q6ms6dO9O1a1eKi4vp3bt3s3156mozIF/6DSgpaT/P2dls/u2qXlDN13PMG3Gt2b51/W8N1ez5MVtyzVuOU6dO8dxzz5GWlkZkZCQA9913H4cPH+bo0aM0NDSQlZWFw+GgR48e+Pr6snfvXgAyMzNxOBx4e3sTHBxMdnY2ABkZGTgcDgBCQ0PJyMgAIDs7m+DgYLy9vQkNDSUz88Kj2Xv27MHX15fu3bvf+FUQERFTu+Yd0ltvvUVtbS3Lly93t02ePJnly5cza9YsamtrCQ0NJTw8HIC0tDQWLVpEVVUVgwcPZvr06QCkpKSQmJjI2rVr6datGytWrABg9uzZJCYmEhkZib+/P2lpaQBMmzaN5ORkIiMj8fHxcT9uLiIiP04WwzBavtdvx641ZHfxH8a2p9tsDQvcGmYbyrgaDdmZg2r2/JgtuS2nDhIREfNRIImIiCkokERExBQUSCIiYgoKJBERMQUFkoiImIICSURETEGBJCIipqBAEhERU1AgiYiIKSiQRETEFBRIIiJiCgokERExBQWSiIiYggJJRERMQYEkIiKmoEASERFTUCCJiIgpKJBERMQUFEgiImIKCiQRETEFBZKIiJiCAklERExBgSQiIqbgUSBVVVURFRXFiRMnAFiwYAFjxowhOjqa6OhoPv74YwAKCgqIjY0lLCyMhQsXUl9fD0BhYSFxcXGEh4fz7LPPUl1dDUBFRQXx8fFEREQQFxdHSUkJAHV1dSQkJBAREUFMTAyHDh266ScuIiLmcs1A2rdvH1OmTOHIkSPutgMHDvDuu++SmZlJZmYmjz32GAAJCQkkJyezbds2DMNg48aNACxevJipU6eSm5tLUFAQ6enpAKxatYrg4GBycnKYOHEiS5cuBWDdunV06tSJnJwckpKSWLBgwc0+bxERMZlrBtLGjRtJSUnBbrcDcP78eQoLC0lKSsLpdLJ69WoaGxs5efIkNTU1DBkyBIDY2Fhyc3NxuVzs3r2bsLCwZu0AeXl5OJ1OAKKioti+fTsul4u8vDzGjh0LwPDhwykrK6OwsPCmn7yIiJiH9VorNN21NCktLeXBBx8kJSUFf39/Zs6cyebNmxkwYAA2m829ns1mo6ioiPLycvz8/LBarc3aAYqLi93bWK1W/Pz8KCsra9betM3p06fp3r27xyfWpYufx+vabP4er2sG7a1eUM2tyZO+3l7O5WKq+dYwU83XDKRL9erVi1dffdW9PG3aNDIyMujXrx8Wi8XdbhgGFovF/fFily5fvE2HDh0u26ap/XqcOVNFY6Nxxa9d+g0oKam8rn23JZvNv13VC6r5eo55I67W15v2q+vf+lSz58dsyXU/Zfftt9+ybds297JhGFitVgIDA90PJcCFOym73U5AQACVlZU0NDQAUFJS4h7+s9vtlJaWAlBfX091dTWdO3ema9euFBcXX7YvERH58bruQDIMg2XLlvH999/jcrnYsGEDjz32GD169MDX15e9e/cCkJmZicPhwNvbm+DgYLKzswHIyMjA4XAAEBoaSkZGBgDZ2dkEBwfj7e1NaGgomZmZAOzZswdfX9/rGq4TEZH257qH7AYNGkR8fDxTpkyhvr6eMWPGEBUVBUBaWhqLFi2iqqqKwYMHM336dABSUlJITExk7dq1dOvWjRUrVgAwe/ZsEhMTiYyMxN/fn7S0NODCMGBycjKRkZH4+PiQmpp6s85XRERMymIYRsuDz+3YtV5Dcr544Q7sg99Et6txX41T3xpmG1u/Gr2GZA6q2fNjtkQzNYiIiCkokERExBQUSCIiYgoKJBERMQUFkoiImIICSURETEGBJCIipqBAEhERU1AgiYiIKSiQRETEFBRIIiJiCgokERExBQWSiIiYggJJRERMQYEkIiKmoEASERFTUCCJiIgpKJBERMQUFEgiImIKCiQRETEFBZKIiJiCAklERExBgSQiIqbgUSBVVVURFRXFiRMnANixYwdOp5MxY8awcuVK93oFBQXExsYSFhbGwoULqa+vB6CwsJC4uDjCw8N59tlnqa6uBqCiooL4+HgiIiKIi4ujpKQEgLq6OhISEoiIiCAmJoZDhw7d1JMWERHzuWYg7du3jylTpnDkyBEAampqSEpKIj09nezsbA4cOMDnn38OQEJCAsnJyWzbtg3DMNi4cSMAixcvZurUqeTm5hIUFER6ejoAq1atIjg4mJycHCZOnMjSpUsBWLduHZ06dSInJ4ekpCQWLFjQGucuIiImcs1A2rhxIykpKdjtdgD2799Pnz596NWrF1arFafTSW5uLidPnqSmpoYhQ4YAEBsbS25uLi6Xi927dxMWFtasHSAvLw+n0wlAVFQU27dvx+VykZeXx9ixYwEYPnw4ZWVlFBYW3vSTFxER87Bea4Wmu5YmxcXF2Gw297LdbqeoqOiydpvNRlFREeXl5fj5+WG1Wpu1X7ovq9WKn58fZWVlV9zX6dOn6d69+w84VRERMbNrBtKlGhsbsVgs7mXDMLBYLC22N3282KXLF2/ToUOHy7Zpar8eXbr4ebyuzeZ/Xftua+2tXlDNrcmTvt5ezuViqvnWMFPN1x1IgYGB7ocPAEpKSrDb7Ze1l5aWYrfbCQgIoLKykoaGBry8vNzrw4W7q9LSUgIDA6mvr6e6uprOnTvTtWtXiouL6d27d7N9XY8zZ6pobDSu+LVLvwElJZXXte+2ZLP5t6t6QTVfzzFvxNX6etN+df1bn2r2/Jgtue7Hvu+77z4OHz7M0aNHaWhoICsrC4fDQY8ePfD19WXv3r0AZGZm4nA48Pb2Jjg4mOzsbAAyMjJwOBwAhIaGkpGRAUB2djbBwcF4e3sTGhpKZmYmAHv27MHX11fDdSIiP3LXfYfk6+vL8uXLmTVrFrW1tYSGhhIeHg5AWloaixYtoqqqisGDBzN9+nQAUlJSSExMZO3atXTr1o0VK1YAMHv2bBITE4mMjMTf35+0tDQApk2bRnJyMpGRkfj4+JCamnqzzvcyda6GZoldU1tPZcX5VjueiIhcmcUwjJbv9duxaw3ZOV+8cAf2wW+i3Z83LZv5tlvDAreG2YYyrkZDduagmj0/Zks0U4OIiJiCAklERExBgSQiIqagQBIREVNQIImIiCkokERExBQUSCIiYgoKJBERMQUFkoiImIICSURETEGBJCIipqBAEhERU1AgiYiIKSiQRETEFBRIIiJiCgokERExBQWSiIiYggJJRERMQYEkIiKmoEASERFTUCCJiIgpKJBERMQUFEgiImIK1h+y8bRp0ygrK8NqvbCbJUuWUF1dza9+9Stqa2uJiIhg7ty5ABQUFLBw4UKqq6sJDg5m8eLFWK1WCgsLSUhI4MyZM/Tt25e0tDTuvPNOKioq+Pd//3eOHz9OQEAAq1atwmaz/fAzFhERU7rhOyTDMDhy5AiZmZnufwMHDiQpKYn09HSys7M5cOAAn3/+OQAJCQkkJyezbds2DMNg48aNACxevJipU6eSm5tLUFAQ6enpAKxatYrg4GBycnKYOHEiS5cuvQmnKyIiZnXDgfSPf/wDgBkzZjB27Fjeffdd9u/fT58+fejVqxdWqxWn00lubi4nT56kpqaGIUOGABAbG0tubi4ul4vdu3cTFhbWrB0gLy8Pp9MJQFRUFNu3b8flcv2QcxURERO74UCqqKggJCSEV199lXfeeYf33nuPwsLCZsNqdrudoqIiiouLm7XbbDaKioooLy/Hz8/PPeTX1A4028ZqteLn50dZWdmNlisiIiZ3w68hDR06lKFDh7qXJ0yYwOrVq7n//vvdbYZhYLFYaGxsxGKxXNbe9PFily5fvE2HDp7nZ5cufh6veymbzf+Gt70VzF7flajm1uNJX28v53Ix1XxrmKnmGw6kPXv24HK5CAkJAS4ERo8ePSgpKXGvU1JSgt1uJzAwsFl7aWkpdrudgIAAKisraWhowMvLy70+XLi7Ki0tJTAwkPr6eqqrq+ncubPH9Z05U0Vjo3HFr13rG1BSUunxcW41m83f1PVdiWr2/Jg34mp9vWm/uv6tTzV7fsyW3PCQXWVlJampqdTW1lJVVcWWLVt44YUXOHz4MEePHqWhoYGsrCwcDgc9evTA19eXvXv3ApCZmYnD4cDb25vg4GCys7MByMjIwOFwABAaGkpGRgYA2dnZBAcH4+3tfaPlioiIyd3wHdKoUaPYt28f48aNo7GxkalTpzJ06FCWL1/OrFmzqK2tJTQ0lPDwcADS0tJYtGgRVVVVDB48mOnTpwOQkpJCYmIia9eupVu3bqxYsQKA2bNnk5iYSGRkJP7+/qSlpd2E0xUREbP6QX+HNGfOHObMmdOsLSQkhK1bt1627qBBg9i8efNl7T169GDdunWXtXfu3JnXXnvth5QnIiLtiGZqEBERU1AgiYiIKSiQRETEFH7Qa0g/RnWuBvdjiTW19VRWnG/jikREbg8KpEv4eHvhfDETgA9+E037+qsCEZH2S0N2IiJiCgokERExBQWSiIiYggJJRERMQYEkIiKmoEASERFTUCCJiIgpKJBERMQU9IexIj9yF88+0kSzkIgZKZCuQtMIyY/BxbOPNNEsJGJGCqSr0DRCIiK3jl5DEhERU1AgiYiIKSiQRETEFPQakof0gIOISOtSIHlIDziIiLQuDdmJiIgpKJBERMQUNGR3A/R6kojIzWfqO6QPPviAxx9/nDFjxrB+/fq2Lset6fUk54uZdPRVpouI3Aym/d+0qKiIlStX8uc//xkfHx8mT57MAw88QP/+/du6tGZ0tyTtkea3EzMybSDt2LGDBx98kM6dOwMQFhZGbm4uv/zlLz3avkMHy1W/br+n0xU/v9rXrvS5j7cXP3/lIwDWzn/U/UNeW9eAr4/Xhc9r66mqqvGobk9c69zMSDW3Hk/qvLSPX9xvm1zcf5vc7L57PdrL9b+Yav5hLIZhGG1dxJW8/vrrnDt3jrlz5wKwadMm9u/fz8svv9zGlYmISGsw7WtIjY2NWCz/P7kNw2i2LCIiPy6mDaTAwEBKSkrcyyUlJdjt9jasSEREWpNpA+mhhx4iPz+fsrIyzp8/z0cffYTD4WjrskREpJWY9qGGrl27MnfuXKZPn47L5WLChAn89Kc/beuyRESklZj2oQYREbm9mHbITkREbi8KJBERMQUFkoiImIICSURETOG2DKS2mrR1zZo1REZGEhkZSWpqKnBhiiSn08mYMWNYuXKle92CggJiY2MJCwtj4cKF1NfXA1BYWEhcXBzh4eE8++yzVFdXA1BRUUF8fDwRERHExcW5/4arrq6OhIQEIiIiiImJ4dChQzdU+69//WsSExPbRc2ffvopsbGxRERE8Morr7SLmluD+vn1Uz9v435u3GZOnz5tjBo1yigvLzeqq6sNp9NpHDx4sNWP+9VXXxmTJk0yamtrjbq6OmP69OnGBx98YISGhhrHjh0zXC6XMWPGDCMvL88wDMOIjIw0/va3vxmGYRgLFiww1q9fbxiGYcTHxxtZWVmGYRjGmjVrjNTUVMMwDGPx4sXG66+/bhiGYWzZssWYPXu2YRiG8eabbxovvfSSYRiGsWvXLmPixInXXfuOHTuMBx54wJg/f75x/vx5U9d87Ngx4+GHHzZOnTpl1NXVGVOmTDHy8vJMXXNrUD9XPzdbzZ647e6QLp609Y477nBP2trabDYbiYmJ+Pj44O3tTb9+/Thy5Ah9+vShV69eWK1WnE4nubm5nDx5kpqaGoYMGQJAbGwsubm5uFwudu/eTVhYWLN2gLy8PJxOJwBRUVFs374dl8tFXl4eY8eOBWD48OGUlZVRWFjocd1nz55l5cqVPPPMMwDs37/f1DV//PHHPP744wQGBuLt7c3KlSvp1KmTqWtuDern6udmq9kTt10gFRcXY7PZ3Mt2u52ioqJWP+6AAQPcHeLIkSPk5ORgsViuWMulNdpsNoqKiigvL8fPzw+r1dqs/dLzslqt+Pn5UVZWdsV9nT592uO6k5OTmTt3LnfddddlxzFjzUePHqWhoYFnnnmG6Oho/vjHP5q+5tagfq5+braaPXHbBVJbT9p68OBBZsyYwbx58+jVq9cVa2mpxivV2lLthmHQoUOHy7ZpavfEpk2b6NatGyEhIe62lmozS80NDQ3k5+ezbNkyNmzYwP79+zl+/Lipa24N6ufq52ar2ROmnTqotQQGBrJnzx738q2ctHXv3r08//zzJCUlERkZya5du644geylE8uWlpZit9sJCAigsrKShoYGvLy8mtVut9spLS0lMDCQ+vp6qqur6dy5M127dqW4uJjevXs325cnsrOzKSkpITo6mu+//55z585x8uRJvLy8TFvzP/3TPxESEkJAQAAAo0ePJjc319Q1twb1c/Vzs9XsidvuDqmtJm09deoUzz33HGlpaURGRgJw3333cfjwYfftd1ZWFg6Hgx49euDr68vevXsByMzMxOFw4O3tTXBwMNnZ2QBkZGS4aw8NDSUjIwO48AMWHByMt7c3oaGhZGZmArBnzx58fX3p3r27RzX/53/+J1lZWWRmZvL888/zyCOP8Oabb5q65lGjRvHll19SUVFBQ0MDX3zxBeHh4aauuTWon6ufm61mj9zURyTaia1btxqRkZHGmDFjjN///ve35Jgvv/yyMWTIEGPs2LHuf3/84x+NHTt2GE6n0xgzZoyxdOlSo7Gx0TAMwygoKDDGjx9vhIWFGS+88IJRW1trGIZhnDhxwnjyySeNiIgIY8aMGcbZs2cNwzCM8vJyY+bMmcbjjz9uTJo0yTh+/LhhGIZRU1NjzJs3z3j88ceNcePGGQcOHLih+t9//31j/vz5hmEYpq9506ZN7u/v4sWLjYaGBtPX3BrUz6+f+nnb9nNNrioiIqZw2w3ZiYiIOSmQRETEFBRIIiJiCgokERExBQWSiIiYggLJpH7+85/zhz/8wb18+PBhBg4cyIoVK9xtZ86cISgoiMrKyuvef2JiIm+99ZbH7Z7Ky8tj0qRJjB07lsjISGbPnu3R1CLTpk27JXOtifmor0sTBZJJORwOdu7c6V7+7LPPGDVqFJ988om77a9//SvDhg3D39+/LUq8TFFREfPnz2fFihVs3bqVDz/8kEGDBjFnzpy2Lk1MTH1dmiiQTMrhcLBnzx4aGxuBCz+k8fHxVFdXc+zYMQDy8/MZOXIk//3f/83UqVOJiYlh/PjxfPbZZ+79bNq0idjYWMaNG8fTTz99xfcvWbZsGU899ZT7vVAAtm7dyuTJk93LhYWFPPzww9TV1bVYc3l5OS6Xi3PnzrnbnnrqKWbOnAnAuXPnmDdvHpMmTSIsLIzY2Fj+8Y9/XLafls6npKSEGTNmEBMTQ0xMDKtWrfLkUorJqa+rrze57eayay/69u3LXXfdxbfffkv37t05fPgwQ4YMweFw8Omnn/L000+Tn5/P+PHj3UMPPXv2pKioiCeeeIKBAwdy4sQJMjIyWL9+PZ06deLLL7/kl7/8JTk5OcCFiRGXLFlCcXExb7zxBj4+Pu7jh4eHs3z5cg4ePMiAAQPYtGkTMTExzda51KBBg3jiiSeIiYmhd+/eDBs2jJCQEPf09tu3b+euu+5iw4YNwIUZltevX89LL73k3sf333/PggULrng+W7ZsoWfPnrz99tucO3eOhQsXUllZaZrfmuXGqK+rrzdRIJlY01BGly5deOihh+jQoQOjRo1i/fr1jB49GovFQkVFBSUlJTz33HPu7SwWC99++y27d+/m6NGjzX77q6io4OzZswC88847nDlzhoyMjMt++Hx8fJg4cSKbNm1i/vz5bNmyhXXr1l2z5sTERGbOnMmuXbvYvXs3qamprFu3jvXr1xMeHk6vXr1Yt24dR48eZdeuXQwdOrTZ9v/zP//T4vmMGDGC+Ph4Tp06xUMPPcSLL774o/8BvV2orzc/n9u1ryuQTMzhcLB582Z8fX159NFHAQgJCWHRokXuIYyGhgb69evHpk2b3NsVFRUREBDAzp07iY6OJiEhAbgwpX5xcTF33303cOENtoYNG8aCBQvYsGED3t7ezY4/efJkJkyYwL/+678yYMAAevXqddV6P/nkE86ePcv48eMJCwsjLCyMuXPnEhoayt///ne+/vprNm7cSFxcHE6nk86dO3PixIlm+7ja+Xh7e/PJJ5+Qn5/PX//6VyZOnMgbb7xBUFDQjV9kMQX19ebnc7v2db2GZGIPPPAABQUF7Nq1ixEjRgDQsWNHBg8ezLvvvktoaChDhgzh6NGj7N69G4CCggLCwsIoKiri4Ycf5sMPP6S4uBiAP/3pTzz11FPu/QcFBfHkk0/i7+/PmjVrLjt+t27dGDJkCMuWLWPKlCnXrPfOO+9kxYoVfPfdd+6248eP4+XlRe/evfnyyy+JiYlh4sSJ9O3bl08//ZSGhoZm+7ja+aSlpZGens7o0aNZuHAh/fv35+DBg9d5VcWM1NfV10F3SKbWqVMn7r33XlwuV7Pb9dDQUP7jP/6DBx54AB8fH1avXk1qaiq1tbUYhkFqaio9e/akZ8+e/OIXv2DGjBlYLBb8/PxYs2ZNszfYslgsLFu2jHHjxhEaGnpZDbGxsbz88stX/NqlHnzwQV566SXmz59PZWUlXl5e2Gw23njjDe6++25mzJhBcnIymzdvBi78QP7f//1fs30EBAS0eD5PPfUUiYmJREVF4ePjw8CBA91vcSDtm/q6+jqAZvuWFjU2NrJkyRK6d+9OfHx8W5cj0mrU181BgSRXVFVVxahRoxg2bBi//e1v6dixIwBTp05t9sjsxdavX4+fn9+tLFPkB1NfNw8FkoiImIIeahAREVNQIImIiCkokERExBQUSCIiYgoKJBERMQUFkoiImML/A+M2KkxfK114AAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x216 with 2 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "holiday = sns.FacetGrid(comb_data, col='IsHoliday')\n",
-                "holiday.map(plt.hist, 'Weekly_Sales', bins=30)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 34,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "comb_data = comb_data.applymap(lambda x: 1 if x == True else x)\n",
-                "comb_data = comb_data.applymap(lambda x: 0 if x == False else x)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 35,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "#comb_data[\"Date\"] = pd.to_datetime(comb_data[\"Date\"])\n",
-                "comb_data.Date = pd.to_datetime(comb_data.Date)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 36,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "clean_data = comb_data[comb_data['Weekly_Sales']>0]"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 37,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "<class 'pandas.core.frame.DataFrame'>\n",
-                        "Int64Index: 420212 entries, 0 to 421569\n",
-                        "Data columns (total 16 columns):\n",
-                        " #   Column        Non-Null Count   Dtype         \n",
-                        "---  ------        --------------   -----         \n",
-                        " 0   Store         420212 non-null  int64         \n",
-                        " 1   Dept          420212 non-null  int64         \n",
-                        " 2   Date          420212 non-null  datetime64[ns]\n",
-                        " 3   Weekly_Sales  420212 non-null  float64       \n",
-                        " 4   IsHoliday     420212 non-null  int64         \n",
-                        " 5   Temperature   420212 non-null  float64       \n",
-                        " 6   Fuel_Price    420212 non-null  float64       \n",
-                        " 7   MarkDown1     420212 non-null  float64       \n",
-                        " 8   MarkDown2     420212 non-null  float64       \n",
-                        " 9   MarkDown3     420212 non-null  float64       \n",
-                        " 10  MarkDown4     420212 non-null  float64       \n",
-                        " 11  MarkDown5     420212 non-null  float64       \n",
-                        " 12  CPI           420212 non-null  float64       \n",
-                        " 13  Unemployment  420212 non-null  float64       \n",
-                        " 14  Type          420212 non-null  object        \n",
-                        " 15  Size          420212 non-null  int64         \n",
-                        "dtypes: datetime64[ns](1), float64(10), int64(4), object(1)\n",
-                        "memory usage: 54.5+ MB\n"
-                    ]
-                }
-            ],
-            "source": [
-                "clean_data.info()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 38,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "clean_data1 = clean_data[clean_data[\"Type\"] == \"A\"] "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 39,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stdout",
-                    "output_type": "stream",
-                    "text": [
-                        "<class 'pandas.core.frame.DataFrame'>\n",
-                        "Int64Index: 202286 entries, 0 to 391059\n",
-                        "Data columns (total 16 columns):\n",
-                        " #   Column        Non-Null Count   Dtype         \n",
-                        "---  ------        --------------   -----         \n",
-                        " 0   Store         202286 non-null  int64         \n",
-                        " 1   Dept          202286 non-null  int64         \n",
-                        " 2   Date          202286 non-null  datetime64[ns]\n",
-                        " 3   Weekly_Sales  202286 non-null  float64       \n",
-                        " 4   IsHoliday     202286 non-null  int64         \n",
-                        " 5   Temperature   202286 non-null  float64       \n",
-                        " 6   Fuel_Price    202286 non-null  float64       \n",
-                        " 7   MarkDown1     202286 non-null  float64       \n",
-                        " 8   MarkDown2     202286 non-null  float64       \n",
-                        " 9   MarkDown3     202286 non-null  float64       \n",
-                        " 10  MarkDown4     202286 non-null  float64       \n",
-                        " 11  MarkDown5     202286 non-null  float64       \n",
-                        " 12  CPI           202286 non-null  float64       \n",
-                        " 13  Unemployment  202286 non-null  float64       \n",
-                        " 14  Type          202286 non-null  object        \n",
-                        " 15  Size          202286 non-null  int64         \n",
-                        "dtypes: datetime64[ns](1), float64(10), int64(4), object(1)\n",
-                        "memory usage: 26.2+ MB\n"
-                    ]
-                }
-            ],
-            "source": [
-                "clean_data1.info()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 40,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "<ipython-input-40-fbf7f56c5ae5>:1: FutureWarning: Treating datetime data as categorical rather than numeric in `.describe` is deprecated and will be removed in a future version of pandas. Specify `datetime_is_numeric=True` to silence this warning and adopt the future behavior now.\n",
-                        "  clean_data1.describe(include='all')\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Dept</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Weekly_Sales</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>Fuel_Price</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "      <th>CPI</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>Type</th>\n",
-                            "      <th>Size</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>count</th>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "      <td>202286</td>\n",
-                            "      <td>202286.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>unique</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>143</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>top</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2011-11-25 00:00:00</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>freq</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1451</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>202286</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>first</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2010-02-05 00:00:00</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>last</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2012-10-26 00:00:00</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>mean</th>\n",
-                            "      <td>20.934326</td>\n",
-                            "      <td>44.485570</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>20962.814036</td>\n",
-                            "      <td>0.070549</td>\n",
-                            "      <td>59.682803</td>\n",
-                            "      <td>3.340252</td>\n",
-                            "      <td>3290.207260</td>\n",
-                            "      <td>1146.760225</td>\n",
-                            "      <td>584.821624</td>\n",
-                            "      <td>1409.380958</td>\n",
-                            "      <td>2247.480669</td>\n",
-                            "      <td>174.610036</td>\n",
-                            "      <td>7.766532</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>191149.743017</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>std</th>\n",
-                            "      <td>12.754509</td>\n",
-                            "      <td>30.036683</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>26898.626654</td>\n",
-                            "      <td>0.256070</td>\n",
-                            "      <td>17.991029</td>\n",
-                            "      <td>0.456896</td>\n",
-                            "      <td>6827.151864</td>\n",
-                            "      <td>6000.218287</td>\n",
-                            "      <td>6194.194569</td>\n",
-                            "      <td>4537.213118</td>\n",
-                            "      <td>5338.825440</td>\n",
-                            "      <td>39.249815</td>\n",
-                            "      <td>1.744491</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>21961.735467</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>min</th>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>0.010000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>5.540000</td>\n",
-                            "      <td>2.514000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>-265.760000</td>\n",
-                            "      <td>-29.100000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>126.064000</td>\n",
-                            "      <td>3.879000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>151315.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25%</th>\n",
-                            "      <td>8.000000</td>\n",
-                            "      <td>20.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>3756.900000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>46.420000</td>\n",
-                            "      <td>2.906000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>132.751667</td>\n",
-                            "      <td>6.901000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>184109.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>50%</th>\n",
-                            "      <td>20.000000</td>\n",
-                            "      <td>37.500000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>10879.935000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>62.010000</td>\n",
-                            "      <td>3.415000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>189.662884</td>\n",
-                            "      <td>7.806000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>203007.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75%</th>\n",
-                            "      <td>31.000000</td>\n",
-                            "      <td>72.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>27566.712500</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>74.100000</td>\n",
-                            "      <td>3.717000</td>\n",
-                            "      <td>4864.300000</td>\n",
-                            "      <td>32.040000</td>\n",
-                            "      <td>11.850000</td>\n",
-                            "      <td>919.320000</td>\n",
-                            "      <td>3430.560000</td>\n",
-                            "      <td>214.118080</td>\n",
-                            "      <td>8.326000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>204184.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>max</th>\n",
-                            "      <td>41.000000</td>\n",
-                            "      <td>99.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>474330.100000</td>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>99.220000</td>\n",
-                            "      <td>4.468000</td>\n",
-                            "      <td>78124.500000</td>\n",
-                            "      <td>97740.990000</td>\n",
-                            "      <td>109030.750000</td>\n",
-                            "      <td>67474.850000</td>\n",
-                            "      <td>108519.280000</td>\n",
-                            "      <td>227.036936</td>\n",
-                            "      <td>14.313000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>219622.000000</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "                Store           Dept                 Date   Weekly_Sales  \\\n",
-                            "count   202286.000000  202286.000000               202286  202286.000000   \n",
-                            "unique            NaN            NaN                  143            NaN   \n",
-                            "top               NaN            NaN  2011-11-25 00:00:00            NaN   \n",
-                            "freq              NaN            NaN                 1451            NaN   \n",
-                            "first             NaN            NaN  2010-02-05 00:00:00            NaN   \n",
-                            "last              NaN            NaN  2012-10-26 00:00:00            NaN   \n",
-                            "mean        20.934326      44.485570                  NaN   20962.814036   \n",
-                            "std         12.754509      30.036683                  NaN   26898.626654   \n",
-                            "min          1.000000       1.000000                  NaN       0.010000   \n",
-                            "25%          8.000000      20.000000                  NaN    3756.900000   \n",
-                            "50%         20.000000      37.500000                  NaN   10879.935000   \n",
-                            "75%         31.000000      72.000000                  NaN   27566.712500   \n",
-                            "max         41.000000      99.000000                  NaN  474330.100000   \n",
-                            "\n",
-                            "            IsHoliday    Temperature     Fuel_Price      MarkDown1  \\\n",
-                            "count   202286.000000  202286.000000  202286.000000  202286.000000   \n",
-                            "unique            NaN            NaN            NaN            NaN   \n",
-                            "top               NaN            NaN            NaN            NaN   \n",
-                            "freq              NaN            NaN            NaN            NaN   \n",
-                            "first             NaN            NaN            NaN            NaN   \n",
-                            "last              NaN            NaN            NaN            NaN   \n",
-                            "mean         0.070549      59.682803       3.340252    3290.207260   \n",
-                            "std          0.256070      17.991029       0.456896    6827.151864   \n",
-                            "min          0.000000       5.540000       2.514000       0.000000   \n",
-                            "25%          0.000000      46.420000       2.906000       0.000000   \n",
-                            "50%          0.000000      62.010000       3.415000       0.000000   \n",
-                            "75%          0.000000      74.100000       3.717000    4864.300000   \n",
-                            "max          1.000000      99.220000       4.468000   78124.500000   \n",
-                            "\n",
-                            "            MarkDown2      MarkDown3      MarkDown4      MarkDown5  \\\n",
-                            "count   202286.000000  202286.000000  202286.000000  202286.000000   \n",
-                            "unique            NaN            NaN            NaN            NaN   \n",
-                            "top               NaN            NaN            NaN            NaN   \n",
-                            "freq              NaN            NaN            NaN            NaN   \n",
-                            "first             NaN            NaN            NaN            NaN   \n",
-                            "last              NaN            NaN            NaN            NaN   \n",
-                            "mean      1146.760225     584.821624    1409.380958    2247.480669   \n",
-                            "std       6000.218287    6194.194569    4537.213118    5338.825440   \n",
-                            "min       -265.760000     -29.100000       0.000000       0.000000   \n",
-                            "25%          0.000000       0.000000       0.000000       0.000000   \n",
-                            "50%          0.000000       0.000000       0.000000       0.000000   \n",
-                            "75%         32.040000      11.850000     919.320000    3430.560000   \n",
-                            "max      97740.990000  109030.750000   67474.850000  108519.280000   \n",
-                            "\n",
-                            "                  CPI   Unemployment    Type           Size  \n",
-                            "count   202286.000000  202286.000000  202286  202286.000000  \n",
-                            "unique            NaN            NaN       1            NaN  \n",
-                            "top               NaN            NaN       A            NaN  \n",
-                            "freq              NaN            NaN  202286            NaN  \n",
-                            "first             NaN            NaN     NaN            NaN  \n",
-                            "last              NaN            NaN     NaN            NaN  \n",
-                            "mean       174.610036       7.766532     NaN  191149.743017  \n",
-                            "std         39.249815       1.744491     NaN   21961.735467  \n",
-                            "min        126.064000       3.879000     NaN  151315.000000  \n",
-                            "25%        132.751667       6.901000     NaN  184109.000000  \n",
-                            "50%        189.662884       7.806000     NaN  203007.000000  \n",
-                            "75%        214.118080       8.326000     NaN  204184.000000  \n",
-                            "max        227.036936      14.313000     NaN  219622.000000  "
-                        ]
-                    },
-                    "execution_count": 40,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "clean_data1.describe(include='all')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 41,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "<ipython-input-41-84301be4958e>:1: FutureWarning: Series.dt.weekofyear and Series.dt.week have been deprecated.  Please use Series.dt.isocalendar().week instead.\n",
-                        "  clean_data1['Week'] = clean_data1.Date.dt.week\n",
-                        "<ipython-input-41-84301be4958e>:1: SettingWithCopyWarning: \n",
-                        "A value is trying to be set on a copy of a slice from a DataFrame.\n",
-                        "Try using .loc[row_indexer,col_indexer] = value instead\n",
-                        "\n",
-                        "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
-                        "  clean_data1['Week'] = clean_data1.Date.dt.week\n",
-                        "<ipython-input-41-84301be4958e>:2: SettingWithCopyWarning: \n",
-                        "A value is trying to be set on a copy of a slice from a DataFrame.\n",
-                        "Try using .loc[row_indexer,col_indexer] = value instead\n",
-                        "\n",
-                        "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
-                        "  clean_data1['Year'] = clean_data1.Date.dt.year\n"
-                    ]
-                }
-            ],
-            "source": [
-                "clean_data1['Week'] = clean_data1.Date.dt.week\n",
-                "clean_data1['Year'] = clean_data1.Date.dt.year"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 42,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "C:\\Users\\eebal\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n",
-                        "  warnings.warn(\n",
-                        "C:\\Users\\eebal\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n",
-                        "  warnings.warn(\n",
-                        "C:\\Users\\eebal\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n",
-                        "  warnings.warn(\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAH7CAYAAAAdASxrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXhU9dn/8feZPZmZkAQSQGRRJIAComxuBTcQQYqouOFW/dWKG9U+Wq089VGrbZWiRepSq1QQt7qAC6DWFhEEUVwQRUQQZROyTTIzSWY75/fHJJEQlgSSyfZ5XReX5Jwz59wnwVY/3t/7a1iWZSEiIiIiIiIiIpJCtqYuQERERERERERE2h6FUiIiIiIiIiIiknIKpUREREREREREJOUUSomIiIiIiIiISMoplBIRERERERERkZRTKCUiIiIiIiIiIimnUEpERKQFWr58Ob1792bYsGFEo9GmLqdJnXjiiYwbN26P50455RR69+7NP//5z1rn3nvvPXr37s3zzz/f4DW98sor9O7dmw8//PCgrqmPL774ghtvvJETTzyRfv36cdJJJ3HTTTfxxRdfHND9PvzwQ3r37s0rr7zSIPU1tEsvvZTevXvX+HXkkUcyePBgLr30UhYvXtxoz/7666856qijOPXUU6moqNjjNZFIhNNPP51jjjmGbdu2NVotIiIiLZlCKRERkRbojTfeID09nUAgwH/+85+mLqdJDR48mG+//ZZwOFzj+A8//MC2bdtwOp2sWLGi1uc+/fRTAIYNG5aSOhvTkiVLuOCCC9i0aROXXXYZd955J+effz6ffPIJ559/Pv/+97+busRGc//991f/uu+++7j++uspKCjgmmuuYdGiRY3yzD59+nDZZZexdetWHnvssT1e8+ijj7J582ZuuukmDjnkkEapQ0REpKVTKCUiItLCRKNR3n77bcaPH4/f7+fVV19t6pKa1JAhQzBNkzVr1tQ4vmLFCgzDYMyYMaxcuZJ4PF7j/KeffkpOTg6HHXZYKsttFPfeey99+vTh5Zdf5le/+hUTJ07kxhtvZP78+eTm5nL33XfXev/WYvz48dW/zj77bK644gqeeeYZ0tLSePDBBxvtuTfccAOdO3fmySefZNOmTTXOfffdd/zjH/9gwIABXHLJJY1Wg4iISEunUEpERKSFee+99ygtLWXYsGGcdNJJvP/+++Tn5zd1WU1myJAhAHz++ec1jq9YsYLevXszcuRIwuFwjWVsiUSC1atXt4ouqaKiIjZt2sSwYcNwOp01zmVmZnL22WdTUFDAli1bmqjC1Gvfvj3Dhg1j06ZNBAKBRnlGeno6U6dOJRqNcs8999Q4d9dddwHwhz/8AZtN/7gtIiKyN/p/SRERkRbm9ddfxzAMhgwZwsiRI0kkEsyfPx9IdlENGTKEa665ptbnqmYYffTRRwCYpslTTz3F6NGj6devHz/72c/4wx/+QCgUqv5M1VyhV199lXHjxtG/f39uv/12APLz87n77rs57bTT6NevH4MGDeKyyy5j1apVNZ4bi8V46KGHOPnkkzn66KO55JJL+PrrrznyyCN5+OGHa9V49tln079/f4477jhuu+02du7cuc/vR15eHpmZmaxevbrG8ZUrV3LccccxZMgQbDZbjSV833zzDWVlZTVCqZKSEu655x5+9rOf0a9fP84880yefvppLMuqcd+6Xre7J554gt69e3PvvffWOhcMBhkwYABTpkypde7ZZ5+ld+/efPvtt3u8b1paGna7nXfffXeP4eQNN9zAl19+SY8ePaqP1fVnt7u6/JmB5Pd+0qRJDB48mGOOOYYLL7ww5ctMq8KgRCJRfey///0vF154IUcffTRDhgzhhhtu4Lvvvqvxud69e/PQQw9xzTXX0K9fP8aMGbPXLrPTTz+dU045haVLl/LOO+8AsGDBApYvX85VV11F79696/XsWCzG448/zs9//nMGDhzIgAED+PnPf85LL710wDWKiIg0ZwqlREREWpBQKMTixYsZOHAgHTp0YMSIEbhcruolfC6Xi1GjRrFs2TKCwWCNzy5YsIDOnTszePBgAO644w4eeOABjj32WKZOncro0aN5/vnnueyyy4hEIjU+e/fddzNo0CBuueUWTjvtNCoqKpg0aRILFy5kwoQJ3HnnnVx44YWsWbOGq6++ukZI8T//8z88+uijHHfccdx66614PB4uu+wyTNOs8YyZM2dy++23061bN26//XYuuOAC3nnnHS688EKKior2+j0xDINBgwbV6JRav349+fn5DBs2jMzMTPr06cPy5curz3/yySfAT/OkysrKuOSSS5g/fz4TJkzgd7/7Hb169eK+++7j7rvvrv5cXa/b3b/+9S+mTZvGBRdcwB133FHrvN/vZ8SIEbz33nuUl5fXOLdgwQJ69+7NEUccscd7p6WlMWbMGL7//ntOP/10brrpJl5++WW2bt0KgMPhwDCM6uvr87PbXV3+zGzcuJFf/epXWJbFTTfdxP/8z/9QXl7Otddey8cff7zXezeksrIyVq9eTceOHWnfvj2QDDwnT55MWloat9xyC1dccQWffvop559/fq1w6Omnn6aiooKpU6dy/vnn43A49vqs//3f/yUtLY1p06YRCoV44IEH6NGjB9dee231NXV99u23386MGTMYOnQod9xxB9dffz1lZWXccccdrFy58oBrFBERabYsERERaTFeeuklKy8vz3ryySerj1199dVWXl6e9fnnn1uWZVnLly+38vLyrFdffbX6mqKiIuvII4+0HnjgAcuyLGvFihVWXl6e9dxzz9W4//vvv2/l5eVZ//znP2tcd8kll9S47s0337Ty8vKsJUuW1Dj+3HPPWXl5edZbb71lWZZlffTRR1ZeXp41ffr06mtM07Suu+46Ky8vz5oxY4ZlWZb1ww8/WH369LGmTZtW437r1q2zjjrqKOvee+/d5/flqaeesvLy8qzt27dblmVZs2fPtvr27WuVlpZalmVZf/zjH61+/fpZFRUVlmVZ1m9+8xtr+PDh1Z+fMWOGddRRR1lff/11jfv+5S9/sfLy8qy1a9fW67qXX37ZysvLs1asWGG9/fbbVt++fa1bbrnFMk2z+jO7XmNZlvXWW29ZeXl51ptvvll9zY8//mj16dPHevzxx/f5/qFQyPr1r39t5eXl1fg1duxY65lnnrESiUT1tXX92VX97F9++eUaX+/vz8zf//53Ky8vzyosLKy+pqioyBo1apQ1e/bsfb5HfVxyySXVz6n69eOPP1offvihddlll1l5eXnW008/bVmWZQWDQevYY4+1brrpphr32LlzpzVkyBDr2muvrT6Wl5dnDRo0yCopKalzLY8//riVl5dnnX322Vbv3r2tDz/8sPpcXZ+9c+dOq3fv3rX+HtiwYYOVl5dn3XPPPQdVo4iISHOkTikREZEW5PXXXwdg5MiR1ceqfl/VLTV06FA6duxYY+ext99+m3g8zrhx46q/NgyDESNGUFRUVP3ryCOPJCcnh8WLF9d47kknnVTj6zFjxrB8+fIax6PRaPXvy8rKAKqXNP3iF7+oPmcYBr/85S9r3O+dd97BNE1OPfXUGvV06NCBvn371qpnd7vPlVqxYgVHHnkkfr8fSHZERaPR6h33Pv30U4YOHVrj+5OXl0dOTk6N559++ulAculVfa6rsmLFCm6++WaGDh3KH//4xxodS7s7+eST8fv9NX5uCxcuxLIsxo4du8/393q9PPjggyxYsIAbbriBY445BofDwfr167n77ru59tprq5ex1fVnt7u6/pnp1KkTAPfcc0/18PmsrCzeeustLr300n2+x4E4/vjjq38NHz6cSy+9lDVr1nDjjTdWP2/ZsmWEQiFOP/30GrXb7XaOO+44li5dWmP529FHH01GRkada/jFL35BXl4eX331Feedd16NP1t1fXZOTg6rVq2q0WFlWVZ1XbvvLlnfGkVERJoj9fmKiIi0EDt37mTlypX06NEDwzCqB1f36dMHwzB48803uf3223G5XIwdO5Y5c+YQDAbx+/0sWLCAvLy86hk3P/zwA5ZlcfLJJ+/xWV6vt8bX2dnZta4xDIO///3vfPrpp/zwww/88MMPxGIxgOqled9//z2ZmZlkZmbW+Ozhhx9e4+sffvgBgAsvvHCP9ew+wHt3ffv2xefz8fnnnzNy5Eg++ugjzj///OrzQ4YMwW63s2rVKo444gi2bNnC5MmTazy/oqKC448/fo/33759e72uq/LII49gs9n45ptvCIVCtGvXbq/v4HK5GDlyJAsWLKCsrIz09HTefPNNjjnmGLp06bLP96/Ss2dPrr/+eq6//nqCwSCLFi3ir3/9K//973956623GDNmDFC3n93u6vpnZvTo0bzzzjssWLCABQsWkJOTw4gRI5gwYUL10tE9CQaDVFRU1DjWrl07XC7XPt951qxZ1b+32+1kZmbSs2fPGsvZqv583XTTTXu9T1FREbm5ucCe/7zvi9PpZNSoUXzzzTfVwe+BPNvlcvHaa6+xdOlSNm3axPfff18dRlm7zSyrb40iIiLNkUIpERGRFmLBggUkEgk2bdrEaaedVut8SUkJ//73vxkzZgzjxo3jqaee4t133+Wkk07io48+4te//nX1taZp4vV6mTlz5h6f5Xa7a3xtt9trfL1161YuuOACysrKOOmkkxgzZgx9+/bFsiyuu+666utisdgeA6Xd718VhDz66KN4PJ59fyP2wG63c+yxx/LFF1+wdu1aSkpKOO6446rP+3w+jjzySD799FPy8vIAagw5TyQSDBo0iOuvv36P968KK+p6XZXjjz+eyy+/nGuuuYZp06bV2qVtdz//+c955ZVXWLx4MQMGDGD16tX8/ve/3+dnFi9ezLJly7jllltqBDh+v5+JEyeSl5fH+eefz6pVqxgzZkydf3a7q+ufGafTyYwZM1i3bh3vvPMOS5Ys4ZVXXuGll17iN7/5DVdfffUeP3/vvfdWd/tVmT179n53SDzhhBP2eb6qdkh2bx166KF7vGbXwHD3P+8Ho67PjkajXHXVVaxatYphw4Zx/PHHc8UVVzB06NA9BoENWaOIiEhTUSglIiLSQlTtuvenP/0Jn89X49zXX3/Nww8/zKuvvsqYMWM48sgj6dmzJ//+978Jh8OYplljCViXLl1YunQp/fr1q7UE6K233qrV2bS7mTNnUlhYyMKFC2vs6la1vLBK165d+eCDDwiFQjVq3rRpU43rqjqBOnfuTN++fWuce++992q9754MGTKEf/zjH3z88cc4nU6OPfbYGuePO+445s+fz+eff84hhxxC165dazw/HA7XCjhKSkpYvnw53bt3r9d1VSZPnsywYcMYM2YM//rXvzj77LMZNGjQXt9h2LBh5OTkVO+k53A4OPPMM/f53l9++SWzZ89m5MiRNZaNVenVqxdAddhX15/d7ur6Z2bbtm1s27aNwYMH07t3b66//np+/PFHLr/8cp588sm9hlL/7//9P37+85/XONanT5991lRXVX++srOza/3sPvzwQ0zT3G9HVmM/e/78+axcuZJ7772X8847r/qaHTt2NEpdIiIizYFmSomIiLQAmzZtYs2aNQwdOpSzzz6b008/vcavX/3qV+Tk5LBs2bLqf4kdN24cy5YtY9GiRQwaNKjGErBTTz0VSHYm7eo///kPN954434DikAgQFpaGoccckj1sWg0yvPPPw9QPb9o5MiRmKbJs88+W+Pzc+fOrfH1KaecAsDjjz9eY5nS2rVrmTx5Mk8//fR+v0dDhgyhpKSEhQsXMmDAANLT02ucHzZsGDt37uSDDz6oFd6ceuqpfP3117VmVz366KNMmTKF9evX1+u63d12222kpaXxf//3f9XL5PbEZrMxduxYli5dyuLFiznuuOP2u0xr7Nix2Gw2/vznP1NaWlrr/AsvvABQ3V1X15/d7ur6Z+axxx7jiiuuqBGmdOrUiY4dO2Kz7f0fPY844ghOOOGEGr/2tdyxPk444QTcbjf/+Mc/anz/d+zYwbXXXsu0adP2Oe8rFc8OBAIAtXZZnD17NkCNmVciIiKthTqlREREWoCqf+HftYNiV06nk3PPPZfHHnuM+fPnc/XVV3PWWWfx0EMPsXLlSu66664a148YMYLTTjuNp556ii1btnDCCSewdetW5s6dyyGHHMJVV121z3qGDx/Of/7zH371q18xevRogsEg8+bNq56fUzUH58QTT+SUU07hL3/5C9999x39+/fngw8+4P333weoDgLy8vK49NJLmTNnDoFAgNNPP51AIMAzzzyD1+tlypQp+/0e9evXj/T0dD799NMaw6KrDBo0CKfTyZdffskll1xS49yvfvUr3n77ba6//nouvPBCevXqxapVq5g/fz7Dhw9n+PDh9bpudx07duT666/n/vvvZ9asWXvtFgI466yz+Oc//8kHH3zAn//85/2+d48ePbj99tu57777OPPMM/n5z3/O4YcfTkVFBcuWLeO///0vl156aXXnWF1/drur65+ZSZMmMX/+fCZNmsQFF1xAu3btWLFiBR9++CE33njjft+nMWRnZ3PzzTfzxz/+kQsuuICf//znxONxnn32WSKRCL/97W+b/NknnHACDoeDW2+9lUmTJuFwOPjvf//L0qVLcTqde/25iIiItGTqlBIREWkB3njjDfx+P6NGjdrrNeeffz42m616Lk/Xrl055phjcDqdjB49usa1hmHw17/+lV//+td888033Hvvvbz22muMGjWKuXPn0qFDh33Wc+GFF3LzzTezefNm/vCHPzB37lx69erFa6+9RlZWFitWrKi+9sEHH+Tyyy9nyZIl/PGPf6S0tJTp06cD1Fgydccdd3DnnXdSVFTEn//8Z5599lkGDx7Ms88+S8+ePff7PXI6nQwcOBCgxjypKunp6fTr1w+gVqdUZmYmL7zwAueccw6LFi3iD3/4A59//jnXXnstM2bMqO7wqet1e3L55ZfTq1cv/va3v7F58+a9Xte/f3969OiB2+2u3tVvfy677DKeeeYZhg4dyoIFC7j77ruZMWMG4XCY6dOnM3Xq1Opr6/Oz21Vd/8z07t2bWbNm0b17d5566inuuece1q9fz//+7//uMSxMlSuuuIKHHnoIh8PBgw8+yBNPPEGPHj14+umn97jsMdXPzsvLY8aMGXi9XqZPn87f/vY3YrEYs2bN4pRTTuGTTz7ZZ5ediIhIS2RYu2/lISIiItJAgsEgLper1mDzNWvWcO6559aanyNJZ555Jr179+ahhx5q6lJEREREGo06pURERKTRvP322wwcOJBPPvmkxvE333wTgAEDBjRFWc3aypUr2bhxI+ecc05TlyIiIiLSqNQpJSIiIo2mqKiI0aNHk5aWxqRJk8jMzOSzzz7jlVdeYdy4cTzwwANNXWKzMW/ePP773/+ybNkyunTpwrx58xpt+LaIiIhIc6BB5yIiItJosrOzee6553j44YeZPXs2paWldOnShZtvvnm/w9TbGrvdzpIlSzjssMMadTc4ERERkeZCnVIiIiIiIiIiIpJymiklIiIiIiIiIiIpp+V7uyguDmOaahwTERERERERETlYNptBVpZ3r+cVSu3CNC2FUiIiIiIiIiIiKaDleyIiIiIiIiIiknIKpUREREREREREJOUUSomIiIiIiIiISMoplBIRERERERERkZRTKCUiIiIiIiIiIimn3ffqIR6PEQ6XEomUY5qJpi6n1bLbnfh87UhL2/u2kSIiIiIiIiLSsimUqqN4PEZR0Q7S0/1kZ3fCbrdjGEZTl9XqWJZFLBYhECjA4XDidLqauiQRERERERERaQRavldH4XAp6el+fL52OBwOBVKNxDAMXC4PXm87QqFAU5cjIiIiIiIiIo1EoVQdRSLleDxaTpYqHk8asVi0qcsQERERERERkUaiUKqOTDOB3W5v6jLaDJvNrrldIiIiIiIiIq2YQql60JK91NH3WkRERERERKR1UyglIiIiIiIiIiIpp1BKRERERERERERSztHUBUjTSSQS/Otfz/H66/PYseNHOnXqzIQJ53HOOedjGAaWZTF79lPMn/8KJSUB+vc/mptuupXu3Xvs8X4zZvyFLVs2c//9D9U4XlpaysMPT2fZsvcxTZOTTz6VG264Ca/X1/gvKSIiIiIiIiLNkjql2rB//vMf/P3vjzBq1Jn86U/TOeWU05kxYzrPPjsbgFmznuDpp5/ioosu5a677iMcDjFlymRCoVCte7388gu8+OJze3zO1Km38umnq/if/7mdKVN+w9KlS7jrrqmN+m4iIiIiIiIi0rypU6qNMk2TF154losuupTLL78KgMGDhxIIBHjuuWeYMOE8nnvuGa688pdMnHghAAMGHMN5543jjTfmceGFlwBQXFzEo48+zKJFb+Lz1e58+uSTj/nkk495/PF/ctRR/QDIycnl17++lnXrvqZ37z4pemMRERERERERaU7UKdVGhUIhRo8ew4gRp9Q43q1bdwKBYlat+ojy8jJOOmlE9bmMjAwGDjyWDz9cXn1s9uxZrF79GX/5y8MccURered89NGHZGVlVwdSAMceOxiv18uHH37QCG8mIiIiIiIiklrvf76N4mCkqctocdQpdZCWfbGdpau3N2kNJw3ozIn9O9frMxkZGdx8829rHV+2bAm5uR3ZuXMnAF26HFrj/CGHdGHp0veqv54w4Vyuu24KDoeDp59+stb9Nm/+gUMPrXkPm81Gp06HsHnzD/WqWURERERERKS5KQ1HmbXwa847uSdjjuve1OW0KOqUkmqvvz6Pjz9eycUXX0pZWRiXy4XT6axxTXp6OuFwuPrrbt164HDsPdssKwuTluatdXz3+4iIiIiIiIi0RFUdUuWReBNX0vKoU+ogndi//l1KzdHbby9k2rQ/cvLJp3HuuRcwZ84swKh1nWVZ2Gy1j+9N8vo9ZZ/1u4+IiIiIiIhIc1QVSlVEEk1cScujTinhhRfmcs89v+eEE07izjv/gGEYeL0+YrEo8XjNpLe8vByvt/ZA873xen2UldXuiCorq999RERERERERJqj4lBlKBVVp1R9KZRq4x5//G88/PCDnHHGGO6558/Vy/W6du2GZVls27a1xvXbtm2lW7e6r5Ht2rVbrXuYpsmPP26r131EREREREREmqPqTqmoOqXqS6FUG/bii88xZ84sJk68iDvu+L8as6H69RuAy+Xm/fcXVx8rLS3ls88+YdCgoXV+xqBBQygsLOCrr9ZUH/vkk48Jh8P1uo+IiIiIiIhIcxQIqlPqQGmmVBtVUFDAY489TM+eR3DaaaP48ss1Nc736dOX8847nyeeeBTDsNGtWzeefvopvF4v48adXefnDBo0hCOP7Mcdd9zKtdfeSDwe529/+ysnnHASffr0beC3EhEREREREUmtn5bvqVOqvhRKtVErVy4nGo2yYcO3XHPNL2qdf+ONf3P11ddhGDaef/4ZysvL6NdvAFOn3oXPV/dZUIZh8Oc/T+fBBx/g/vvvw+VyctJJI7jxxpsb8nVEREREREREmkRAy/cOmGFZltXURTQXhYUhTHPP344ff/yeTp00AymV9D0XERERERGR5u66B5dQHonTPsPNA9ee2NTlNCs2m0H79ntvbNFMKRERERERERGRAxCJJiiPJGdJlUfUKVVfCqVERERERERERA5A1Typ7Aw3FdEEWoxWPwqlREREREREREQOQHHlPKnO2emYlkUsbjZxRS1LykOpv/71r4wZM4axY8cya9YsAG6//XZGjRrF+PHjGT9+PO+88w4Aa9eu5ZxzzuGMM87gjjvuIB5PtsRt27aNSZMmMXr0aCZPnkw4HAagtLSUq6++mjPPPJNJkyaRn5+f6tcTERERERERkTaiash5p/ZeQMPO6yulodTKlStZsWIFr732Gi+//DJz5sxh48aNrFmzhmeeeYb58+czf/58Ro4cCcAtt9zC73//e9566y0sy+LFF18E4K677uLiiy9m0aJF9OvXj0ceeQSAhx56iMGDB7Nw4UImTpzIvffem8rXExEREREREZE2pGr5Xuf26QBURONNWU6Lk9JQaujQocyePRuHw0FhYSGJRAKPx8O2bdv43e9+x7hx45gxYwamabJ161YqKioYOHAgAOeccw6LFi0iFovx0UcfccYZZ9Q4DrB48WLGjRsHwFlnncWSJUuIxWKpfEURERERERERaSOKgxE8LjvtvG5AnVL1lfLle06nkxkzZjB27FiOP/544vE4xx13HPfddx8vvvgiH3/8MS+99BI7d+4kJyen+nM5OTns2LGD4uJifD4fDoejxnGgxmccDgc+n4+ioqJUv6KIiIiIiIiItAGBYIQsvxuP2w4olKqvJhl0fuONN7J8+XK2b9/O8uXL+dvf/kZubi5paWlceumlvPfee5imiWEY1Z+xLAvDMKr/uqvdv971MzabZrmLiIiIiIiISMMrDlWGUq6qUErL9+ojpYnNhg0bWLt2LQBpaWmMGjWKBQsW8NZbb1VfY1kWDoeDTp061RhUXlBQQG5uLtnZ2QSDQRKJZPqYn59Pbm4uALm5uRQUFAAQj8cJh8NkZmam6O1EREREREREpC0pDkbI8rnxuJKrudQpVT8pDaW2bNnC1KlTiUajRKNR3n33XYYMGcJ9991HSUkJsViMF154gZEjR9KlSxfcbjerVq0CYP78+QwfPhyn08ngwYNZsGABAPPmzWP48OEAjBgxgnnz5gGwYMECBg8ejNPpTOUrioiIiIiIiEgbYJoWJaEomX43aZWdUuURdUrVhyOVDxsxYgSrV6/m7LPPxm63M2rUKK6//nqysrK46KKLiMfjjBo1irPOOguAadOmMXXqVEKhEEcddRSXXXYZAHfeeSe33XYbjz76KJ07d2b69OkATJkyhdtuu42xY8fi9/uZNm1aKl+vxUkkEvzrX8/x+uvz2LHjRzp16syECedxzjnnVy+VnD37KebPf4WSkgD9+x/NTTfdSvfuPfZ4vxkz/sKWLZu5//6Hap2Lx+NMnnwlp5wykosvvrRxX0xERERERESkkZWEo5iWVbl8T51SByKloRTADTfcwA033FDj2KRJk5g0aVKta/v06cNLL71U63iXLl2YM2dOreOZmZk89thjDVdsK/fPf/6DuXOf5vLLr+Koo/rz+eefMmPGdCoqKpg06XJmzXqCZ555msmTb6Bz5848/fSTTJkymWee+Rc+n6/GvV5++QVefPE5TjjhpFrPicfj/OEPd7J27VeccsrIVL2eiIiIiIiISKMJhCIAlcv3NOj8QKQ8lJLmwTRNXnjhWS666FIuv/wqAAYPHkogEOC5555hwoTzeO65Z7jyyl8yceKFAAwYcAznnTeON96Yx4UXXgJAcXERjz76MIsWvVkrqAJYv/4bpk37Iz/88H3qXk5ERERERESkkRUHk6FUpt+NzWbgcto06LyetDVdGxUKhRg9egwjRpxS43i3bt0JBIpZteojysvLOOmkEdXnMjIyGDjwWD78cHn1sdmzZ7F69Wf85S8Pc8QRebWec++9/4fHk8Y//jG78V5GREREREREJMWqQqksvxsAj8uhTql6UqfUQYp9s4zYuiVNWoOz93CceSfW6zMZGRncfPNvax1ftmwJubkd2blzJwBduhxa4/whh3Rh6dL3qr+eMOFcrrtuCg6Hg6effrLW/X7/+7s5/PAj6lWbiIiIiIiISHMXCEWw2wwy0l0AeFx2hVL1pE4pqfb66/P4+OOVXHzxpZSVhXG5XLV2L0xPTyccDld/3a1bDxyOvWebCqRERERERESkNSoORmjnc2GzGUBlKKXd9+pFnVIHyZl3Yr27lJqjt99eyLRpf+Tkk0/j3HMvYM6cWYBR6zrLsqr/hhMRERERERFpq4qDEbJ87uqvtXyv/tQpJbzwwlzuuef3nHDCSdx55x8wDAOv10csFiUer5nylpeX4/XWHmguIiIiIiIi0pYUByNk+ncNpbR8r74USrVxjz/+Nx5++EHOOGMM99zz5+rlel27dsOyLLZt21rj+m3bttKtW/emKFVERERERESk2SgO1eyUSnM7KNfue/WiUKoNe/HF55gzZxYTJ17EHXf8X43ZUP36DcDlcvP++4urj5WWlvLZZ58waNDQlNcqIiIiIiIi0lyUR+JEoonqnfdAnVIHQjOl2qiCggIee+xhevY8gtNOG8WXX66pcb5Pn76cd975PPHEoxiGjW7duvH000/h9XoZN+7spilaREREREREpBkoDkYA9rB8T51S9aFQqo1auXI50WiUDRu+5ZprflHr/Btv/Jurr74Ow7Dx/PPPUF5eRr9+A5g69S58Ps2UEhERERERkbarOJQMpXYfdB6NmZimNgirK4VSbdSYMeMYM2bcfq+bPPkGJk++oU73nDnz7/s8v3Tpx3W6j4iIiIiIiEhzFqjslMrKqNkpBVARTZDuUdxSF5opJSIiIiIiIiJSD1XL92p2SlWFUlrCV1cKpURERERERERE6qE4GMHrceBy2quPeVzJ7igNO687hVIiIiIiIiIiIvVQHIzUGHIONZfvSd0olBIRERERERERqYfiUKTG0j3Q8r0DoVBKRERERERERKQeAnvolEpzJ5fvlUfUKVVXCqVEREREREREROoonjApDUfVKdUAFEqJiIiIiIiIiNRRaTiKBWTVmimlQef1pVBKRERERERERKSOioMRgH0MOlenVF0plBIRERERERERqaOqUCp7t1DK6bBhMwx1StWDQikRERERERERkTraW6eUYRh4XHaFUvXgaOoCpOkkEgn+9a/neP31eezY8SOdOnVmwoTzOOec8zEMA8uymD37KebPf4WSkgD9+x/NTTfdSvfuPfZ4vxkz/sKWLZu5//6HahzfseNHHntsJp988jGRSITevfty7bU30rt3n8Z/SREREREREZEGVByK4LAb+NOctc553HYt36sHdUq1Yf/85z/4+98fYdSoM/nTn6ZzyimnM2PGdJ59djYAs2Y9wdNPP8VFF13KXXfdRzgcYsqUyYRCoVr3evnlF3jxxedqHY9EKrj55utZv34dN974G+688x4MA66//pds3bql0d9RREREREREpCEFghEyfW4MwwDASsQIzb2Z2MaP8Lgc6pSqB3VKtVGmafLCC89y0UWXcvnlVwEwePBQAoEAzz33DBMmnMdzzz3DlVf+kokTLwRgwIBjOO+8cbzxxjwuvPASAIqLi3j00YdZtOhNfD5frecsW7aU77/fxPPPv8qhh3YF4JhjBnPeeWcxf/7LXHvtlBS9sYiIiIiIiMjBKw5Gaizds4IFWOEizMIf8Li6K5SqB3VKtVGhUIjRo8cwYsQpNY5369adQKCYVas+ory8jJNOGlF9LiMjg4EDj+XDD5dXH5s9exarV3/GX/7yMEcckVfrOX6/j4kTL6oOpAA8Hg+5uR3Ztm1bI7yZiIiIiIiISOMpDkXI8v0USpmhQgCsSBlpLjsVES3fqyt1Sh2kD7evYvn2j5q0huM7D2FY50H1+kxGRgY33/zbWseXLVtCbm5Hdu7cCUCXLofWOH/IIV1YuvS96q8nTDiX666bgsPh4Omnn6x1vyFDjmPIkONqHNu2bSsbN27g+ONPqlfNIiIiIiIiIk3JsiwCwQgDj+hQfcwMFiTPRcN4XA4CoWhTldfiqFNKqr3++jw+/nglF198KWVlYVwuF05nzcFt6enphMPh6q+7deuBw1H3bDMWi/GnP92Dy+Xm7LPPbbDaRURERERERBpbWSRONG6S6au5fA+SnVLJ3ffUKVVX6pQ6SMM6D6p3l1Jz9PbbC5k27Y+cfPJpnHvuBcyZMwswal1nWRY2W+3jdRGNRrnzztv5/PNPueeeP5OTk3uQVYuIiIiIiIikTnEwAkB2xp6W74XwpGvQeX0olBJeeGEuM2c+xEknDefOO/+AYRh4vT5isSjxeLxGJ1R5eTleb+2B5vsTCoW47bab+eKLz7njjv9j+PCTG/ANRERERERERBpfoDKUqtEptctMKU+WnYpoAsuyqnfnk71TKNXGPf7435gzZxajR4/lttv+tzqA6tq1G5ZlsW3bVrp16159/e5f10UgEGDKlMls3vwD9957f43h6SIiIiIiIiItRVFlKJW1y+57VTOliITxuOwkTIt4wsTpsDdFiS2KZkq1YS+++Bxz5sxi4sSLuOOO/6vREdWv3wBcLjfvv7+4+lhpaSmfffYJgwYNrfMz4vE4t9wyhW3btjJ9+sMKpERERERERKTF2r1TyjLjWGXFYBjJTilnMogq1xK+OlGnVBtVUFDAY489TM+eR3DaaaP48ss1Nc736dOX8847nyeeeBTDsNGtWzeefvopvF4v48adXefnvPzyC6xd+yWTJl2Ow+FkzZovqs9lZPjp1q1HA72RiIiIiIiISOMqDkXwpTlxOpI9PlaoGCwLW+YhmIFtpDuSYVRFNEFGelNW2jIolGqjVq5cTjQaZcOGb7nmml/UOv/GG//m6quvwzBsPP/8M5SXl9Gv3wCmTr0Ln6/uM6Xef/89AObOfZq5c5+uce6EE07i/vsfOqj3EBEREREREUmV4mCk5tK9UHLpnq19t2QoZSQ7qSoi2oGvLhRKtVFjxoxjzJhx+71u8uQbmDz5hjrdc+bMv9fpmIiIiIiIiEhLFNgtlLKCP4VSbFhBmi0KoB346kgzpURERERERERE6qA4FKmx854ZKgQM7O27AuCxKjulouqUqguFUiIiIiIiIiIi+xGLmwTLYmTvtvOekd4OIy0DAHd1KKVOqbpQKCUiIiIiIiIish8locqd93ZdvhcqxPB3wHB7AXCZFYBCqbpSKCUiIiIiIiIish9FwWQolbVbp5TN91Mo5TTLAQ06ryuFUvVgWVZTl9Bm6HstIiIiIiIizUmgslMqq3KmlGWaWKEibP724PSAYcMerwyl1ClVJwql6shudxKLRZq6jDYjFotit2tzSBEREREREWkeioM1l+9ZZQGwEhi+9hiGgeH2YsTKcTlsCqXqSKFUHfl87QgECgiHgyQScXXyNBLLsohGIwQC+fh8mU1djoiIiIiIiAiQDKWcDhteT7KBIrnzHtj8HZIXuNOxKkJ4XHbtvldHakWpo7Q0Lw6Hk1AoQDhcgmkq9WwsdrsDvz+LtDRvU5ciIiIiIiIiAiSX72X53BiGAYAVKgDA8CVDKcPlxYqW4XE51ClVRwql6sHpdJGVldvUZYiIiIiIiIhIihUHIzV23jODyVDK5msPgOFOx4qE8bjslGvQeZ1o+Z6IiIiIiIiIyH4UByNk7xJKWcFCDI8fw5k8Zrh9WJEyPG51StWVQikRERERERERkX2wLItAaLdOqVABRtU8Kao6papmSimUqguFUiIiIiIiIiIi+xAsjxFPWGT5du2UKqheugdguL0QLcPjtGnQeR2lPJT661//ypgxYxg7diyzZs0C4IUXXuCss85i3Lhx3H777USjUQBmzpzJKaecwvjx4xk/fjxz584FYNu2bUyaNInRo0czefJkwuEwAKWlpVx99dWceeaZTJo0ifz8/FS/noiIiIiIiIi0MoFgBICsyk4py7IwQ0W1OqWwLHzOhDql6iilodTKlStZsWIFr732Gi+//DJz5sxh48aNPPnkkzz//PO89tprmKbJs88+C8CaNWuYPn068+fPZ/78+UyaNAmAu+66i4svvphFixbRr18/HnnkEQAeeughBg8ezMKFC5k4cSL33ntvKl9PRERERERERFqh4spQqmr5nlURhER0t04pHwB+e0yhVB2lNJQaOnQos2fPxuFwUFhYSCKRwO12c+edd+Lz+TAMg7y8PLZt2wYkQ6nHH3+ccePGcffddxOJRIjFYnz00UecccYZAJxzzjksWrQIgMWLFzNu3DgAzjrrLJYsWUIsFkvlK4qIiIiIiIhIK1McquyUqly+Z1XvvPdTpxTudAB8tiiRWALTslJbZAuU8uV7TqeTGTNmMHbsWI4//ngOOeQQTjzxRACKioqYO3cup512GuFwmL59+3LLLbfw6quvUlpayiOPPEJxcTE+nw+HwwFATk4OO3bsAGDnzp3k5OQA4HA48Pl8FBUVpfoVRURERERERKQVCQQjGEA7nwtIDjkHai7fc3kBSLclRxJF1C21X00y6PzGG29k+fLlbN++nRdffBGAHTt2cPnll3PuuecybNgwvF4vTzzxBD179sThcHDllVfy3nvvYVkWhmHUuN/uX1exLAubTbPcRUREREREROTAFQcj+L0uHPZkxmAFCwGw+XcbdA6kVYZS5RENO9+flCY2GzZsYO3atQCkpaUxatQo1q1bx4YNG7jwwguZMGEC1113HZAcZv7SSy9Vf9ayLBwOB9nZ2QSDQRKJZOKYn59Pbm4uALm5uRQUJNPKeDxOOBwmMzMzhW8oIiIiIiIiIq1NcShSY+c9M1QArjQMV3r1sepQiuRSP82V2r+UhlJbtmxh6tSpRKNRotEo7777LgMGDOCqq65iypQpXHnlldXXejweHnjgATZv3oxlWcydO5eRI0fidDoZPHgwCxYsAGDevHkMHz4cgBEjRjBv3jwAFixYwODBg3E6nal8RRERERERERFpZQLBSPXOewBmsKDmPCl+CqXclkKpunKk8mEjRoxg9erVnH322djtdkaNGkUgEKCgoIBZs2Yxa9YsAE499VSmTJnC3XffzeTJk4nFYhx77LH84he/AODOO+/ktttu49FHH6Vz585Mnz4dgClTpnDbbbcxduxY/H4/06ZNS+XriYiIiIiIiEgrVByM0OvQzOqvrVAhNn9OzYscLrDZcZnlAFREtXxvfwzL0jj4KoWFIUxT3w4RERERERERSYrGElzzl/eYMPxwxp3QA8uyCP3zWpx5J+I58ZIa14bm3Eh5bn9++2lPrj+nP8fm5ezlrm2DzWbQvr1v7+dTWIuIiIiIiIiISItSHEoux6ueKRUtg1h5jSHnVQxXOo6EOqXqSqGUiIiIiIiIiMheBIKVoVTlTCkzmNxgzdhtphQAHh/2eFUopZlS+6NQSkRERERERERkL4orQ6nMqlAqVAiAzV87lDJc6dhiZYBCqbpQKCUiIiIiIiIishe7L9+zqjul9rB8z+2FaBmGoeV7daFQSkRERERERERkL4qDEdxOO2luO1DZKeVwYXj8ta413OlYkTAel4PyiDql9kehlIiIiIiIiIjIXgSCEbL8bgzDAJKdUjZfh+qvd2W4fRAtJ81lqFOqDhRKiYiIiIiIiIjsRXEoUj3kHMAMFWDsYec9SHZKgUWmy9RMqTpQKCUiIiIiIiIishfFwQiZvp9CKStYiG0P86SgcqYU0M4ZVyhVBwqlRERERERERET2wLQsSkLR6k4pKxbBioQw9rDzHoDhSoZSfmdMy/fqQKGUiIiIiIiIiMgeBMNREqZVHUqZoeTOezbfnkMp3OkA+O0xdUrVgUIpEREREREREZE9KA5FAKqX71nBqlBqb8v3fAD47DEqtPvefimUEhERERERERHZg+JgMpT6qVOqEGDvy/cqO6W8RkTL9+pAoZSIiIiIiIiIyB4EdgulrGAB2BwY6e32eH3VoPM0W5SKaALLslJTaAulUEpEREREREREZA+KQxFshkE7rwsAM1iA4cvGMPYcpxgOF9gdpBEhYVrEE2Yqy21xFEqJiIiIiIiIiOxBcTBCO58Lm80Aksv3bHtZulfFcPtwW8kOq3INO98nhVIiIiIiIiIiIntQHIxUDzkHsEKFex1yXsVwp+O2KgC0A99+KJQSEREREREREdmD4mDkp3lS8ShWWQDDt59OKZcXp1kZSkU07HxfFEqJiIiIiIiIiOxBIBQhq7JTygoXAWDz77tTCnc6joQ6pepCoZSIiIiIiIiIyG4qonHKIwky/VVDzgsB9t8p5fZhj5dX3kOh1L4olBIRERERERER2U1xMDmsvGr5nhkqAPbfKWW407HFyoBksCV7p1BKRERERERERGQ3gapQqmr5XrAADAPDm7XPzxluL0a8AhumOqX2Q6GUiIiIiIiIiMhuikOVoVSGBwAzVIjhzcawOfb5OcPtBSDNiCqU2g+FUiIiIiIiIiIiuynevVMqVIjNt58h54DhSgcg3Yhq9739UCglIiIiIiIiIrKb4mCENLcDt8sOgBkswKhLKOVJdkr5HTF1Su2HQikRERERERERkd0UByPVQ84tM4EVLsbm3/fOewCGKxlKZbriGnS+HwqlRERERERERER2EwhFyPK5ALDCxWCZGHUIpaicKZXhiKtTaj8USomIiIiIiIiI7KY4GCGzslPKDBYA1G2mlDs5U0rL9/ZPoZSIiIiIiIiIyC4SpklJOPrT8r1QIUDdlu9Vdkr57FEt39sPhVIiIiIiIiIiIrsoDcewrJ923jNDyU4pw5u9388adic4XHhtUcrVKbVPCqVERERERERERHZRHIwAVC/fs4KFGGntMByuOn3ecHtJN6JavrcfCqVERERERERERHZRFUpl+z1AslPK8O9/nlQVw+XFY0S0fG8/FEqJiIiIiIiIiOyiOFgBsMug80JsvjrsvFfJ8HjxWBEqIuqU2heFUiIiIiIiIiIiuygORbDbDPzpTizLxAoV1mnIeRXDlY7LqiASS2BaViNW2rIplBIRERERERER2UUgGCHT58JmGFhlJWDGMXx1X76H24vLTHZbRTRXaq8USomIiIiIiIiI7KI4GPlpyHmoEKB+nVJuL45EMpTSsPO9UyglIiIiIiIiIrKL4lCULF/VPKkCAIz6zJRyp2M3o9hJaNj5PiiUEhERERERERGpZFlWcvle1ZDzUDKUstVn9z23F4B0I6pOqX1QKCUiIiIiIiIiUqk8kiASS5BVtXwvWIjh9mE4PXW+R1UolWZEqYioU2pvFEqJiIiIiIiIiFQqDkUAqkMpM1SIUY8uKQDDVdkpZVOn1L4olBIRERERERERqRQIVoZSvqpOqQJs9ZgnBcmZUgDpRkSh1D4olBIRERERERERqVQUTO6al+V3Y1kWZqgAw1fPTim3D0gu3yvXoPO9UiglIiIiIiIiIlKpqlMq0+fGioQgHsXmr1+nFOqUqhOFUiIiIiIiIiIilYpDUbweBy6nHStYCFD/mVKVoZTXFqVCnVJ7pVBKRERERERERKRSIBj5ach5MB+g/jOlbA5wevA74lRE1Cm1NwqlREREREREREQqFQcjZFaGUlYo2SlV7+V7gOH24rNr9719USglIiIiIiIiIlKpOBSp3nnPDBWC0wOu9Hrfx3Cna/nefqQ8lPrrX//KmDFjGDt2LLNmzQLggw8+YNy4cYwaNYoHH3yw+tq1a9dyzjnncMYZZ3DHHXcQjyd/kNu2bWPSpEmMHj2ayZMnEw6HASgtLeXqq6/mzDPPZNKkSeTn56f69URERERERESkhYonTILhaPXyPStYgM3XAcMw6n0vw+Ul3VCn1L6kNJRauXIlK1as4LXXXuPll19mzpw5fP311/zud7/jkUceYcGCBaxZs4b33nsPgFtuuYXf//73vPXWW1iWxYsvvgjAXXfdxcUXX8yiRYvo168fjzzyCAAPPfQQgwcPZuHChUycOJF77703la8nIiIiIiIiIi1YSSiKBT/NlAoV1HvIeRXD7SVNodQ+pTSUGjp0KLNnz8bhcFBYWEgikaC0tJTu3bvTtWtXHA4H48aNY9GiRWzdupWKigoGDhwIwDnnnMOiRYuIxWJ89NFHnHHGGTWOAyxevJhx48YBcNZZZ7FkyRJisVgqX1FEREREREREWqjiYATYJZQKFtZ7yHkVw52O26rQ8r19SPnyPafTyYwZMxg7dizHH388O3fuJCcnp/p8bm4uO3bsqHU8JyeHHTt2UFxcjM/nw+Fw1DgO1PiMw+HA5/NRVFSUwrcTERERERERkZaqOJQMpTJ9bqxoGUTLsB1gpxRuL24rQrl239urJhl0fuONN7J8+XK2b9/Opk2baqzNtCwLwzAwTXOPx6v+uqu9re20LAubTbPcRURERERERGT/du2UMoPJnfeMA+6U8uIgTjxa0WD1tTYpTWw2bNjA2rVrAUhLS2PUqFF8+OGHNQaS5+fnk5ubS6dOnWocLygoIDc3l+zsbILBIIlEosb1kOyyKigoACAejxMOh8nMzEzR24mIiIiIiIhISxYIRnDYbfjSnFihZL5g8x94KAVgxMobrL7WJqWh1JYtW5g6dSrRaJRoNMq7777LhRdeyHfffcf3339PIpHgjTfeYPjw4XTp0gW3282qVasAmD9/PsOHD8fpdDJ48GAWLFgAwLx58xg+fDgAI0aMYN68eQAsWLCAwYMH43Q6U/mKIiIiIiIiItJCFYciZPpcyRVc1Z1SBzjo3JUOgNuKEIubDVZja+JI5cNGjBjB6tWrOfvss7Hb7YwaNYqxY8eSnZ3NDTfcQCQSYcSIEYwePRqAadOmMXXqVEKhEEcddRSXXXYZAHfeeSe33XYbjz76KJ07d2b69OkATJkyhdtuu42xY8fi9/uZNm1aKl9PRERERERERFqw4mCkxs572J0YaRkHdC/D4wMg3RalIhrH6XA1WJ2thWFZltXURTQXhYUhTFPfDhEREREREZG26LbHltOjs59rxvej/J2ZmEVb8F7wpwO6V2LnRsrm3c3fg6dw2VXnk5OZ1sDVNn82m0H79r69n09hLSIiIiIiIiIizZJlWRSHdu2UKsQ4wHlS8NNMqXQjSkVUO/DtiUIpEREREREREWnzwhVxYnGTLF8ylLKCBdgOcJ4U7B5KxRukxtZGoZSIiIiIiIiItHnFwQgAmX43VjyCVRE8qE4pKgedp9ki6pTaC4VSIiIiIiIiItLmVYVSWX43Zii5895BdUrZbFjONNKNKOURdUrtiUIpEREREREREWnzAqHKUMrnxgoWABxcpxSAK10zpfZBoZSIiIiIiIiItHm7Lt8zg1WdUgcXShluL+mGlu/tjUIpEREREREREWnzioMR/OlOHHYbVqgQDDtGeuZB3dPm9pKmQed7pVBKRERERERERNq8QChSvfOeGSrA8GVj2A4uNrF5vHhtWr63NwqlRERERERERKTNKw5GyPJXhlLBgoMacl7FcHtJVyi1VwqlRERERERERKTN2zWUskKFBz/knGQolUaEikjsoO/VGimUEhEREREREZE2LRZPECqPkel3YyXiWOFAg3RK4U7HYZjEIpGDv1crpFBKRERERERERNq04lAUgCyfGytcBFjYGqRTypf8TSR80PdqjRRKiYiIiIiIiEibFggmO5my/G7MYAFAAy3fS0/+Jlp20PdqjRRKiYiIiIiIiEibVlwZSmX63VihQoCGGXTu8ib/GlcotScKpURERERERESkTSuu1SllYHizD/q+hjsZStlj5Qd9r9ZIoZSIiIiIiIiItGmBUASXw0a624EZKsDwZmHYHQd93+pQKqFQak8USomIiIiIiIi0cbF4grKKWFOX0WSKgxGy/G4Mw8AKFjbMznv8NFPKZVZgWlaD3LM1USglIiIiIiIi0sa9tHgjf5z7SVOX0WSKQ8lQCkh2SvkbJpTClYaFQboRIRJNNMw9WxGFUiIiIiIiIiJt3LbCMNvyw8QTZlOX0iSKSyPJIeemiRUqxuY7+J33AAzDRsLuIc2IUqFQqhaFUiIiIiIiIiJtXCAYwQIKSyuaupSUMy2LQChCls+NVVYMVgLD3zChFIDpTCPdiFIRjTfYPVsLhVIiIiIiIiIibVzV7nMFgbYXSoXKYiRMi0y/GzNUCNBgM6UATGc66UZEnVJ7oFBKREREREREpA2LxBKURZJdPPklbW+XuKpALsvnxgoWADTcTCkAVzrptigVEXVK7U6hlIiIiIiIiEgbFghFqn+fH2iDoVTl+2f53ZiVoVRDzZQCMNxezZTaC4VSIiIiIiIiIm1YIPhTKNUWl+9VvX+W340VKsRIy8BwuBrs/jaPt3KmlEKp3SmUEhEREREREWnDdu0UKmijy/cMAzK8LsxgAUYDzpMCcHh8yZlSkViD3rc1UCglIiIiIiIi0oYFglEA8rpmkt8GO6WKQxEyvC4cdhtmqBBbA+68B+BI92M3LGIVbS/w2x+FUiIiIiIiIiJtWHEwwpC0H/hZYjmh8hjlbWwgd3EwkhxyblnJ5XsN3SmV5gUgXhFu0Pu2BgqlRERERERERNqwQCjCUM93dCn8ELAoKGlb3VKBYCQ5T6q8BBKxBh1yDslB5wBmRahB79saKJQSERERERERacOKQxGy7WFsZgy/UUFBG9uBrzgYIbNyyDnQ4Mv3qkIpK1LWoPdtDRRKiYiIiIiIiLRhgWAEv5Xs4mlvD5HfhjqlIrEEZZE4WT43ZjAZShn+hl2+VxVKEdXyvd0plBIRERERERFpoyzLojwUwm0lg6hOrnCb6pQKBH/aedAKFQA02vI9W0ydUrtTKCUiIiIiIiLSRoXKY/j5adbRoWkV5LehUKq4MpTK9LsxgwXgSsdwpTXoM34KpdrO97WuFEqJiIiIiIiItFHFwQhZtp+WlXVyhdvUoPPiUDKUyva7MUOFDT5PCgCnBxMDe0Kh1O4USomIiIiIiIi0UYFQtDqUMvwdyDaC5JeUY1lWE1eWGlXL9zJ9bqxgITZfw86TAjAMg6jNg1OhVC0KpURERERERETaqEAoQrYthGXYsHc8Ap9ZQjRmEiyLNXVpKVEUjOBx2fG47JihAozG6JQC4jYPLrPtdKDVlUIpERERERERkTaqavmezZuNLaMjrmgpdhJtZq5UIBghy++GSBhiFQ0+5LxK3JGG24o0yr1bMoVSIiIiIiIiIm1UcTBCB2cZNn97bBk5GFhk2cLkl7SNUKo4FCHTl5wnBWD4G375HoDpSMNjRIgnzEa5f0ulUEpERERERESkjUou3wtjeLMx/DkAtLeFKAi0jaVmxZWdUmawAKDROqVMZzrpRpSKaKJR7t9SKZQSERERERERaaNKSsvxEcbm74AtIxeAQ9PKKWgDnVKmaVESipLld2OFKkOpRpopZbnSSTciVETijXL/lkqhlIiIiIiIiEgblQgXY8PC8LXHSG8HdgeHeMrJbwOdUqVlUUzLSi7fCxaCww1ub6M8y+bykmbEKI+0jQHydaVQSkRERERERKQNiidMXNEAADZfNoZhw+brQK4j1CYGnRcHk4PHsys7pWz+9hiG0SjPMjxebIZFpCzcKPdvqRRKiYiIiIiIiLRBgVBy5z0Ao3KWkpGRQyalFJVGSJiteyh3oDKUyvQnO6WMRponBWD3+ACIlYUa7RktkUIpERERERERkTYoEIxWh1I2X3byr/4c0uMlmJZFcWmkKctrdEWVoVSW340ZKmi0eVIAjvSqUCrYaM9oiRRKiYiIiIiIiLRBVZ1SpjMdw+kBwJaRgyNRTpoRJb+kdc+VCoQi2AwDvyMBkTCGr32jPctZGUolytUptSuFUiIiIiIiIiJtUHEwGUrZdgljDH8OANm2YKufK1UcjNDO54KyIoAa34eG5vJmAGBWaKbUrhypfuDMmTNZuHAhACNGjGDYsGFMnz69+vyOHTs4+uijefzxx5k5cyYvv/wyGRnJH97555/PpEmT2LZtG7fccguFhYUcdthhTJs2Da/XS2lpKf/zP//D5s2byc7O5qGHHiInJyfVrygiIiIiIiLS7BWHInS3h7FnHFZ9zFYZSuXYwxSUtP5QKqtyyDnQqMv33F4/EcCKKJTaVUo7pT744AOWLl3Kq6++yrx58/jyyy+JRqPMnz+f+fPn849//AOfz8ftt98OwJo1a5g+fXr1+UmTJgFw1113cfHFF7No0SL69evHI488AsBDDz3E4MGDWbhwIRMnTuTee+9N5euJiIiIiIiItBiBYAXZu3VK2TKSoVTX9HIKAq1/+V6WLznkHMBoxFDKme5P/iZa1mjPaIlSGkrl5ORw22234XK5cDqd9OzZk23btlWfv//++7nwwgvp0aMHkAylHn/8ccaNG8fdd99NJBIhFovx0UcfccYZZwBwzjnnsGjRIgAWL17MuHHjADjrrLNYsmQJsVgsla8oIiIiIiIi0iKUBYO4jRg2/y7L91zp4PbS2V1GfhvolEruvFcANgdGWkbjPczhIm7ZMGIKpXaV0lCqV69eDBw4EIBNmzaxcOFCRowYUf31ypUrueyyywAIh8P07duXW265hVdffZXS0lIeeeQRiouL8fl8OBzJlYc5OTns2LEDgJ07d1Yv13M4HPh8PoqKilL5iiIiIiIiIiItghmq7BDabZaSLSOX9rYQ+a24U6o8EqcimqhcvleI4W+PYTReRGIYBhW4scUVSu2qSQadr1+/niuvvJJbb721uivqhRde4OKLL8blcgHg9Xp54okn6NmzJw6HgyuvvJL33nsPy7IwDKPG/Xb/uoplWdhsmuUuIiIiIiIisivLsnCUFwO1B3zb/B3IsEooDUeJxBJNUV6jC4QiAGT53ZihAmy+xlu6VyViuLHHW2/QdyDqldhYlkUo9NP2hQsXLuSpp55iw4YNdb7HqlWruOKKK/jNb37DhAkTqo+/++67jBkzpvrrbdu28dJLL9V4tsPhIDs7m2AwSCKR/BsjPz+f3NxcAHJzcykoSA4oi8fjhMNhMjMz6/OKIiIiIiIiIq1eeSSBzwoCe+iU8ufgiZVgYFJQ0jpDlOJgZSjlc2MFCxp1570qUZsHZ6J1L4msrzqHUuvWrePUU0/liSeeAODhhx/mpptuYvr06UyYMIHly5fv9x7bt2/nuuuuY9q0aYwdO7b6eFFRERUVFXTt2rX6mMfj4YEHHmDz5s1YlsXcuXMZOXIkTqeTwYMHs2DBAgDmzZvH8OHDgeRufvPmzQNgwYIFDB48GKfTWddXFBEREREREWkTikMRsmxhTMNea5aSkZGLzUrQzlZOQaB1hijVoVS6Dau8FMPf+KFUzJaG02ydId+BqnMo9cADD5Cdnc24ceMoKyvjySef5Nxzz2X16tWceeaZPPTQQ/u9x5NPPkkkEuFPf/oT48ePZ/z48Tz33HNs2bKFTp061bg2Ozubu+++m8mTJzN69Ggsy+IXv/gFAHfeeScvvvgiY8aM4eOPP+bXv/41AFOmTOGzzz5j7NixPPvss/z+97+v+3dCREREREREpI0IhCJk28KYaVm1ZinZKnehS86Vat2hVDsjuRosFcv3EnYPLkuh1K4cdb3w008/5cEHH+SII47g7bffJhKJMHHiRGw2GxMmTOCaa67Z7z2mTp3K1KlT93juxRdfrHXsjDPOqN5lb1ddunRhzpw5tY5nZmby2GOP1eFtRERERERERNquQDDZKbX70j1IDjoH6OgMtd7le6EI6W4HjopiYoDhT0Eo5UjDUxFp9Oe0JHXulLLZbNU73r333nu0a9eueie9kpIS0tPTG6VAEREREREREWlYxcEIWfYwzozaYYzhywbD4NC0ilbbKRUIRpJDzoPJudSpmCllOtNJM6JYptnoz2op6twpNXDgQJ588kkCgQALFiyongm1du1aZs6cyaBBgxqtSBERERERERFpOIFgGRlGGY49hVI2B4Y3m47RMMtba6dUMEKm340V2gKGDcOb1ejPtFzJZh4zEsae5m/057UEde6U+t3vfse2bdu4+eab6dixIzfccAMAv/zlL4nFYtx6662NVqSIiIiIiIiINJxYSSE2Y+8dQraMXLKN5Ewpy7JSXF3jsiyLomCELF+yU8rwZmHY7I3+XMPtBSASCjb6s1qKOndKHXbYYSxcuJCioiKysrIwDANIDi8/4ogjsNsb/wcoIiIiIiIiIgfPChcC7HGmFCSHnft2bqEimiBcEceX1np2tv9hR4jScJTDOvuxthRWD3ZvbNWhVDhIek5KHtns1blTqkpFRQXz5s3j73//O/n5+UQiEeLxeGPUJiIiIiIiIiKNwF5eDOy9U8rw5+CKB3ESb3VzpZZ+sR2H3WDokR2TnVIp2HkPwO5JhlKxMnVKValzp5Rpmtx77708//zzJBIJDMPgxBNP5KGHHmLr1q3Mnj2bjh07NmatIiIiIiIiInKQTNPCHSsBR+VQ8z2wZSRbebJtyR34DuuckcoSG00sbrLiyx85plcO6S6DUFkxNn/jDzkHcKT7kjWUhVLyvJagzp1SM2fO5JVXXuGPf/wjH3zwQfWa0ltvvZVEIsFf/vKXRitSRERERERERBpGSThKlhEm5vBiOFx7vMbmT4ZS7e0hClpRp9TqDQWEK+Kc2L8zVqgYLGuvSxgbmrNyuHmiQqFUlTqHUi+//DI333wzP//5z2nXrl318T59+jBlyhSWLVvWKAWKiIiIiIiISMMJhCJk2UMk0va+45yRkQvAIe6yVrV8b9kXP9LO5+Kow7IwQwXATwFcY3P5kp1SZkU4Jc9rCeocSgUCAQ477LA9nsvOziYUUtInIiIiIiIi0twFghGybGX77BAyPH5wuOjiKSe/pCKF1TWeknCU1RsKOeGoTthtNqxQctj73uZqNTRPWjoxy4YZUShVpc6hVO/evXn11Vf3eO6dd94hLy+vwYoSERERERERkcZRHKwgyxbGmbH3Ad+GYWDz55LjCLea5XsrvvwR07I4oX9nAMxg1Q6Ee56r1dA8LjtllhsUSlWr86DzKVOmcPXVV7Njxw5GjBiBYRi8++67zJo1iwULFvDII480Zp0iIiIiIiIi0gBCgQBuI44rK3ef1xn+DmSGt1FYWoFpWthsRooqbHiWZbHsi+0c1jmDLh2Su+CZwQKM9EwMuzMlNXhcdnaaLpyxspQ8ryWoc6fUiSeeyD/+8Q9isRgPPvgglmXxyCOP8O233zJz5kxOPvnkRixTRERERERERBpCrDQfAJt/751SkNyBLz0eIJ4wCYQiqSit0fywI8SW/DAn9u9UfcwKFWDs53vQkNxOO+WWC1usdXSeNYQ6d0oBHH/88Rx//PFUVFRQUlKCz+fD6/U2Vm0iIiIiIiIi0sCsUBGw/1lKtoxc7GYUrxEhP1BOdoYnFeU1imVfbMdhNxjat2P1MTNUiD1nz7OzG4NhGFQYHuxxhVJV9hlKBQKBvZ5zu93EYrEa12RmZjZQWSIiIiIiIiLSGOwVxcD+ZylVdVJ1sAUpKKmgd6NX1jjiCZMVX+1gYK8cfGnJpXqWZWKFCrEdNjiltUQNN45ESUqf2ZztM5Q67rjjMIy6rxldu3btQRckIiIiIiIiIo3HHQ0QdzmSO+ztg+FPzpxqbw+R34KHnX/+bSGh8hgn7bp0r6wEzERKl+8BxOxpOM3WsZthQ9hnKHXffffVK5QSERERERERkeYrEkvgs0JEXe32++/7tsrd+Q5NKyc/0HKDlGVfbKed18VRh/3UGWYFCwCw+VIbSsXtHlyJKJaZwLDZU/rs5mifodQ555yTqjpEREREREREpJEFghGybSESnqz9Xms43BhpGXSOlbG2pGV2SpWEo6zeUMiooV2x237a680MJUMpw7/vuVoNLeFIhwRY0bL9dqq1BfUadP7NN9/w0UcfEYvFsCwLSG6rWF5ezmeffcYTTzzRKEWKiIiIiIiIyMELhCJk2cIYviPqdL2RkUv74hAFJS2zU+rDL3/EtCxO7NepxnEzWAikvlPKdKZBBIiEQaFU3UOpF154gf/7v//DsiwMw6gOpQBsNhsnnHBCoxQoIiIiIiIiIg0jUBLiEFsFkYycOl1v83cgo+hrAsEIsbiJ02Hb/4eaCcuyWPrFdg7r7KdLjq/muVABhseP4XSntiZnevKvkXBKn9tc1flP06xZszj55JP58MMPueqqq5g4cSKfffYZM2bMIC0tjbPOOqsx6xQRERERERGRg1RWnA9AWnZdQ6kcPLFSDEwKS1tWt9QPO0JsyQ9zYv/Otc6ZwQIMX2qX7gEYLi+gUKpKnUOpLVu2cPHFF9OuXTv69+/PRx99hMfjYdSoUVx77bXMnj27MesUERERERERkYMUK0nOUnJn5dbpeltGLgYmWbZwi9uBb9kX23HYDYb27VjrnBUqxNYUoZSnKpQqS/mzm6M6h1JpaWk4HMnVft27d2fz5s1UVCRT0gEDBvD99983ToUiIiIiIiIi0iCsUNUspboFMoY/OXOpvS1IQQsKpeIJkxVf7WBgrxx8ac4a58xQIWbJTmyZtTuoGpvdnQylEuWhlD+7OapzKHXMMcfwr3/9C9M0Ofzww3E4HCxZsgRIDkB3u1O7DlNERERERERE6sdeXowFGN79774HyU4pgBxHGfktaNj56g2FhMpjnNS/U61z0c/eBAOcR56S8rrsacnZVrGyYMqf3RzVOZS6/vrr+e9//8svf/lLXC4X559/Pr/97W+59NJL+dOf/sTpp5/emHWKiIiIiIiIyEFyRQNU2LwYduf+LwaM9Cyw2Tk0vbxFdUot+2I77bwujjosu8ZxM1RI7Ov3cPYe3iTL99weNxHLQVydUkA9dt8bMGAACxYsYP369QDcfvvtZGZm8tlnn/HLX/6Sq6++utGKFBEREREREZGDY1kW3kSQSHpmnT9j2GwYvg50LA+zItAyOqVKw1FWbyhk5JCu2G01e3Gin74BgOuYptmszeN2UG65SK/QoHOoQyhlWRbvv/8+nTp1Ii8vj86dO7N161ZmzpzJhg0b6NWrFxMmTMDj8aSiXhERERERERE5AMHyGJm2EAlP93p9zpaRQ3ZFYYvplFrx1Q4SpsWJ/Wou3TNDhcTWLcHZZ0STdEkBpLnslJkuPNp9D9jP8r1wOMxFF13Er371KxYvXgxAaWkpF110EW+88Qa5ubmsWbOGiRMnsnXr1lTUKyIiIiIiIiIHIFBaTpYtjOHL3v/Fu7D5O+BLlBCuiFNWEW+k6hrOsi+206OTny45vhrHo5++DoBr4NimKAsAj8tBmeUChVLAfkKpv//972zatInHHnuMK6+8EoBZs2aRn5/P3XffzcyZM3nllVfo3bs3M2fOTEnBIiIiIiIiIlJ/pUVFOA0TZ7ucen3O8OfiTJThJkpBSfPulvphR5DNO0Oc2L/mznpmsIDYuvebtEsKwOOyU2a5MWJlTVZDc7LPUOrtt9/mmmuuYcSIETgcyZV+b731FhkZGYwfPx4Au93OBRdcwNKlSxu/WhERERERERE5IOVFOwHwZOXW63O2jA4AtLeHyG/mS/iWfrEdh91g2JEdaxyPfvYGYDRplxQkQ6lyy4URa97fx1TZZyi1detW+vbtW/11QUEBGzduZNiwYdh2GRaWm5tLcXFx41UpIiIiIiIiIgclVpIPgK9Dx/1cWZPNnwyxOthC5DfjYefxhMmKL3cw8IgO+NJ+2l3wpy6pptlxb1ced3L5nj2uUAr2E0p5PB4qKn76A7dy5UoATjjhhBrX7dixg4yMjEYoT0REREREREQaghUuAqj38j1bRvL6jq6yZr18b/WGQkLlsVpL95I77hm4BjbNjnu78rjslJlu7GYUK9H853M1tn2GUv379+fdd9+t/vq1117Dbrdzyimn1LjulVde4aijjmqcCkVERERERETkoNnKi4niBFd6vT5nuL3gSqOLp4yCkubbKbXsi+1keF30O/ynQe41Z0nVb8B7Y3DYbUQMNwCWhp3j2NfJ//f//h9XXXUVP/74I6ZpsnTpUs4991w6dky2+q1evZo5c+bwwQcf8Nhjj6WkYBERERERERGpP3c0QNjmp71h1PuzNn8uOaXhZjtTqrQsyuoNhYwc3BX7LuOGop++DkbTz5LaVcyeBoAVDUN6uyaupmnts1Pq+OOP59FHH6WiooIff/yRX/ziF9x5553V5ydPnsw777zDb3/7W0aMGNHoxYqIiIiIiIjIgUlPlBJxZR7QZ20ZOWRSSkFJBZZlNWxhDeDDL3eQMC1O6N+p+pgZzCe2binOvs2jS6pKwu5J/iaiHfj22SkFMGLEiL0GTo888gg9evSgXbu2neyJiIiIiIiINGexuEk7QpSk9Tigzxv+DqTHPyMeT1ASjpLpczdsgQdp2Rfb6dHJz6E5vupjP3VJNf0sqV2ZznQwtXwP9tMptT9HH320AikRERERERGRZq4kUIrPFsHwHtjuc7aMXGxWHL9RTkEz24Hvhx1BftgZqjHg3CzNJ7ZuWbJLypvVhNXVZlXO9FIodZChlIiIiIiIiIg0f8GCnQA423U4oM/b/MnPdbAHyW9mO/At++JHHHaDYUd2rD4W/ex1sDW/LimgetC8QimFUiIiIiIiIiKtXllRMpTyZOUe0Odt/uTn2ttCzWrYeTxhsvzLHxl4RAd8aU5gly6pPic3uy4pqNzNELA0U0qhlIiIiIiIiEhrFyvJB8Cf02k/V+6Z4W8PGBziaV7L977YUEioPFZj6V7006ouqeaz496u3G4XEcupTikUSomIiIiIiIi0ela4ENMy8GYf2PI9w+7E8GbR2V1GQTNavrf0i+1keF30Ozy5u55ZupPYN8tw9j2lWXZJAXhcdsotl0IpFEqJiIiIiIiItHr2smKCpGOzOw74HraMHNrbQ+Q3k06p0rIoqzcUcvxRHbHbkvFGskvKhuvoMU1c3d55XA7CpkIpUCglIiIiIiIi0uq5ogHC9oyDuofh70CGWUJRsIJ4wmygyg7ch1/uIGFanNgvuXTvpy6p5jlLqkqay06Z5cKsUCilUEpERERERESklUtPlBJxZR7UPWz+XDzxIHYrQVFp03dLLftiO907+Tk01wdA5JPXwWZvtrOkqnhcdsosN6Y6pRRKiYiIiIiIiLRmZiKBnzAJz8F1D9kycgDItoXIL2naUOqHHUF+2BnipP4/dUnF11d2SaVnNmlt++NxOzRTqpJCKREREREREZFWrLykEIdhYnizD+o+hj8ZSrW3hygINO2w8w/W/IjdZjDsyI5Ay+mSgmSnVNh0YUTLmrqUJqdQSkRERERERKQVC+78EQBnu5yDuk9Vp1SHJh52Hk+YLP/yRwb26oAvzYlZsqOyS+qUZt8lBclB5+WWG8OMYcWjTV1Ok0p5KDVz5kzGjh3L2LFjuf/++wG4/fbbGTVqFOPHj2f8+PG88847AKxdu5ZzzjmHM844gzvuuIN4PA7Atm3bmDRpEqNHj2by5MmEw8mWt9LSUq6++mrOPPNMJk2aRH5+fqpfT0RERERERKRZKS9O/rtxWnbuQd3HSGsHdieHppVTUNJ0nVJfbCwkWBbjxMqle5FPq7qkmu+Oe7vyVA46B7DaeLdUSkOpDz74gKVLl/Lqq68yb948vvzyS9555x3WrFnDM888w/z585k/fz4jR44E4JZbbuH3v/89b731FpZl8eKLLwJw1113cfHFF7No0SL69evHI488AsBDDz3E4MGDWbhwIRMnTuTee+9N5euJiIiIiIiINDvRkmQo5etwkKGUYWDz59DRGW7STqllX/xIhtdFv8OyK7ukPsB55KktoksKdgul2vhcqZSGUjk5Odx22224XC6cTic9e/Zk27ZtbNu2jd/97neMGzeOGTNmYJomW7dupaKigoEDBwJwzjnnsGjRImKxGB999BFnnHFGjeMAixcvZty4cQCcddZZLFmyhFgslspXFBEREREREWlWrFAhZaaLzKzMg76XkZFDlhFssk6p0rIon39bwPFHdcRhtxH59LVkl9TRZzZJPQciuXxPoRSkOJTq1atXdci0adMmFi5cyM9+9jOOO+447rvvPl588UU+/vhjXnrpJXbu3ElOzk/rXXNyctixYwfFxcX4fD4cDkeN40CNzzgcDnw+H0VFRal8RREREREREZFmxVZeTAleXE77wd/L3wFfooRgWZSKaLwBqqufD7/aQcK0OLFf58ouqeUtqksKKjulTHfyC4VSqbd+/XquvPJKbr31Vg4//HD+9re/kZubS1paGpdeeinvvfcepmliGEb1ZyzLwjCM6r/uavevd/2MzaZZ7iIiIiIiItJ2uaMBwraMBrmXzZ+Lw4yQbkQoaIIlfMu+2E73Tn4OzfVVdkk5WlSXFIC7xvI9zZRKqVWrVnHFFVfwm9/8hgkTJrBu3Treeuut6vOWZeFwOOjUqVONQeUFBQXk5uaSnZ1NMBgkkUgAkJ+fT25ucl1sbm4uBQUFAMTjccLhMJmZmal7OREREREREZFmJj0RJOLKbJB7GZU78LW3hchP8RK+H3YE+WFHiJP6d8Ys+bFyllTL2HFvVzbDIOFIA7R8L6Wh1Pbt27nuuuuYNm0aY8eOBZIh1H333UdJSQmxWIwXXniBkSNH0qVLF9xuN6tWrQJg/vz5DB8+HKfTyeDBg1mwYAEA8+bNY/jw4QCMGDGCefPmAbBgwQIGDx6M0+lM5SuKiIiIiIiINBtWtBwPERJpWQ1yP5u/MpSyh1LeKfXBmh+x2wyGHdmRyCevg82J6+iWseNeLS6FUgCOVD7sySefJBKJ8Kc//an62IUXXsjVV1/NRRddRDweZ9SoUZx11lkATJs2jalTpxIKhTjqqKO47LLLALjzzju57bbbePTRR+ncuTPTp08HYMqUKdx2222MHTsWv9/PtGnTUvl6IiIiIiIiIs1KvLRyBZI3u0HuZ/N3AEjuwJfCTql4wmT5lz8y8IgOpEcKCX/7Ac7+Z2BLb5eyGhqS2+UiarhxKpRKnalTpzJ16tQ9nps0aVKtY3369OGll16qdbxLly7MmTOn1vHMzEwee+yxgy9UREREREREpBUIF+7EDjjb5ez32rowXGkYHj9djHI+SWGn1JqNRQTLYpzYvzORT19JdkkNaFmzpHblcdmJxN2kt/FQSlPARURERERERFqp8qKdAKRl5TbYPQ1/Dh3sqZ0pteyL7WSkOzmyfZT4t8txHnVqi+2SgmQoVW65saIadC4iIiIiIiIirVC0JJ+EZZDRvkOD3dOWkUMmQQoCFViW1WD33ZvySJzPNxQy9MiOJD5r4bOkKnlcDsotV5ufKaVQSkRERERERKSVMkOFFJteMv2eBrunzZ9DWjy5WVmwPNZg992bzzcUEE+YHHeoRXzDimSXVFpGoz+3MXncdsKWCxRKiYiIiIiIiEhrZC8vJmB58XtdDXZPIyMHGyaZtjLyA42/hG/V1/m087notG0x2Ft+lxQkO6XCCXVKKZQSERERERERaaVc0QBhmx+bYTTYPW3+5ND0bFuIgkYedh6JJvhiYyEjDrOR2LAC55GntfguKUjOlAomnFiRspQsgWyuFEqJiIiIiIiItEKWmSAtEaLCmdmg960KpTrYghQ08rDzLzYWEo2bHG+uquySark77u3K47ITTjjBjEMi2tTlNBmFUiIiIiIiIiKtkFUWwIaFmZbVoPc1fNlg2OjsKSO/kTulPl63k/bpkL7zc5x5P2sVXVIAaS4HZZYbAKui7S7hUyglIiIiIiIi0gqZwYLkb7ztG/S+hs2O4WtPJ1dZo3ZKRWMJPv+2kDMODUIijuPwwY32rFTzuOyUmck5X1ZUoZSIiIiIiIiItCLRQDKUcmQ0bCgFYMvIoYM91KiDztd8V0QklqCf8wdwe7F3ymu0Z6Wax+2gzKoMpSJlTVxN01EoJSIiIiIiItIKlRfvACAtO7fB723z5+A3SykqjWCajTOoe9W6nfg9NryFa3F0H4hhszfKc5qCx2X/afleG96BT6GUiIiIiIiISCsUC+QTMt1ktvM3+L0Nfw7uRBi7GaUo2PBzpWJxk8++LWBkt3KIluHoMajBn9GUPC475ZWdUiiUEhEREREREZHWxAwXUWx6yfS7G/zetozkDnzt7SEKGmHY+VebiiiPJDjGswXsLhyHHtXgz2hKnl0HnSuUEhEREREREZHWxFZWnAylfI0QSvkrQylb48yV+njdTtLcdjKKvsLRtR+Go+HfoSl5XHYqLCcWhkIpEREREREREWk9LMvCHQ1Qio80t6PB729Udkp1sAfJL2nYTql4wuTTbwo4rXscyopb3dI9SIZSFgYJu0eDzkVERERERESkFYmW4bCiVLgyG+X2htsHTg+HeCooKGnYTqmvvy+mLBJnkHcrGDYc3Y5u0Ps3Bx5XMiiM2TzqlBIRkdYjlojx2Op/8n3p5qYuRURERESaiBkqTP7Vk9Uo9zcMA5s/h47Ohp8p9fG6fNwuO+1LvsbeuTeGx9eg928OnA4bDrtB1ObBiiqUEhGRVuK70u/5ouArlm37sKlLEREREZEmYgWToRTe9o32DFtGDllGsEFnSiVMk0++yednPWxYgW04ehzbYPdubjwuBxHDrU4pERFpPdYXbwTgq8JvsCyriasRERERkaaQCBUA4GzXodGeYfhz8CVKKAlHiMYSDXLPb34IECqPcZx/O0ArD6XsVODWTCkREWk9vg18B0BxJMDOsvwmrkZEREREmkKkOJ+YZSO9XWajPcPmz8FuxfEbFRQ00LDzj9fl43LayA2tw9ahOzZf43V6NTWPy0655QZ1SomISGsQM+N8V/o9AzocBcBXRd80cUUiIiIi0hRiJfkETC9ZGWmN9gxb5Q587e2hBhl2bpoWq77JZ1gPD1b+hla5696uPC4HYcuFFQm32RUOCqVERFqRH0q3EDPjDOs8iJy09qxVKCUiIiLSJpmhIopML5l+d6M9w/BXhlK2IPkNMOx8/ZYApeEoJ2btAFr30j1IdkqFE06wTIg17LD4lkKhlIhIK7I+kJwndUS7w+ib3Zv1xRuImfEmrkpEREREUs1WXkSx6SXL13ihlM2fnFeV6wg3yLDzVevycTpsHFK+HiOjI7asLgd9z+bM47ITTLgAsKJtc66UQikRkVbk28BGOns74nN5ObJ9HlEzxsbApqYuS0RERERSyErEccaCBEwvGV5Xoz3HcLgw0jM5xFN20DOlTCu5dO+Y7l6s7Wtx9DgGwzAaqNLmyeNyEIw7AdrsDnwKpUREWomEmWBjySZ6ZR4OQK/MntgNu5bwiYiIiLQxVrgIAyh3ZOKwN+6/9tv8OeQ4whQcZKfUxm2lFAcjDM8pAjPR6udJQbJTqjRmBxRKiYhIC7cltI1IIsoRmYcB4HG4Obxdd74qWtfElYmIiIhIKpmhQgDinsxGf5aRkUM7q5T8kvKDGtb98dc7cdgNukW/xUjLwJ7bswGrbJ48bgeBmDqlRESkFaieJ1XZKQXQNzuPraHtlESCTVWWiIiIiKSYFSoCwOZr3+jPsvlzSEsEiUaihCsObJapZVmsWpdP/+4ZWFu/wNH9GAxb648r0lx2wmblTCmFUiIi0pJ9G9hIbloH2rkzqo/1bZ8HwNdawiciIiLSZpihAgAc7To0+rNsGTkYWGTbwhSUHNgSvk0/BiksrWB4xyDEKlr9rntVPC47ZZWhFBENOhcRkRbKtEy+DWyq0SUFcKjvEHxOr+ZKiYiIiLQhidJCSk0PGf70Rn+W4c8BINsWoiBwYMPOP163E7vN4PDEBnB6sHc5siFLbLY8LgcRnFiGTZ1SIiLScm0L/Uh5vLx6nlQVm2Gjb3Yea4u+wbTMJqpORERERFIpVpJPsekly+du9GfZKkOpDvYg+QfQKWVZFqu+zufIbu0wtn6Oo+sADLuzoctsljwuO2BgOdMUSomISMv1beA7AHplHV7rXN/sPEKxMFtC21JdloiIiIg0ATNUSJHpI8vf+KGU4c0Em4NOrjLyD6BTavPOEDsD5Qw/NIJVXtpmlu5BVSgFpiNdoZSIiLRc6wMbyfZkke3JqnWuT3ZyrtTaQi3hExEREWntLMvCVl5MIOElMwWdUoZhw/B3oJOrjIJA/TulPl63E5thkGd9BzY7jm4DGqHK5snjdgAQt3uwopopJSIiLZBlWXwb2EivzNpdUgDt3H66+DprrpSIiIhIG2BFQtjMGMWml8wUdEpBcth5e3uQ/JL6dUpZlsXHX+fTu2s7jK2fYT+kL4ar8edgNRdVnVIxu5bviYhIC7WjbCehWLjWPKldHZndm40l31MRj6SwMhERERFJNStYCECJ4cPrcaTkmTZ/Dn6zlMKSckzLqvPnthWE+bGojJO6W1ilO3H0GNSIVTY/Hlfy5xOzeRRKiYhIy7S+cp7U7jvv7apPdi8SVoL1gQ2pKktEREREmoAZSoZSpicLwzBS8kybPweXWYHTrCAQrPt/BP14XT4GcKT9ewAcPY5ppAqbp6pOqYihUEpERFqobwMbaefyk5PWfq/X9Mw8DJfNyVeaKyUiIiLSqlmVoRTe7JQ908hI7sDX3haioB5L+D5et5NeXTNxbFuNLbcntvTMRqqweXJXhlIVuCBahtUGd8tWKCUi0oIl50l9xxGZh+/zv4Q5bQ56ZfXka82VEhEREWnVzFAhUcuBx98uZc+0+X8KpfLrOOx8e2GYrflhTjjMhVmwqc0t3QOwGQZul51y3GBZEKv/7oUtnUIpEZEWrKC8iECkZJ9L96r0zc5jZ3kBBeVFKahMRJra2sJveOKLOSTMRFOXIiIiKWSGCik2vWRleFL2TFtVp5Q9WOdOqY/X5QMwwL0ZAGePYxunuGbO47JTZroAsCra3hI+hVIiIi3Yt4GNAPTK2n8odWR2HgBri9Y1ak0i0vQsy+K1jQv5LP8L1lf+74SIiLQNidICisx0Mn2p2XkPSO6Y5/ZyiLucgjp2Sq36eic9u2Tg2r4aW+Yh2DI7NXKVzZPH5SBUFUpFFUqJiEgLsj6wEZ/TS6f03P1em5ueQ5Y7k7WaKyXS6m0s+Z4fglsBWLXj8yauRkREUskMFVKc8JHlT10oBcklfLnOcJ2W7+0sLuOHnSGO6+kjsX0djjbaJQXJTqlQojKUipQ1cTWpp1BKRKQFS86TOqxOO6sYhsGR7fNYV7xBy3lEWrn/bllKmiONo3P68Vn+F8TNeFOXJCIiKWDFo9giQYpNb0o7pSC5hC/bCJJfh+V7qyqX7h2Tvh0ss02HUmkuO8G4A6BN7sCnUEpEpIUqrghQWFFUp3lSVfpm96YiUcF3pT80YmUi0pSKKwJ8nr+GEw4Zwgmdh1AWL+frovVNXZaIiKSAFU7ODi02vWQ2QaeU1yylJFhOLL7vXeQ+XreTwzr7Sdu5BsObhS2nR2qKbIY8LgelMYVSIiLSwlTNialPKNU76wgMDNZqFz6RVmvJ1uVYlsWILifSJ7sX6Y40PtYSPhGRNsEMFgJQZHrJ8rlS+mzDn4PNSpBhK6eodO/dUgUl5Xy3PcjQXpnEN3+Bo/uxGEbbjSY8LjsBhVIiItLSfBvYSJrDQxdf3YdCpjvT6JHRTXOlRFqpaCLGsq0fcnTOUbRPy8JhczAwpz+rC9YQTcSaujwREWlkVigZSkVdmTgd9pQ+u3oHPltwn3OlqpbuDcoogES0TS/dg2QoFYwaYLODQikREWkpvg18R892PbDV878s9W2fxw/BLYTa4O4eIq3dRzs+IRwv4+RDT6w+Nqjj0UQSUb4s/LoJKxMRkVQwQ4VYgJGemfJn2/xVoVRon3OlVq3Lp1uuD2/Bl+BKx35I71SV2Cx53A4qoiaG26tB5yIi0jKURILsKMuv19K9Kkdm52Fhsa5YM2ZEWhPLsli8eRldfJ1r/G9DXlZP/C4fq3Z81nTFiYhISpihQkJ4ychIT/mzDV97MAxyHCEK9tIpVRyM8O3WEgb3bk/i+89wdDsaw+ZIcaXNi8dlT87gcqVjRUJNXU7KKZQSEWmBNpR8B9RvnlSV7hldSXOk8ZXmSom0KusDG9gW/pGTDz2pxo6cNsPGsbkDWFO4lor4/ndEEhGRlssKFVJseslK8c57AIbdgeHN5hB32V47pVat2wnA0PalWJFQm1+6B8lB5wCWMx0rqk6pRjdz5kzGjh3L2LFjuf/++wF44YUXOOussxg3bhy333470Wi0+tpTTjmF8ePHM378eObOnQvAtm3bmDRpEqNHj2by5MmEw8klKKWlpVx99dWceeaZTJo0ifz8/FS/nohISqwv3ojL7qKbv0u9P2szbPTJOoK1hd9gWVYjVCciTWHx5mX4nF6GdBxY69yg3IHEzDirC75KfWEiIpIyZqiQgng6mU0QSkFyCV8HR3ivM6U+XpdPlxwvGUVfgd2Jo+uAFFfY/HhcydlfCWe6Bp03tg8++IClS5fy6quvMm/ePL788kv+/ve/8+STT/L888/z2muvYZomzz77LABr1qxh+vTpzJ8/n/nz5zNp0iQA7rrrLi6++GIWLVpEv379eOSRRwB46KGHGDx4MAsXLmTixInce++9qXw9EZGU+TawkcMzumO3HdgAy77t8yiJlrI9vKOBK5O27uvviykORpq6jDanoLyI1QVfceIhw3DanbXOH9auG1nuTFZpFz4RkVbLskzMUBFFCS9Z/iYKpTJyyKR0j8v3SkIR1m8OMDgvh/imT7B3OQrD2TR1NifVoZQjTTOlGltOTg633XYbLpcLp9NJz549iUaj3Hnnnfh8PgzDIC8vj23btgHJUOrxxx9n3Lhx3H333UQiEWKxGB999BFnnHEGAOeccw6LFi0CYPHixYwbNw6As846iyVLlhCLaacZEWldQrEw28I/0iur/kv3qhyZnRwouVZL+KQBfbe9lAee+5T7n/2Esgr9/28qLdnyAYZhMPzQ4/d43mbYOLbjANYWfUM41vb+gVdEpC2wyksxzDjFppfMJgqlDH8OnkSYaEUF5ZF4jXOffJOPBQztFMEKFeLU0j3gp+V7cZtHnVKNrVevXgwcOBCATZs2sXDhQs466yxOPDG5Q0xRURFz587ltNNOIxwO07dvX2655RZeffVVSktLeeSRRyguLsbn8+FwJH9wOTk57NiR/C/9O3fuJCcnOfHf4XDg8/koKipK5SuKiDS6DYFNwIHNk6qS5cmkU3quQilpMKZpMXvROrxpTgpKKvj7619hanloSlTEI3ywfSXH5PQn091ur9cNzh1IwkrwWf4XKaxORERSxQol/923qWZKQbJTCiDbFqq1hO/jdfl0yk4nq2QtGAb27gOboMLmp6pTKmrzQLQMyzSbuKLUapJB5+vXr+fKK6/k1ltvpUePHgDs2LGDyy+/nHPPPZdhw4bh9Xp54okn6NmzJw6HgyuvvJL33nsPy7JqDO8Ean1dxbIsbDbNcheR1uXbwEYcNgfdM7oe1H36ts/j28BGogl1tMjB+88nW/h+R5BLRuVx8cg8Vm8oZN773zV1WW3Cyh8/oTxewcldT9rndV39XchN66AlfCIirZQZKgCg2PQ1WaeUzZ8MpTrYQxTsMuy8tCzKuh8CDO6TQ2LTJ9g75WFLy2iSGpub6lDK8CQPtLFh5ylPbFatWsUVV1zBb37zGyZMmADAhg0buPDCC5kwYQLXXXcdkBxm/tJLL1V/zrIsHA4H2dnZBINBEokEAPn5+eTm5gKQm5tLQUHyb8R4PE44HCYzMzOFbyci0vi+DWzksIxuOA9y+9y+2XnEzDjfBjY2UGXSVhUHI7yyZCNHHZbNkD65nDzwEH42oDNvfLCJVeu06UhjMi2TxVuW0c1/KIdldNvntYZhMKjj0XxTvIGSSDBFFYqISKpYoUIASvDhT689XzAVDH9Vp1SwRqfUZ+sLMC2LoYcamEVbcHTX0r0qHnfyn+krjGSQ2NZ24EtpKLV9+3auu+46pk2bxtixYwEIhUJcddVVTJkyhSuvvLL6Wo/HwwMPPMDmzZuxLIu5c+cycuRInE4ngwcPZsGCBQDMmzeP4cOHAzBixAjmzZsHwIIFCxg8eDBOZ9P8zSgi0hjK4xVsDm47qKV7VXplHo7D5tASPjloz7+7nnjC4pJReRiGgWEYXDIqj8M6Z/CPN79iW0Hbm4+QKuuKvmVH2U5O6XrSXjvHdzWo40AsLD7NX52C6kREJJXMUBExw4XH68VWh/9PaAxGWgY4XHRyhSkI/NQp9fHXO8nNTCMnmPznTofmSVVLq+yUKrdcAG1urlRKQ6knn3ySSCTCn/70J8aPH8/48eOZO3cuBQUFzJo1q/rYX//6V7Kzs7n77ruZPHkyo0ePxrIsfvGLXwBw55138uKLLzJmzBg+/vhjfv3rXwMwZcoUPvvsM8aOHcuzzz7L73//+1S+nohIo9tYsgkLiyMyDzvoe7nsLo5od5hCKTkoazYW8tHXOznrhO50zEqvPu502Ln+nP64nXYefuULyiri+7iLHKj/blmK3+XjmNy6band2duRQ7ydtIRPRKQVsoIFlBp+Mn2eJqvBMAxs/hw6usrJL0l2SoXKY6z9vphBfXJIfP8JtvZdq2dPyU+Dzsutyk6pNhZKHdzaj3qaOnUqU6dOrXX8V7/61R6vP+OMM6p32dtVly5dmDNnTq3jmZmZPPbYYwdfqIhIM/Vt4Dtsho3D23VvkPv1bZ/Hq9++SXFFgCxPZoPcU9qOaCzBM29/Q8fsdM4cVvvPZJbfzbVn9+OB5z7lide/5IbzBjTZf7ltjXaU5fNl4deMOWxkvZbzDuo4kNc3LqKoophsT1YjVigiIqlkhoqadOe9KoY/h/alW6pnSn22voCEaTGkRxqJt9fjOvbnTVpfc+N02LDbDMKmOqVERKQJWJbF3Le/4cvv9r9b6PrijXT3d8VldzXIs/tm5wGwtmh9g9xP2pY3l3/PzkA5l43Kw+nY8z9S5HXN5MLTevH5hkJeW1q/wecJM8Gm0h+oiEcaotxW570tH2A37Pysy3H1+tyg3KMB+GSnlvCJiLQmVqiQglhak+28V8WWkUOGWUJBoAzLsli1biftM9wcUv4tYOE4bFCT1tcceVx2gonk6CGFUiLS7CTMBFtD2/mm+FssbbHe6mwrLOPdT7bwjze/ojyy9yVO0USU74Ob6ZV18POkqhzi7UQ7l5+vtYRP6ml7YZgFK77nuKM60rdH9j6vPfXYLpzUvzOvLdvEp9/se/C5ZVlsDm7lpfWvcceye3ng45ncu3I63xR/25Dlt3jl8XJWbP+IQR2PJsPlr9dnc9Lb093flVU7Pmuc4kREJOWsWAQrEiI/lt7knVI2fw4OK4YzUc6O4nK+3FTEoN65xL//BMPfAVv2we0g3Rp5XA6C8apQqm0NOk/p8j0R2b9oIsa28HY2B7eyObiNzcGtbAv/SNxMhhXXDLiC/h2ObOIqpSGt/ja5a2hpKMqrSzZy8ci8PV63seR7TMtskHlSVQzDoE92HmsK1mJaJjZD/61C9s+yLOa8tQ6X084Fp/ba7/WGYXDpGXlsLQjxxBtf8b+XD6Zze2+NawKREj768VM+/HEV28M7sBt2+nfoS9/sPN79YQl//fTvjDj0BMb3HIO7gToFW7IV21cRSUQ55dCTDujzgzoezSvfvsHOsnxy0zXXQ0SkpTMrd94rNr0c1gw6pQA62IL8++PNxBMWQ47IIPHvL3H2PbVOG3O0NR63nXDMALsDKxJq6nJSSqGUSBMqj5ezpTJ42hxK/nVHWT6mZQKQ7kijq78LIw49ga6+Lrzx3du8ufFt+rXvq/8xb0U+/7aAbh199OzSjnc/2cKJ/TvTvVPtzodvA99hYHB4ux4N+vwjs/P48MdV/BDcQo/9bCkvArDiyx18/UOAS8/oTTtv3QIip8POdRP6c/c/P+Lhl79g6mWDsTkSfJ6/hpU/fsK64m+xsDgsozsX5E3g2I4D8DmTwdXQTscyf8NCFm9ZxleF67i07wX0zOzRiG/YvJmWyeItyzi8XXe6ZRx6QPc4NncAr3z7Bqt2rObMw05r4ApFRCTVrF1CqabulDL8uQC0t4dYuno7WX43XePfE0nEtXRvLzwuOxXRBIbLC+qUEmm7dhSV0b6dB4e94btFSqNBNge3sSW4tTqEKigvrD7fzpVBV/8hDMzpx6H+LnT1dSHbk1kjfDItk9lrX+Dzgi8ZmNOvwWuU1AuVx1i/tYSzju/BGUO7smpdPrPf+po7Lh2MzVYzePw2sJGu/kNIczTsjiq9s3thYLC28BuFUrJf4YoYz/9nPYcfksGIgYfU67PZGR5+Nf5IHlzwH+7572dUpG8hmojS3pPF6B6nMrTTsXvs2nHZXUzMG8/AnH7MWfsvHvzkUU7t+jPOOvwMXHZnQ71ai/Fl4dcUlBfy88NHH/A9sjyZ9Gx3GKt2fqZQSkSkFajqlCoyfWT6mraj2ObvAEB7W4ho1GR4Xg6J7/+D4fFj77j/Duu2yONyUFYRx0j3trmZUgqlRCrF4ib/++RKjuyRxXUT+u91aG+d75eI8Z/N77Ox5Hs2B7dSEi2tPtchrT1dfYdwQuchyQDKf0idZoIM7jiQRd+/y5sb32ZAhyO11KoVWLOxkP/P3lnHR3Wmbfg64xJ3d3dIcAhO0RYoLaWu23Zr2618627d7da27XbrLhQoFCsOwT0e4iFK3DM+5/sjQEsJEIMEmOu3bNKZM+88ZzIz533v93nuRxQhMcwNjUrObdPCeHttLrvSq5g68vsMCJPVTGlbOam+4wY9BnuFHf72PuQ1FTAneMagj2/j2mLlrhI6dCaeWZp0Xic9URQxHFyOoLJHETsdQf79Tm11xykOnTrG4drjyCNbaTXL8BPDuXXkFEIcA3v1fRbuHMqvRv+Mb4rWs60ijezGE9wdc+t1J6burNiLk9JxwJsTKZ6JfFWwmuqOU/jYeQ1SdDZs2LBhYygQOxoRkdBmVeM81JlSciWC2gFvSyfoITncGfPODOTBKQgS2/qlJ1QKKU1tegQnLaLRlillw8Z1iVwm4faZ4Xz8XT5vfJPFY4vikMuk/R5vfekWtpTvxFvrSaRLGP52Pvjb++Jn74Napu7XmFKJlHlBM/kg9wuO12WR7JnY7/hsDA8yihtx0MgJ8u4WJcfEeLI7s4YVu0oYGelxtjTqZFsFZquZMKfBMzn/IdEukWwp34nOrOv3+9PGtU9xVSu7jlcxc5Q/AZ7nC+mW8nRMmRsBMGV9hyHxBjIc7ThUl05FexUSQUKMSySLw+Zx7LCE/ccaaPe1Q+LU+wmqSqZiWdTNJLnH8+mJr3nxyBvMCpzKnOAZyCXX/rSmprOWE82F3BgyG6mk/9cogBEeCSwvWMPR2nR87PqfdWXDhg0b1yqWU4Xodr6DLCAJRdwMJA4eQx3SBbF2NKKT2qFUylEphv56KNi742HowkGrIFhyCoNRhyxo5FCHNWxRK2TojRZQahA7m4c6nCuKTaa0YeMHTEny5Z7ZkWQWN/KfVVmYzJZ+jVPRXs22ijTGe4/iN2Oe4Z6Y25gWkEq4c2i/F/yiaMXa1cJIz0S8tJ5sKN1y1nvKxtWJxWolq7iRhFC3sxkngiBw56wITGYLX20vPHtsUUsJwKCanP+QaJcIrKKV/ObiyzK+jasfi9XKx5vycbJXctPE89+HotWK4dBKzI4enJi8lA897flD/U5WFq8HfQc3h83nbxN+w6OJ95HsmcQ9N8QS6GXPu+tyqWnse5p6tGsEvx79c8Z4JbPp5Hb+efg1KtqrB+NUhzU7K/Ygl8iY4DPmkseKoohoNl7wfnuFHZHOYRypy7B1du0B88l0LI0VQx2GDRs2hgjRaka/+0NEfTumnG10fvl/dH33CubKnGH5nSl2NNIuscdpiE3OzyBxcMdb2cVDC2Kwlh8HmRKpb+xQhzVsOesppbz+yvdsopQNGz9icpIv986JIqekif+s7LswZbFa+PzE12jlGhaFzRuUmESjDv3m/9D52dOIDeXMC57Jqa46jtjaeV/VFFW20mUwkxjmes7t3q5a5owJ5EBOLXllTQAUNpfgo/VCK9dclliCHQNQShXkNeZflvFtXP1sO1JJRV0Hy6aHo1Z278C2Gzs40VTI1vJdfHToDV626+T37hI+rNpBjVbDNJd4nmlX81heIWP2b0BVkYt4WkxXyKU8sTgemVTC66uy0BnMfY5JI1dzV8ytPJJwLx2mTv555DU2lG7BYu3fhsJwp8vUxcFTxxjlOQI7hfaCx1nb6zEcXUPnV/9Hx6c/w9pWd8Fjkz2TaNA1Ut5eeTlCvmqxdjSh2/waXd/+FUtt0VCHY8OGjSHAlLUFa3MV6qk/QXv7iyhGLsBaV4xuw7/oWvFrjLnbEU2GoQ7zLNaOxm6T8+EiStm7I9M3E+PvgLnsGDL/eASZrXvuhVAppeiN5utSlBr6vD4bNoYhqYk+CMCHG0/w2sosnlgcj0LeuzKJHZV7KG+v4oG4O9EMgoBgbatDt+lVrC01IJFizNlG0uT78LXzZmPpVpI9EgdcwmFjaMgobkQqEYgJcjnvvnnjAjmQe4pPNhfwu3uTKWk7yTjvlMsWi0wiI8I5jLymAkRRvOzdHa36diSqS/uo2Rge1LV08M3hDIKiLVRID3MgvYaqjhrajO1nj7G3iPhIlMT6TyTaNZII51AkggQxScR88hjGw6vQb3sTSbo/ylE3I/VPxMVBxaM3xfHil+m8uy6XxxbHn+dT1Rvi3WL49ZhAvi5Yw/rSLWQ15HJX9NJrzidpb/UhTFYTU/wnnnefaNRhLj2CqWAPlpp8QEDqE4VF34Fux9toFvwSoYdrRZJ7LF/mr+JIbTqBDv5X4CyuDkx5O0AUEZRaujb8G83855G6X55MVRs2bAw/rB2NGI6uRhY4AlngCACUKYtRJM3HXHIIY9YWDHs+xnBoBfKoVBSx05HYn9+o40ohWq2IHc00WPyG3E/qDBJ7dxBFzKVHELtabKV7l0ClkCGKYJWpwaRHtFp6vG5fi9hEKRs2LsCkRB8EQeCDDXm8tjKTJ25OQHkJYapB18i6ks3Eu8Uwwj1+wDGYK3PQbXsTAPXcZzEXH8JUuA/VuNuYFzyLt7M+4lDt8csqVti4fGQUNRAV4HQ26+SHKORS7pwVycvLM/j64FGMFuNl85M6Q4xLBFkNudTrGnrsgDZYmIoPot/+FpqFv7Mt8oYhbcZ2qtprqOrsFp6qOmqoaq9FEm2lFmislOKt9STGJRJfOy987LzxqCxEfmA56jnPIPM/97tPEATkQcnIAkZgLj6A4ehqdN+9gsQzDOWom4kKjGbptDC+2FbIun1l3Dihf+8JO7mW+2JvJ8k9ni/zV/HC4VeZFzKLGQGTr4mmEBarhV2V+wh3CsHXzhvoXoRYqvMwFezBXHYUzEYER08UKYuRR0xAYueKqegA+u1vYTy+DmXyTeeNq5FriHGN5FhdJovC5l0Tr9VAES0mTCd2IQ1IRDXxLrrW/p2u9f9CM///kLoFDnV4NmzYuAIY9n8Boohy/O3n3C7IFMgjJiILn4CltghT9hZMWZsxZW1CFjgCedxMpN5Rl31z78eIXS0gWqjRq4aNKCU4dM8ljVmbQJAiC7B54V4MlaJ7nWmSqpEAorEL4TrZwLWJUjZsXISJCd4IAry/Po/XVmTy5JILC1OiKPLFiVVIBQlLIxYO6GIkiiKm7M0YDnyJxMkH9Q1PIXHwQFBqMZ3YialgDwlxswiw92Vj6VZGe46wZUtdZdQ1d1HT2MWUEb4XPCY+xJWUKA/2lh5C6nf5/KTOEO0SCUBuU8FlE6VEqxnDoRUgipjydgxLUUoURSxWEZn0+licn2gqJLcx/6wA1W7qOHufk9IRe8EVU00gowLDmD8yAQ+12znfN6JJT2fGf5B4RyH1u3A3OEEiQR4+HlnoaEz5ezAeW4Nu3QtIfWOZmrKYslgv1uwuJcDTnqQwt36fzwiPeMKcgvkyfxVrijeSWZ/DXdG34qkdvua0vSGrIZdmQwtLIm7E2lKDqWAvpsJ9iJ1NoFAjDx+PPGIiEo/Qc64/8rCxmMszMB5bg8wvFqln2Hljp3gkktWQS0nrycv+PXM1YC45jKhr49NyXzo3VPLoDc9h/u6fdK3/J5r5v0Dqassos2HjWsZckYm59AiKUTdfMPtJEARkXuHIvMKxdjRiyt2BKW8n5rJjSFz8kMfNRB42FkF2ZQQisaMRgEaLlsBhVL4HYK0vReobi6C8cNm5jR+IUhIVSgB9J1wnotT1MeO2YWMATIj35sH5MZwob+bVrzMwGHv2Kjl06hgnmgu5KXQOziqnfj+faDai3/Uuhv1fIAscieam35zt9CF1C0TiEYopdwcA84Jn0ahv4sCpI/1+PhtDQ0Zx9+QhMdT1osctmx6OxL4JudkBe7ndZY3JXeOKm9qVvMaCy/YcphO7EdvrkTj5YCo+hGjSX7bn6i8bDpzk2Tf30dZ1YYPoawG92cBneSv4T/o77KraR5e5izi3aJaE38hTI37CC5N+z+9G/4KmjATcdSO4b/x0vLWe5wngxqzNiLo2lKOX9EqMFyQyFNFT0C59AeXYZVgby9Gt+TO3yzczwsPAO2tzONU0sFbI9go7Hoy7i3tjllHbVc/fD7/C9ordw745hMls5cTJZpra9OeZ6O4oT8NZoiJ07yo6l/8SY8Z6JC5+qKb/FLs7X0U16V6knmE9/g1UE+9C0Dqj2/E2olF33v1xbjHIJXKO2nwKATBmb0WvcudAkwtZJY28srEKycxnEGQKdOv/iaW5aqhDtGHDxmVCNBvR7/0UiaMXioTedSWV2LmiHL0E7R0voUq9HxAwpH1Ax2c/x3BwOdbTgtHl5MxzDCdPKUHrAkL3nEEWNGKIoxn+nOmYaBRUAIjG68dXypYpZcNGLxgX5wUCvLsul1dXZPDUkkSUiu8XZu3GDlYWriXEMZCJvmP7/TzWzmZ0m/+Dtb4ERfJCFCNvRPhRKYUiZhr6ne9gqc4j1ieaIIcANpZuY7RX8nXRDv1aIbOoAW9XDR7OF/cdc7STI3dsQVfnwdH8elKiLm+2R7RLBAdPHcVsNSMb5PeTaDZiPLamu2xrzFJ03/4Vc/Eh5FGpg/o8A8FqFdl+rIq2TiMrdxZz39zooQ7pslDaepIPc7+kUdfErMCpzA2e2eP3x8pdxTS06vm/20f0mDkm6jswZmxEFjSyxwyciyHIFCgSbkAelYoxewvGjI3cbc4gQxnCJyv0PH7P9B5LW3s9viAwymsE4c4hfHFiJSsL15JRn81d0bfipr64GDwUWK0i/12dTXpRAwCOdgpCvexItq9DY0ynSNvA3IZ2JIIr8rFLkYWNQ6Jx6tXYgkKDaupP0K37B4b9X6CafP8596tkSuLdojlWl8mS8Buv68xbS10J1voSdgsT8XO3Y+64QN5dm8e/N1h5es4zsPlFdOteQL3gF0idfIY6XBs2bAwyxowNiG11qOY9jyCV9+mxgkyBPCoVWeQkLDX5mLK3YMzciDHzO2RBI7tL+7wiLktp31lRyqIdPuV7EgmCvRtiWy2yQJuf1KU4kymlF5TYw3Vldm7LlLJho5eMi/Xiofkx5Fe08PLXGeiN33eKWlH4LXqLgdujlvTbj8NSV0zXN3/E2lyFaubjKJMXnidIAchCRoFSiyl3O4IgMD94Fs2GFvZXH+73udm4sugMZk6Ut5DYixKlqo4azBhxFnz4YlthvzqU9YVolwiMFiMlrScHfWxT7nbErhaUo5Yg9QxD4uSNMT9t0J9nIGSXNtHcbiDQ057dmTUUV7UOdUiDisVqYX3pFl469l8sVgtPjXiYm0Ln9ChIVdV38N3BcibEeREZ4NzjeIb0dWDWo0i5ud8xCQo1ypE3YrfsXyiT5pKgKOch8Utyv3wVc3tDv8c9g5PSkUcS7uPOqFuobK/hr4deZk3xxnNM2ocaURT5bEsB6UUN3DQxmAcnOHC7czo3N/6PuJOfc9BcjdQKhe2z+Ep9O/ssCVS0SbFYe5/5JfOORJE4D1N+GqbSo+fdn+yZRIepk4KW4sE8tasOY842rFIlWxr9uWF0AGNjvHhsURwVde38a1011mlPA6Bb90+sraeGONrrA6PFxNcFa/jboZfRmc/P9LNhY7CwttZiTF+HLHQMMt+Yfo8jCAIynyjUs55Ae9u/UCTMxlydh27t3+la9XtMBXvPy4YdKGJHI2apGgNynOyGT4c7qas/Uu9IJHbnN/WxcS5nMqV03cV7iIaBZY1fTdhEKRs2+sDYWC9+siCWwsoWXlneLUzlNJ7gSG06NwRNw1vr2a9xTQV76Pr27yCVo1n4G+TBFzYuF2QK5JGTMJcdw9rZTJRLOKGOQWw6uR2TxdTfU7NxBckta8JiFS9ZugdQ1FIKwG1jx9DSbmDNntLLGtuZjml5TYNbwicadRiPr0PqF4fMp9sAVB6VirW2aFiVwuzOqMZeI+eZ25JwslPw6eYCrNbBnTgOFXVdDbx07L9sKN1CskcSvx7zNOHOPZvni6LIJ5vyUSmk3DKt5wwoa0cTppytyMInIHW5sDdabxFUdihH34L97f+izn00IfocOr/8P/T7Ph9w6YMgCIzzGcWvxzxNrEskW07u5Lf7/s4X+auo77r8ZRWXYuPBcnYcr+KWJAUzaj8kPu91onTHcQqOoWPSg2Q7qvGRxYJDCOnFjXy8KZ8/fniYx15K4++fHuXLbYUcyquloVV30YWOInkhErcg9GnvY+1sPue+WJdIVFIlR2szLvfpDlusujbMxQfJkUSisbdjTEz3NX1EhDtPLkmgtqmLF9bXYJr6NFgtdK37J9a2uiGO+tqmor2KFw6/ys7KvVR11LC3+tBQh2TjGkUURfT7PgWJDOXY2wZtXIm9G8oxt2J3x0soJ90LVgv6ne+g3/pGj+XU/cXa0YhO5oAgdGfaDhdUU3+CevbTQx3GVYFa2Z0ppRO7/36ioeNih19T2EQpGzb6yJgYTx6+MZaiqjb+/fURPj+xCi+NB7MCp/Z5LNFqQb/vc/Q730XqFY520e+RulzaQFURPRVEK6YTad3ZUiGzaDG0sqf6YH9OycYVJqOoEY1SRpif4yWPLWwpwVXlQlKgP5OTfNhypILy2suX4aGWqQhxDCSvMX9QxzVmbUY0dKAc9X1GjSx8AghSTCeGR7ZUa6eR9KIGxsd5YaeWs3RaOCdr29mVPnxEs/4giiL7qg/x98OvUNtVz32xt3Nv7G2oZeoLPmZv1ikKKlu5ZWoYDpqeJ7fGY6tBBGXywkGNV6JxInzRI6z3eJBD+mCM2Vvo/PxZuta90L27PAAfMheVMw/G38Vvxz7LGK+RHKg+zB8P/JP3sj+lvL1yEM+i9+zPOcWKncVMC1cwsX45or4N5fg70d75CupZT5ChNmDBwr2jZvOzWxJ59cmJ/OORcfzkxhgmJ/liFbtLTt9ak8Pz/93P06/v5bUVmazdV0ZOadM52ZWCVIZ62sNgMaHf+S7iDzy25FI5ie5xpNdnY7Je3ozM4YrpxC6wmvm2PpiZKf7nlKzGBbvy9K2JNLUbeGHdKQypTyKaDXStewFre/0QRn1tYhWtbC7bwb+OvI7OrOeJpIcIdwphR8UeLNaevT1t2BgI5rKjWCqyUKYsRqLtOTt4IAgyJYroKWiW/AXl2Nswlx2j85s/YmkanDmG2NFIu2CPg1aBVDJ8lviCTIEgVw11GFcFZzKlOq1nRClbppQNGzYuwuhoTx6+KZZy4Sgt+haWhC7qs5+TqO9At/HfmLI3I4+biXruswiq3hlZSxw9kfrFYTqxE9FqIcI5jAinUDad3I7Rcm2bM1/tWEWRzOIG4kNdLzlpEEWRopYSwp26s1lunhKKnVrOJ5vysQ5y2vcPiXaJoKKjetDKm0R9B8bMjciCks/ptidROyALTMJcuA/RMvSL4P3Zp7BYRSYldPvEjI72ICrAiVVpJVet6XmHsZN3sj7msxMrCLL359ejnybFM+nij9GZWL6jiDBfRyYmePd4jKWlGlP+buQxU5HY979T3oUQBIFb5o9hr3YW/+xaQkPgDCxtDeh3vkPHJ0+h2/kO5uq8c0SVvuCpcef2qCX8afwvmREwmdzGAl44/Br/Of4OJ5oKB72s4kLklTXx/vo8Ev2ULDStBasF9bznUMTNQKKyx2K1kFa5n2iXCLxOZ+IKgoCHk5qxMV4smxHOr+9K4c2fp/Lbe1K4c1YEccEunGrq4pu0Ev79VTrPvrmX3LKms88pcfJGOXYZlqocTNlbz4kn2TMRnVnHiUHOlLwaEK0WTLk7qFEE0i53YXLS+X5RkQHOPHtbEh06E3/fUIdu4hOIRl13xtQVMDK+XmjUNfHKsf+xpmQjCe6x/HrMz4lyCWd6QCothlaO12UOdYhXHfrdH2LM3DTUYQxbRJMew77Pkbj6I4+dflmfSxAEFAmzUc//PzB20bX6j5iKDgx4XGtHI81Wu2Fjcm6j75zxlNKZBJApbJ5SNmzYuDRu3npkXiex1Aew6rvmPnn9WJqqundHagpQTX4A1fg7EPpoLCuPmYrY2Yy5PB2AeSGzaDd2kFa1v0/j2LiylNW009Zl6lXpXk1nLZ2mrrMt2rUqOUunhVFc3UZaRvVlizHaJQKAE02FgzKeIX09mAwoRi0+7z551GREfTvmk8cH5bn6iyiKpGVUE+briI9bd8tiQRC4Y1YkeqOFlTuvPp+dnMZ8/nroJXIaT7AobB5PjHioV51BV+wsoktv5u4bIpFcwIzVeHgVyJQoRiwY5Ki/RymX8vjieHRyJ/583JufV85hjWYJtY5xmEqPolv3Ap1fPIfh8EqsrbX9eg5HpQMLw+bylwm/5KbQOVR3nuI/6e/wzyOvcawu87J266us6+D1b7Lwd5Zzv2YrYmcTmht+do559vH6LFqNbUzxm3DRsWRSCcHeDkwb6ceD82P420/G8vrPJvHzpYm4OKh4eXkGB3O/f43k0VOQBiRhOLQcS1PF2dujnMPRyjQcuQ678JnLjiF2NrGuKYTJSb4XNNkP9XHk+dtHYDRZ+fuGBjrGP4ao7+jOmPpRSaSNviGKIgdrjvK3Qy9T1VHN3dFLeSD2DrTy7oYgsa5ReGrc2VaRdsWE42sBa+spTHk7MRz8CktdyVCHMywxHF2D2NmEauI9fZ6P9xeZdySaxX9E6haEfvtb6Pd+2u8NOtHYBUYd9SY1zjZR6qrlTBMtvdGMoNReV5lStlZdNmz0A7PVzOcnVuCkdGR+4k28v7aIl75K5+lbk9CoLv6xMpUdRb/jHQSZEs2CX/S5Y9UZZAFJCFoXTLk7kAclE+YUTLRLBFtO7mSiz1hUMttFaTiSXtSAIEBcSO/9pH7o+zMu1os9mTWs2FHMyHB3HLSD7xvgb++LnVxLXlMBo70G1i3F2tl82ndoPFLn832HpH5x3e/j/DTkIaMG9FwDoaiqlVNNXdw3N+qc233dtMxM8ee7Q+WkJvoQ6nvpksuhxmgxsbp4Pbsq9+Gt9eSxxAfws+9dl7DCyhbSMmqYPSYAP4+eMzctdSWYS4+gGHkTErXDYIZ+Hm5Oal54ZBzFVa1kFDWSUdzA9koNciKZ5FLLeGspbsfXYTy+FolnGPKIichDRiEotX16HrVMzazAqUz1m8ihU8fYUr6T97I/xV3tyoyAyYzxSkbexy5MF6OpTc/LX2eglgs85X0QaspQzXwcqVf4OcftrNiLu9qVGNfIPj+HRiUnLtiV4Dsc+M+KTP73bQ6tnUZmjfJHEARUk++na8Vv0G//H5qFv0OQKZBKpCR5xHO49jhGixGFdPj4klxuTDlb6ZQ5csLsx30pFy+jD/C05//uGMmLXx7n7xubeG7GIygP/5f6jf/ANPEOOiTQZmyn3dhBu7GdNmPH6d87kAgCSqkShVSBUqpAKVWe/vn97z+872LHySSyy9LFayjoNHXxRf4qjtdlEuoYzD0xS3FVn2uMLBEkTPOfxBf5q7qziJ1DhyjaqwtTwV4QBAS1A/qd76BZ/EcE2fXz2b4UlqYqTFmbkUem9ntO3l8kWmfU85/HcPBrTFmbsDSUoZ7xWJ/LB89katYYVMOm856NviMRBJRyKXqjBUGhhevIU8omStmw0Q+2lu+iuvMUD8ffQ4K7P0qpiv+uzubfX6XzzNJENKrzFy+iaMV4bC3Go98gcQ9GPevJAdWsCxIp8qjJGI9+g7W1FomjJ/OCZ/Hi0ddJq9zHrKC+e1zZuPxkFjUQ7uuInfrSC9yilhKclI64qr6fmAuCwJ2zIvn9+4dYvqOIB+f3vzvMhZAIEqJcwslrKsAqWvvdURLAeHwtiNYL+g4JEgnyyIkYj63F2tGIxO7SYt3lIC2jGpVCyqgoj/PuWzAhiAO5p/h0cwG/vScFiWT4LgIr2qv4MOcLTnXVMdV/IjeFzOm1mGK2WPl4Uz6uDkpumhB8weMMh1ciqOxRJMwerLAvikwqITLAmcgAZ26dFkZdcxcZxY1kFrnz93I/7MSRjNOWMa6hFKfaDzHs/bS79XbERKR+sX3a9ZZL5UzwHcM4n1Gk12ez5eROvshfxbrSzUzzm8Qkv7EX9eLqDV16M698nYHOYOJPsQVITmahnHg38qDkc4472VZBadtJloTfOKDPoFbVbdz/9re5fLmtkNYOA0umhCJRO6Ca/AC6717GcHglqnHLAEjxTGRv9UGyG08w0iNhQOd6tWBpqsBSk88OfQpjYr3PLupMFhMN+qZzhKUfik1uKW3UtDbzjxoDBDgAIuR+enZcAQE7hRYHhT32cjvcHV0RETFYjBgsRrrMOloMraf/24DRYuyTn5dUkBLvFsMUvwmEOQVftQLViaZCPs79inZTBzeFzGFG4OQLvudHeyWztmQT2yrSbKJULxBFK6bCfWwKDMTBK4axBzac83m/3hFFEcPej0GhQjHmliGJQZDIUI1bhtQjFP2u9+ha9XtU0x9F5hPd6zHEM6KUTsXIYWRybqPvqBTS05lSmu4MuOsEmyhlw0Yfqe2sY2PpVkZ6JJDgHgvAyAh3frowjjfPClNJ5whTokmPfsc7mMuOIgsfj2rSvYOySyWPSsV4bA3GvB2oxt5GsGMAca5RbC3fxSS/cahlV6+xoNFiosPUgZPScUALsuFEU5ue8roObply6Yn0WT8p59DzFho+blpmjwlg/f6TTErwJjJg8A05o1wiOFKbTlXHKfx7mWXzY6xtdZjydiGPnozEwf2Cx8kjJmE89i2m/D0ok2/qb8j9Rmcwc/hEHWNjvM6aTP4QtVLG0mnh/O/bHHalVzF1pN8Vj/FSWEUrW8t3sa5kM3ZyLY8nPXi2DLO3bDlSQVV9J08sjj+bQv5jzFW5WKpyUI5bhqAYmDjTXzycNcxM0TAzxR+dwUxuWRMZRaH8u7geR8MpRiuLGV2SiarkEFaVA8qICd0CVR86BEoECSM9EhjhHk9BczFbyneypmQjm05uZ6LvWKb6T8RJ2fesObPFyhvfZFHT2MXvkk+hLN6HYsQCFDHTzjt2R8VeVFIlY70v3I21t8hlUh5dGMenWwrYeLCc1k4j986JQhaQiDxmOqasTcj8E5D5xRLmFIKDwp6jtenXjShlyt6GRZCxVxfKL0cHAKA3G/jH4Veo153rFSURJNjLtdgr7HFU2eGucie3qAuDTsb8CHu8i7bjoHHCffqT2Nt79Pn6ZbFaMFqNZ4Urg8WAwWz8/jazAYPFiNFipMXYypFT6aTXZ+Fr580UvwmkeI5AMYhZfZcTk8XEmpKN7KjYg6fGg0cS7yXA/uLfrwqpnEm+49hYtpXazjo8tedvJNj4HktNPqXmNnbIpNBwhFMRkdyYtRlZ0Ehk3n3PwLzWMBfuw1KTjzL1PiQq+yGNRR46GomLL/otr6Nb/08Uo25BkTinV2KztaPbN7DZqsXJlil1VdMtSlkQVNrrqomGTZSyYaMPWEUrn+evRC5VsCT83MXziAh3froojje/yebFL9N55rYktCo51rZ6dJtfxdpchXLsbcjjbxi03UyJ1hlZ0EhM+btRpixGkCmYFzyLF468xs6KPcwJnjEoz3MlEUWR4/VZrCj4llZjGzKJDHe1Kx4adzzUbnhq3Lt/17hhJ9deVTvDmcXdi5uEsEsbQ9frGmg1thPmFNLj/fPHB3Ewt7a7Nfz9o8/pEjUYRLt0lxGdaCrotyhlOLoaJFIUI2+86HESB3ekvrGY8tNQjFyAcIVFyIN5tRhNVlITL3yeo6M92JVexaq0EpKjPC7YkW4oaNQ183HelxS1lJLkHs+yqMXYyftWvtbQqmPNnlKSwtwYEdGzgCiKIoZDXyPYuSKPHh6ZmGqljORID5IjPbCKUZTVtJNR1MB/i2pxaM5nlLGY2IzvMGVuxGDvhzY2FWXEuF4vPgRBINIljEiXMCraq9hycifbytPYWbGH0V7JzAicjKfmwoLrDxFFkfc35JF3spnnRnXgVLwJWcREFCnne621Gto4VpfBJN+xg7a5IJEI3DUrAic7Bat3l9LWZeSnC+NQjr0VS3Uu+p3voF3yFyQqO0Z6JLCn+iA6s27AmWHDHdHQialoH8dNIYSF+ODr3l22uqV8J/W6Rm6JuAlvjSf2CjscFPZo5OrzhKaWMAMvfpnOt7t1PDflbjwz3kOy5U2Eec9DLxuYnEEqkaKWqHv9ui8Mncvh2uPsrNjLZydWsLpoAxN8xzDJdywuqsHfsBgsKtur+TD3C2o6a5nsN56FoXN7XS462W88W8p3sr1yD8siz//82PgeU8EeNrvZ46CwY4xXClvKd9Lq787tu97F5eY/X9dd0URDJ4aDXyHxCEUeOWmowwFA6uyLZuHv0Ke9j/HQcqx1xaimPICg0Fz0cWJ7A6IgpV1U28r3rnJUChl6owUctYgNJ4c6nCuGTZSyYaMP7Ks+RFFLKXdE3YKj8vxFzYhwdx5bHM+b32Tx4hfp/HyyEmH324iiFfWcZ5D5xQ16TPKYaZhLj2AuOYw8YgIBDn4kusWyrSKNyX7j0cgvfiEbTtR3NbK8YDW5Tfn42/lwQ9A0mvTN1HU1UNtZR3ZDHhbx+1bQapkaD40bHmp3PDVu3b9r3HFXuw1LT62MogbcnVT4uF76b3LWT8qp5zIqpVzKnbMieOXrTDYdKmfeuKDBDBUnpSM+Wi9ymwqYGTilz4+3NFVhLtyPInEOEo3TJY+XR05Cv/0tLFW5l+VzcjF2Z1Tj664l2PvCQsUZ0/M/vH+IlTuLuW9u79PqLyeHTh3jq/zVgMhd0bcyxiu5X0LtF1u7Te1vnxl+wWPMZUex1peimvzAsPQjkQgCIT4OhPg4sCg1hOb2kWQWN/BVQQWaU8dINhfhf+BzDAe+RBcxG6/UJQh9aJvtb+/L/XF3sKBrNtsq0jhQc5j9NYeJd4sh0iUMfztffO28L/jdsyqthAM5tTyYZMKvZDVS/3hUqff2+PfaU3UAq2hl8iUMzvuKIAjcOCEYR62Cjzfl868vjvPULYlopz1C1+o/od/9IaoZj5HsmcTOyr1k1ucyxjv50gNfxZjyd4PZyPbOCO6Y150l1ahrZlv5LlI8ky5pMg/gZKfk+dtH8NKX6fxzRyc/n3QPvtkf0rXhRTTznuuzx1lfUEgVTPAZw3jv0RS2lLCrci9bTu5ka/kuEtxih11pn1W0sr1iN2uLv0Mj1/DTxAeI7aNnmr3CjtGeIzlYc4QFwTdgp7h8r+/VjGjSk199nBIvO5YETmOq/0Rc1S58lf8NbzuYeHD/Z7inPjDUYQ4ZhsMrEfXtqOc8c8U3wy6GoFCjmv5TTB6bMBxcTuc3f0Q98wmkLhfOIrR2NGFSOiIi2LrvXeWoFFL0hjNG59dP9z2bKGXDRi9pMbTyTdEGIpzDGHeBcgrRaiHerpnfJFbTVnQccWsDHXI3jvrciq5QBUVFCAicmRt2/xQQTv8uCN2/I3D65/f3AWjVclITfc7piCX1iUbi6IUxdzvyiO7J87yQWWQcepntFbuZH3LDZXk9BhOT1czWk7vYdHIbUkHKkvAbSfUdh/RHXjAWq4UmfQt1unrquhqo6+r+WdRSwuHaY+cc66hwOJ1V5XY2syrMKXjIdv0NJgu5J5uZnOjTq8VBYUsJdnItnpoLlyYkhLqRHOHO2r1ljI72xN1pcM8t2jWCXRV7MViMKPtoeGw8sgrkKhSJc3t1vCxoJCi1mE6kXVFRqqKug9KadpZNDz/7d8lpzGdn5R4cFQ44KR1xVjnipHTCWeXI1BRPth6qHnLT8y5TF18VrOZIbTohjkHcE3Mbbj8yBe4txwvqOV7YwC1TQ3Fz7Pk9JFotGA+vROLsgyx8cIWSy4WzvZLJSb5MTvLFaBrFifIWtufl4laxg4SCDZSczMZ97uM4uPet/Mdd48ptkYuYGzyDXRV72Vt9iMyGHKD729xD44a/vS9+dj742/vib+/Loawm1u8/ycJoiK9aicQ1APWMxxAk50/DTFYzu6sOEOsaiYfm0lmV/WFyki8OGgVvfZvD3z85ys+XJuGQcjPGQ8sxF+whOGIiLipnjtSlX9OilChaMeZso0L0Qu4eSGSAEwCri9cDAgtDe/f9BeCgUfDc7SN4eXkGL+5q5+kJdxFw4mO6NvwbzbxnL5np0Be69CZyy5opO9XO2FhP/NztEASBCOdQIpxDadQ1s7tqP3urD/6gtG8iKZ5JQ1ra16Rv5uPcryhsKSHRPY7bI2/ut6A0PWAS+2oOsbtq/1WZFX4lMJUcYYujAkeZhok+YwCY5DsWJ6UD72V+xGu6XB4t3otP6NXxnT6YWOrLuhsFxc1A6hY41OGchyAIKBJmI3EPRr/1TbpW/wnVpHuRh4/v8XixoxGdrLvxiC1T6upGrZTR1KZHUGrAbEC0mBGk175kc+2foQ0bg8TXBWuwiGaWRS4+R1SwdjRirsjCUpmNuSoXjF04CwJqlwB2NAWwvS0KfWMXotgFiJzpYmwVRej+X59QK2SMifE8+9+CICCPmYph/xdYGk4idQvE186bER4J7KjYwxT/iX0u5bmSFDQX8WX+N9R21TPCI4El4Qsu6NUilUhx17jirnEl9kd+2EaLkXpdI7Vd5wpWx+uz6DR1GwW6qV15LuXxIXk9TpxsxmS2ktiL0j3ozpQKcwq5pIC1bEY42e808dmWAp5akjCou+ExLpFsK0+jsLmYOLfeZwZZ6kowlx1FkbIIoZelK4JMgTx8PKbcHYj6jl4/bqDszqhGJhUYF+cFdHeA+iT3K6xYkQlS2owdiD/6lKqTpbyatY/wOi+cVI44K51wVjripDr9U+mIWqbq19+iJz8Zo8XU7Stz+jadWcf28t20GttYEHIDMwOmnCfg9paGFh0fb8rH1727y+CFMBfsxdpSg2rmE33KLhouKORSEkJdSQidRJd+LOmbviXi1EY6V/2OgrAljJg6DWkfz8tBYc+C0NnMD7mBFkMrlR3VlLdXUdleTXFLGUdq088eKxpUeCc6YtFXcMLZidBpD6C5QEbVsdoM2k0dTPGfOJBTviQjItx59rYkXluRyd8+OcrTt0zAzTsD/b7P0HpHkuyRyLaKNDqMnddsJoqlIguxvZ5tnZOYnRqAIAgUNpdwrC6TucEzcVY59Wk8rUrOM0u7X9OX9rTw5NjbCSn8nK6NL6GZ80y/fdisosjJU+1klzSSVdpESVVb9xwC2Ha0kgfnx5Ac+X0ZqavamYVhc5kbPOMHpX1fs7p4PRN8xpDqO67P59ZXTp5qZ09mDfMnBOGoVXD41HG+KvgGq2jlzqhbGOudMqDrlZfWk1jXKHZV7mNGwORB7Y55rZBTspMytYKlIbPOeX3i3WJ4Kulh/nvsLV4uXc0jDq6EukddZKRrC9FqRb/nIwS1A8qURUMdzkWReUeiufmP6Le+iX7H21jqilGOXXaeSGHtaKRd4odCJkGjtC3vr2bOekqdvu6Khk4EzfDv/DxQbO9aGzZ6QXp9Nun12dwUOgd3hT3mikzMFdlYKrOxtlQDIGidkQcnI/WPR+YTg73KjpuA3to2i+Lppa8I4g/EK/H0jVYr/Omjw6zbX8aoaI9zsqXkERMxHFqJKXcH0tR7AZgbNIP0uiy2ladxU+icwXkhBpE2YzurCtdzuPYYbiqXfqXw/xCFVIGvnTe+dt7n3ddh6qS4pZT3sz/j3axPeDzpQWQ9ZChcTjKKG1EqpET4O13y2EZdM036Zqb7p17yWBcHFQsnBfPV9iKOFTScszAZKKGOQcglcnKbCvokSp3tzhY3q0/PJ49MxZS9BVPhPhTxfXtsfzCZLezPOcXICPez3RC/KVpPp7mL51OexN/eB4vVQouhjRZDK82GFloMrZyoriG7sopadRs1nad6FK6UUkV3dpXSESeVI2qp6nuRyWrEYD4tOlm7jYvPCFHmXnbe8tS482zyYwQ6XLx1/cVo7zLy7+UZmMxWHrkp7oK+ZKLZiOHoaiTuId0ZbVc5GpWc8TfdzKmyEei3vklk8aeklWThO/MuIoL6npkkCALOKiecVU7Eu33fDbPD2Mmhk4V8feAo9k7tyJRVbHOQIwrAsf9gL7fDz/77bCp/O19c1c7srNyDl8aDKOcLl1IOFuF+TvzijpG8tDyDF75I56k5S/Fu/Be6HW+TPOUetpTvJL0+i4m+Yy97LEOBMWcrHWioUkeSHOmOVbSysvBbnJVOzAyY3K8x1UoZP7s1kddXZfHqgSYeT7mV8NKv0H33cneZkLx3WQytnUZyShvJLmkiu7SJDp0JgCAve+aOCyQ+xAUXexVvrs7mjW+yWDgxmPkTgs6ZG/y4tG/nD0r7Et1imeI/kVDHoEHdzBBFkbSMaj7bUojZYiWzrIagUSfJbs4mxDHwdFbn4HRZneY/if+kv8Ph2uOM9xk9KGNeK1jaG9gkNuIsaHt8bYJdQvh55DLezP2U17I+4P74u0k83bznWsd0Ymd3Kfq0RwY1g/FyIdE4oZ7/PIaDX2PK2oSlvgz1jMeQ2HVnR4tWM2JXM82aCJzslcOmVNdG/1AppOiMZgTVaVHK2Ak2UcqGDRudxi6+yluJr9SOcdmH6dj6GVjMIJUj9Y5EGZWK1C8eiXPvyrIuxA9L907/33nMGxfIu+vyyChsOMeMWFBqkYWOwVS0H+XYpQgKNT52XiR7JrKzYg/T/Cdhr7gymSeXwipa2Vt9kDXF32G0GJkTNJ1ZgdMua0mBnVxLonscd0Tfwke5X7K8YDXLIm++YhduURTJKGogLsgFuezS2RhFLSUAhF3AT+rHzEjxY2/WKT7fWkBssHOPHeT6g1wqJ9wphBNNBb1+jLk6r7s729i+d2eTuvojcQ/GdCINedzMy/73OVbQQKfezKTTBucFzUXsrznMzIApZ83dpRIprmpnXNXfGwZP9xf5V8lxKo538NefjEWrktJqbKNZ30qLoYVmQyst+laaTwtZNY21GCwGlFIFCqkCpVSJUqpAI1fjLHVCKVWc/qdEIZWfvf+Hx35/f/fvWrlmQF0pDSYLr63IpLFVz7O3JeHrduFMGFPudsTOJlRTH7qmJrteQSFY7/kblZs/IqVqLxUbKvjcezFzZowalPKHzk6BNRvbcVOE8px6O0J9K5I5P6dGraSyvZqKjioq2qvYWr4Lq2gFQCVVorcYuC1y0RV7rX3d7fj1Xcm8tDyDF9ee5OdjFuF74nPcC4/gqXHnaG3GNSlKWVtPYanIIq0rkZmTgpBKJOytPkhFRzX3xd7ea9PtnlDKpTx5cwJvrcnm9SMNPJp0M1EVK9BtegXFiAVgMSKaTWA2IpqNYDFiMRpobumgsamNltYODDodcswkyUSmOgrYe4BGZkVqNSFWmqDMiGgx87TWmXIfe3KOprOxwo9pU1JQufud4/t2bmlfE2lV+9lXfYjj9Vn42fkw2W/CoJT2GUwWPtmUz77sU8QEOxMba2Vd5RqymwxM9JjCrbE39DursycincPwtfNmW8VuxnmPuqa+nwZKZt56KlRylgVMveAmnJf/CJ6sKeDdhgO8k/Uxt0bcRKpfz+Vh1wpWXRuGQyuQ+kQjCx0z1OH0GkEiQzVuGVLPUPS73qdr1e9RTX8UmW8MYmcLiCL1Jo3NT+oa4IzRuaA4LUQZuoY2oCuETZSyYaMHRH0H5qoczBXZrGzPpV0j4e7KZiQaD6Qx05H5xSH1jrziZr9jYjxZvbuUdfvLSAp3O2cCpoiZirlgN6bCvShiu/0V5gbN4GhtBltO7mRx+PwrGmtPVLRX82X+KsrayolwDuO2iIVXtJ3zaK+RnOqsY9PJ7XhrvZh6mctjzlBR10Fzu4GESb3bHS5qKUUt6xYWe4NUIuHuGyL526dH+XZPGbdOCxtIuOcQ7RrBysK1NOqazxFmekIUxe4sKa0L8pj+dWeTR6Zi2PMR1vpSpB49dx4cLNIyqnFzVBEd6IzRYuLzEytxU7syN3jmRR/Xk+m5i8p5WHe6+iEWq5X/rcmhpLqNny6Ku2j2nmjUYTy+DqlfHDKf4WHuPphI5AoC5j2ErmgEnjvfY2bdh3z9QQEBY2YwI8Wv310t27qMvLw8A0G08nPvQwh1lahveBKZdxRhnCs4m6xmajpOnRapqtGZdYzxurI+Ti4OKn5xx0heW5nJv/a18puwRNyOr2XE2Flsqj9Oq6ENR6XDFY3pcmPM2YYFCRlCDL+P90Zn1rG2eBMhjkEkeyQOeHy5TMKjC+N4d10u/02v46G4hcRVr0ZXnXfBx2hFUCDDU5Ah2CmRK5XIlSqQybvnG1JF90/Z6Z+CBGt7AwHWavzU9QjtmZjXbqAdAYm9GxJnHyRO3kidfM7+7qp2YVHYPOYFz+TwqePsrPy+tG+MVzJauRaz1Xz2n0k0Y7aYMYtmTD+8/Qe/m61mDGYTbXo9VoUF7WiRUiyU1oGLnSudBaPZnaElyaGN6MDB+54UBIHp/ql8nPcVuU0FA8q2vpawWq1sbM7BRSphXPCUix7rmnwzD6/O5jOx26ewSd/CjaGzB7TpMZwxHPwKzAaUE+66KkVMechoJM5+6Le8jm7Dv1CMWoLUs3vOd0qvxtnFJkpd7agUUkxmK9bTG7uioWOII7oy2EQpGzZOI4oipqzNmIoPYq0vBURK7O046KlhijaYyJtvRWI3OCnn/UUqkTB3XCAff5dPblkzscHfGxtLPUK6s0xytyOPmY4gCHhqPRjtNZK0qn1MD0i9rIsKS20RltpC5PGzz7vQ68161pVuZmfFXuzkWu6JuY1RniOGZEIwP2QWp7rqWFm4Fg+NG7Gul99HIaO4Eeg2Ju8NRS0lhDkF9WlSGObnSGqiD5sPVzAuzgt/j8HJjItxiWAlkNeUf8lsCUt5BtbaIpST7u23YCsPG4vhwBeYTqRdVlGqvkVH3slmFk4KRiIIbCzbSr2ukSeSHkJSlYuucB/K0bcgse/5b+br1u3B9N2h8iE3Pe8LoijyyaYC0osauHNWBMmRFxeFjZnfIRo6UI5acoUiHBrUYSkovYJp2/xfljWkcfBQFX/JmMKts2KJCeqbgfyZLLTmdj1/js5FVpWLMvU+ZAFJPR4vl8gIcPAjwOHCnZWuBHZqOc8uTeJ/3+bwr6Jo/uBeRsyJY3znCsfqMq+YiH8lEE16jCd2c9wQyOiR4SgVUlYVbaPD1MlPw+8ftGuTTCrhJwtiUcikvJMFNyc9TKS7hMJTXeRXd1HdbMQoyrCz1xAR5EFsiDvRQa5oVH2fnotmI4W5BezcdQQPSSvjtGDX0YCpKgeT5fuyYEHteFqg8mGUszejfW+gWGpiV30GOyr2nC1FlklkyAQZcokMmeT7nzKJFJlEjkwiQy1TIZPIaOswU3uqAwlOJAS74eVkj0wiRSvvLh3rTLDy8vIMXl6ezkMLYhkVNXibUcmeiawp3sj28jSbKHWajOLtVMnhdqf4S2amCVIZDlN/wp2r/sDaoEC2lO+kxdDKndG3XHGbg8uNuSYfc8FeFEnzkTr7DHU4/Ubq7INm4W/Rp32A8dDXCKfnKRVdChJsmVJXPSpF92fWKKgAEG2ZUjZsXF9YaoswHPgCiVsgipE3IvpGs6ZsLa6ihRtTHkAygFT+wWRCnDdr95axdl/ZOaIUgCJ6Kvq097GcKkDm3T05mxPUbXS6+eQObonorcNV37B2NqP77hVEQwei1YoyaR7QvQA+Xp/FysK1tBramOg7lhtDbkAjH7oafokg4e7opbys+y/vZ3/OsymP4a31vPQDB0BmUQPB3g44ai/9Hmo1tFGna2CCb9/TypdMCeVYQT2fbMrnF3eOPMdbpL94ajxwUjqS11RwUVFKFK3dWVIOnsgj+794FRRqZCGjMBUfQDluWa/9V/rK7swaBAEmxntT2V7N1vJdjPVKIVLjTee6XyLq2zFXZKKaeDfysHE9jrFgQhAHck/x6eYCfntPChLJ8N91/XZvGWkZ1cwbF8i0kRcXQay6NoyZ3yELGY3UPejKBDiESOxccVz4S4zHvmX0sW8JExt47+tTeIdHs3RqGK6OqkuOYbWK/G9NDqXVbfwuqRJ1+WEUyYtQRPXPn+hKo5BL+emiOD7drODt7LE8ad6Et6s/R2szrilRylS4D8GsZ585mieS/ajrqmdnxV7GeqcMujgokQjcOzcKhVzCymNVQLdYFRngw/REF+JCXPFx1QxYCBNkCiIS4nD0D+G1FZmsy9OxbEY4U5O8oaMBa0s1luYarC3VWFuqMRXuA5MOAF/gdoUaq4sfitjpKINHI+mF8b/ZYmX5jiIOHKkk1MeBRxfG4eJw/udE6QC/uHMkr67I5K3V2bTPirjk909vkUlkTPGfwJrijVS2V+Nnf/WKDYOBVbSyvnIXbkYLY2J7N+eTuvijTlnETYdW4Jo8hfW1x2kztvNQ/F1D1rF4sBGtZgx7PkGwc0UxcsFQhzNgBIUa1fRHMXmGYjiwHIB6oxonu+GxVrHRf1SnjeoNqFDQbXR+PXBt5mbasNEPLBWZIEjQzHseZcoituhOUqurZ1nUYpTDRJCC7pKA2aMDKKhooaCi5Zz7ZGFjQKHBlLv97G3uGlfGeiWzp/ogzfpzjx8MRKsF/fa3EC0mpP7xGA+twFyRSYOukTcz3+e97E+xl2t5NuUxbotcNKSC1BlUMiWPJNyLXCrjrYwP6DBevi/8tk4jJdVtJIb1tnSv208q3KnvWUJ2ajm3Tg2jqKqVPZk1fX58TwiCQIxLBPnNRVislgseZy4+hLWpAmXKoh7b3PcFeWQqmPSYSw4NaJwLYbWK7M2qIS7YFSd7BZ+fWIlWpmFR+DwMB5cjGrpQz3oKqbMf+u3/Q7f9rR4nBWqljKXTwjlZ286u9KrLEutgsiu9ijV7SpkQ78Xi1Eu/v4zH14LFhDJl8RWIbnggSKQoUxahmf88rlqBZ52+w748jV+/u591+8owma0XfKwoiny2pTsL7WeJzbiUb0ceNQXFyBuv4BkMnDPlwHFjxrBVF0diQyOlbSdp1DUNdWiDgiiK6LO2UGF2xT86AQeNglVF65BLZCwImX1ZnlMiCNwxM4LHFsXxs1sS+c/PJvHM0iRuGB2Ar5t2ULOGPZ01/ObuFBJCXflsSwEfbSrAonVHFjgCZdJc1FMeRLvwd9jd+ybaO15GPe95lOPvRB42Dpm+A/O2t9Ct/RuW2qKLPk9Tm54XPjvG1iOVzEjx4//uGNmjIHWGM50JE8Pc+HRzAd+klSCKfe0/3DMTfcagkCrYXrF7UMa7mjlem06NaGCWwhuZsvcZ04qEOUg9QpmUfZg7QxdQ2FLCy8feosXQehmjvXKYsrdgba5EOf4OhAt0Pr3aEAQBRfwNaG78JV3Jd2FChtMg+CHaGFrOZErp6V57Xi+ZUjZRyoaN05grspB6hiEotVR11LD55A7GeCUT7RIx1KGdR2qSD/YaOev2l51zuyBTIo+YgLn0CNau7ycSs4OmI4oim07uGPRYjMe+xVKTj2ri3ahnPo7V1Zf1h9/jLwf+TUlLGUvCb+S5lCcIcggY9OceCM4qJx6Ov5cWYxvvZH/c665nfSWrpBERSOx16V4pSqkCP7v+7fZOiPciws+Rr3cU0dZl7NcYPybaNRKdWc/x+qwe7xetZgxHvkHi4ocsdOAdkKReEQiOXphOpA14rJ7ILm2kud1AaqI3Oyv3crK9giURN6JqqMSUn4Yi4QZkQSNQL/gFipTFmIsP0bnyd5hr8s8ba3S0B1EBTqxKKxm01/tykF7YwMeb8okPceWe2VGXXARb2+u7S4EjU5E49c7b7FpC5hONdsmfkfvHsVB1iCddd/Pd7lx++95BMk+X4/6YjQfL2XG8intiuwiqWIc0IAnlxKvTt0QQBBZOCsFl4i24tXZnSuwv2zfEUQ0Oluo8hNYa0vRR3DA6gLzGArIa8pgdNB1Hpf1le15BEEiO9CAh1BWlfPDMvntCrZTx+M3xzB8fxO7MGv71xXFaOwznxSPROiPzjUERNwPVxLvRLPkrytT7ENvq6VrzF3Rb38TaVnfe+Nmljfzhg8NUNnTy6MI4bp8R0Sv/NaVcymOL45iY4M3afWV8vCkfi/XCQu8ZRLMRY+4O9Hs/6TaG/xEauYZx3qM4Upt+zYgo/cEqWllfuB4Pg5lR4X3rYCtIpKinPARmE4l5R3g04T4adI3868jrVHecukwRXxmsHU0YjqxGGpCILHDEUIcz6Eg9w6h3TgIYlCYdNoaWs6KUGZCrrhtPKZsoZcMG3WUq1oYypH5xWEUrn59YiUamZnHY0JuD94RSLmXWKH+yS5oorWk75z55zFSwWjDlf79j6Kp2YZzPKPZVH6JR1zxocZircjEe+xZZxATkERMobK/gFW87NjspidZb+M3Ix5nqP3FQu+0MJsGOAdwZdQtFLaV8lf/NoO3a/pCMogac7BQEePZux7KwpYQQx6B+v2aCIHDXDZEYTBZeXp5xto34QIhzjSLA3pePcr9kf/Xh8+43FexFbKtFOepmhEEwRxUEAXlkKpbaQiwt1QMe78ekZdRgr5Hj5ydhbckmYl2jGOkag2H3hwj2biiSu0seBIkU5cgb0dz0a5DI0K39B4ZDXyP+0J/ltOm53mhh5c7iQY91MCiuauWtNdkEetrz6MLYXi0eDUdWgyA5+1pcj0hU9qhv+BnK8Xfgby7nz16bCBRqeOXrDF5bkUldi+7ssftzTrFiZzHzw0yMrFuNxCMY9YxHEYbpd19vmZIciDblfvx0Jg6X7qah5eovI9BnbaFTVCIGpuDmpGRF0Vrc1K5MuYbKE6E7O2txagiPLoyjvK6dP3105Lz5wo8RJBIUUZPR3vYCipE3YS5Pp3P5r9Af+BLR0InVKrJmTykvf5WBo52C392T0md/KKlEwn1zopg3LpBd6dW8+U02JnPPWbhWXRuGI9/Q+fkzGPZ8hClnG/pd7/V4rZ7mPxGraGVX5bUhnvaHo7UZ1JramdkFct+4Pj9e4uSFcswtWMozCK+v5emRP0UUrbx07E0Kmofn9a03GA58AaIV1fg7r8pNgt7QfFp0tnXfu/o500G7uwOfxpYpZcPG9YSlojsDRBaQwK7KfZS1lbMk/EbsFBdukz7UTBvph0YpY/3+k+fcLnXyQeoTjSlvB+IPdiBnB05DAL4r2zYoz2/VtaHf/j+6nD05HBLFq8f+x6vH38YKPOI3g9sr61HtX44oXnoXdCgZ5TWC2UHT2VdzmB2DnPpvtljJLm0iMcytVxOhDmMnNZ21/Srd+yG+7nY8tiieqvpO/vn5MVo7B5bBo5AqeGrEw0Q4hfLpia/ZXLbj7KJANBsxHl2DxCMU6QWMnPuDPGI8CNJBz5Zq7TSSUdTA+DgvVhSuAeC2yEWYMr/D2lKDasLd56X2Sz1C0d78R+SRkzCmr6drzV+wtnxfHnnG9Hx3Zg3FVcNrl76msZNXV2TiZKfkZ7cknp3sXAxLUyXmwn3IY2cg0V4dHQUvF4IgoIibiWbhb5CrVNwprOWZqHJOnGzkN+8cZPXuEjKKGnh/fR5j/azM7PgWwc4N9eynr5kSkYQRsUTaRdGgElm34j0q6q7eXVtrRyPW8nT26cOZNTaE3dUHONVZy+Kw+civMVPnM4yK8uBXdyYjEQT+8dkxDuRcOutFkKtQpixCu/QF5OHjMGVuouOL59ny6Yes21PEuDgvfnN3Ct6u/ZsjCYLAzZNDuX1GOOmFDfz7y3S69N9voFhbatDv/pDOz5/BeKz7+qJe8EsUo5dgLj6I8fi3543ppnYl0T2OPVUHMFiGb9bq5cJitbC+ZBNeBjMjfMcg9MITrCfksdORekeh3/85vih4JvlxHBUOvJH+Lkdq0wc36CuAuSILc8lhFCMWIHFw79cY+eXN/OJ/+/n1Owf4x2fHePObLD7ZnM+3e0rZcbyKo/l1FFS0cKqpiy696bJscF6KlnabKHWtcDZTymhGUGmvG0+pa/MKbMNGHzFXZiGoHWjR2vNtznfEuEaS4pk01GFdFLVSxvRkP9buK6OqvgNf9+8zceQxU9FvfRNLZebZjk/OKicm+I5ld9V+ZgVOxV3T/06CrYZWDqe9SoaLhFK1iFi0Fk+NBwtCZjPNfxIKqRyjQcSw/wuMx9ehHOaeKvOCZ3Kqs45VRevx0LgT5xY9KOMWVLSgN1p6X7rXWgpA2ABFKVHfQXjBh/xmVAj/OOLEPz8/xrO3jRhQWrdKpuLRxPv4JG85a0o20mps4+bwBZjzdiB2NqGa+tCg7kBKNE7IAhMxF+5DHL1kwD5VZ9iXXYPFKuIS0EhaeT5Lwm/EyWCg8/i3yEJGIwtI6PFxglyFavL9SAMS0ae9T+fK36Mcdxvy6KkIgjAsTc9bOgy8vDwDQYCfL03EoRdG+wDGwytBoTrbsMAGSN2C0C76A/q9nxJQuJN/hISzmul8u7cMgEhXWCZsQJBK0cx5Bonq8pWBDQVTxyxl+96/Ye9YwAefb2HJwsl97ko4HDDkbEMUoco5hVkeMt7av5lI5zAS3GKGOrTLSoCnPb+9N4X/fpPN22tzqajr4ObJoZf8npJonVFNfoBaj3E07/qM8ZJdjPR2wSlmGTLZwPe1Z6T4Y69R8O66XP7x6VGenmqHqmgb5pPpIJUiD5+APOEGpE7d5exSrwiszTUYj3yDxMkbeci55eLTA1JJr89if81hpvhNGHB8VxOHa49Tr2/irqYOFGMH0GxEkKCa8gCdK36Lftd7uMx7jp8n/5T/ZX7EBzmf02JoZbp/6lWRcSSajej3forg6IUicU6/xmjtMPDfNTkoZBICPOxo6zJR1dBJ28lmOvU92z5IJQIOWgUOGgX2WjkOmnN/t9cocHNU4T0IDQ7O0NxhxE4tRz4In0sbQ8sZo3OdwYKg0ILx+siUsolSNq57RKsVS0U2Ev94vio4nTkRsfiquODOHOXP5sMVrN9/kp/cGHv2dlnQSAS1I8ac7ee0Ib8hcCr7qg+ysWwrd8cs7dNztRnbSa/L5nhdJoUtxYhy8FA5Mdt/LCM9EvHWep7zmsnjZmFpOInxyDdIXf2HdR2/RJBwd8xSXj7ayAc5n/NM8mP42A3cRyejqBG5TEJ0UO+yTYpaSpBLZAQOoPuTKIro0z7AUpmNM9n82c+fN0+N4B+fWXlu2QjcHPvfSUcmkXFPzG3YK+zYUbGHdn0ri9MPo/CNReYzOELeD5FHpWIuO4b5ZAby4OQBjyeKImkZNQT7q9has4kghwBSfceh3/hvkMpRjr/90jEFJyP1CEG/6z0Mez7GXJ6JavL9qNUOLJ0Wzv++zWFXehVTB6mzVH/RGcy8sjyD9i4Tz98+Ag/n3jUYsNQWYT55HMWomxFUvTfJvR4QFGrUUx/C5BuDfs/HLJJ+QuqM20irsWOhbgV0dqFe8It+78YPZ5xVToQ6BpBlLuOR5k2Urz9CcUAIARERSJx9kDj5ICiGd5cu0WxEn7OTHJM/E6fFsqF0CzqznpvDF1wV1/uB4qBR8MxtSXyxrZCNB8uprO/k4Rtj0KjkF3yMKIpsPVrJ8u21ONvP5WdjZTjmf4t+6xtIPcNRjrsNqUfogOIaHeWGR5tI1/EVyLY1YFJoUY68EXnMNCQax3OOFQQBVeq96Nrq0O94F4m9O1L34LP3hzgGEuwQwI7y3aT6jkMyCOXkVwMWq4WNpVvxNQvEaXyQOvsOaDyJvTvKccswpH2AKWc72rgZPJH0IB/lfsk3Retp0beyOHz+sH99jRkbEdtqUc99FkF64ff5hbBaRf73bQ56g5lnb0vBz/3ca6LZYqW9y0R7l5G2LiPtnSbafvR7e5eRmoYu2rqM5zXKCPCwIzXJh7ExXmhUA1uSt7QbbFlS1wjnZEoptVhbr25Pt95iE6VsXPdYG8oQDR1Ue/qTU7uTRWHzcFVfHSUrdmo5U0f4sulwOTdNCsbz9MJTkMiQR0/GeGwt1rb6s4skR6UDk3zHsaNiDzcETcNTc/HF07lCVAkiIp4KJ6Y2dTHCKYygKU+ebRvdpTdR3dBFsI89Uomke/I46V66mqvRbX8bzaLfnt3tHI4opQoeTriXfx75D29lfshzKY9jr+j/olwURTKKGogOdO61qW1RcwnBDoHIBpAVZMpPw1x2FOWYpQh2rgj7PuUp7TrSDLH8+zMTP1s26uz7pD9IBAk3hy3AUeHA6uINtLpI+cllaq8s9YtH0DhhOrFrUESpwspWapu6iIktp86o4/aom7EWH8RSlYty4t1INE69GkeidUY95+eYsrdiOLScrhW/QTX5AUZHJ7ArvYpVaSUkR3ngoBmarp1mi5XXV2VR1dDJk0sSCPZ26NXjRFHEcOhrBLUDiri+meReT8gjJiD1CEW37b+4HnuPxfZuiB3NqOc8jdQtaKjDu2ykeCfzZVs5bUFRuJdX4li9F33N9yXPgtblrEAlcfFF6uSDxNkHQdld4mWymukyddF5+l+XuYtOkw4fO88r0gjDVHwQmbmLHEUi873NvH/4AJN8x+Jr533Zn3u4IJNKuGtWJP4edny2uYA/f3yUJ2+O77EMT2cw88HGExw5UUdSmBsPzI9Gq5IjxqVgyt+N8cgqulb/GVnIaJSjb+mzGCua9N3jZG3Crb0Bi4M737aM55gunMd8kgnR9Py9JUjlqGY9Qdc3f0S36VU0i35/TpnxtIBU3sv+lMz6HJI84vv2Al2lHDh1hAZ9E/fWtaBImjkoY8ojUzGXHsVwcDky/zjkjl7cH3cHq4rWsaNiD82GVu6KvhXVIJQpi1YzlspcsFpAoUJQqBHkalCou3/vj6DUVocxfW13BrRf3/21ANbsKeVEeQv3z40+T5CC7s+Ts72yV1nooiiiN1pOC1gmTp5qZ3dmNZ9uLmD59iJGRXmQmuRDmK9jv0Ty5g6DzeT8GkF9VpSyICg1tvI9GzauF8wVmYBAukSHTJAy3nvg3cOuJLNG+7P1aCUbD5zk3jnfZ6vIoyZjPL4W04mdKEff8v3xgVPZU3WADaVbuC/2/MyQM0LUsboMilpKu4UojQezg6YzwjEMh+9eR5Co0ab+5KxngdUq8tqKTAoqW9GqZCSEujIi3J24EBfUs56ga9Uf0G96Dc2i3yEo+i+IXG6cVU48nHAPrxx7i3eyPuaJET/pt8/IqaYu6lp03DDav1fH68w6KjtqmBM8o1/PB2BtOYVh32dIfWOQJ9yAIEiQ+cViOPAVk/PTiLOWsfzzU9y8dD4+bv33SxMEgRmeKcgPrmSlq5r/VG7ip66+OCgGt2RJkEiRR0zEmLEea0cTEruBlQvtzqhG5dJEqSGXGwKn4SOzp3P/F0g8QpFHT+lbbIIERfwspL7R6Lf/D913LyOPmc4d0+fzh4/SWbmzmPvmDn722KWwiiLvr88j72QzD8yLJj6k92W6lsosLDX5KCfchSC3TW4vhsTJC83C32A4+DWmnG2oJt/f74XP1UKSezzLC9aQHRLG5In38sWObEpOlhDrYybU00KXrolOfROddRXoGkQ6JRJ0UoEuqQydVMB4gXWWRJCwLPJmxvuMumyxi6JI+7FNNJqdiBo3hlWF61BKlcwLvj7F1ylJvvi4annjmyz+8vERHr4xloQflJlX1nXwxups6pq7uGVKKDeMCUByeqEsSKQooqcgDx2DMXMjxozvMJcdQx43A+WIBWdFyAth7WzGlLMVY+4OMHYh9QxHPm4ZsoARzGjRk/FVOv/64jiPLYoj7gLfXxK1A+rZP6NrzV+7hakbf3nWwy3JPQ5XlQvbKnZfF6KUyWpmY+k2AgQNkfpG5GFjB2Xc7qy0++hc8Rt0O99Fs+BXSCQSloTfiIvSiZVF68hpzCPCOYw412ji3KJwUfVtQ1fUd2A8sRNTzjbEzos04ZHIujMxT4tVgkIF8tOC1el/5/y3XI0xZytIZCjHLevX+WeXNrJuXxkT472ZmDBw4VoQBNRKGWqlDA9nCPN1ZHqyH2Wn2khLr2Z/bi17s0/h46YlNcGb8fHe2Kl7L8a1tBsI7GVDHRvDG5lUglQioDdawOYpZcPG9YO5Igs8gjjedIJo10g08uFdgvBjnOyUpCZ6syu9mhsnBOPioAJAYueKLCAJ04k0FMkLz+402SvsmOw3ga3lu5gdNB1vrWePQpTXaSFqpEcC3lpPAPSbX8Osa0V946/PEZc2HjxJQWUrc8YG0NZhJL2ogf05tcikEmKCnJkYtJSI/PfRbX8b9Q1PDkqHtstFkEMAd0Xfyvs5n/Nl/irujLqlX7tWGUXdbeMTeuknVdxShohIuFPwpQ/uAdFiRrf9LZDKUU156OxrLCi13Qvm8HE47Xifezs3cmx5EdYbH8DPr/8lisaMDSS3dOAyeikflG3k30ff5PHEBwfkVdYT8qhUjOnrMBXsGZA3WZfezOGCGjSJeThq3JgTNB3Dnk8QDV2oU+/t93tS6uKPZuHvMBxeiSlrE07VeSyOn8vXGTWkJvoQ6ut46UEGkRU7ijmQW8vNk0OYEN/7ibQoWjEcWoFg7448avJljPDaQZDKUY2/HeWYW/q1k3+1Ya+wI9I5jG3laWwrTwM1EAVHgaOnGxFK1BK09q5opUrUSHCxWPE1GVEbdKi7OtCYjGisImqLFa1cg8rOg28dpXx24mtaDW3MDpp2WUrprHXFKNorOSxOIManhRM5hcO+mcnlJsLfid/dM4rXV2Xx6teZ3DwllDljAtifc4qPv8tHpZTx/LIRRAb0LDQICjXKlMXIo6diOLwKU+YmTPm7USYv7Pbak567xLA0VWDM/A5z0QEQrciCklEkzEbqGXb2GE8XDb++K5mXlmfw6opM7p8XzbjYnq9TUhd/1NMeQbfpVfQ73kE146cIggSJIGGq/0RWFH5LaWs5wY6XPwtvKNlffZhmQwuLG4zIA5IGtexaonVGNeFO9Nv/hzHzO5RJc4HubLQgx0CO1WaQ1ZBLTuMJvioAXzvv0wJVNEEO/hcs77O21GDM3oKpYA+YjUh9Y1BMuBtB64xo0iEadWDs/imaTv9u0iMau7rvM+kRO5uwNn9/HOL5HRyV427vV7OO5nYD76zNxcddyx2zIvr8+L4Q5OVA0GwHbp0WxqG8OtIyqvlyexErdhUzMsKdyYk+RAY6nxWFe8JitdLWabSV710jCIKASiHtLt9z1ILFhGg2IsiGJvv+SmETpWxc14j6Dqx1JVQmTKGlK4eFoXOHOqR+MWdMd2vljQfLuWPm9xdQecw0zCePYy49es7u2YzAyaRV7eOzvK+RSWQ9ClE/9lQyZm/BfPI4ynHLkHp8b8RdWtPG6t2ljIryYMnkUARBwGK1UlTZyvHCBo4V1PNmsZFJyhSWlB8iZ81HuE66td9de64EyZ5J1HTWsbFsK95aT2YE9H2RnlncgJ+7Ha6Oql4dX9RSilSQEuQQ2OfnAjAeXY21oQzVzCd6nITJfKJxXPpXmvauJPHEZnTr/0B1ylK8R07p8yLQ2tWCMXsrsrCxJARN5Elnf/6b8QH/PvoGP026nwD7wfNTkjh4dHeTzN+NYsT8fotHh/JqsXoWYBDauT3ydoS6Ekz5aSgS5yJ16V0224UQZApU45Yh849Hv/NdJlZ9QJdDMp9usuO39466Yqbnmw9X8N2hcqaN9GXu2L69j8zFh7A2lqOa9vB5i0kbF+d6EKTOsCR8Aen1OWhkarRyNVq5lqKTXazZVYm7nQNP35yM+wXKg0XRitjZjLW56vS/aiyNFdyVV8jKIH/WlW6i1djGrRE3DbpXTfPR77BY5TgmTGBNyVq8NB6k+o4b1Oe4GnF1VPGLO0fywYY8Vuws5kDOKSrrO4n0d+Lhm2J7tciVaJ1RT3kAS9wMDAe/wrDvM4zZW1GOuRVZ0EgsVbkYMzdiqcwGmQJ59BQU8TcgcfDocTxHOyX/d/tIXl+VyTtrc2nvNDJrdM/CkiwwCeXYWzEc+Arj0TUoUxYBMM57FOtLN7OtIo0HHe/s/ws0zDFZTGw6uZ1glTthLTnIRg++ubssdCyy0qMYj6xCFpCA1KX7+h7iGEiIYyA3hy+gtque7MY8shvy2FK+k00nt2Mn1xLrGkWcWzTRLuGopCos1XkYszZhKc8AiQxZ2LjujGPXgV2DRVHsXrgbdWDSIRr1IAhI3fo+n7JYrfxvTTZGk5WfLozrtf3CQFEpZKQm+pCa6ENlXQe7MqrZn32KQ3l1eDipmZTozcR4bxx7+Ey2dhgRASdb+d41Q7coZTmbeSoau2yilA0b1zLmymxAJFMFcr2M+EHqunalcXVUMS7Wi7SMauaPD8LxdJctqV8sgoMHptzt54hSdnIt0/1T2VC29aJC1Bks9WUYDnyFNCAJ+Q+8ZgxGC2+vzcVBq+Du2ZFnxQ2pREJkgDORAc4snRZGVX0nxwuCyD7RTlzdLt77UKDWPooR4W6MCHcj1MdxWHQr+yFzg2dwqquO1UUb8NS4E9+H7kxdehMFFd2ZY73BYrWQ31xEoIM/in4scM3VJzCmr0celXpR7yVBpsB18jLqA1No3fQ2vkc/orH8MC4zH0Bi1/sMJ+OxtWC1nF0ABDsG8vPkn/J6+ru8cuwtfhJ/D1Eu4X0+jwshj0pFv/1/WKpPIPPtX5es7Xk5yL3KGO89ijCHALq2/A7B3g3FyJsGLU6ZXxzaJX9Bn/YBs8oOEaQrZ98hDRPHXv6yrkN5tXy5rZDkCHdunxHRJ6FRtJoxHFmFxMUfWeiYyxiljasdL60ns09nzp4hygXCXAJ4fVUWf/30GE9dwMdMECQIdq7d3zX+3V0uRVHElJ/GLXs/xcHNgZ1V+2kztnNvzLJ+fRf2hLWrBVnlMQ6ZoxB8TlF/spHHEh9AKrkyi83hjlIu5eEbYwnwtOebtBLmjA1gcWoIUknfhEGpWyDquc9hqcjEcPAr9Fv+g6CyR9S3d/vUpSxGETOtV5k8GpWMp29N5J21uXy5vYjWTiNLpoT2+L0mj5+Ntbka47E13R35wsaikimZ6DOWreW7aNA14aa++jpF9oY91QdpMbRym9UTicoemX/P3WMHgiAIKCfejaUmH/2Od9As+u053XAFQcBL64GX1oMZAZPpMnWR21RAdkMeWQ25HDx1FAkCISaIamkj2izHe+RNPRrZDyRGZAqsEintUmgVTJisZkJEa58F7m/SSimobOWhBTFDtnnq52HHHTMjuGVKKEfz69mVUc3KXSWs3l1KYpgbqYk+xAW7nJ03N3cYAHC2ZUpdM6gUsm5R6nRViqjvhF76nl6t2EQpG9c15oosRKUd6R3lxLpGo5L1LqtlODJ3XCB7s2vYfKicW6Z2p8MLggRF9BQMB5djaao8u8MFMCd4BuN8Rl3SA0A06tBtexNB7YB6yoPnTAq/2l5IXVMXzy4bgfYCHXwEQcDPww4/DzvEsU/Ttvpv3CvZxyqNP1sO6/juYDkOGjmJYW6MCHcnJsgZxRXamboYEkHC3dG30qj7viNfbw1xs0ubsIoiiWEXLt2zilZKWk9ytDadY3WZdJg6uSmk7y2LRUMn+h1vIzh6oBx36e5xAO5B4UiX/pEtX31Cat1h2r/6JerRS5DHzjjrE3bBuNvqMZ3YiTwq9Zydbi+tB8+mPMYb6e/xZsb73BOzlGTPpD6fT0/IgpJBocF0Iq1folTZqVbq7Q+hlqhZFDYPY8ZGrC01qGf/fNC9kwSVHaqZj2PKTyM47VPMGa/R5nAPDjGXrz153slm3l2XS7ifIw8tiOmzwGs6kYbYVodq9s+GdWmtjeFLVKAzv7ormVe+zuCFz4/x8I2xjAi/tPG1IAgooiYjdQ9mztY3sDO0s55sXk9/h0cS7kUjH7gHYVv6NqRY6Qwdw4HKrcS5RhHjGjngca8lBEFg7thAZo3yRybt/3eAIAjIAhKR+sVhyt/d7TUVnIIsfFyfMwrlMimP3BTHZ1sK2HiwnLZOI/fMiTovvm7R5B6sbXXod72LxMEdqUcok/3Gs60ijZ0Ve1gS0f/S7+GK0WJk08nthDsEEZRxDFnUlMuW5SpRO6BMvRf95v9gPLb27IZUT2jkGlI8kxjpEIJep6K4eCd5MjMn7O1Y527POsDTXERsVfdGcKhj8CUFYqtopdPURYuhjVZDK63GNloNp/+d/r3F0Ea7sQMR8ezjfjX66T41MsgsbmDDgZOkJvpcsGz0SqKQSxkX58W4OC9qGjvZnVHD3uwajhXU4+qgZGKCD5MSvGlpPy1K2TKlrhlUSunZ7nsAovHa95WyiVI2rltE0YqlMouTfqG0GWtI9kwc6pAGhJeLhlFRHmw/XsWcsYFnDRJlkZMwHFmFKXcH0ol3nT1eIkguLUiJIvrdHyK2N6Be8ItzdjiPF9azM72a2WMCiA7sXc2+IFNgP+cpulb9nlslm1n68K/IrtJzvLCeI/l17M6sQSGXEBvkwsgIdxLD3Ppk9DjYKM505Dv8H/6X+SHPpTzRq458GUUN2KnlhPwoW0AURSo7ajham86R2nSaDS3IJXLi3aJJ8UzqUzbWmfH0uz9E7GpFs/A3CPLei6ouThqm3XEvb38RyhT9DqL3f46p6ACqyfddtJzNcGw1CBIUPfg7OSkdeXrkI7yV+REf5HxBu7GTKf4DF2MEmQJ52DhM+bsQ9R199sxYnr0FibaNJeHLUHW10Xn82+6OPAGDv6sM3y+09aoAmja8QeCed9BVZ6AcdTMSR89LD9AHKuo6eH1VJh7OGp5cktAnQdfa2Yzx6BpM+WlIvSKQ+l/d34E2hhYfNy2/vjuF11Zk8PrKLJbNCGdGSu/KcqSuAWgX/YEpaR9gfyqD5WIZLx15g8dGPISzyqnfMYkWM6a8HRSYfGnzqcHYZGJx+OXpFnotMBBB6oecMUNX9LGBxI+RSATunBWBo1bB6j2ltOtMPLYoHrnsR8KUVIZq5uN0ffMndKebqjjbuZLskcS+mkPMDZ551fmFXoq0qv20Gzu4xy4WLGbkERMv6/PJg5Ixh4/HeHwtssARSN2DejzO0lSBKWszpqL9YDET6p9AdPwNSH1jaNQ3ny3zS6vcx/aK3ahlKqJdIohxjUKCQMuPRKcWQxttxnYsPXhG2cm1OCodcFQ64Gfnc/p3R5yUDripXc/6ofaGpjY976zNxd/DjttnDF6m92Dh7arl1mlhLJ4cwvHCBtLSq1izp5Rv95bietpL1uYpde2gUsjQGcwIytPZhNeB2blNlLJx3WJtrEDUtZFhp0ChVxDnGjXUIQ2Y+eOCOJRXx7ajldw0sdswW6KyRxY8ClPh3m5D3j4IF6b8NMzFB1GMuhmZ1/deVa0dBj7YcIIADzsWTQq5yAjnI9E6o5r5BLp1/0Cy711G3/A0Y2I8MVusnChv5nhhA+mFDRwvbECpkDJ3TACzRgWgVAxN9pST0pGHE+7h5WNv8XbWxzx5iY58VqtIZnEjiWFuZzNW6roaOFqbzuHadGq76pAIEqJdIrgxdDYJbjH9ztAzF+7FXHIYxeglSN37bpDuZKfkkTtSeekLe462Z7Os5RjWlX9AkTQXxYgF59WvW5qrMBfuQx5/wwXNQzVyDY8nPciHOZ/zdeEaWo1t3Bgye8DmxfKoVEy52zAV7UcR1/uW1zXt9ZzkCPYmP8b6JKLf+G+QyFGO711W2UDwCQpmb+RD5GZtYHbZccylR5CFT0A5csEF/VT6QmOrnpeXp6NSyPj5rYkXzFb8MaKhE2P6eozZW0C0Io+ZhiL5pstiMG3j+sJRq+D520fy9rc5fL61kPoWPUunhfUqe09QqFFNf5TRuduwO/41H3uJvHjoVR4b+fAFS8svRWfBIVSWDgq8J3C88ThT/Sfiqbl0BpeN4YMgCNw4MRh7rYJPNuXz3vpcfnJj7HnGzxKVfXdHvtV/Od2R79dMD0jlcO0x9lYfZGbglKE5gcuA3mxgy8mdRDmHE3AyD5x9kVzEP0kURdbuLcPVUdWnBhg/RjX+Djqr89DvfBvNoj+cnSOIohVLRSbGrM1YqnJBqkAeMQl5/EykTj5nH++mdmGK3wSm+E1AbzaQ31zYXebXmMexusyzx6llahyVDjgpHIhwDu0WmxTd4pPTaRHKQWGPrJ/dkX+M2WLlv2uysVhFfrowblhk618ImVTCqCgPRkV5UN+iY3dmNbsza3DQKrDTXD/+htc6KoWUpjY9EkdPJE4+CNprswT5h1xxUer1119n48aNAEyePJnnn3+effv28fe//x2DwcCcOXN4+umnAcjLy+PXv/41nZ2dpKSk8Mc//hGZTEZ1dTXPPfccjY2NBAcH8+KLL6LVamlra+PZZ5+loqICFxcXXnnlFdzdbZMPGz1jrsjEAmQa6oh3jUYhvfoN5Pw87BgR7sbWIxXMGuWPWtn9EVfETsdctB9T4X4UMVN7NZalqRLD3k+R+saiSJp39nZRFHlvQx4Gk4Wf3Bh73o5lb5B5haOccBeG3R9iPLIS5ehbkEklxAW7Ehfsyp0zIyg71c6G/Sf5Zncp249XsWhSCBPivfrscyFaTJgK92HK2oJg74p65hN9TnEPdPA/3ZHvM744sZK7om+94AK+uLqVTr2ZsGAl28rTOFKbTnl7JQBhTsFM9V/MCPf4AXd9srbVod/7KVLvSBQJ/Tfod9AoeO6Okbz0lYTf1/nwXEQRjsfXYio5jGrSvch8vhdrjUe+AZnynPdDTyikch6Iu5OvClaz+eQO2o0dLItcPCAPF6lbIBK3QEwn0rrLDHshoIiiyHsZyxFFgcWhN2IpPoClKgflxLuRXKHa/PkTQ/l13iiOdUQxxy6PhIJ9GAv2csopiaag6WhdPXGyU+Jop8ReI79oh50f0qEz8dLydAwmK7+8c+TZrpsXQzQbMGZvwZi+AYw6ZOHjUCYvQuJgu07aGDyUcimPLYrny+2FbDlSQUOrjp/cGNsrw2BBEFDEziDePYRHdr3J+47tvHT4NR5JepAw575tgAC0HP0Og8WeCu8GtGYNc4Jm9OeUbAwDpo7wRW808/WOYhy0CpZNDz/vOiB19kU9/VF0m15Gv+N/+M18nAjnMHZW7mWa/6RrxkcsrXIfHaZO5nokYz38GsoxF56TAOzJrGH1nlIA2rtMzB7Tv46EglKLKvV+dBv/jeHINyiTF2Iq3IspazPW1lMIGicUo5egiJpyyYxmlUxJonscie5xWEUrpzrrkElkOCodUF7h+fiqXSUUV7XxyE2xeLoMvGT4SuHupGZxaig3TQzGbBZ7PX+wMfz5odG59ta/DXU4V4QrKkrt27ePPXv28M033yAIAg8++CDr1q3jxRdf5JNPPsHb25uHH36YXbt2MXnyZJ577jn+8pe/kJSUxK9+9SuWL1/O7bffzh//+Eduv/125s2bxxtvvMGbb77Jc889xyuvvEJKSgpvv/02q1ev5q9//SuvvPLKlTxFG1cRloosSrz86DTrBs37Zjgwf3wQf/7oCDtPl/EBSDxCkbj6Y8rbjjz60t3WRJMB/dY3u3eup/7kHJ+Z7ceqyC5p4o6ZEfi49V9YUURPwdpQhjF9PRLXQOSho8/eJwgCwd4OPLY4nsLKFpbvKOLDjSfYfLiCJVNCSQx1vfQ5GDox5u7AlL0FUdeKxNELS3kG+l3vnndOvSHZM5HarjrWl27BW+vZ465rp6mLjYW7UUblsKJ2E2KtSIC9L4vC5pHskTigMpRzzs1qRrf9LRAk3efSR6Hux2hVcp69bQSvfJ3B708oeWpCEiEV36Jb9w/kUakoxyzF2laHufQIiuSFSFT2lxxTKpGyLHIxDgp7NpZtpd3YwQNxdwxI/JVHTcaw52OsDWW9ygw7dOoYNcaTKBsSSJ7oiu7rfyPxCEE+wJKSvqBWynji5gR2HK/iWIcPh9qTSDIcJqU5HY/mdA4YwvhQH0+LVYtUIuCgVeBkp8TJToGTvbL7d+0PfrdToJBLeW1FJvUtOp5ZmoSf+8Un/6LVjOnEbozH1iB2tSANSEQ5asmAOx7ZsHEhJBKB22dE4O6o5stthfzz8+M8tSQBB23vPv9SjxDCb/wjT+x8i3cMVfzn2FvcF72UJJ8LN3L4MYbaMhy7ylnhmkilroJlkYuvuRKu643ZowNoaTey5UgFznbKs3OcHyILSEA5dhmG/Z9jPLyK6SGT+G/mBxyty2C018ghiHpw0Zn1bC3fRaxrFH7VpRgFAVn4+AseX9PYyWdbC4gKcMJeo2D5jiKMZgsLxgf1KztW5h+PPHoKpszvMOWngaETiXswqmkPIwsZdY4Jem+RCJJ+Z0MOlOOF9Xx3qJypI30ZHT245fVXCqlEwjWwr27jB5wxOr+euKKilLu7O7/4xS9QKLo/OaGhoZSVlREYGIi/f/fkeMGCBXz33XeEhYWh1+tJSkoCYPHixbz22mvccsstHD58mDfeeOPs7XfeeSfPPfccO3fu5LPPPgNg/vz5/OlPf8JkMiGX29IZbZyLaOjEUltEVmQUKrHjmjI9DfZ2IDbYhU2Hypme7IdCLkUQBOTR0zDs+QhrXTFSz7CLjmHY92m3EfTcZ8/pjlLV0MnyHUUkhLoybaTvgGNVjr8TS1Nltzmpk3ePi+RwPyd+dWcyxwrqWbGzmNdWZBLp78St08J67PBkbW/AmLUZ04ldYDYg9YtDkfATpL4x3SVLh1dg0DihGntbn+OdEzSDU511rCneiKfGnQT3WPRmA1kNuRypTSevqQCLaEGhsWdW8AxSPJMuS6mI8dharHUlqKb/tE9d8y6GWinj57cm8drKTF7d08w9M3/KaNMhTFmbMJ/MQNA4ICjtUMTf0OsxBUFgfsgsHBT2LC9YzWvH3+HRxPvQ9tO8WB46BsP+LzCdSLukKNVu7ODrgrVY2p2Y6j8e0+GvEQ2dqCc9f8XNvIO9HX70Xp2GsbWBriPfMqFkL+PVxdS7pXDCfiy1BiUtHUbqWnQUVLTQqTefN54gACI8ujCOyIAL+7mJohVzyREMR1YittYi9QxHMeOn55Ti2rBxOZk5yh9XRxVvf5vDXz4+wtO3Jva6o5Wg1OIz6+c8mfEtb1fv5N28L7mlvYbJkfN79fiafetQIuOEZwe+am/G+4y+9INsDGsEQWDp9DBaOw18vbM7Y6qncjR53Mzujnzp6wh39MJT48H28jRGeY646suUd1bsodPcxbzgGZjWvYrUL+6Cmb8ms5W3v81FIZPy0IJYHLRy5DIJq3eXYjJbWZwa0q/XQzlmKZamSiRqR+QJNyD1PD9r7WqgoUXHe+vyCPS057Zpw89Hysb1S3emlBlRFK/Kz1Z/uKKiVHj49x/4srIyNm7cyJ133nlOiZ2Hhwe1tbXU1dWdc7u7uzu1tbU0NzdjZ2eHTCY753bgnMfIZDLs7OxoamrC0/PqVL77g95sQEREfRV3kbsSmKtyMYtWsqxtJHrEX9Qj6Gpk/rhAXvj8OGkZ1WeNZuXh4zAc/Apj7nbUFxGlTIX7MOXvRjFiATK/2O9vN1t5+9scVAop982NHpQvSUEqQz3zcbpW/QHd5tfQLvp9jynfgiCQHOlBYpgbaRnVrNlTyp8/OsLoaA8Wp4bg4azB0nASY+ZGzMWHAAFZ6GgUiXOQun6fpq5ImofY2Ywp8zskWuc+CSxn4rgz+lYadE18kPsFca5RZDfkYbSacFI6MsZ9DNu3w61jRnBD8IX9HQaC+VQhxuPfIouYcE522WCgVEh5akkCb3yTzYdbSjHNnMCURWPQ7/oAa+NJlGOWIij6nmmQ6jcOe4UdH+Z8zktH3+TxpAf7lTUmKLXIQkZhKjqActxtCLILm3quLFyL3qLHXDaSSbGdmLanoUicO2yygxSObiim34919I0Yj6/FM38Pnk1HkUdPRTF13tlFhslsoaXDSGuHkZYOA80dBlraDYT5OjIiomfBUxRFLFU5GA59jbXhJBJnP1Q3/AxpQOJ1M7mxMXwYGeHO87eP5LUVGfztk6M8vjj+omLqDxEEAZekm3jSI5z30t9neVUaLS1VLBj1EJKLZIhadO041B9nuYs/HZZ2Hgy/vc+t4W0MTySCwAPzYmjvMvHBhhPYaxQkhJ67OdPdke9OrK2nMO7+kKkTbuLLmt0UtpQQ4Rw6RJEPnC5TF9sq0khwi8W3oxNdRyPy0bdc8Phv0ko4WdvOE4vjz3Zmu39eNAqZhPX7T2I0WbltelifrwuCQo32pt8M6FyGmm4fqRxE4NFFcf2yorBh43KhUkgRRTCarb0qfb8WGJJPYGFhIffffz/PP/88/v7+53wZnlEErVZrj7f3pBhe6MtUFMWLTlquRb4t+Y4/H3iRNmP7UIcyrLFUZFHoYIfOamSkx+XpwDWURAY4E+7nyMaD5ZgtVgAEuQp5+HjMJYcQ9R09Ps7acgr9no+RekWgSF54zn3fpJVQUdfBfXOjcexlCUZvkGicUM96ArGzGd22/yJaL5yuKpNKmDbSj388PI4F44NIL6rnow9WUfLJH+ha9XvMJ9ORx81Eu+yfqKc9fI4gBacnquPvQBaU3J1xU3ywz/EqpHJ+knA3WpmG/OYiRnsn8/TIR/nz+F/iZUhB7HIgqRet0PuDaOxCv+N/CHZuqMbfeVmeQyGX8vjieEaEu/HZlgI2FwtoFv0O9fz/Q95HEe+HjPCI5/GkB2kxtPHi0Teo7jjVr3Hkkalg0mEuOXLBY3Ib8zlcexxJfTgJ3n4ojn2BYO+GYuRN/Q3/siGxd0OVeh/apf/o7jCYs43OL55Dv/8LrF2tyGVS3J3UhPk5khLlwcwUf26ZGnZBQcpSV4Ju/T/RbXgR0dCJaspDaG7+E7LAJJsgZWPICPFx4Nd3p+CgVfDvr9I5kNO3z7/GJ4ZHpv6WURYVmzuL+WTHXzEber6OAVTs+44uqUiei4ER7vGEX8VChI3zkcskPL44Hj8PLW+uzqKkuu28YwRJ96aXYOdK3OHN2Mk0bCtPG4JoB4/tFbvRmfXMC56JqWAPyNXIgnouScwubewuSxvhe871QiII3HVDJDNS/NhypIJPNuVjFcUrdQrDhuU7iiitaeP+udF4ONnKem0ML1SK7mSJ66mE74orNkePHuXee+/lmWeeYdGiRXh5eVFfX3/2/vr6ejw8PM67vaGhAQ8PD1xcXGhvb8disZxzPHRnWTU0NABgNpvp7OzEycnpyp3cMGCCz2i6zF18kPMFVtE61OEMS0RRxFyZRZabGxqZmiiXazNld8H4IJrbDezL/n7yL4+ZBhYzpvzd5x0vmo3otr2JIJGhmvYIwg8MQfPKmth0qJwpI3xJCnMb9FilHqGoJt1zNrvjUqjkMN/7FP/038YjdltRdNay0ZjM3vCnkKTcetGSNkEiQTXtYaReEeh3vIO5Oq/P8TopHfnd2Of4+4TfsixyMWFOwUgECRlFDXi6aC6bUaZ+zyeIHU2opz3cr4yl3iKXSXh0YRyjoz34ekcxa/eVI/WOGrB3VbhzKE+PfASraOXfR9/k49yvOHTqGK2G8xcUF0LqHYng4NldntkDerOBL/JX4SRzoaMskAVOBVhbqlFNuBtBPnzbJUsc3FFNfgDtrX9HFjoaU/bmbnHqwFdYdZd+fSzN1eg2/4eu1X/C2lSJcvwdaG/9O/KICQP+u9mwMRi4O6n51V3JhPo48vbaXNbuK0Psw2JYrnbk7um/Z6bSn0NCO29t/xO6hpLzjhOtVuQlu/na1R0EgUVhF2/MYOPqRK2U8fQtiThoFLzydQanmrrOO0ZQ2aGe/RQyq5lxbQayG/M41Vk3BNEOnA5TJzsq9jDCPR5flQvmkiPIQ0ed1yUXoK3TyLvr8vBx07J02vmZ8YIgsGx6OHPHBrIzvZoP1udhtV4/wtSRE3VsPVLJjBQ/kiNtjT5sDD9UpzuO643nWzhcq1zRmWpNTQ2PPfYYL774IvPmdU8SEhMTKS0t5eTJk1gsFtatW0dqaiq+vr4olUqOHj0KwJo1a0hNTUUul5OSksKGDRsAWL16NampqUB3N7/Vq1cDsGHDBlJSUq47PylfO2+WRiyioLmIDaVbhjqcYYm1uRJjVzM5UgNJ7nGD1lJ2uBEb7EKglz0b9p/EYu0WKKUufki9IjDm7UD8kWhpOPAV1sZyVFMeRGL3fevRDp2Jd9fn4emi6XFyM1jIIychj53ebZ5ZtL/HY0SjDmPmd3R+8Tz6HW8jxYoq9X6ERX/nlNdklu+p4ZdvH2BPZs1FJ1iCTIH6hqeQOHqg2/QalsbyPserkMrP6eSjN5o5Ud5MYujgeDz9GFPRfsxF+1GMvOmSnmCDgUwq4ScLYpkQ78XqPaWs2FV89n00EPzsfXg2+TFiXSPJbszjo9wv+dXev/DXgy+xsnAt2Q15GCzGCz5eEATkUZOwnCrA2nJ+tsX60s006ZtxbB5FkMaAW8VWZCGjkQVcHRmREkdP1FMeQnvL35EFJ2PK+o7OL57DcOjrHjMcrR2N6He9T9eKX2OuykGRvAjtbf9EETcTQXp9Xf9sDH+0Kjk/X5rEuFhPvkkr4YONJ85m8/YGiUTKwglPcIvnOE4oRF479DrNuVvPOaYqfT/Nyi6KHERmBKTiqr72W2lfrzjaKXlmaRKCAC99lU5Lh+G8Y6ROPqhnPMaYujpkImy/DNlSTfpmtpzcyfqSzdR3NQ76+ADbytMwWIzMDZ6JufQomA3IIiaed5woiry/IY8uvZlHboxFcYHSH0EQuHlyCAsnBbM3+xRvr83p02fxaqWuuYsPNuYR7O3ArVMv/1zKho3+cKZ7ut5w/WRKXdHV+HvvvYfBYOAf//jH2dtuu+02/vGPf/DEE09gMBiYPHkys2fPBuDFF1/kN7/5DR0dHcTGxnL33XcD8Pvf/55f/OIX/Pe//8Xb25uXXnoJgKeeeopf/OIXzJs3D3t7e1588cUreXrDhnE+oyhuLWNj2TaCHQOJdY269IOuIywVWeRrlBhECyM9E4c6nMuGIAjMHxfEG99kcTivjrGx3Z1N5DFT0W//H5bKHGT+8QCYSo9gyt2GPP4GZIFJZ8cQRZGPN+XT1mnk13cnX/a6ZuW4ZVibKtHver/b+NwtCABrZzOm7C0Y83aAUYfUOxLFxLuRBiQgCBJ8gSeXOJFf3szyHUW8vyGPzYcruHVqKLHBLj2WLQlKLeo5z9C15i/oNr6E5qbfILHvfxZYblkzZotI4mXIJLO216Pf/XG3UfWI3pn8DgYSicB9c6NRyKRsPFBOWno1cSGuJIS6Eh/iip26f6KHq9qF++PuwCpaqeyo5kRTIflNRaRV7Wd7xW6kgpQQx0AincOJcgkn0MHvHD8YecREjIdXYcpPQznm1rO3n2yrYEfFHkZ7jGLPEYFfeR8Bsxzl+NsH/FpcaSROXqinPYxl5AKMR7/FmL4BY842FHEzz3qhGdLXYcrZCiLIY2eiGDEfifp8838bNoYTcpmEB+fH4OaoZu2+MvLKmvFyUePsoMLVQYWLvRIXBxUuDt0/e7ruTIldhIOjNx/lr+LV8g08VFuEz6T7EGRKOjO+Y7WnIw5ye2YGTh2CM7RxJfF00fCzWxL55+fHeXl5Bv93+0g0qnOXNzK/OFzHLGNkwRoOCodZEDobe8XFu5Zeig5TJ8frMjl8Kp3i1lIABAQ2lG0l0jmMCT6jSXCPGxTP0nZjBzsr9pDsmYiPnRddBR8h2Lsj9Tw/03/b0Uoyixu5Y2YEfh4XP0dBELhxQjAKmZTlO4owma08ctO1669kMlv47+ocJILAozfFIpNem+dp4+rnesyUEsS+5E5f4zQ2dlwz6atGi4kXj75Oi76VX4x+ChdV70xFrwe61r3AJ9JmSuzU/G3Cb87JdrnWsIoiv3/vEAB/fGA0EkFAtJjo/OznSD3DUN/wFNb2ejpX/g6JoxeaG3+NIP1+ArU3q4b31udx8+QQ5o0LujIx69roWvUHEARUU3+CKX8P5qJ9IFqRBSV3m1V7hFzw8aIocvhEHSt3FVPfoicmyJlbpoQR6GXf4/GWpkq6vv0rEo1T9/n3YLTeGz7YkMeR/DpefXLSoE50RKsF3dp/YGmqRLvkT0jsr3yquSiKHCtoIL2wnqySRtq6TAgChPo4khDaLVL5e9gN2LPIaDFR0lrGiaZCTjQVUNFRDYBapibCOZSo0yKVu9oV/ebXsNQVo73jJQSJDIvVwgtHXqPD2MlY6a1U7E/jbrs9KCfejSJm2mC8DEOKpakK47HVmEsOw5m29mY9svAJKJMXDkhQtWFjqDiUV8vhE3U0telpajPQ2nl+lqRWJcPltGDl7KDExV7ZLV45qGgXq/mi6BNkZiMPdCpxDl9AdtZHfO3pwN3RSxnjnTwEZ2VjKMguaeTVFZmE+zny9K1JPQorJ3e/wz9Nhcy2j2DBqAf7/BwGi5Gs+hwO16aT25SPVbTipfFglNcIUjyTkApSDtQcYV/NYZr0zdjJtYzxSma8z2i8tB79PrdVhevYXrGb3455BndRSufnz6JIvgnlj7w/K+o6+PNHR4gJcuapJQl9uiZvO1rJZ1sKiAtx4fFF8RfMsLqa+WRzPjuOVfHkzQkkhduumTaGLyXVbfzl4yM8uSThstimDAUSiYCr64XXWDZR6gdcS6IUQF1XPS8cfg0vrSdPj3zkmi1T6wuiUUfTJ4/zl2B3xviO4bbIRUMd0mXnQM4p3l6by2OL4s/WzhsOfY0xYwPapS+g2/4W1uYatDf/EYnD95OmuhYdv3//EIGe9jy/bAQSyZUzSbbUl9H17V/BYgKpAnnkRBQJs8+J71KYzFZ2Hq9i7b4yOnQmxsV6sjg1FFfH8ztTmqtPoNvwIhL3IDTznu/Ro+H/27vv8KjKtA3g95mW3kmBEEgIEAIhCQQCoUWkCQllQaqASnddFd0VsfuxKyqyoiirWBYbKCBFkGJv9JpEILRASCCk9zb1/f6IZCFMgJwZZkJy/66LK23mznuGPHPeeeac99yISQj8/Z3d6BjkiYfGRDTovjejPbIFukMb4ThwDtQd+lg1Ww6TEEi/XIaUtHwkpxXgQnbNRRW83BxqG1Sd23rDQWP5hLZMV47TRWdxsvAMUgvPoEhbDADwdvRCmNobwWeOoEuvB+AVGofvLvyMr9N2YHbENHy9uQDzsBaufi3hPPo5SE3oqlvGgkzokrYBwlRzKqd3oL2HRGQ1BqMJRWXa2iZVYVnNx4I/vy4qq0ZF9bXvHCucyuDS6QCUCh0m5pRgk58bPNxa46nej/GKe83M3mPZ+OCbE+jZyQ9zR3eBok5TRpgMWPHjS8hANf6v84NwCuxST9L/GE1GpBaexqGcJCTnH4fOqIOngwd6+Eejh383tHZteV3zxyRMOFl4Bruz9iMl/wRMwoRQjxD0bRWLbn6R0DTg1OoSbSle3PsquvtFYXrnidAe3QrdwQ1wmfQ6FO7/e5NKqzfin58cQkWVHv83Mxbuzg2/IM1vyVn4ZMdJhLXxxKP3RtYuttwUHEjNwXtfH8c9sW0w4TYuRUFkDVn5FXjuw/2YM6ozencOsPdwrOJmTamm82xD1/Fz9sXU8An48Nhn2HR2G8Z3bHxXnrI1Y9ZJpDqpoIMJMU3wqnvm9Az3w+Zd5/HN3nR079iiZk2e8LugS9qOym9egygvgOPgv17T8DGaTPhga80hzrMTO9u0IQUASt9gOA15BMbCDKg7xUPhaP4opxtRqxQY0jMIfbsGYPu+DHx/KBOHT+dhTL92GNKzNZRXLf6satUJjnfPQfUP76L6p/fgOPhvDVoc+kJ2GUoqdFZ/N8OYmwbd4c1Qte/dKBpSQM2Ve9q1cke7Vu4Y078disu1+COtAClpBdh3Ige/JmVBpVSgU1tPRIW2QNdQH9lXtnHTuCLGPxox/tEQQiCvKh8nC8/iZNEZJBWexd4AD0jpm9C68ACyK3IQ7RsBZ20Qeld/DSdHLRz7P9ikGlIAoPQJgtOgefYeBtFtoVIq4OvpBN8bPGdU6wzXNKwKS6uRXdYKp7EDn7aq2VfN7TyWDalmKC4iACUVOqz7+SzcXTSYMrjDNQ0jSaHCkMhJWH78U+zd+z7uGvqs2Te7hBA4V3IBh3KO4khuCsr1FXBWOaGnfzf09I9G6J8XN6mPQlKgs08YOvuEoVRXVnP0VNYBfJq6FuvPbEFsQHf0bRWLQNeWN92m7y78DKMwYXjwYAghoD+9G8qWYdc0pABg7U9nkZVfgb9PjJbVkAKAAVGtoFYp8NE3qXhjbTLmj4+67lTIO1F2YSVW7TiJ9oEeGBtf/5H2RI3F/07f45pS1ER08+uKgUH98HPmLoR6hqB7M2nE1MeQmYIUd2e4a9wQ6hli7+HYhFKhwIjebfHxjpM4fr4QEe18oHDzhTKoK4yZKVB3vhvqdrHX3GfbngtIu1SKOaM6mz2yyBZUbSKtsji1s6Ma994VioHdArH6+9NY9/NZ7DuejfuHd0JIy/+tv6NuFwvRpwTaPauh3f0ZHPpNv+VD35PP5kOSgIh21ltQV+iqUPXTSkguXnDsO81qudbm6eqA/lGt0D+qFQxGE05nFiMlrQDJZ/Ox+vvTwPdASx9nRIW2QGSoD9q39pB1eqMkSfBz9oWfsy8GtI6D0WRE2v5PceLiIZx3V8LL0RPjO47Gr9/sw92OZ6GIuAdKn6DbsMVEZE+OGhVatVChVQuXq77bDpX6LvjkxFr4ObdAiEdbu42P7GtYbBCKy7X47mAmPF011y090NGvC1qf88PvbtnosX0pnO+aBVVARwBAVnk2DuYcxeGcJBRUF0GtUCOyRWf08I9GZ58wWWccuGvcMLTtQAxuE48zReewO2s/dl/ah18v7kaIexv0adULMf5RcFBe30gqqi7Grkv70DsgBr7OPjDmnIUoyYY6asQ1tztyOg+/HL2Ee2LboEuIZfOQuC4BUCsVWLnlOJZ+eRRPTIyWvX5kY6DTG/GfTcegViowj+tI0R3iylGKXOicmpQxoSOQXpKJz1PXIdAlAP4WnNd+JxNCoPzSHzjlq0Y/v8hm9S5qn4gAbNl9Hlv3pCOiXc3V4Rx6jYfewx8OseOvuW3apRJs2Z2O3l38m8whowDg4+GIR8Z1xZHTeVj9/Wn869NDGNS9Nf4yoF3tVS40EUMgKoqgS94OycULDt1H3VJ2cloBQgM94Cbz3UlzqvesgSjLg1PiQkgOLje/QyOgUirQOdgbnYO9MWlQB+QUViI5rQApafn4/lAmdh7IgJODCl1CvBEV6oMuId7wdHWQ9buUCiXadx6Oln/8Ck37tnDoORIVFdXokrsdFRoP+Pds+qfmEtH/OKud8VDUg/YeBtmZJEmYcHd7lFTosOHXc/BwcUC/yJbX/HxQyN345MSXOK0ywn/7q/gjJBxJTgpcqsyBQlKgk1cHJIQMRZRvFziqrPPGnEJSIMy7PcK826NcV4ED2YexO+sAVp9cjw1ntqCHfzT6BvZCG7fWtff59sLPEADuCR4EANCf3g0oNVC161l7m8LSaqzanoq2/m5WOwqoRyc/qFUKrNh0DEvWHMU/JkXD3cV68xtbWvPDGVzMK8f88VHwdrfPm6xEDdUcxaFg1QAANv9JREFUFzpnU6oZUClUmBlxH145+CY+PPY5nuzxN2jMvCPT1JlKLuOEqQwGyQMxTfiqe+aolAoM79UWq78/jVMZRQhr4wWldxCUfe675nZVWgM+2HoCXm4OmDokzE6jvX0kSUJMmB/C23pj429p+PHwRRw+nYf7hnRE9441h8JrYu+FqaIIukMboXD2hLrTgBtmFpVpcSG7DOOseEi4/twBGE7/Dk23kVC1vHP/H/y9nTHU2xlDewahSmvAifQipKTlI+VcAQ6dzAUABPq6oEuwN7qEeKNjkGeDrvCo8AiAsmUY9Kd+hyY6AZm/fIVAZQlKYuZBUstrdhER0Z1NIUmYmRCOskodPt5xEu4uakSG/u/0+hi/KHydtgNf+mpR5a0ERB7aFBkxzj8aMV1Gw8Ph9l7F1FXjgrvbDMDAoP5IK0nHnqwD2J99GLuy9iPILRB9W8WinUcw9mQdQFyrnvBx8oYw6KBP2w9VSAwkTc3prSaTwIffnIDBKDDXykcBRbVvgcfGR+Ltr1Lw2poj+MekbvByu7P2q3uPZeO35CwkxLVFZKiPvYdDdMsUCgkataJZnb7XfA4Vaea8HD3xQOfJuFyRgy9PbUJzXN/emPkHkt0c4aVxQ7B7G3sPx+b6R7aEu4sG3+y9UO9tvvjxDPJKqjB7ZOcmsY5AfZwdVZg6NAzPTIuBi6MK72z8A29vSEFhaTUkSQHH+JlQto5A9e8fw5CRdMOsP84VAKiZwFmDqbwA1b99DIVvO2hims46cE4OKsSE+eLBEeH498N98eIDPTH+rlC4O2vw05FLWLYuGY+8+Rte/+Iotu1Nx4XsMphu4XlKHTYAojQX+lO/w//SzzgphSIwqpcNtoiIiBorlVKBh//SFUF+rvjP5mNIyyqp/ZlSoURiu2HwdfbByHbD8EL4dPxN54Weh36E+rv/wFicZZMxSpKE9p4hmN55Ihb3fR4TOo6BSZjw5alNWHxgGSQA97StuXqsISMZ0FVC3bFv7f137L+AkxnFmDKkAwK8na0+vi7B3nh8QhQKy7R4bfUR5JdUWf133C5Z+RX45NuT6BjkiTH9m8dyHdS0OGpUzaopxavvXaWpXX3PnG3nvsP29B9wX6d70adV7M3v0ITkb1+CRQ75uKvNAIztkGjv4djFjn0XsP6XNDx/f49r1lMCgMOncrFi0zEkxLXFuPhQO43Q9gxGE74/mImvd52HQiFh7IB2uLt7a0iGalR+8ypMxZfhnLgQSj/zR0K9vSEFGTnlWPJQXIMuv2yOMJlQtW0JjHnn4TJuERQe/hbl3Sm0eiPOZBbjeHohjp8vxMW8CgCAq5ManYO9ao+kMnfovTBoUf75fAhdNapNKqRGPY74uM623gQiImqESip0WPzZIVRpjXh6ane09DF/OrwQJuhP/gbt/nWAQQtNdAI00YkNvhqvpYQQuFCWib2XDyHQpSUGtI4DAFTuXAZTQQZcJv8bkkKBtKwSvPLZEcSE+WLe6C4Wzz9uJO1SCd5YlwxnByWenNwNfl7Wb4BZi8kkcCqzGKu/P42ySh1eejD2jjvCiwgAFq7ci+AAN8wbbd2retsLr75H1xgeMhjnSi5g7enNCHJrjSC3VvYekk0IgxYpZekwOro2u1P3rnZXt0Bs33cB3+xJxyPj/reIeFGZFh/vOIngADeM7te83lFSKRUY3rstYjr54fNvT2HND2ew93gO7r8nDK3veRyVX7+Mqp3L4Dz6WSg8rl1jS28w4nh6Ifp1vf6S0HLoUnbCePkkHONnNpuGFAA4qJWIaOdTu95ZcbkWJ9ILcfx8EU6kF+JAas2pfi19nGsbVGFtPOGoUUFSOUDdPg76Ez9hmzYG46M72HNTiIioEfFw0eCJidF45bPDeGNtMp6ZFmO2SSFJCmjC74KqbTdo930J3ZEt0J/dB8d+06FqbbsXhZIkIdi9zTVH9JsqS2DM/AOayHsgKRSo0hrw/pbj8HLT4P57wm5rQwoAQgM9sGByN/x7bRJeXX0ET07uVm9zzx5MQiDtUgkOpObi0MlclFTo4KBR4pGxXdmQojuWE4+Uar6aw5FSAFCmK8erB9+CSqHCwp6Pwkkl73LtdxJDRjLeSfkvCj188H/9nr/tO/DG7Otd5/H1rvNYNCMWrf1cYRICb6xNwtlLJXjpwdjbcgj4nUIIgf2pOfjyhzMorzJgaGwQRkU4wbDjVUDtCOfRz0Hh7FF7+z/OFWDZumQ8PiEKXdtZtl6BMS8dlZv/CVVwNzgOfrhZ/41eTQiBS3kVOHa+ECfSC3Eqsxh6gwlKhYTQQA90CfFGFz8F9u/chrKgfpgzuqu9h0xERI1MenYpXlt9FL6eTlh4X/ebLlFguHQC1bs+gSjJgSq0NxziJkHh7GmbwdahS/kW2n1fwHn8Yii9WuGDrSew70Q2Ft7XHR1a225MF/PKsfTLJAgh8I9J3RDkV/9RD7ebEALp2WU4kJqDgydzUViqhVqlQGSoD2LD/REZ6tOgNSqJGpvXVh+BEAILp8bYeyhWcbMjpdiUukpzaUoBQFpxOt48+h66tuiM2RHTmvwL4PxdH+P/tMcxuE08RjfTU/euKK/S48l39yAq1AfzRkfguwMZ+PKns5h+Txjuig609/AahfIqPb765Sx+S76MFh6OmNnLEa2S3oPCsyWcExfWLjL6+XensOuPy3j7sf5Qqxo2+REGHUyFmTDmnocx7zyMF/8AFCq4jFsEydF+E73GTm8w4szFEhw/X4jj6YXIyCmv/dk/JkWjc7Bll8MmIqKm6dj5Ary1PgXtAz3wxMSom+63hUEHXdI26JK2ASo1HGLHQx1+FyQbX725YsPzNfODv7yIvcez8cHWExjdL8QuR7ZnF1bi9S+OQqc3YlS/ELT1d0OQn2vtVYxvJyEEMnPLcfBkLg6k5iCvuBpKhYSu7XzQM9wP0e1b2GQcRLbw1vpkFJVp8dKMprHcDk/fI7NCPYMxJnQENp79Bj9n/o6729z4CmN3uqSCEzC5SYgJ6G7vodidq5Mad3cPxM79GegRlouvfk1DdPsWiI9qHqdy3gpXJzUeGB6OPhEt8cnOk3jtu2KMaZeAuwq+RtUPK+A0bD6gUCL5bAG6BHvffGJrMsFUnAVT7rmaBlTeeZgKMwFTzWG5kpM7FL4hcIj5CxtSN6FWKdE52Budg70xHkBphQ4nLhSirEKPTm297D08IiJqpCJCfDAjIRwfbD2BD7aewLzREVAo6n9TVlJp4NDjL1C3743qXZ9Cu+tT6E/vgmP/B6D0sc0Fc4wFGTAVZMKh71TkFlfhs29PoX1rDyT2aWuT319XgLczFt7XHW99lYIvfjhT+30/Tye08XdFkL8b2vq7IsjPDZ6uGqu86Z2VX4EDqTk4kJqL7MJKKCQJnYO9kNgnGN07+sLFUW3x7yBqbBwdVKguqLT3MGyGTalm7O4/L0W7KW072rq3QahnsL2HdFuYSnORrNTBT+mJQNeW9h5OozC0Zxv8cOgi/rP5GNxdNHhgRKcmf7ScHB2DPPHSg7HYsb9mHa4Cxz649+IuVP/6XxRETEZBaTVG9g2+5j5CCIiyvJrmU+45mPLOw5h/ATBoa26gdoLSNxiarsOg8A2B0q8dJBdvPv4yubto0LtzwM1vSEREzV5clwCUlOuw7uezWP39adw3tCMUN9n/KjxbwilhAQxn90K79wtUbnwJ6q5D4RAzBpL6+gtwWJP+9G5AoYQUHIv3NxyHJEmYM7IzlAr7XUDd19MJ/5wZi+JyHTJzy5CRU46MnDJk5Jbj0Km82tu5OavRxt8Nbfxcaz76u8Lfy/mGjcArcooqcSA1FwdTc3AxrwISgLA2nhjaMwjdw3zh7mzbBeiJbM1Ro0S1zmDvYdgMm1LNmCRJmBY+Hq8eXI7/Hl+NhT0fg5um6R2lUZB+EOed1BjmF8kX/n/ycNEgProVfjh0ETNGhHPnfgNqlQKj+oYgNtwfn+70wLbcciSc3YPsHCOAMHRtqYLhwtGrmlDpENo/TylTqqDwaQN1WH8ofUOg8AuBwiPA5of+ExERUY17erVBaaUOO/dnoFpnwIMjwqFS3ni/LEkS1B36QBUUCe2B9dCn7IQh7QAc+k6FOvj2HIUvTEYYzu6Fqk00th7Ow7msUswb3QUtPOy/FqwkSfByc4CXmwMiQ1vUfr9Ka0Bm7v+aVJk55fj+UCYMxprlUTRqBYJ8a46oauPvijZ+bmjt6wKNWon8kqo/T83LxYXsMgBA+9YemDK4A3p08oOnKxctp+ajpinFhc6bpea0ptTVMsuysPTwO2jvEYKHo2dC0cReMH/33b/wtaoUz/X6O1q6NJ8rmt2MwWhCdmElWvs2vUbk7SKEwJ4/LqN616eIVZ1EOZzhij8PrZUkKLwCofRt9+cRUCFQeLWGpGTvn4iIqDERQuCbvRew6bdz6BLijb+OiWjQekTG7DOo/v0TmIouQtW2Gxz6ToXC1bILntRlyEhC1c43UdBtBv75owF9u7bEjIRwq/4OWzAYTbhcUFnTqMopR2ZuGS7klKNKW3MUiCQBPu6OyC+pBgCEtHRDbLg/enbyg7f77T0SjaixunJhqg8W3GXXIyOthQudN0BzbUoBwO6s/VhzcgNGBA9GQruh9h6O1QiDDq9/txBaJxc8P/Cf9h4ONRFl5dVI2/Yx/Byq0aJdOBR+IVD6tIWk5rt4REREd4rfk7Pwyc5TCPJ3xfzxUfBwufUjx4XJAF3Kd9Ad3gxIEtThd0HhEQCFmw8k1xY1H1Xy5wVVP6yA4VIq/lk+AUqVGi8+2BOOmqbxRpcQAgUl1bjwZ5Mqq6ASbf1d0TPcH36e9j8SjMjevj2QgbU/ncU78/vDuQmsm8aFzumW9GkZi7TidOxI/xHtPIIR7tPR3kOyivzMo7jgqEKCV5i9h0JNiJurI6InzrP3MIiIiMgC/aNawd1Fg3c3H8Pizw7hiYnR8PdyvqX7SgoVHKJHQB3aE9o9a6A/9gMgrj3dRnJ0g+TWAgpXH0iuPlC4taj5+Ofn0DibXVpCaCtgSD+KE5quKKow4tnp0U2mIQXUnP7XwtMJLTydEBPma+/hEDU6jpqaiyhV64xNoil1M03n2Y0AAPoze2AqyoKmx18gKW79EvWSJGFS2F+QWXYJq06swdM958PL0fP2DdRGjmTuAwD0aHe3nUdCRERERI1NVPsWeHJKN7y1PgWLPzuM+eOjENLS/Zbvr3DzhdOwxyBMJojKIpjKCyDK8v/8WABTeT5MhRdhykgGjPpr76x2+vPIKh8orhxd5drizyv0GrAtpxXGxYciOODWx0NEd74rpxNXNZN1pdiUamKEUQ9d0jcwFV2C46CHIKlu/TBkjVKDWRFT8dqh5fjo2Go83n0elA1obDVGR6suIVCpgp97K3sPhYiIiIgaodBWHnhmWgzeWJuEJWuO4q9/iUDXdg1bI0pSKGqPgkLA9WccCCEgqsv+17Aqz4epLB+msgKI8gLos08Duqra2182esKjdSiGxgZZvH1EdGepPVJK2zyuwMemVBOj6RQPGHTQ7lmNqp3L4DT0UUiaWz8329/FD/d1Go//Hl+NzWnbMa7DyNs42tsrN/8sMtVAonOwvYdCRERERI1YgLcznpkWgzfXJWP5Vyl4YHgn9O3a0mr5kiRBcnIHnNyh9Gtn9jZGbQWOHjmFQ0dSkW30xPyRXaDglaOJmp0rp+s2lyvw3flLudN1NBFD4DhwDoyXT6Fy2xKYqssadP8Y/yjc1bovfsr8HUdz/7hNo7z9Dp3/FQAQE9zfziMhIiIiosbO09UBT93XHR2DPPHRtlRs25sOW10T6nRmMf71xQn859diFLiFYcbEAfB05QVUiJqj/60pxSOl6A6m7tAHksYJVT+sQNWWV+A04h9QuHrf8v3/0j4B6aWZ+Dx1PRyUGmiUGhhMBhhMBhiFEQaT8c+PBjOfm/ue8c/7mtC7ZQy6tuh8G7e+xtHScwjSC/j6d7rtv4uIiIiI7nxODio8PiEKH21LxYZfz6G4XIfJgzpAobg9Ryzll1Rh/c9pOHgyF15uDpgzsjN6dfY3uwA6ETUPVy903hywKdWEqdp2g9Pwf6Dq2zdRueVlOCc8CYVHwK3dV6HCzIj78OqBt7Ai+aOG/26FCipJCaVCCZWkgkpR87nWoEVK/nHMipiKKN+IBufequyybGRJeoxyDOBOnYiIiIhumUqpwOyRneHhosF3BzNRUq7F7JGdoVZZb63Vap0B2/dl4NsDGZAAjOobjOG92sJBc2ev50pElmtup++xKdXEqVp1gnPiQlTt+DcqtyyG0/C/Q9mi7S3d19vRC8/0ehyXyi9DKSmhUqhqP6oUyj8/V17VgKr5qJAU9TaCqg3VeCfpQ/z32GrMjXwAnX3CrLm5tQ6f/xmSEOjeOva25BMRERFR06WQJEwa1AGerg5Y9/NZlFUm45FxXS2+PLtJCOw9lo0Nv6ahuFyH3p39ce9dofB2d7TSyInoTtfcTt+ThK1OlL4DFBSUw2Rqmg+HsTgLVduWQuiq4DT8cajMXBXEVir1VXjr6ErkVObir1Ez0dEr1Oq/458/vwDHyjL8Y8jiBi30TkRERER0tX3Hs/HRtlQE+DjjiQnR8HKTt9bT2Usl+OKHMzh/uRQhLd0weXBHtA/0sPJoiehOJ4TA7CW/YHjvNhgXb/3XyramUEjw8XGt/+c2HAvZkdKzFZxHPwvJ2QNV25bCkJFst7E4q53wt+hZ8HHywbspq3C+5IJV87PKs5EtqhGt8GBDioiIiIgs0rtLAOZPiEJ+STVe/uwQsvIrGnT/wtJqrNxyHIs/O4yismrMSgzHs9N7sCFFRGZJkgRHjRLV2uZx+h6bUs2IwtUHzqOegcKzJaq+XQ792X12G4ubxhWPRs+Gh8YNK5I/QmbZJatlH760H5IQ6OYfbbVMIiIiImq+ugR7Y+GU7jAYBV75/DDOXCy+6X20OiM2/34Oz7y/D0dO5yGxTzAWz+mNPhEtoeCap0R0A04OymZz+h6bUs2MwskdziOfgjKgPap/WgndiZ/sNhYPB3c82m0OHJWOeCfpQ2SVZ1ucKYTA4ewktKvSw6ttjBVGSUREREQEtA1ww7PTYuDqpMbSL5Nw9HSe2dsJIbD3eDae+WAftuxOR3SHFnh5di+MHdCudgFjIqIbcdSoUNVMFjpnU6oZkjTONQuet4mEdten0B7dCnstLebt6IXHus2FUlLg7aQPkFtpfud+qy6WZyHPWIEonQIK79ZWGiUREREREeDr6YSnp8Wgta8r3tn0B345eu3R/mlZJVj82WF8sPUE3F00WHhfd8wbHYEWHlxSgohunaOGR0pREyepNHAa+ghU7eOgO7gB2v1r7daY8nX2wSPd5sAkTFh+9AMUVBXJzjqcnQSFEIjyDqv3CoBERERERHK5O2uwYHI3dG3ng0+/PYXNv59DYWk1Pth6HC9/ehj5JdWYMSIcz9/fAx2DPO09XCK6A9U0pXikFDVxkkIFx4Gzoe4yCPqUndD+9l8Ik33+8Fu6+ONv0bNRbdRiedL7KNaWNDij5tS9w2hfqYNHm263YZRERERERICDRom/je2Kfl1bYsvudDz13l4cPJmHhLi2WDynN/pFct0oIpLPUaNqNk0pntTczEmSAg59pkJycIXuyNcQ2ko4DpoHSam2+ViC3Frh4aiZeDvpfbx99APM7z4Pbpr6Lx1Z14WyTBTqy3F3hQ6qwC63caRERERE1NyplAo8OKIT/LyccLmgEmP6h8DXk6fpEZHlePoeNSuSJMGhx1/gEDcZhvTDqNq5DEJXZZexhHi0wUORM1BQXYS3kz5Apb7ylu97OCcZSgFEOgVCcnC5jaMkIiIiIqqZRyf2CcbskZ3ZkCIiq3HUqFCtbR5HSrEpRbU0XYfB8a5ZMGadROW21yGqy+0yjg5e7TC36/3IqcjFO8kfocpQfdP7mIQJR3KS0LFSC9egSBuMkoiIiIiIiMj6HB1q1pSy17rPtsSmFF1D3bEfHIc8DFNBBiq3LoapQv6i40DNOk9Cr4WpsgSm0lwYCzMhDLqb3i/cpyNmRkxFZtklvJu8Cjrjje9zviQDxboyRJZVQ8WmFBEREREREd2hHDVKmISA3mCy91BuO64pRddRB8dAGv4Eqr5bjsotL8MhdgJgMkDotYChGkKv/fNzLYS+GtBrIep8Dn31n7fRAbi2uyu5eMOhzxSogmNueIW8SN8ueKDzJKw6/gXe/+NTzI18AGqF+T/Zw7lJUEFCF5MDFC3aWPPhICIiIiIiIrIZR03N695qnREatdLOo7m92JQis1SBneGcsABVO95A9Y//uf4GSjUktSOgdoCkcqj5qHaE5Oj25/cca78HlQOkK58D0KXsRPX370DZOgKOfadC4RFQ7zhi/KOhMxnweeo6fHTsc8yOmAal4tqiNAkTjub+gU6VejgHRkCSeAAgERERERER3ZkcNTWveat0Bri7aOw8mtuLTSmql9KvHVwmvgpTef71TSaF/MaPqn1v6I//CO2hjahY/xw0UcOh6ZZY09wyI65lD+iNOqw9vRmfnPgSD3SZDMVVjaezxedQqitDZGkFVJ146h4RERERERHduWqPlGoGi52zKUU3JDm6Qunoat1MhRKarkOhCo2Fdt9a6I5uhf7MnppT+tp2N3tK34DWfaAz6bHp7DaoFWrcF35vbWPqcE4yNFCgU4UOytZdrDpWIiIiIiIiIltydKg5UqpaZ7DzSG4/NqXIbhTOnnC6ey4M4XdBu+tTVH/3NpRBkTWn9Ln7XXf7wW3ioTPqsO3899Ao1ZjQcQxMwoSkvGMI1yvg2CIECkc3O2wJERERERERkXVcOX2vWscjpYhuO1XLMCjH/R/0x36E9vAmVKx/BpqoBGiiEyCprj1/dnjwYOiMenyf8QvUSjXCvTqiXF+ByPwSqMLusdMWEBEREREREVmHu3PTXkfqapIQQtz8Zs1DQUE5TCY+HPZkqiiCdt9aGNL2QXLzhWOfKVC17XbNbYQQWH/ma/x6cQ88HTxQravAs2ez4DHqOSj929tp5ERERERERETWkXapBMEt3aC0YD3nxkChkODjU/+SQHf21lGTo3DxgtOgeXBKfAqSUo2qb99C5c5lMJXm1t5GkiTc22EU4lr2RLG2BF2EE9QaFyh829lx5ERERERERETWERroccc3pG4Fj5S6Co+UalyEyQD9H99De3gzIEzQRCdCEzW89pQ+kzDh90t70e63tWjhHw6nQQ/Zd8BEREREREREVItHStEdS1KooIkaDpcJr0DVtht0hzehYv2zMGQkAwAUkgL9HFvDs7wUqqBIO4+WiIiIiIiIiBqCTSlq9BSu3nAa/Fc4JSyApFShaucyVH37FkxleTBkpgAAlK0j7DxKIiIiIiIiImoInr53FZ6+1/gJowG6P76F7sjXgBCQHFwgOXvAZez/2XtoRERERERERHSVm52+p7LhWAAA5eXlmDRpEt577z2kpaXhjTfeqP1ZTk4OoqKisHLlSrzzzjvYsGED3N3dAQATJkzAfffdh6ysLDz55JMoKChASEgIli5dChcXF5SWluIf//gHMjMz4e3tjTfffBO+vr623jy6zSSlCg7RCVC37w3t3i9gOH8I6k7x9h4WERERERERETWQTY+USk5OxnPPPYfz589j586daN26de3P8vLyMHnyZHz44YcIDg7GvHnzMHfuXHTr1u2ajLlz52LUqFFISEjAihUrUFlZiSeffBKLFi1CQEAA5syZg82bN+OXX37Bm2++2aDx8UipO4+xKAsKd19ISrW9h0JEREREREREV2lUC52vW7cOL774Ivz8/K772ZIlSzBp0iQEBwcDAI4dO4aVK1di5MiRWLRoEbRaLfR6PQ4ePIhhw4YBAMaOHYudO3cCAH755ReMHDkSAJCYmIjffvsNer3eNhtGdqP0asWGFBEREREREdEdyKZNqZdffhk9evS47vvp6ek4cOAApk+fDgCoqKhAeHg4nnzySWzatAmlpaX4z3/+g6KiIri6ukKlqjnr0NfXFzk5OQCA3Nzc2tP1VCoVXF1dUVhYaKMtIyIiIiIiIiKihmgUV99bu3YtpkyZAo1GAwBwcXHBBx98gNDQUKhUKsyYMQO//vorhBCQJOma+9b9+gohBBSKRrF5RERERERERERUR6Po2vz4448YMWJE7ddZWVn46quvar8WQkClUsHb2xtlZWUwGo0AatahunIqoJ+fH/Lz8wEABoMBFRUV8PT0tN1GEBERERERERHRLbN7U6qwsBDV1dUICgqq/Z6joyNef/11ZGZmQgiB1atXY8iQIVCr1ejRowe2b98OANi8eTMGDBgAAIiPj8fmzZsBANu3b0ePHj2gVnOtISIiIiIiIiKixsjuTamLFy8iICDgmu95e3tj0aJFeOihh3DPPfdACIEHH3wQAPDiiy9i3bp1GDFiBA4dOoT58+cDAB577DEkJSUhISEBa9aswQsvvGDrTSEiIiIiIiIiolskCSGEvQfRWBQUlMNk4sNBRERERERERGQphUKCj49r/T+34ViIiIiIiIiIiIgAsClFRERERERERER2wKYUERERERERERHZHJtSRERERERERERkc2xKERERERERERGRzbEpRURERERERERENsemFBERERERERER2RybUkREREREREREZHNsShERERERERERkc2xKUVERERERERERDansvcAGhOFQrL3EIiIiIiIiIiImoSb9VkkIYSw0ViIiIiIiIiIiIgA8PQ9IiIiIiIiIiKyAzaliIiIiIiIiIjI5tiUIiIiIiIiIiIim2NTioiIiIiIiIiIbI5NKSIiIiIiIiIisjk2pYiIiIiIiIiIyObYlCIiIiIiIiIiIptjU4qIiIiIiIiIiGyOTSkiIiIiIiIiIrI5NqWIiIiIiIiIiMjm2JRqYsrLy5GYmIiLFy9anPXOO+8gISEBCQkJWLJkicV5b731FkaMGIGEhASsWrXK4rwrXnvtNSxcuNDinGnTpiEhIQGjR4/G6NGjkZycbFHeTz/9hLFjx2L48OH417/+ZVHW+vXra8c1evRoxMTEYNGiRRZlfv3117X/v6+99ppFWQDw/vvvY9iwYRg5ciTeffddWRl1/3737NmDkSNHYujQoVi2bJnFeQCwYMECbNy40SrjW7t2LRITEzFy5Eg8/fTT0Ol0FuWtWbMGCQkJGDFiBF577TUIISzKu+Lzzz/HtGnTGpRlLu/pp5/G0KFDa/8Ov//+e4vyjh49igkTJiAhIQFPPPFEgx6/q7N+/fXXa+qjd+/emDt3rkVj27VrF0aNGoXExEQsWLDA4v/bjRs3YsSIERg5ciT+9a9/wWAw3HKWuediS2qjvud2vV6P+++/H/v377c4z5LaMJdnSW3caF8mpzbM5VlSG+by5NZG3SxLa8Pc2CypDXN5ltSGuXmFJbVR3zxFbm2Yy7OkNszlWVIbN5qXyakNc3mW1Ia5PEv2G3XzLKkPc2OzpDbM5VlSG1dcPUe2dE5VNw+QXxvm8iydU9XNs3ROVTfvCrlzqquzLJ1P1c2zpC7q5lljTlV3fJbOqermWVIb5l7vWVIb9b1+lFsb5vKsURuNnqAmIykpSSQmJoouXbqIzMxMi7J2794tJk6cKLRardDpdGL69Oniu+++k523f/9+MWnSJKHX60VVVZUYOHCgSEtLs2iMQgixZ88e0atXL/HUU09ZlGMymUS/fv2EXq+3eExCCJGRkSH69esnLl++LHQ6nZg8ebL45ZdfrJJ9+vRpMWTIEFFQUCA7o7KyUvTs2VMUFBQIvV4v7r33XrF7927Zebt37xaJiYmirKxMGAwGMXfuXPHtt982KKPu329VVZWIj48XGRkZQq/XixkzZjToMaybl52dLebOnSsiIyPFhg0bGrqJ1+WdO3dODBkyRJSVlQmTySQWLFggVq1aJTsvIyNDDBkyRFRUVAiDwSAmTpwofv/9d9l5V5w5c0b0799fTJ06tSGbazYvMTFR5OTkNCinvryysjLRt29fkZqaKoQQ4vHHHxerV6+WPbYrcnNzxaBBg8T58+dlj00IIQYMGCDOnj0rhBDikUceEevWrZOdl5aWJvr371/72L344oviv//97y1lmXsu3rp1q+zaqO+5PS0tTUycOFF07dpV7Nu375a31VzeypUrZdeGubxVq1bJro0b7cvk1EZ9eXJrw1zexo0bZdXGzfbbDa2N+vLk1kZ9fytya8PcvCI1NVV2bdQ3T5FbG/Xlya2NG+XJqY0bzcvk1EZ9eXJro77/X7n7jZvNQxtSH/Vlya2N+vLk1sYVV8+RLZ1T1c0TQsiuDXN5ls6p6uZZOqeqm3eF3DlV3SxL5lN18yyZT9U3vivkzKnM5Vkyp6qbZ0ltmHu9Z0lt1Pf6UW5tmMuzRm3cCXikVBOybt06vPjii/Dz87M4y9fXFwsXLoRGo4FarUZoaCiysrJk58XGxuLTTz+FSqVCQUEBjEYjnJ2dLRpjcXExli1bhnnz5lmUAwDnzp0DAMyYMQOjRo3C559/blHe999/jxEjRiAgIABqtRrLli1DVFSUxeMEgJdeegmPP/44vL29ZWcYjUaYTCZUVVXBYDDAYDDAwcFBdt6JEyfQr18/uLq6QqlUon///vjhhx8alFH37zclJQVt27ZFUFAQVCoVRo4ciZ07d8rO27p1KwYNGoThw4c3aFz15Wk0Grz44otwdXWFJEno2LFjg2qkbl5QUBC2bdsGZ2dnlJaWory8HO7u7rLzAECn0+GFF17Ao48+ess59eVVVVUhKysLzzzzDEaOHInly5fDZDLJztu9ezeio6PRqVMnAMBzzz2HIUOGyMq62pIlSzBp0iQEBwfLHhtQUyPl5eUwGo3QarUNqo+6eadOnUJ0dHTt1wMHDrzl+jD3XJyeni67Nup7bv/qq68wa9asBj9PmcvT6XSya8NcniRJsmujvu2VWxv15cmtDXN5ly5dklUbN9tvN7Q26suTWxv1/a3IrQ1z84rS0lLZtVHfPEVubZjLc3BwkF0b9Y1Pbm3Ulye3NszlOTo6yq4Nc3mpqamy9xs3m4c2pD7qy5JbG+byUlJSZNcGcP0c2dI5lbk5t9zaMJdn6Zyqbp6lcypz2yu3NupmWTqfqptnyXzKXN7V5MypzOVZMqeqm2fJnMrc6z1LaqO+149ya8NcnqW1cadgU6oJefnll9GjRw+rZHXo0AHR0dEAgPT0dOzYsQPx8fEWZarVaixfvhwJCQmIi4uDv7+/RXkvvPACHn/88QbtZOpTWlqKuLg4rFixAh9//DG+/PJL7N69W3behQsXYDQaMW/ePIwePRpr1qyBh4eHxePcs2cPqqurZTdWrnB1dcVjjz2G4cOHIz4+HoGBgejevbvsvC5dumDXrl0oLi6GVqvFTz/9hPz8/AZl1P37zc3Nha+vb+3Xfn5+yMnJkZ03a9YsjB8/vkFjulFeYGAg+vbtCwAoLCzE6tWrMWjQINl5QE2NrFu3DoMHD4avr2/tBENu3r///W+MGzcOQUFBt5xTX15+fj569+6NxYsXY926dTh06BC++uor2XkXLlyAs7MzHn/8cYwePRpvv/32Lddyfc916enpOHDgAKZPn37L46ov76WXXsK0adPQv39/FBUV4Z577pGd16lTJyQnJ+Py5cswGo3YuXPnLdeHuediSZJk10Z9z+0LFizA4MGDb20Db5KXmJgouzbqG5/c2qgvT25tmMvr37+/7Nowl6fRaGTVxo3223Jqo748ubVhLm/EiBGyawO4fl5h6X7D3DxFbm2Yy2vVqpVF+w1z47Nkv2Euz5L9Rt08g8Fg0X6jbl5eXp7s/UZ92wvIqw9zWZbsN+rmRUZGWlQbdefIltaGuTm3JbVRN8/SOZW58VlSG+by5NZG3SxL51N18yyZT5nLu0LunMpcniW1UTfPkjmVudd7WVlZsmujvtePcmvDXF56erpFtXGnYFOKbujMmTOYMWMGFixY0KAueX0effRR7N27F5cvX8a6detk56xfvx4tW7ZEXFycxWMCgG7dumHJkiVwc3ODt7c37r33Xvz666+y84xGI/bu3YvFixdj7dq1SElJwaZNmywe55dffokHH3zQ4pyTJ09iw4YN+Pnnn/H7779DoVDgo48+kp0XFxeHsWPHYtq0aZg1axZiYmKgVqstGqPJZIIkSbVfCyGu+bqxyMnJwf33349x48ahV69eFudNmDAB+/fvR4sWLfDOO+/Iztm9ezcuX76McePGWTwmoOZdxxUrVsDPzw9OTk6YNm2axTWya9cuPPHEE9i4cSOqqqrw/vvvWzTGtWvXYsqUKdBoNBbl5OXlYenSpfjmm2+wa9cuREVF4ZVXXpGdFxISgr///e946KGHcN999yEsLKzB9XH1c3FQUJDFtWHt53ZzeZbUhrk8S2rj6rxLly5ZXBtX57Vr187i2rg6z9LaMPfYWVIbV+e5uLhYXBt1HztLa+PqeUV6errFtWGtecqN8iypDXN5ltTG1Xlr1661uDauztu7d6/FtXF1nk6ns3i/Ye7xk1sfV2etWLHC4tq4Ou/gwYOya8PcHNmSOZW159w3ypNTGzfKk1Mb5vLkzqnMZVkynzKXZ8k+40aPnZy6MJdnyZzKXJ4lcypzr/eWL18uuzas/frxRnnWfr3R2KjsPQBqvA4fPoxHH30UzzzzDBISEizKSktLg06nQ3h4OJycnDB06FCcOnVKdt727duRl5eH0aNHo6SkBJWVlVi8eDGeeeYZWXmHDh2CXq+vfdITQkClkl8eLVq0QFxcXO0pdoMHD0ZKSgrGjh0rO1On0+HgwYN49dVXZWdcsWvXLsTFxcHHxwcAMHbsWKxZswazZs2SlVdeXo6hQ4fWNsw+/PBDWe+yXi0gIAB5eXm1X+fl5Vnl1FRrSktLw6xZszBt2jTMmDHDoqzLly8jKysLMTExUKlUSEhIwBdffCE775tvvsGZM2cwevRoVFZWIj8/H/Pnz8ebb74pK+/UqVNIT0/HsGHDAFinRqKiomr/ToYPH27xabM//vijRc3VKw4dOoSOHTuiTZs2AGomtfPnz5edp9VqERkZic2bNwMAduzY0aD6qPtcfODAAYtqw5rP7fXlWVIbdfMsrY26eU8//bRFtVE3z9LaqJu3fv162bVR3/+t3Nqom7djxw6LaqNuniW1YW5esXPnTiiVytrbNKQ2rD1PqS9Pbm2Yy0tOTkb79u1l1UZ9eXJrw1ze9u3b4enpKas2zOW99tpr6Nu3r6zauNH/b0Prw1zWmjVrZNeGubyUlBTMnj1bVm2YmyNfunRJdm1Ye85dX97EiRNl1Ya5vKeffhr33nuvrNowlydJkqzaMJf18MMPY9SoUbLqwlyeEAI9evSQVRc3+r+Vs98wl3fgwAFERETIqo36xjdlyhRZtWHu9V5gYKDsOZW1Xz/Wl2fN1xuNlj0WsqLba+DAgRYvdJ6VlSV69eol9uzZY5Ux/fLLL2Ls2LFCq9UKrVYrHnzwQfHNN99YJXvDhg0WL3T+008/iTFjxojq6mpRVlYmRo4cKY4cOSI7LykpSQwbNkyUlJTULvzd0EX96kpJSRGTJk2yKOOK33//XYwaNUpUVFQIk8kknn/+ebF8+XLZeampqWLUqFFCr9eL0tJSMWzYMHHo0CFZWVf+fqurq8WAAQNEenq6MBgMYubMmWL79u2y86546qmnZC10XjevrKxMxMfHi02bNsnOujrv1KlTYuDAgaKkpESYTCaxcOFCsXLlStl5V9u3b1+DF+Wsm5eamioGDBggiouLhU6nEzNmzBBbt26VnZeVlSX69+8vsrKyhBA1C1UuW7ZMVpYQQhQUFIj+/fs3eDzm8s6ePSvi4+NFXl6eEEKId999V9ZzzJW8wsJCER8fL8rKyoRWqxVTpkwRW7ZsuaUMc8/FltTGzZ7bp06d2qBFOc3lWVIb5vIsqY2bbW9Da8NcniW1YS5Pbm3Ut61ya8NcniW1YS7Pktqob14htzZuNk9paG2Yy9u0aZPs2jCXt2LFCtm1cbPtbWhtmMt7++23ZddGfY+f3P1Gfdsrpz7MZb333nuya8Nc3tdffy27Nq52ZY5srTmVuTl3Q2vDXJ615lRX8qw1pzK3vXLnVFeyrDWfupJnjfnU1XlCWGdOdSXPWnOqK3mW7Dfqe70ntzZu9vqxobVhLu/gwYNWqY3GjkdKkVkfffQRtFrtNUflTJo0CZMnT5aVFx8fj5SUFIwZMwZKpRJDhw61yjv01jJw4EAkJydjzJgxMJlMmDJlCrp16yY7LyoqCrNmzcKUKVOg1+vRt29fi0+jyszMREBAgEUZV/Tr1w8nTpzA2LFjoVar0bVrV8yZM0d2XqdOnTB06FCMGjUKRqMRDzzwAGJiYiwao4ODA1599VU88sgj0Gq1iI+Pb9A56LfbV199hfz8fKxatar28s133303HnvsMVl5HTt2xJw5czBp0iQolUr06NHDKqdqWkunTp0wZ84cTJ48GQaDAUOHDkViYqLsvJYtW2LRokWYN28etFotwsPD8dRTT8nOu3jxotXqIzQ0FI899himT58OpVKJtm3bYtGiRbLzvLy88PDDD2PixIkwGAy1l/W9FfU9F8utDWs/t5vLGzFihOzaqG98cmvDFtt7ZXxyaqO+PDm1UV9Wly5dZNVGfXlya6O+PLm1Ud+8wtvbW1ZtWHueYi6vuLhYdm2Yy/vrX/8Kb29vWbVhi+3929/+Bi8vL1m1YS5vzJgx8PT0lLXfqG97U1JSGlwf5rLmzp0LPz8/WbVhLm/UqFHQarWyasMczqkaz5yqsc+ngKY7p6rv9Z7c2rD260dzeceOHbNqbTRWkhBC2HsQRERERERERETUvHChcyIiIiIiIiIisjk2pYiIiIiIiIiIyObYlCIiIiIiIiIiIptjU4qIiIiIiIiIiGyOTSkiIiIiIiIiIrI5NqWIiIiIbrNHH30UQ4cOve7777//PsLCwrBgwYLrfjZ79myMHz/eKr9/48aNCAsLQ2FhoVXyiIiIiKyBTSkiIiKi26xXr164cOHCdU2hvXv3wtPTE3v27Lnm+yaTCUlJSYiLi7PlMImIiIhsik0pIiIiotssNjYWAJCUlFT7Pa1WiyNHjmDatGnIy8vD6dOna3925swZlJaWsilFRERETRqbUkRERES3WYcOHeDj43NNU+rw4cPQ6/WYOnUqvLy8rjla6vDhw9BoNOjevTsMBgPeeust3HXXXejatSvGjh2LvXv3XpNfWVmJf/7zn+jTpw8iIyMxbdo0nDhxot7xZGRkoG/fvpg5cyZ0Op3Vt5eIiIjoVrApRURERGQDsbGxOHr0aO3Xe/bsQUREBDw9PdGrVy/s3r279mdHjhxB9+7d4eDggOeffx6rVq3C9OnTsWLFCrRr1w6zZ8/GkSNHAABCCDz00EPYtm0b5s+fj7feegsajQbTpk1DRkbGdePIy8vDjBkzEBISghUrVkCj0dz+jSciIiIyg00pIiIiIhuIjY3FsWPHYDQaAdQ0pa6cntenTx8cPHiw9qilI0eOIC4uDmlpadi4cSOeffZZzJgxAwMGDMDSpUsRExODN998EwCwa9cu7Nu3D2+88QYmTJiAgQMHYuXKlWjRogXefffda8ZQUVGB2bNnw9PTE++99x4cHR1t9wAQERER1cGmFBEREZEN9OrVC5WVlTh16hSKioqQmpqKvn37AqhpSlVVVSE5ORk5OTm4dOkS4uLicODAAQDAgAEDYDAYav/Fx8fjyJEj0Ol02L9/P5ycnNCzZ8/anwNAv379sG/fvmvG8OijjyI1NRULFy6Eq6urbR8AIiIiojpU9h4AERERUXMQGhoKX19fHD16FOnp6XBwcEB0dDQAICgoCK1bt8bBgweRl5cHV1dXRERE1K4zNWDAALOZRUVFKC4uRlVVFSIiIq77uVqtvubr8vJyBAcH480338Rnn30GSZKsu5FEREREDcCmFBEREZGNXDmFT6PRoEePHtes59SnTx8cPXoUBQUFiI2NhVKphJubGyRJwhdffAGV6vppm5eXF9zc3ODj44OVK1fe9Pe/++67yM7OxsyZM7Fx40aMGzfOqttHRERE1BA8fY+IiIjIRnr16oXjx4/jyJEjtafuXREXF4fTp08jKSmpdq2pmJgYCCFQUVGBrl271v7bu3cvPv74Y6hUKsTExKCwsBDOzs7X3Gbr1q3YsmXLNb/D29sb/fr1w5AhQ/D666+jqKjIZttOREREVBebUkREREQ20qtXL5w9exZnzpypbTxdERcXh9zcXJw8ebL2Z+Hh4Rg2bBiefPJJrF69Gvv27cPy5cuxbNkytGrVCgqFAgMHDkTXrl0xZ84cbNq0Cfv27cOiRYvwySefIDQ01Ow4nn76aVRVVWHJkiW3fZuJiIiI6sPT94iIiIhsJDg4GC1atIDBYEBYWNg1P/Py8kKnTp2Qm5uLDh061H5/6dKleOutt/D++++joKAAgYGB+Pvf/46ZM2cCAJRKJT766CMsXboUr7/+OsrLy9G2bVu88sorGDt2rNlxBAYGYu7cuVi+fDnGjRuHHj163L6NJiIiIqqHJIQQ9h4EERERERERERE1Lzx9j4iIiIiIiIiIbI5NKSIiIiIiIiIisjk2pYiIiIiIiIiIyObYlCIiIiIiIiIiIptjU4qIiIiIiIiIiGyOTSkiIiIiIiIiIrI5NqWIiIiIiIiIiMjm2JQiIiIiIiIiIiKb+392F/HWGD7wuQAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 1440x576 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "weekly_sales_2010 = clean_data1[clean_data1.Year==2010]['Weekly_Sales'].groupby(clean_data1['Week']).mean()\n",
-                "weekly_sales_2011 = clean_data1[clean_data1.Year==2011]['Weekly_Sales'].groupby(clean_data1['Week']).mean()\n",
-                "weekly_sales_2012 = clean_data1[clean_data1.Year==2012]['Weekly_Sales'].groupby(clean_data1['Week']).mean()\n",
-                "plt.figure(figsize=(20,8))\n",
-                "sns.lineplot(weekly_sales_2010.index, weekly_sales_2010.values)\n",
-                "sns.lineplot(weekly_sales_2011.index, weekly_sales_2011.values)\n",
-                "sns.lineplot(weekly_sales_2012.index, weekly_sales_2012.values)\n",
-                "plt.grid()\n",
-                "plt.xticks(np.arange(1, 53, step=1))\n",
-                "plt.legend(['2010', '2011', '2012'], loc='best', fontsize=16)\n",
-                "plt.title('Average Weekly Sales - Per Year', fontsize=18)\n",
-                "plt.ylabel('Sales', fontsize=16)\n",
-                "plt.xlabel('Week', fontsize=16)\n",
-                "plt.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 43,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Dept</th>\n",
-                            "      <th>Weekly_Sales</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>73</th>\n",
-                            "      <td>92</td>\n",
-                            "      <td>119434.208462</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>76</th>\n",
-                            "      <td>95</td>\n",
-                            "      <td>103465.496752</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>71</th>\n",
-                            "      <td>90</td>\n",
-                            "      <td>74586.846629</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>36</th>\n",
-                            "      <td>38</td>\n",
-                            "      <td>69920.036122</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>60</th>\n",
-                            "      <td>72</td>\n",
-                            "      <td>62415.554941</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>49</th>\n",
-                            "      <td>51</td>\n",
-                            "      <td>23.226359</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>43</th>\n",
-                            "      <td>45</td>\n",
-                            "      <td>22.558960</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>63</th>\n",
-                            "      <td>78</td>\n",
-                            "      <td>10.762018</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>37</th>\n",
-                            "      <td>39</td>\n",
-                            "      <td>9.998667</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>41</th>\n",
-                            "      <td>43</td>\n",
-                            "      <td>0.705000</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>81 rows \u00d7 2 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "    Dept   Weekly_Sales\n",
-                            "73    92  119434.208462\n",
-                            "76    95  103465.496752\n",
-                            "71    90   74586.846629\n",
-                            "36    38   69920.036122\n",
-                            "60    72   62415.554941\n",
-                            "..   ...            ...\n",
-                            "49    51      23.226359\n",
-                            "43    45      22.558960\n",
-                            "63    78      10.762018\n",
-                            "37    39       9.998667\n",
-                            "41    43       0.705000\n",
-                            "\n",
-                            "[81 rows x 2 columns]"
-                        ]
-                    },
-                    "execution_count": 43,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "clean_data1[['Dept', 'Weekly_Sales']].groupby(['Dept'], as_index=False).mean().sort_values(by='Weekly_Sales', ascending=False)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 44,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "C:\\Users\\eebal\\Anaconda3\\lib\\site-packages\\seaborn\\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n",
-                        "  warnings.warn(\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABcIAAAH7CAYAAADvtOyiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABsnUlEQVR4nO3df3yO9f////tmv87ZmNWGloRCIcqKJVvyO0ZWfkdEUhJevcivSCkloQj9kGqR30aaqV4i4iW8kvqkX0JCszU/ttnvHd8/fHe+bc5zzuO02Rxu18ulS3ac5/HY8zjPx47zOO479jw8DMMwBAAAAAAAAACARXmW9QAAAAAAAAAAAChNBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAIAyNHbsWNWrV6/Qfw0bNlRUVJRGjx6t3377rUzGdd9996lfv36X7fv169dP9913X4nVK3hdz5edna3ExMRCy/Lz8/XXX3/Zv169erXq1aunnTt3SpJ27typevXqafXq1S5/b3fWKUn16tUr9r0reG3O3+7y5MiRI2U9hBLzxhtvqF69eho6dKjDx//66y/Vq1dPc+bMcameu69N0Z/ny/3zDQAAUB54lfUAAAAAII0bN05VqlSRJGVkZOjw4cNavXq1Nm7cqHfffVfNmjUr4xFeWXr27KmIiAj710ePHtWjjz6qxx9/XDExMZKktLQ0DRgwQFFRURo+fLjDOnXq1NH06dN1xx13XJZxX+0mTZqkgwcPKjY2tqyHUiI+++wz+fv7a+vWrUpKSlJISIjbtebNm6c1a9boiy++ML3u+PHjZbPZ3P7eAAAAVkAQDgAAUA60adNG119/faFl/fv314MPPqiRI0fqyy+/VMWKFctodFee22+/Xbfffrv967/++kuHDh0q9JxTp07phx9+UFRUlNM61157rbp27Vpaw0QR27ZtU1hYWFkPo0R8//33Onz4sB5//HG9/fbbWrdunQYNGuR2vR07digvL8+tddu0aeP29wUAALAKpkYBAAAop6pXr65nn31WKSkpWrVqVVkPB4AJn376qaRz0/6EhIRozZo1ZTwiAACAqxtBOAAAQDnWoUMH+fj4aOvWrfZlzub3dTQP8MSJEzV+/Hg1atRIkZGRSklJkXTuatXHHntMd955p5o1a6YhQ4bol19+uaDmp59+qk6dOqlhw4Zq3769Pvnkk0KPnz59WmPHjtW9996rhg0bqk2bNnr99deVlZVV6HkHDhzQiBEj1KxZMzVt2lT9+vXT7t27L/h+27ZtU0xMjBo1aqR7771X8+bNU35+vv3xfv36adCgQfr6668LPW/OnDmFnnf+HOGrV69W//79JZ2bgqZgDvDWrVtLkubOnet0zmxH830bhqGPPvpInTt31m233ab77rtPM2bMUEZGRqF1z549qylTpigiIkJNmjTRI488csFrnJ+fr/fff18dOnRQw4YN1bJlS02dOlVpaWkXjGHNmjWKjo5Wo0aNNG7cuAvG6q6C+tu3b9eECRN05513qmnTpho3bpzOnj2rLVu2qGvXrmrcuLG6du2qHTt2FFp/48aNevDBB3X77beradOmGjhwoPbs2VPoOUlJSXrhhRfUunVrNWzYUE2bNlX//v0LPa9evXo6evSovv32W/trPmfOnAvm0D//P2fznBfMvb1q1Sq98soratasme688049/fTThebZLnjeBx98oN69e6thw4YaMGCA/fEVK1aoa9euatSokZo3b65nnnnGpbnV8/LytGHDBt10000KCQnRfffdp99++0379u1z+PycnBxNmzZNzZo10+23364nn3yy0F8w3Hffffr222919OjRC+YU/+qrr9SrVy81btxYd955p4YPH66DBw8Wqn+xOcHN7FMmTZqktWvXqlOnTmrUqJHatWunxYsXX7Duli1b1L17dzVp0kStW7fWxx9/rAkTJpTovQAAAADMYGoUAACAcszX11c33HCDfv75Z7fW/+yzz1SrVi1NmDBBycnJCg4O1u7duzVgwACFhoZq0KBB8vPz00cffaT+/ftr1apV9ilafvjhB/366696+OGHFRwcrKVLl+r5559XSEiIfaqFkSNH6qefflL//v0VGhqq7777Tu+8845OnTqlF198UZJ06NAh9ejRQ15eXoVqDRw4UIsXL9Ztt90m6VxYOnz4cPXu3Vvdu3fXp59+qjfeeEP+/v6Fwslff/1VI0eOVM+ePdWzZ0+tX79ec+fOVXBwsPr27XvBa3DnnXdq6NChWrBggXr27KmmTZuqTp06GjdunKZNm6a2bduqbdu2Cg4Oduk1nTJlij755BO1atVKvXv31sGDB/X+++/r0KFDmjt3rv15M2bMUL169TR8+HAlJiZq0aJFGjRokL788kv5+flJkiZMmKC4uDh169ZNAwYM0IEDB/TJJ5/of//7nz755BP5+vra673wwgvq2rWrunfvruuuu85EF7hm7Nixuummm/TMM8/o22+/1erVq/X333/rp59+Ur9+/RQYGKh33nlHI0aM0JdffqlKlSrp22+/1ahRoxQZGanu3bsrIyNDH3/8sQYOHKjPPvtMNWrUUGZmpvr27avU1FT17dtXVatW1aFDh/TJJ59oyJAh2rJliwICAjR9+nRNmzZNVapU0dChQ3XHHXfo1ltv1Q033FBonImJiZo5c6ZuvfVWhYaGFrtNc+fOVX5+vgYNGqSMjAx98MEH+u6777Ru3Tr7nPzSuZtaRkVFKTo62v6av/rqq3r//fcVERGhMWPG6MSJE/r444+1fft2rVix4oKpjM63Y8cOJScn66GHHpIktW3bVsuWLdOaNWvs/X6+2NhYValSRY899pjOnj2rDz74QH369NG6det07bXXavz48Xr99dd18uRJ+y9zpHO/5Bk/frwiIiI0evRonT59Wp988ol69Oih5cuXq1atWq69+SZs3bpVCQkJevjhh3Xttddq2bJleuGFF3T99dfbpxn66quvNGzYMNWtW1ejRo1SYmKiXn31Vfn7+zPFEwAAKDME4QAAAOVcpUqV9Oeff7q1bmZmpmbPnl0oTHz11VcVFBSkVatW2cPAqKgo3X///VqyZInGjBljX3fx4sVq0KCBJOnee+9V69at9fnnn6tNmzb6559/tH37do0ZM8Y+93H37t1lGEahq25nz56t3NxcrV69WjVr1pQk3X///Wrbtq0WLlyoN954Q5KUnZ2tmTNnqm3btpKk6OhoRUVF6YsvvigUhJ84cULz58+3X1n6wAMPqGXLlvr0008dBuE1atTQ3XffrQULFqhJkyb2Ob/btGmjadOmqV69ei7PA/77779r6dKl6tGjhz3ol6SKFStqwYIF+v333+3LateurcWLF8vL69wht7e3t+bMmaPvvvtOERER2rlzp1avXq0pU6aoV69e9vWioqI0aNAgLV26VI888oh9ecOGDfX888+7NE53hIaG6r333pOnp6d69Oihb7/9Vtu3b9e7776ryMhISZK/v78mTpyoH374QS1atFB8fLz8/Pw0f/58eXh4SJLuvvtuPf300/p//+//qUaNGtq0aZMOHz6s9957Ty1btrR/vxo1amjy5Mnavn272rVrp65du+qNN964YF72+vXr2/+dlZWl3r17q3LlypozZ458fHyK3aZTp05pw4YNqlatmqRzvxQZOHCg3n//fT3zzDP254WEhOi1116Tt7e3pHN/wbBo0SK1bdtWc+bMsW9bmzZt1LNnT82YMUOzZ892+n0LpkUp6OXmzZurcuXK+uyzzzRu3LgLxu3p6ally5bZb6bZvHlz9evXT++9957Gjh2rNm3a6MMPP1RWVpb9tUlLS9NLL72k+++/XzNnzrTX6tGjhzp16qQZM2borbfeKvb1ccfx48cVFxdnf1/atm2rli1bat26dfYg/OWXX1aNGjW0dOlS+y997rjjDg0bNowgHAAAlBmmRgEAACjncnNz7UGcWTfccEOhEPyff/7RDz/8oOjo6EJXxNaqVUurVq3SY489Zl9244032kNwSQoLC1NwcLCSk5MlSYGBgfL399eSJUu0ceNGnT17VpI0bdo0ffDBB5LOTf2xZcsWRUVF2UNwSapSpYqWLFmiiRMn2pfZbLZC0yYEBASodu3a9u93/vPuvfde+9e+vr6qVavWBc8rDZs3b5ZhGBdMIzFo0CCtW7eu0GvdoUMHewguSY0aNZIk+zg///xzeXh4KCoqSikpKfb/br31VoWEhGjz5s2Fvsc999xTottStKdat24tT89zpweenp6qUaOG/Pz87CG4JPtV0ElJSZKkatWqKT09XVOnTtWBAwcknZviZOPGjerQoYOkc7/02LFjR6HxZ2dn2/9d0DeumDBhgvbv36+ZM2e6dFPNLl262ENw6VxIX7duXW3atKnQ85o3b24PwSVp06ZNMgxDQ4YMKfQ6NW7cWC1atNDmzZuVm5vr8HtmZmbqiy++UFhYmBo2bCjp3C9B7r33Xp0+fVr/+c9/Llina9eu9hBcku666y7Vq1fvgh443zfffKO0tDS1adOmUP9UqFBBzZs317Zt25yO8VLUqlWr0C8nQkJCdO2119r7+ueff9aff/6pXr162UNw6dwvEerUqVPi4wEAAHAVV4QDAACUc6dOnXJ52o6irrnmmkJfHz16VIZhFAqlC9x6663FritJfn5+ysnJkST5+PjohRde0HPPPaenn35aPj4+uuuuu9SuXTs98MAD8vX11alTp3T27FmH369u3bqFvg4KClKFChUu+H7//PPPBc8rCGwL+Pj4FJojvLQcPXpU0rlfEpyvUqVKqlSpUqFlRd+zglCw4PX7888/ZRhGoVD/fEWvnHW1B3x8fIoNQAseO3/aFUm69tprC33t5eV1wfcseN0LXuuHH35Y27Zt08cff6yPP/5Y119/vVq1aqWHHnqoUFjq4eGhd955R999953+/PNP/fnnn/bXwdX3beHChfr00081atQotWjRwqV1brrppguW3XjjjYXm3JcufG0L5gF3NLVInTp1tG3bNp08ebJQeF1g06ZNSk9PV9u2bQvNJ96kSROtXbtWq1evVseOHQutU7t27Qvq3HDDDdqyZYvTbSv4K5FRo0Y5fU5KSspFp48xy1Efnv/zd/jwYUly+DNfq1Yt7d+/v0THAwAA4CqCcAAAgHIsLS1NR44ccRqWni8vL++CZUWD5YKwqmiQ7Igrz4mOjlbLli315ZdfasuWLdq+fbu2bdumJUuWaMWKFfYxldT3M/O80uDoNXbmYuPMz89XxYoVC80rfr6iQXXR99KZypUrKz093enjZ86ckXTuiv6L1b/YXyIEBATo448/1t69e/Xll1/q66+/VmxsrBYvXqzp06crOjpaR48eVc+ePXX27Fndc889uv/++3XLLbfIMAwNGzbMpW3atm2bXn/9dbVu3VqPP/64S+tIKnSVd4G8vLwL3pui224YhtOaBT9DjmpL/zctSlxcnOLi4i54/JtvvtGJEycKBdSOXuf8/Pxi3/OCcbz44otO5yuvXLmy0/Vd4ajfL9bXBb9ocTRtTdGeBgAAuJwIwgEAAMqxhIQEGYah1q1b25d5enoWmlpCOhc+nTx58oIbCxZVvXp1Sf931eb5XnvtNVWuXFlDhgxxaWzp6enav3+/br75Zj300EN66KGHlJ2drddee00fffSRtm3bpsjISPn5+Tn8fgsXLlRycrKeffZZl75feVBwk8ojR44UmuYhMTFR06ZN08MPP+xyrbCwMG3btk0NGza84GryjRs3KigoyK0x1qlTR3v37lVOTo7DsPbXX39VzZo1SySUPHjwoFJTU9WkSRM1adJE//73v/X777+rb9++WrRokaKjozV37lz9888/2rBhQ6Er6QsC44s5fPiw/vWvf6lGjRqaPn26qWmCHM2tf/jw4Quu6C+qIFj+448/1Lhx40KPHTx4UP7+/g5D5tOnT2vr1q0KCwvT+PHjL3h83bp12rhxo9auXVtoGqLzrxw/f5w1atRwOsaCqWGCg4N19913F3ps586dys/Pv+gc6gUuZZ9SVMGYDx06dMF0PocOHTJVCwAAoCQxRzgAAEA5deLECb355puqWrWqoqOj7cuvvfZaHTx4UJmZmfZlmzZtUlZW1kVrVq1aVfXr19dnn32mtLQ0+/IjR47oo48+MjXP9m+//aa+fftq5cqV9mU+Pj72KVYqVKggLy8vtWjRQlu2bNHx48ftzzt9+rQWLlzo9k1AzSq4svb8aTgcLbuYgpsBfvLJJ4WWr169Whs2bFBAQIDLtQrmQ58/f36h5Zs2bdLTTz/tclBcVOvWrZWZmakPP/zwgsc+//xzHT9+3H4Tx0s1depUPfnkk4WuQK9du7YqVapkv3L41KlTstls9l8iSOfmCF+6dKmkwlcde3p6Fno/0tLS9OSTTyo3N1dz58419fpK0tq1awv1+ZYtW/T777+rXbt2xa7XqlUrSdK7775b6Orw//f//p+2b9+uqKgoh4F8QkKCcnJyFBMTozZt2lzwX8EV8GvWrCm03oYNGxyOs02bNvZlRV+bu+++W76+vnrvvffs08xI534p8+STT2rGjBku/9LgUvYpRTVs2FDVq1fXypUrC4Xre/fu1U8//WS6HgAAQEnhinAAAIBy4Msvv7TfvDIrK0t//PGH4uLilJWVpXfffbfQTec6d+6sF198UYMHD1aXLl10+PBhLV++3KWbB0rSuHHjNHjwYD344IPq3r27PD099fHHH6tSpUqFrlK9mMaNGys8PFyzZs3S8ePHVa9ePR0/flwff/yxateurYiICEnSM888o+7du6t79+7q27evAgICtHz5cp09e1YjR450/UW6BAWv7bp162QYhrp162afa3zTpk267rrrLhqOStItt9yi7t27KzY2VidOnFBERIR+//13LV26VA888IDq16+vnTt3ujSmqKgotW7dWu+//77++usv3X333Tp69KgWL16s6667ToMGDXJrW3v37q0NGzbotdde0w8//KBmzZrJy8tL33//vdauXav69etr6NChbtUuauDAgXrsscfUt29f+7zwX375pf7880+9+uqrkqTIyEht2rRJjz/+uDp06KDU1FTFxcXZfwlyfogeHBysn3/+WUuWLNFdd92lOXPm6Pfff1efPn3022+/af/+/YWC6TvuuKPYq6ZTU1PVo0cP9ejRQykpKfrwww9Vp04dPfLII8Vu180336x+/fopNjZWAwcOVJs2bZSUlKTY2FhVqlRJzzzzjMP11q9fL09PT8XExDh8vF69err99tv13Xff6fvvv7fPw5+RkaG+ffuqR48eSkxM1IcffqiaNWsW6oHg4GDt2rVLixYt0h133KHGjRvrX//6l6ZNm6aePXuqS5cuys3N1ZIlS5SVlWXqLy0udZ9yPk9PT40dO1YjR45Ur1691LVrV6WkpOijjz5y+Qp1AACA0kAQDgAAUA5MmzbN/u+KFSuqevXquu+++/TYY49dcMO+Pn366NSpU1q5cqVefPFF1a9fX3PnztX777+vs2fPXvR7NW/eXB9++KHefPNNvfXWW/L19dWdd96p0aNHO7z5nzMeHh566623NHfuXH311VdatmyZKleurHbt2mnEiBH20KtOnTpatmyZZs6cqffee0+enp667bbb9Oqrr+rmm292+ftdijp16qhfv35avXq1PRy+4YYbNGrUKC1cuFBTp051eQqIF154QTfeeKNWrFhhD9GHDRumwYMHmxqTh4eH3njjDb333nuKi4vTV199peDgYPvrV/Tmla7y9vbWhx9+qA8++EDx8fHatm2b8vPzdd1112no0KEaMGCA6Surnbnnnns0f/58vf3225o3b56ysrJ08803a+bMmerUqZMkqVevXjpz5oxWrFihqVOn6tprr1WTJk00d+5c9erVS//97381YMAASdLw4cM1efJkvfzyyxo2bJh++OEHSdKSJUu0ZMmSC77/tGnTig3CBw4cqLS0NM2ZM0c+Pj7q0qWL/vWvf8lms1102yZMmKBatWpp6dKleuWVV1S5cmW1bdtWTz/9tMOA+O+//9auXbvUokWLQle/F9W7d2999913Wr16tf0XT0899ZR+++03zZo1S5LUtm1bPfvss4Xep8GDB+uXX37R66+/rpiYGDVu3FgDBgxQ1apVtWjRIs2aNUt+fn5q0KCBXnvtNTVt2vSi21jgUvcpRXXo0EGzZs3S/Pnz9dprr6lq1aoaN26c4uLilJKSYroeAABASfAwirsTDAAAAABcYf766y+1bt1aTz31lIYPH17Ww7mq5OXl6fTp0woODr7gsejoaFWqVEmLFy8ug5EBAICrHXOEAwAAAABKRF5eniIjIzVp0qRCy3/99Vf99ttvuu2228poZAAA4GrH1CgAAAAAgBLh4+OjDh06aOXKlfLw8FDDhg114sQJffLJJ6pSpYoGDhxY1kMEAABXKYJwAAAAAECJmTp1qmrVqqV169ZpzZo1CgwMVEREhEaOHKnQ0NCyHh4AALhKMUc4AAAAAAAAAMDSmCMcAAAAAAAAAGBpTI3igpMn05Wf7/zC+WuuCdA//6Rd0vcoiRrlaSxWqlGexlJeapSnsVipRnkaS3mpUZ7GYqUa5Wks5aVGeRqLlWqUp7GUlxrlaSxWqlGexlJeapSnsVipRnkaS3mpUZ7GYqUa5Wks5aVGeRqLlWqUp7GUlxrlaSxWqnE5xuLp6aEqVSo6XZcg3AX5+UaxQXjBc0ri+5SE8jIWK9UoqTpWqlFSdahROnWsVKOk6lCjdOpYqUZJ1aFG6dSxUo2SqkON0qljpRolVYcapVPHSjVKqg41SqeOlWqUVB1qlE4dK9UoqTrUKJ067tZgahQAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABY2mUPwtPS0tS5c2f99ddfkqRly5apc+fOio6O1rhx45SdnS1J2r9/v2JiYtS+fXtNmDBBubm5kqRjx46pb9++6tChg5544gmlp6dLks6cOaMhQ4aoY8eO6tu3r5KSkiRJ2dnZGj16tDp27Khu3brpwIEDl3uTAQAAAAAAAABl6LIG4d9//7169+6tQ4cOSZIOHjyohQsXaunSpVq3bp3y8/O1ZMkSSdLo0aM1adIkbdy4UYZhaPny5ZKkKVOmqE+fPkpISFDDhg01b948SdLs2bMVHh6uDRs2qHv37nrppZckSbGxsbLZbNqwYYPGjx+vcePGXc5NBgAAAAAAAACUscsahC9fvlyTJ09WaGioJMnHx0eTJ09WQECAPDw8VLduXR07dkxHjx5VZmammjRpIkmKiYlRQkKCcnJytGvXLrVv377QcknavHmzoqOjJUmdO3fW119/rZycHG3evFldunSRJN15551KSUnRsWPHLudmAwAAAAAAAADKkNfl/GYFV2kXCAsLU1hYmCQpJSVFixcv1rRp03TixAmFhITYnxcSEqLExESdPHlSAQEB8vLyKrRcUqF1vLy8FBAQoJSUFIe1/v77b1133XWluq0AAAAAAAAAgPKhXNwsMzExUY888ogefPBBNWvWTPn5+fLw8LA/bhiGPDw87P8/X9Gvz1/H09PzgnUKlgMAAAAAAAAArg6X9YpwRw4cOKDBgwerX79+evTRRyVJ1apVs9/sUpKSk5MVGhqq4OBgpaamKi8vTxUqVFBSUpJ9mpXQ0FAlJyerWrVqys3NVXp6uoKCglS1alWdOHFCN9xwQ6FaAAAAAAAAAK4slSp6ydff5vTxkJBAh8uzzmboTHpuaQ0LV4AyDcLT0tI0aNAgjRw5Ug888IB9eVhYmHx9fbVnzx41bdpUa9euVWRkpLy9vRUeHq74+HhFR0crLi5OkZGRkqSoqCjFxcVp6NChio+PV3h4uLy9vRUVFaW1a9cqPDxcu3fvlq+vL9OiAAAAAAAAAFcgX3+bJlYLNr3e1L9TpPTUUhgRrhRlOkfIypUrlZycrEWLFqlr167q2rWr3njjDUnSjBkzNG3aNHXo0EFnz55V//79JUmTJ0/W8uXLdf/992v37t0aOXKkJGnEiBHau3evOnXqpCVLlmjSpEmSpH79+ik7O1udOnXSSy+9pOnTp5fJtgIAAAAAAAAAykaZXBG+adMmSdKAAQM0YMAAh8+pX7++Vq5cecHysLAwxcbGXrA8KChICxYsuGC5r6+vXn311UsbMAAAAAAAAADgisVdIwEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAICleZX1AAAAAAAAAADgalQ50Fc+fj5OHw8JCXS4PDszW6dTs0prWJZEEA4AAAAAAAAAZcDHz0dvtXnO9HrDvnxRIgg3halRAAAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFjaZQ/C09LS1LlzZ/3111+SpO3btys6Olrt2rXTrFmz7M/bv3+/YmJi1L59e02YMEG5ubmSpGPHjqlv377q0KGDnnjiCaWnp0uSzpw5oyFDhqhjx47q27evkpKSJEnZ2dkaPXq0OnbsqG7duunAgQOXeYsBAAAAAAAAAGXpsgbh33//vXr37q1Dhw5JkjIzMzV+/HjNmzdP8fHx+vHHH7VlyxZJ0ujRozVp0iRt3LhRhmFo+fLlkqQpU6aoT58+SkhIUMOGDTVv3jxJ0uzZsxUeHq4NGzaoe/fueumllyRJsbGxstls2rBhg8aPH69x48Zdzk0GAAAAAAAAAJSxyxqEL1++XJMnT1ZoaKgkad++fapZs6Zq1KghLy8vRUdHKyEhQUePHlVmZqaaNGkiSYqJiVFCQoJycnK0a9cutW/fvtBySdq8ebOio6MlSZ07d9bXX3+tnJwcbd68WV26dJEk3XnnnUpJSdGxY8cu52YDAAAAAAAAAMqQ1+X8ZgVXaRc4ceKEQkJC7F+HhoYqMTHxguUhISFKTEzUyZMnFRAQIC8vr0LLi9by8vJSQECAUlJSHNb6+++/dd1115XadgIAAAAAAAAAyo8yvVlmfn6+PDw87F8bhiEPDw+nywv+f76iX5+/jqen5wXrFCwHAAAAAAAAAFwdyjQRrlatmv2mlpKUlJSk0NDQC5YnJycrNDRUwcHBSk1NVV5eXqHnS+euJk9OTpYk5ebmKj09XUFBQapatapOnDhxQS0AAAAAAAAAwNWhTIPwxo0b6+DBgzp8+LDy8vK0fv16RUZGKiwsTL6+vtqzZ48kae3atYqMjJS3t7fCw8MVHx8vSYqLi1NkZKQkKSoqSnFxcZKk+Ph4hYeHy9vbW1FRUVq7dq0kaffu3fL19WVaFAAAAAAAAAC4ilzWOcKL8vX11SuvvKLhw4crKytLUVFR6tChgyRpxowZmjhxotLS0tSgQQP1799fkjR58mSNHTtW8+fPV/Xq1TVz5kxJ0ogRIzR27Fh16tRJgYGBmjFjhiSpX79+mjRpkjp16iQfHx9Nnz69bDYWAAAAAAAAAFAmyiQI37Rpk/3fERERWrdu3QXPqV+/vlauXHnB8rCwMMXGxl6wPCgoSAsWLLhgua+vr1599dVLHDEAAAAAAAAA4ErFXSMBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaeUmCF+7dq06deqkTp066dVXX5Ukbd++XdHR0WrXrp1mzZplf+7+/fsVExOj9u3ba8KECcrNzZUkHTt2TH379lWHDh30xBNPKD09XZJ05swZDRkyRB07dlTfvn2VlJR0+TcQAAAAAAAAAFAmykUQnpGRoZdeekmxsbFau3atdu/erU2bNmn8+PGaN2+e4uPj9eOPP2rLli2SpNGjR2vSpEnauHGjDMPQ8uXLJUlTpkxRnz59lJCQoIYNG2revHmSpNmzZys8PFwbNmxQ9+7d9dJLL5XZtgIAAAAAAAAALq9yEYTn5eUpPz9fGRkZys3NVW5urgICAlSzZk3VqFFDXl5eio6OVkJCgo4eParMzEw1adJEkhQTE6OEhATl5ORo165dat++faHlkrR582ZFR0dLkjp37qyvv/5aOTk5ZbKtAAAAAAAAAIDLy6usByBJAQEBGjFihDp27CibzaY777xTJ06cUEhIiP05oaGhSkxMvGB5SEiIEhMTdfLkSQUEBMjLy6vQckmF1vHy8lJAQIBSUlJUtWrVy7iVAAAAAAAAAICyUC6uCP/555+1atUqffXVV9q6das8PT116NAheXh42J9jGIY8PDyUn5/vcHnB/89X9Ovz1/H0LBebDgAAAAAAAAAoZeUiDd62bZsiIiJ0zTXXyMfHRzExMdq5c2ehm1omJSUpNDRU1apVK7Q8OTlZoaGhCg4OVmpqqvLy8go9Xzp3NXlycrIkKTc3V+np6QoKCrp8GwgAAAAAAAAAKDPlIgivX7++tm/frrNnz8owDG3atEmNGzfWwYMHdfjwYeXl5Wn9+vWKjIxUWFiYfH19tWfPHknS2rVrFRkZKW9vb4WHhys+Pl6SFBcXp8jISElSVFSU4uLiJEnx8fEKDw+Xt7d3mWwrAAAAAAAAAODyKhdzhN9zzz366aefFBMTI29vbzVq1EjDhw9XixYtNHz4cGVlZSkqKkodOnSQJM2YMUMTJ05UWlqaGjRooP79+0uSJk+erLFjx2r+/PmqXr26Zs6cKUkaMWKExo4dq06dOikwMFAzZswos20FAAAAAAAAAFxe5SIIl6QhQ4ZoyJAhhZZFRERo3bp1Fzy3fv36Wrly5QXLw8LCFBsbe8HyoKAgLViwoOQGCwAAAAAAAAC4YpSLqVEAAAAAAAAAACgtBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAluZV1gMAAAAAAAAAUL5VDvSSj5/N6eMhIYEOl2dnZuh0am5pDQtwGUE4AAAAAAAAgGL5+Nn0fsfaptd7dMMfUmpqKYwIMIepUQAAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEvzKusBAAAAACWhcqCvfPx8nD4eEhLocHl2ZrZOp2aV1rAAAAAAlAME4QAAALAEHz8fvdXmOdPrDfvyRYkgHAAAALA0pkYBAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACzNVBBuGIbS0tLsX2/YsEHvv/++Dhw4UOIDAwAAAAAAAACgJLgchP/yyy+677779O6770qS5syZo1GjRmnmzJnq1q2bduzYUWqDBAAAAAAAAADAXS4H4a+99pqCg4MVHR2ts2fPauHChXrwwQe1b98+dezYUbNnzy7FYQIAAAAAAAAA4B6Xg/DvvvtOI0aM0E033aRt27YpKytL3bt3l6enp7p166ZffvmlNMcJAAAAAAAAAIBbXA7CPT095eXlJUnasmWLKleurCZNmkiSTp8+LX9//1IZIAAAAAAAAAAAl8LL1Sc2adJECxcu1KlTpxQfH69OnTpJkvbv36+5c+eqadOmpTZIAAAAAAAAAADc5fIV4ePHj9exY8f0r3/9S1WrVtXw4cMlSY899phycnI0ZsyYUhskAAAAAAAAAADucvmK8Fq1amnDhg1KSUlRlSpV5OHhIUlauHChbrrpJlWoUKHUBgkAAAAAAAAAgLtcDsILZGZmKi4uTklJSerWrZuysrKUm5tLEA4AAAAAAAAAKJdcDsLz8/P10ksvaenSpcrLy5OHh4datGih2bNn6+jRo/roo49UtWrV0hwrAAAAAAAAAACmuTxH+Ny5c7V69WpNmzZN27dvl2EYkqQxY8YoLy9Pr7/+eqkNEgAAAAAAAAAAd7kchK9atUr/+te/1KVLF1WuXNm+vH79+hoxYoS++eabUhkgAAAAAAAAAACXwuUg/NSpU6pVq5bDx4KDg5WWllZigwIAAAAAAAAAoKS4HITXq1dPa9ascfjYF198obp165bYoAAAAAAAAAAAKCku3yxzxIgRGjJkiBITExUVFSUPDw/95z//0aJFixQfH6958+aV5jgBAAAAAAAAAHCLy1eEt2jRQu+9955ycnI0a9YsGYahefPm6ffff9fcuXN17733luIwAQAAAAAAAABwj8tXhEtSRESEIiIilJmZqdOnTysgIEAVK1YsrbEBAAAAAAAAAHDJig3CT5065fQxX19f5eTkFHpOUFBQCQ0LAAAAAAAAAICSUWwQ3rx5c3l4eLhcbP/+/Zc8IAAAAAAAgPKuYoCv/G0+Dh8LCQl0uPxsRrbS07JKc1gAACeKDcJffvllU0E4AAAAAADA1cDf5qMqdUeaWufkr7MJwgGgjBQbhMfExFyucQAAAAAAAAAAUCpM3Szz119/1a5du5STkyPDMCRJhmEoIyNDe/fu1bvvvlsqgwQAAAAAAAAAwF0uB+HLli3T888/L8Mw5OHhYQ/CJcnT01N33313qQwQAAAAAAAAAIBL4enqExctWqR7771XO3fu1KBBg9S9e3ft3btXb775pmw2mzp37nxJA9m0aZNiYmLUsWNHTZ06VZK0fft2RUdHq127dpo1a5b9ufv371dMTIzat2+vCRMmKDc3V5J07Ngx9e3bVx06dNATTzyh9PR0SdKZM2c0ZMgQdezYUX379lVSUtIljRUAAAAAAAAAcOVwOQj/66+/1KdPH1WuXFmNGjXSrl275Ofnp3bt2unJJ5/URx995PYgjhw5osmTJ2vevHlat26dfvrpJ23ZskXjx4/XvHnzFB8frx9//FFbtmyRJI0ePVqTJk3Sxo0bZRiGli9fLkmaMmWK+vTpo4SEBDVs2FDz5s2TJM2ePVvh4eHasGGDunfvrpdeesntsQIAAAAAAAAAriwuB+E2m01eXudmUqlZs6aOHDmizMxMSdJtt92mw4cPuz2IL774Qvfff7+qVasmb29vzZo1SzabTTVr1lSNGjXk5eWl6OhoJSQk6OjRo8rMzFSTJk0knbuhZ0JCgnJycrRr1y61b9++0HJJ2rx5s6KjoyVJnTt31tdff62cnBy3xwsAAAAAAAAAuHK4HITffvvtWrFihfLz81W7dm15eXnp66+/lnTuJpq+vr5uD+Lw4cPKy8vT0KFD1bVrVy1ZskQnTpxQSEiI/TmhoaFKTEy8YHlISIgSExN18uRJBQQE2MP6guWSCq3j5eWlgIAApaSkuD1eAAAAAAAAAMCVw+WbZT711FN65JFH9Nhjj2nhwoXq0aOHnn32WcXGxmrv3r3q1q2b24PIy8vT7t27FRsbK39/fz3xxBPy8/OTh4eH/TkFN+nMz893uLzg/+cr+vX563h6uvw7AAAAAAAAAADAFczlIPy2225TfHy8fvvtN0nSuHHjFBQUpL179+qxxx7TkCFD3B7Etddeq4iICAUHB0uS2rRpo4SEBFWoUMH+nKSkJIWGhqpatWqFbnaZnJys0NBQBQcHKzU1VXl5eapQoYL9+dK5q8mTk5NVrVo15ebmKj09XUFBQW6PFwAAAAAAAABw5bjoZdGGYejrr7/Wr7/+qurVqysyMlJHjx7VhAkTtGXLFoWGhqpbt27y8/NzexCtWrXStm3bdObMGeXl5Wnr1q3q0KGDDh48aJ82Zf369YqMjFRYWJh8fX21Z88eSdLatWsVGRkpb29vhYeHKz4+XpIUFxenyMhISVJUVJTi4uIkSfHx8QoPD5e3t7fb4wUAAAAAAAAAXDmKvSI8PT1dgwYN0vfff69Ro0apbt26OnPmjHr37q2TJ08qKipKP/74o7p3765Vq1YpLCzMrUE0btxYgwcPVp8+fZSTk6MWLVqod+/eql27toYPH66srCxFRUWpQ4cOkqQZM2Zo4sSJSktLU4MGDdS/f39J0uTJkzV27FjNnz9f1atX18yZMyVJI0aM0NixY9WpUycFBgZqxowZbo0TAAAAAAAAAHDlKTYIf+edd3To0CEtWLBALVq0kCQtWrRISUlJevnll9WtWzfl5eXp0Ucf1dy5czVt2jS3B/LQQw/poYceKrQsIiJC69atu+C59evX18qVKy9YHhYWptjY2AuWBwUFacGCBW6PDQAAAAAAAABw5So2CP/88881dOhQRUVF2Zdt3LhRlSpVUteuXSVJFSpUUM+ePS8pBAcAAACsJKiSl7x9bU4fDwkJvGBZTlaGTp3JLc1hAQAAAFetYoPwo0eP6pZbbrF/nZycrD/++EPt2rWTp+f/TS8eGhqqkydPlt4oAQAAgCuIt69Nsc/VMrVOvxcPSkotnQEBAACUAxUrecnf5MUCknQ2K0PpXDCAS1RsEO7n56fMzEz7199++60k6e677y70vMTERFWqVKkUhgcAAAAAAADACvx9bao5pK7p9Q6/86vSuWAAl8izuAcbNWqk//znP/av161bpwoVKqhVq1aFnrd69Wo1aNCgdEYIAAAAAAAAAMAlKPaK8MGDB2vQoEH6+++/lZ+fr23btunBBx9U1apVJUn79u1TbGystm/fzs0oAQAAAAAAAADlUrFXhEdERGj+/PnKzMzU33//rYEDB2ry5Mn2x5944gl98cUXevbZZwvdUBMAAAAAAAAAgPKi2CvCJSkqKsppyD1v3jzdeOONqly5cokPDAAAAAAAAACAknDRILw4jRs3LqlxAAAAAAAAAABQKi4pCIc5lQO95ONnc/p4SEigw+XZmRk6nZpbWsMCAAAAAAAAAEsjCL+MfPxser9jbdPrPbrhDyk1tRRGBAAAAAAAAADWV+zNMgEAAAAAAAAAuNIRhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACyNIBwAAAAAAAAAYGleZT0AAAAAAAAAALjSBAZ4yc9mc/p4SEigw+WZGRlKTcstrWHBCYJwAAAAAAAAADDJz2ZTt9urml5vzXeJSk1LLYURoThMjQIAAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNIJwAAAAAAAAAIClEYQDAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYmldZDwAAAAAAAFhfQIC3bDY/p4+HhAQ6XJ6Rkam0tJzSGhYA4CpBEA4AAAAAAEqdzeanli1bml5v69atBOEASlxggK/8bD5OH3f0y7nMjGylpmWV5rBQigjCAQAAAAAAAFxV/Gw+6nHLUFPrLN+/gCD8CsYc4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWVu6C8FdffVVjx46VJG3fvl3R0dFq166dZs2aZX/O/v37FRMTo/bt22vChAnKzc2VJB07dkx9+/ZVhw4d9MQTTyg9PV2SdObMGQ0ZMkQdO3ZU3759lZSUdPk3DAAAAAAAAABQJspVEL5jxw6tWbNGkpSZmanx48dr3rx5io+P148//qgtW7ZIkkaPHq1JkyZp48aNMgxDy5cvlyRNmTJFffr0UUJCgho2bKh58+ZJkmbPnq3w8HBt2LBB3bt310svvVQ2GwgAAAAAAAAAuOzKTRB+6tQpzZo1S0OHDpUk7du3TzVr1lSNGjXk5eWl6OhoJSQk6OjRo8rMzFSTJk0kSTExMUpISFBOTo527dql9u3bF1ouSZs3b1Z0dLQkqXPnzvr666+Vk5Nz+TcS5VpAgLdCQgId/ifJ6WMBAd5lPHIAAAAAAAAAxfEq6wEUmDRpkkaNGqXjx49Lkk6cOKGQkBD746GhoUpMTLxgeUhIiBITE3Xy5EkFBATIy8ur0PKitby8vBQQEKCUlBRVrVr1cm0ergA2m59atmxper2tW7cqLY1frDhTsZKX/H1tTh8v+EVDUWezMpR+Jre0hgUAAAAAAICrSLkIwlesWKHq1asrIiJCq1evliTl5+fLw8PD/hzDMOTh4eF0ecH/z1f06/PX8fQsNxfDA5bm72tTzSF1Ta93+J1fla7UUhgRAAAAAAAArjblIgiPj49XUlKSunbtqtOnT+vs2bM6evSoKlSoYH9OUlKSQkNDVa1atUI3u0xOTlZoaKiCg4OVmpqqvLw8VahQwf586dzV5MnJyapWrZpyc3OVnp6uoKCgy72ZAAAAAAAAAIAyUC4ui160aJHWr1+vtWvX6umnn9Z9992n9957TwcPHtThw4eVl5en9evXKzIyUmFhYfL19dWePXskSWvXrlVkZKS8vb0VHh6u+Ph4SVJcXJwiIyMlSVFRUYqLi5N0LnQPDw+XtzfzOgMAAAAAAADA1aBcXBHuiK+vr1555RUNHz5cWVlZioqKUocOHSRJM2bM0MSJE5WWlqYGDRqof//+kqTJkydr7Nixmj9/vqpXr66ZM2dKkkaMGKGxY8eqU6dOCgwM1IwZM8psuwAAAAAAAAAAl1e5C8JjYmIUExMjSYqIiNC6desueE79+vW1cuXKC5aHhYUpNjb2guVBQUFasGBByQ8WAAAAAAAAAFDulYupUQAAAAAAAAAAKC0E4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEvzKusBoGxUquglX3+b08dDQgIdLs86m6Ez6bmlNSwAAAAAAAAAKHEE4VcpX3+bJlYLNr3e1L9TpPTUUhgRAAAAAAAAAJQOpkYBAAAAAAAAAFgaQTgAAAAAAAAAwNIIwgEAAAAAAAAAlkYQDgAAAAAAAACwNG6WCUuoHOgrHz8fh4+FhAQ6XJ6dma3TqVmlOSwAAAAAAAAA5QBBOCzBx89Hb7V5ztQ6w758USIIBwAAAAAAACyPqVEAAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApRGEAwAAAAAAAAAsjSAcAAAAAAAAAGBpBOEAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKV5lfUAAAAAAAAAcGULDPCVn83H6eMhIYEOl2dmZCs1Lau0hgUAdgThAAAAAAAAuCR+Nh/1uGWo6fWW719AEA7gsmBqFAAAAAAAAACApXFFONzGnz0BAAAAAAAAuBIQhMNt/NkTAAAAAAAAgCsBU6MAAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSCcAAAAAAAAACApXmV9QAAACgJlQO95ONnc/p4SEigw+XZmRk6nZpbWsMCAAAAAADlAEE4UM5UDPSRv5+v08edhXlnM7OUnppdWsMCyj0fP5ve71jb9HqPbvhDSk0thREBAAAAAIDygiAcKEFBlbzk7Wv+itScrAydOnPuilR/P18F9Xnc9Pc+teRtgnAAAICLCAzwlZ/Nx+njzo7XMjOylZqWVVrDAgAAQCkjCAdKkLevTbHP1TK9Xr8XD0riilQAAIDS5mfzUY9bhppeb/n+BQThAAAAVzCCcBdVDPCVvxtXjpzNyFY6B8wAAAAAAAAAUGYIwl3kb/NRlbojTa938tfZBOEAAAAAAAAAUIY8y3oAAAAAAAAAAACUJoJwAAAAAAAAAIClEYQDAAAAAAAAACyNOcIBAAAAAABgGZUDfeXj5+P08ZCQQIfLszOzdTqV+7zh6hVUyUvevjaHjzn7ucnJytCpM7mlOawSQxAOAAAAAAAAy/Dx89FbbZ4zvd6wL1+UCMJxFfP2tSn2uVqm1un34kFJqaUzoBLG1CgAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWRhAOAAAAAAAAALA0gnAAAAAAAAAAgKV5lfUAAAAAAAAAgPIkIMBbNpuf08dDQgIdLs/IyFRaWk5pDQvAJSAIBwAAAAAAAM5js/mpZcuWptfbunUrQThQTpWbIHzu3LnasGGDJCkqKkpjxozR9u3bNW3aNGVlZaljx44aNWqUJGn//v2aMGGC0tPTFR4erilTpsjLy0vHjh3T6NGj9c8//6hWrVqaMWOGKlasqDNnzujf//63jhw5ouDgYM2ePVshISFlubkAAAAAAAAAcMn4CwbXlIsgfPv27dq2bZvWrFkjDw8PDR48WOvXr9eMGTMUGxur6tWr6/HHH9eWLVsUFRWl0aNHa+rUqWrSpInGjx+v5cuXq0+fPpoyZYr69OmjTp066a233tK8efM0evRozZ49W+Hh4XrnnXcUFxenl156SbNnzy7rzQYAAAAAAACAS8JfMLimXNwsMyQkRGPHjpWPj4+8vb1Vp04dHTp0SDVr1lSNGjXk5eWl6OhoJSQk6OjRo8rMzFSTJk0kSTExMUpISFBOTo527dql9u3bF1ouSZs3b1Z0dLQkqXPnzvr666+Vk3P1vMkApMAAX4WEBDr8T5LTxwIDfMt45AAAAAAAALhU5eKK8Jtvvtn+70OHDmnDhg16+OGHC01fEhoaqsTERJ04caLQ8pCQECUmJurkyZMKCAiQl5dXoeWSCq3j5eWlgIAApaSkqGrVqpdj8wCUA342H/W4Zajp9ZbvX6DUtKxSGBEAAAAAoKjAAC/52WxOH3c0xUNmRoZS03JLc1gALKBcBOEFfvvtNz3++OMaM2aMKlSooEOHDtkfMwxDHh4eys/Pl4eHxwXLC/5/vqJfn7+Op2e5uBgeAAAAAAAA/z8/m03dbjd34eKa7xKVmpZaSiMCYBXlJgjfs2ePnn76aY0fP16dOnXSt99+q6SkJPvjSUlJCg0NVbVq1QotT05OVmhoqIKDg5Wamqq8vDxVqFDB/nzp3NXkycnJqlatmnJzc5Wenq6goKDLvYkA3FSpopd8/c1dESBJWWczdCadqwIAAAAAAFe3igG+8rf5OH3c2Xn12YxspfNX0rCIchGEHz9+XMOGDdOsWbMUEREhSWrcuLEOHjyow4cP6/rrr9f69ev14IMPKiwsTL6+vtqzZ4+aNm2qtWvXKjIyUt7e3goPD1d8fLyio6MVFxenyMhISVJUVJTi4uI0dOhQxcfHKzw8XN7e3mW5yQBM8PW3aWK1YNPrTf07RUrnqgAAAAAAwNXN3+ajKnVHml7v5K+zCcJhGeUiCF+4cKGysrL0yiuv2Jf16tVLr7zyioYPH66srCxFRUWpQ4cOkqQZM2Zo4sSJSktLU4MGDdS/f39J0uTJkzV27FjNnz9f1atX18yZMyVJI0aM0NixY9WpUycFBgZqxowZl38jgcuI3/QCAAAAAAAA/6dcBOETJ07UxIkTHT62bt26C5bVr19fK1euvGB5WFiYYmNjL1geFBSkBQsWXPpAgSsEv+kFAAAAAAAA/g93jAQAAAAAAAAAWBpBOAAAAAAAAADA0srF1CgAAAAAAABXm8qBXvLxszl93Nn9nbIzM3Q6Nbe0hgUAlkQQDgAAAAAAUAZ8/Gx6v2Nt0+s9uuEPKTW1FEYEANbF1CgAAAAAAAAAAEsjCAcAAAAAAAAAWBpBOAAAAAAAAADA0gjCAQAAAAAAAACWxs0yAQAArkAVK3nJ39fm9PGQkECHy89mZSj9TG5pDQsAAAAAyiWCcAAAgCuQv69NNYfUNb3e4Xd+VbpSS2FEAAAAAFB+EYRfgdy5AoyrvwAAAAAAAABcrQjCr0DuXAHG1V8AAAAAAAAArlbcLBMAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAAAAAMDSCMIBAAAAAAAAAJZGEA4AAAAAAAAAsDSvsh4AAFxJAgO85GezOXwsJCTQ4fLMjAylpuWW5rAAAABQgipW8pK/r+NjPsn5cd/ZrAyln+G4DwCA8oggHABM8LPZ1O32qqbWWfNdolLTUktpRAAAAChp/r421RxS1/R6h9/5VeniuA8AgPKIqVEAAAAAAAAAAJbGFeEAgDJXMcBX/jYfp487+vPjsxnZSk/LKs1hAQAAAAAAiyAIBwCUOX+bj6rUHWlqnZO/ziYIBwAAAAAALmFqFAAAAAAAAACApXFFOAAAJahSRS/5+tucPu5omhdJyjqboTPpuaU1LAAAAAAASl3FQB/5+/k6fdzZOfHZzCylp2aX1rAkEYQDAFCifP1tmlgt2PR6U/9OkdJTS2FEAAAAAABcHv5+vgrq87jp9U4tebvUg3CmRgEAAAAAAAAAWBpXhAMAAAAAgCtCUCUvefuan4YuJytDp84wDR0AXM0IwgEAAAAAwBXB29em2OdqmV6v34sHJTENHQBczQjCAeAyqxzoKx8/H6ePO7uKJTszW6dTs0prWAAAAAAAAJZFEA4Al5mPn4/eavOc6fWGffmiRBAOAAAAAABgGjfLBAAAAAAAAABYGleEAwBQDgUG+MrP5ngKHWfT52RmZCs1jb8aAAAAAACgKIJwAADKIT+bj3rcMtTUOsv3LyAIB4CrTECAt2w2P6ePO/rlaUZGptLSckpzWAAAAOUOQTgAAIAJFQN85e/kan3J+RX7ZzOylc4vKgCUMJvNTy1btjS1ztatWwnCAQDAVYcgHAAAwAR/m4+q1B1per2Tv84mCAcAAACAMsLNMgEAAAAAAAAAlkYQDgAAAAAAAACwNKZGAQC4rWKgj/z9fJ0+7nSu5Mwspadml9awAAAAAAAACiEIBwC4zd/PV0F9Hje93qklbxOE46pWOdBLPn42p487+yVSdmaGTqfmltawAAAAAMCyCMIB4CoVVMlL3r7mg7icrAydOmPNIK5iJS/5u/GanM3KULpFXxOUDh8/m97vWNv0eo9u+ENKTS2FEcGqKgb4yt/m4/Rxp/u1jGxu7goAAABLIQgHgKuUt69Nsc/VMr1evxcPSrJmEOfva1PNIXVNr3f4nV+VbtHXBMCVzd/moyp1R5pe7+SvswnCAQAAYCkE4QAAAAAA4KrBfW4A4OpEEA4AAEpVQIC3bDY/p487O9nMyMhUWlpOaQ0LAABcpbjPDQBcnQjCUaYCA7zkZzM/H29mRoZS05iPt7S5czM3buQGoCibzU8tW7Y0vd7WrVsJwgEAAAAAJYIgHGXKz2ZTt9urml5vzXeJSk1jPt7S5s7N3LiRGwAAcKS4GxJzM2IAgBUFVfKSt5PPPsn5519OVoZO8fkHlDiCcAAAAAClzp0bEnMzYlztAgN85Wfzcfq487+gzVYqN7wFypy3r02xz9UyvV6/Fw9KfP4BJY4gHAAAAACAElapopd8/c1fCZp1NkNn0s9dCepn81GPW4aa/t7L9y8gCAcAoAiCcAAAAAAASpivv00TqwWbXm/q3ylSOleCAgBQ0gjCAQBAucf8igAAAACAS0EQDgAAyj3mVwQAAAAAXArPsh4AAAAAAAAAAACliSAcAAAAAAAAAGBpTI0CAABwFatU0Uu+/o7nX3c293rW2QydSS/ZudcDA7zkZzM/D3xmRoZS05gHHgAAAEDxCMIBAMBVo2Kgj/z9fJ0+7ihsPZuZpfTU7NIcVpny9bdpYrVgU+tM/TtFSi/Zudf9bDZ1u72q6fXWfJeo1DTmgQcAANZV3DGss4sFrH4MC7iDIBwAAFw1/P18FdTncVPrnFryNicRAHAZVAzwlb/Nx+njTsOejGylp2WV1rAAoMxxDAuUDIJwAAAAXJLAAF/5uRFeZWZkK5Xwyil3/oJB4gowmBdUyUvevuanJsrJytCpMyU3NZG/zUdV6o40vd7JX2cThAMAgIsiCAcAwKKYcxmXi5/NRz1uGWp6veX7FxCEF8Odq78krgCDed6+NsU+V8v0ev1ePCiJqYkAAMCVgSAcAK5AAQHestn8nD7uLODMyMhUWlpOaQ0L5QxzLgMAAAAAcA5BOABcgWw2P7Vs2dL0elu3biUIBwCgHKgc6CsfP/NTCmVnZut0Kn9JAQAAYNZVE4R/+umnmj9/vnJzc/XII4+ob9++ZT0kAAAAAFcpHz8fvdXmOdPrDfvyRYkgHCYwVRoAAOdcFUF4YmKiZs2apdWrV8vHx0e9evVSs2bNdNNNN5X10AAAKNe4YhEAgCsbU6UBAHDOVRGEb9++Xc2bN1dQUJAkqX379kpISNBTTz3l0vqenh6SpBphwW59/4L1JSkgNOySa0jS9deYr1O0RlCNGpc8lpDrrrn0GtUvfRySFFg16JJrVKtW7ZLHUjHo0t/jG6699Ne1JPpVcq9nS6Jfi9YpL/0qudezJdGvRetYqV8l93q2JPq1aJ3y0q+Sez1bEv16fh0fPx991Pd10+v3X/yMPNP/72Z95aVfJfd6tiT6tWid8tKvkns9WxL9WrROSRwTlMT+tSSeJ7nXsyXRr0XrlNQxwaU+TyqZY9iSeG5JHRNc6vNKql/d2ccWrVFS+9hLfd6V3q9Fv0d5OYYtkf1rgI98fM39cjw7K1upaYVv3ltejgmsdAzrH+Alm68b9w/KytRZF6/6v9z7V865OIa9WA0rnXNJ5adfpfJxDOtf0Uc2Ny7Iyswq/obxHoZhGG6N7Ary9ttv6+zZsxo1apQkacWKFdq3b59efPHFMh4ZAAAAAAAAAKC0eZb1AC6H/Px8eXj8328mDMMo9DUAAAAAAAAAwLquiiC8WrVqSkpKsn+dlJSk0NDQMhwRAAAAAAAAAOByuSqC8Lvvvls7duxQSkqKMjIy9PnnnysyMrKshwUAAAAAAAAAuAyuiptlVq1aVaNGjVL//v2Vk5Ojhx56SLfddltZDwsAAAAAAAAAcBlcFTfLBAAAAAAAAABcva6KqVEAAAAAAAAAAFcvgnAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABL8yrrAVzp0tLS1KtXLy1YsEDXX3+9WzXmzp2rDRs2SJKioqI0ZswY0zXeeOMNbdy4UR4eHnrooYc0cOBAt8YiSa+++qpOnjypV155xfS6/fr1U0pKiry8zrXWCy+8oMaNG5uqsWnTJs2dO1cZGRlq0aKFJk6caHocK1as0Mcff2z/+q+//lLXrl01adIkU3XWrl2rd955R5IUGRmpZ5991vRY3nnnHa1atUo+Pj66//779cQTT7i8btH+2r59u6ZNm6asrCx17NhRo0aNcquOJI0ZM0bNmzdXTEyMWzWWLVum2NhYeXh4qGHDhpoyZYp8fHxM1ViyZIkWL14swzDsve/h4WF6WyTp448/1saNGxUbG2t6W7777jtNmzZN6enpqlevnl555RVT23LgwAHNnDnT/lhiYqIaN26st99+2/RYtm3bpunTpys/P1+33nqrpk6davp1Xb16td577z1VqFBBzZo109ixY+0/k4442geZ7TVn+7GcnBwNHjxYTz75pJo1a3bR18NRHbO95qiG2V4rbr/saq85qjFu3Djt2bNHNptNkvTUU0+pbdu2puuY7dmiNZo1a2a6Zx2Nw2y/Oqphtl8lx595ZnvW2eemmZ51VMNsvzqq4c6+sbjjAFd71lENsz3rqIbZfi1ao3bt2qb71dE43Nm/OqrjTs9KhY+v3P08L3qMZnYfW7SGO5/lRWu406+OtkUy91nuqI47+9iiNdw5Jji/RseOHd0+Jjh/HO70q6M6ZvvV0bF8enq6qX51dj5gpl8d1fj5559N92tx5yau9pujGkuXLjXVa45q5Ofnm+o1RzVSU1NN94mjOgcOHDDVJ47O18zu1xzVMPszXLRGy5YtTf/8FXfe6GrPOqtRr149l3v2YuevrvSroxpBQUEKCAhw+TVxNo777rvPVK85q9OwYUNTvebofNxsrzk7pzezT3JUw53PUEd1zH6OOqph9menaI3mzZub/tlxlHOYfW+cZSVmj28c1TH7/jiqYfa9KS77cfUzx1ENd45vHNUxe4xTtMatt95aIn1i9hjHUQ13j8clSQbctnfvXqNz585GgwYNjCNHjrhV45tvvjF69uxpZGVlGdnZ2Ub//v2Nzz//3FSNnTt3Gr169TJycnKMjIwMo1WrVsaBAwfcGs/27duNZs2aGc8++6zpdfPz84177rnHyMnJcet7G4Zh/Pnnn8Y999xjHD9+3MjOzjZ69+5tbN682e16hmEYv/76q9G2bVvjn3/+MbXe2bNnjTvvvNP4559/jJycHOOhhx4yvvnmG1M1vvnmG6Nz585GamqqkZubazz++OPGxo0bXVq3aH9lZGQYUVFRxp9//mnk5OQYjz76qEuvTdE6f//9t/H4448bt912m7Fq1Sq3xvLHH38Ybdu2NVJTU438/HxjzJgxxqJFi0zV+PPPP422bdsa6enpRm5urtGzZ09j69atpmoU+O2334yWLVsaDz/8sOltSU1NNVq0aGHs37/fMAzDGDVqlLF48WK3xmEYhnHixAmjdevWxsGDB02PxTAMIzIy0vj9998NwzCM4cOHG8uXLzdV48CBA0bLli2NxMREwzAMY/Lkycb777/vdH1H+6BPP/3UVK85248dOHDA6Nmzp9GoUSPjv//970VfD0d13n77bVO95qjGokWLTPVacftlV3vNWY3OnTvb3xtXOKqzevVqUz17sc8ZV3rWWQ0z/ers/TXTr4bh+DNv//79pnrW2eemmZ51VsNMvxZXw8y+sbjjAFd71lkNMz3r7L0x068XO6ZxpV+d1TC7f3VWx2zPGkbh4yt3P8+LHqOZ3ccWreHOZ3nRGu58ljvaFsMw91nurI7ZfWzRGu4cEzjbHsMwd0xQtIbZfnVUx2y/OjqWN9uvzs4HzPSroxru9Gtx5yau9puzGmZ6zVENs73mbBxm+8RRHbN94ux8zUyfOKth5nW92HmjmZ+/AuefN7qzjz2/xvfff+/WPrboOAzDvf2jo3Ngs6/J+TXc3SedX2fv3r2mes3R+fh//vMfU73m7JzezPvrqMbSpUtNv7+O6ixbtszU56iz7THzs3OxnMPVc4OiOcfatWtNn0M6ykrcOYcsWuedd94xfQ5ZtMbChQtNn0M6y37MnEM6quHOOWTROmvWrDF9DllcluVun2zcuNH0OWTRGu6cQ56PqVEuwfLlyzV58mSFhoa6XSMkJERjx46Vj4+PvL29VadOHR07dsxUjbvuuksfffSRvLy89M8//ygvL0/+/v6mx3Lq1CnNmjVLQ4cONb2uJP3xxx+SpEcffVRdunQp9BtgV33xxRe6//77Va1aNXl7e2vWrFmmrygv6vnnn9eoUaMUHBxsar28vDzl5+crIyNDubm5ys3Nla+vr6kaP/30k+655x4FBASoQoUKatmypb788kuX1i3aX/v27VPNmjVVo0YNeXl5KTo6WgkJCabrfPrpp2rdurU6duzo8nYUreHj46PJkycrICBAHh4eqlu37kX7tmiNGjVq6LPPPpO/v7/OnDmjtLQ0VapUyVQNScrOztakSZP09NNPu7Ut33zzjZo0aaL69etLkiZOnHjR364W97M/ffp09erVSzfeeKPpsUjn+i4tLU15eXnKysq6aM8VrfHLL7+oSZMm9q9btWpVbM852gcdOnTIVK8524+tXLlSgwcPdvln2FGd7OxsU73mqIaHh4epXnO2PWZ6zVmNY8eOafz48YqOjtabb76p/Px803WOHj1qqmcv9jnjSs86q2GmX529v2b6VXL8mXfmzBlTPevsc9NMzzqq4evra6pfnY3D7L7RWR0zPeuohp+fn6medVRj//79pvr1Ysc0rvSrsxpm96+O6uzbt890zxY9vnLn89zRMZrZfWzRGu58lhet4c5nuaNtMftZ7qhORkaG6X1s0RruHBMUd/zs6jGBoxpm+9VRHbPHBI6O5c32q7PzATP96qiGO/3qbCxm+s1RDbO95qiG2V5zti1m+8RRHbN94uh8zWazmeoTRzXq169v6nW92HmjmWPyAuefN5rdxxatcc0115juWUfjcGf/WLRGAbOvyfk13NknFa1z7NgxU73m6Hw8ICDAVK85O6c38/46qlGrVi3T76+jOnXq1DH1Oepse8z87Fws53ClTxzlHCtWrDD13jjLSsz+7Dmq8/XXX5t6fxzV+Pnnn029N862x8zPsKMan332menjG0d1pkyZYupz52JZlrt98uWXX5ranziqMXfuXNPH4+cjCL8EL730ksLDwy+pxs0336wmTZpIkg4dOqQNGzYoKirKdB1vb2+9+eab6tSpkyIiIlS1alXTNSZNmqRRo0Zd9ATGmTNnzigiIkJvvfWWPvjgAy1dulTffPONqRqHDx9WXl6ehg4dqq5du2rJkiWqXLmyW+ORpO3btyszM9NU6FsgICBAI0aMUMeOHRUVFaWwsDDdcccdpmo0aNBA27Zt06lTp5SVlaVNmzYpOTnZpXWL9teJEycUEhJi/zo0NFSJiYmm6wwePFjdu3c3sRUX1ggLC1OLFi0kSSkpKVq8eLFat25tqoZ0rm+XL1+uNm3aKCQkxL5TNlPj9ddf14MPPqgaNWq4tS2HDx+Wv7+/Ro0apa5du2rOnDkX/Rlw9rN/6NAhffvtt+rfv79bY5HOHSj269dPLVu21MmTJ9WhQwdTNerXr6/vv/9ex48fV15enhISEortOUf7IA8PD1O95mw/NmbMGLVp06bY8V+sTufOnU31mrOxmOk1ZzXM9JqjGi1btlTz5s318ssva/ny5dq9e7dWrlxpuo6Pj4+pni3uc8bVnnVWw0y/Oqpx//33m+rXAkU/89zZPzr63DTbs0VrXHfddab3jY7GYXbf6KyO2f1j0Rq5ubmme7ZojaSkJNP7WGfHNGb2sY5qmN2/Oqpz2223me7ZosdX7vSro2M0s/1atIY7n+WOxmG2Xx3VMNurjuokJyeb7teiNdw5JnB2/GymXx3VcKdfi9Yxe0zg6Fj+2LFjpvrV2fmAmX51VOPQoUOm+9XZWMz0m6Maa9euNdVrjmqY7TVn22K2TxzVOX36tKk+cXS+Zna/5qhGVlaWqde1uPNGs8fk0oXnjWb3sUVruLOPdTQOd/aPjs6Bzb4mRWu4s08qWsfsPsnR+bjZXnN2Tm/m/XVU48477zT9/jobi5nPUUc1QkJCTP3sFJdzuNonjnKO//3vf6beG2dZidmfPUd1vL29Tb0/zsZi5r1xVsPMz7CjGqmpqaaPbxzVOXv2rKnPneKyrEvpk+TkZFP7E0c1mjRp4tY5ZAGC8HLit99+06OPPqoxY8aY+q31+Z5++mnt2LFDx48f1/Lly02tu2LFClWvXl0RERFufW9Juv322zV9+nQFBgYqODhYDz30kLZs2WKqRl5ennbs2KGXX35Zy5Yt0759+7RmzRq3x7R06VK350v/+eeftWrVKn311VfaunWrPD09tXDhQlM1IiIiFBMTo379+mnw4MFq2rSpvL293RpPfn5+ofmoDMNwaQ7O0pSYmKhHHnlEDz74oMtzkxbVo0cP7dy5U9dee63mzp1rat1vvvlGx48f14MPPujW95bO9dy2bdv0r3/9S6tXr1ZGRoZ9vjSzli1bpj59+rg8h2dRSUlJmjFjhtavX69t27apcePGmjZtmqkatWrV0jPPPKMnnnhCffv2Vb169VzqufP3QTVq1HCr10piP+asjtlec1TDbK+dX+Po0aNu9dr5NWrXrq233npLoaGhstls6tevn8v7yPPruNuzjl4Tsz17fo2KFSu61a9FXxN3+lUq/Jl36NAht3r2Uj43i6thtl8d1XBn33h+nWXLlrnVs+fX2LFjh1s9e36N7Oxst/rV0Wtitl/Pr/HWW2+5vX89v86uXbtM9ayj4yuzn+clcYxWXA1X+7W4Gq72q6Ma7nyWO6pTo0YNU/3qqIbZ/Wtxr4mr/eqohjvHA47qmD0mcHQs/+abb5rq15I4Hyiuhpn9q6M6r732mql+c1Tjjz/+MNVrjmq8/vrrpnrNUY3169eb7hNn22OmTxydrx05csRUnziqsXv3blOva3Hnje4ck1/KeWNxNcweE5xfw91zHUfjMPuanF/jUs5Rzq9jdp/k6Hzc7DFfSZzTF1fDzPtbXB1XP0cd1fj8889N/ewUNw5X+8RRzpGbm2vqvSmprKS4Oq6+P8XVcPW9cVTjf//7n6mfYWfjMHs87qiOJFOfO8W9JpfSJ/n5+ab2J45q2Gw2t88hJYLwcmHPnj0aMGCAnnnmGXXr1s30+gcOHND+/fslSTabTe3atdMvv/xiqkZ8fLy++eYbde3aVW+++aY2bdqkl19+2VSN3bt3a8eOHfavDcNwfbL6/9+1116riIgIBQcHy8/PT23atNG+fftM1SiQnZ2tXbt26b777nNr/W3btikiIkLXXHONfHx8FBMTo2+//dZUjbS0NLVr106ffvqpYmNj5ePjY+q3+eerVq2akpKS7F8nJSVd0rQ8l+rAgQPq1auXunXrpmHDhple//jx49qzZ48kycvLS506dTLdt+vXr9dvv/2mrl27auLEifrxxx81cuRIUzWuvfZaNW7cWDVq1FCFChXUsWNHt3vuP//5j+6//3631pXO/QzVrVtXN9xwgzw9PdWjRw/TPZeVlaXbbrtNcXFxWrp0qapWrXrRniu6D3Kn1y51P1ZcHbO9VrSGO71WtIY7vVa0xi+//KKNGzfaH3d1H1m0jjs96+z9MdOzRWu4069Fa7jTr44+83bu3GmqZ0vic9NZDTP96qjG999/b7pfndUx07OOasTHx5vqWUc13nnnHVP9Wtx742q/OqqxYcMG0/3qqM6+fftM9ayj46sVK1aY6teSOEZzVsNMvzqqUXDzJsm1fnVUw539q6M6w4YNM9Wvjmq8//77pvq1uPfG1X51VKNnz56m+9XZWMz0q6Nj+bCwMFP9WhLnA85qmD0ecFTnlltuMdVvjmocPXrUVK85qlGlShVTveaoxs6dO033ibPX1kyfODpf2759u6k+cVRjzZo1pl7X4s4bzR6TX+p5o7MaZnu2aA139o/OtsXMa1K0hrvnKEXrmD3uc3Q+bvaYryTO6Z3VMPv+OqqzdetWU5+jzmqY+dkp7jVxtU8c5Rx33XWXqfempLISZ3XMvD+OalxzzTWm3htHNTp27GjqZ9hRjczMTNPnkI7q+Pv7m/rcKe79uZQ+SUpKMrU/cVSjatWqps8hC3F5NnE41apVK7dvlnns2DGjWbNmxvbt293+/ps3bzZiYmKMrKwsIysryxg4cKCxfv16t+utWrXKrZtlbtq0yXjggQeMzMxMIzU11YiOjjb+97//maqxd+9eo3379sbp06ftE+GbuRHH+fbt22f06tXLrXUNwzC2bt1qdOnSxUhPTzfy8/ON5557znjzzTdN1di/f7/RpUsXIycnxzhz5ozRvn17Y/fu3aZqFPRXZmamERkZaRw6dMjIzc01Bg0aZMTHx5uuU+DZZ591+WaZRWukpqYaUVFRxpo1a0ytf36NX375xWjVqpVx+vRpIz8/3xg7dqzx9ttvm6pxvv/+97+mbiBTUOPYsWNGy5YtjWPHjhmGce5GC7NmzTI9jn/++cdo2bKly9/fUZ3ff//diIqKMpKSkgzDMIz58+e7/LNYUCMlJcWIiooyUlNTjaysLKNPnz7GunXrnK7naB9kttcuth97+OGHXbrRiaM6ZnvNUQ2zvXax7XGl1xzV2L9/vxEZGWmcOnXKyM7ONh599FHj008/NV3HbM862x4zPeuohtl+dVTDbL8ahvPPPDM9e7HPTVd61lGNNWvWmOpXRzXeeust0/vGi22PKz3rqMacOXNM9ayz18RMvzrbFjP96qjGggULTO9fHdUpuBGUmZ4tUHB8dSmf546O0VzdxxatcSmf5QU1LuWz3NG2mP0sP7+OO/vYojUu5Zjg/O1x95igoMalHA+cX8fsPtbZsbyZfr3Y+YAr/eqoxq5du0z368XG4kq/Oaqxc+dOU73mbHvM9JqzbTHbJ47q7N6921SfODpf+/jjj031iaMaH3zwganX1dl5ozs/f8WdN7q6jy1aw519bHHjcHX/6KiG2dekaA1390lF65jdJzk6H3/ttddM9drFzuldeX8d1Zg2bZrp99dRneHDh5v6HHVUY9iwYaZ+dpy9Jmb6xFnOYea9uVhW4urPnqM6O3fuNPX+OKth5r252Pa48jPsbBxmj2+c1THzueNse0qiT8zsT4qr4c7xuGEYhrlfz6PELVy4UFlZWXrllVfsy3r16qXevXu7XCMqKkr79u3TAw88oAoVKqhdu3bq1KlTaQy3WK1atdL333+vBx54QPn5+erTp49uv/12UzUaN26swYMHq0+fPsrJyVGLFi3cnvbiyJEjqlatmlvrStI999yjn376STExMfL29lajRo00ZMgQUzXq16+vdu3aqUuXLsrLy9OAAQPsf5Zilq+vr1555RUNHz5cWVlZioqKcnlutpK2cuVKJScna9GiRVq0aJEk6b777tOIESNcrlG3bl0NGTJEvXr1UoUKFRQeHn7Jf47ojurVq+uFF17Q0KFDlZWVpVtuuUXPPvus6Tp//fXXJfWbJNWpU0cjRoxQ//79VaFCBdWsWVMvvPCCqRpVqlTRsGHD1LNnT+Xm5qpz586Kjo52+nxn+yAzvVYS+zFnde6//35TveZsLGZ6rSS2p7hx9O7dW7m5uWrXrp06d+7sVh0zPeusRoMGDVzuWWc1zPSrsxpm+lVy/pkXHBzscs+WxOemoxqnTp0y1a+Oajz55JMKDg42tW8sre156qmnVKVKFZd71lGNBx54QEFBQS73q7Nt2bdvn8v96qjG448/rtDQUFP7V0d1unTpoqysLFM9W1R5+Ty30me5dO6Yy+w+tqjyckxQEscDkvljAmfH8mb6tSTOBxzV+PHHH033a2mN5a677jLVa45qhIeHm+o1Z9titk8c1WnatKmpPnF0vta7d2/Vrl3b5T5xVKNfv37y8vJy+XV1dt74448/mv75u9TzRkc13NnHlsY4JPP7pKI13N0nFa1jdp/k6Hx8+PDhatGihcu9VhLn9I5qVKlSxfT766jOa6+9pjVr1rj8Oeqoxuuvv66VK1e6/LPj7DX55ZdfXO4TZzmHmc+LkspKHNX56aefTL0/jmoU7OtdfW9KYnuKG4eZ4xtndcx87jjbHjPH5M5qmNmfOKth9hzyfB6GYRguPxsAAAAAAAAAgCsMc4QDAAAAAAAAACyNIBwAAAAAAAAAYGkE4QAAAAAAAAAASyMIBwAAAAAAAABYGkE4AAAAAJcZhlHWQwAAAABMIwgHAAAArkD9+vVTvXr17P/deuutatasmQYPHqwdO3aU+Pf7+++/NWjQIJ08ebLEawMAAAClzausBwAAAADAPXfccYeeffZZSVJubq5OnDihpUuXauDAgZoxY4Y6d+5cYt9r+/bt2rZtW4nVAwAAAC4ngnAAAADgClWpUiU1adKk0LIOHTrokUce0fPPP6+WLVuqcuXKZTM4AAAAoBxhahQAAADAQjw9PfXkk08qNTVVCQkJkqR//vlHY8aM0V133aXbb79dQ4cO1ZEjR+zrzJkzR507d9batWvVqlUr3X777Xr88cf1119/SZJWr16tcePGSZIiIiI0Z86cy79hAAAAwCUgCAcAAAAs5q677lKFChX03XffKTMzU/3799eePXs0ceJETZ8+XcnJyXr44Yd1+vRp+zpHjx7V9OnT9dRTT2natGn6448/NGDAAGVnZ+vee+/VE088IUl677331L1797LaNAAAAMAtTI0CAAAAWEyFChUUFBSk5ORkxcXF6eDBg/r0009Vp04dSeeu6m7VqpViY2P11FNPSZLOnj2rN954Q5GRkZKk2rVrq0uXLvrss8/UrVs33XDDDZKkBg0aKDg4uGw2DAAAAHATV4QDAAAAFrZz507VrFlTNWvWVG5urnJzc+Xn56emTZvqv//9r/15gYGB9hBckurWrasaNWpo9+7dZTFsAAAAoERxRTgAAABgMVlZWTp9+rSqVq2qY8eO6Y8//lCDBg0ueN6NN95o/3dISMgFjwcHBxeaPgUAAAC4UhGEAwAAABaze/du5ebmqmnTpkpNTVX9+vU1derUC57n4+Nj//epU6cuePyff/5RvXr1SnOoAAAAwGVBEA4AAABYiGEYeueddxQUFKR27drpzJkz+uabbxQWFmaf29swDP373/9W3bp17UF3SkqK9u3bp9tuu02S9Msvv+jIkSNq3ry5JMnTk1kVAQAAcOUiCAcAAACuUGfOnNHevXslSbm5uUpMTNSKFSu0a9cuzZgxQwEBAXrooYcUGxurRx99VEOGDFFQUJCWLVumzz//XF26dLHX8vDw0MiRI/Xvf/9bkjRr1izdcsstateunSSpUqVKkqQvvvhCLVq00PXXX395NxYAAAC4BAThAAAAwBXqf//7n3r27ClJ8vb2VkhIiBo1aqRPPvlEjRs3liQFBARo8eLFmj59up5//nllZ2fr5ptv1rx58xQVFWWvZbPZ9NRTT+nll19WZmamWrVqpfHjx8vL69wpQ0REhO655x69+OKL6tGjhyZNmnT5NxgAAABwk4dhGEZZDwIAAABA2ZkzZ47ef/99fffdd2U9FAAAAKBUMNEfAAAAAAAAAMDSCMIBAAAAAAAAAJbG1CgAAAAAAAAAAEvjinAAAAAAAAAAgKURhAMAAAAAAAAALI0gHAAAAAAAAABgaQThAAAAAAAAAABLIwgHAAAAAAAAAFja/wfD6BTJ+Zi6kQAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 1800x576 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "weekly_sales = clean_data1['Weekly_Sales'].groupby(clean_data1['Dept']).mean()\n",
-                "plt.figure(figsize=(25,8))\n",
-                "sns.barplot(weekly_sales.index, weekly_sales.values, palette='dark')\n",
-                "plt.grid()\n",
-                "plt.title('Durchschnittlicher Umsatz pro Abteilung', fontsize=18)\n",
-                "plt.ylabel('Sales', fontsize=16)\n",
-                "plt.xlabel('Dept', fontsize=16)\n",
-                "plt.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 45,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "C:\\Users\\eebal\\Anaconda3\\lib\\site-packages\\seaborn\\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
-                        "  warnings.warn(msg, FutureWarning)\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:xlabel='Weekly_Sales', ylabel='Density'>"
-                        ]
-                    },
-                    "execution_count": 45,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEUCAYAAADeJcogAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAApRElEQVR4nO3de3hU1b0+8HfvueVOSEwg3AoKBRTlIoJBmhjRRAgQwkVABXywYs+jougRIgJaLLRNVYRy7K+HKlTg2IolXFR85AAeq0SItOKlKSAQICQkIReSTJK57L1+f0xmTEgmmVx2Lnvez/P4wOxk9l4LMO9819prbUkIIUBERNQIubMbQEREXRdDgoiIvGJIEBGRVwwJIiLyiiFBREReMSSIiMirLh0SlZWVmDp1KnJzc1v1/suXL2P06NFISUlBSkoKHn300XZuIRGRvhk7uwHenDx5EqtWrUJOTk6rz/Hdd99h2rRpWLt2bfs1jIjIj3TZSuK9997DSy+9hOjoaM+xPXv2IDU1FSkpKVi5ciVsNluT5/j2229x+vRppKSkYOHChTh16pTWzSYi0pUuGxLr1q3D2LFjPa/PnDmD9957D3/5y1+wd+9eREZG4q233mryHBaLBdOnT0dGRgYeffRRPPHEE7Db7Vo3nYhIN7rscNP1jh07hgsXLuCBBx4AADgcDtx88824cuWK51hd+/fvx1NPPeV5HR8fj9deew3nzp3DsGHDOqzdRETdWbcJCUVRMHnyZKxatQoAYLVaoSgKwsLC8NlnnzX6nu3bt2Pq1Kno2bMnAEAIAaOx23SZiKjTddnhpuuNHz8eBw8eRHFxMYQQePnll/HnP/+5yfdkZWXh/fffBwAcP34cqqrixhtv7IjmEhHpQrf5WD1s2DA8+eSTWLRoEVRVxfDhw7FkyZIm3/Piiy8iLS0Ne/fuhcViwWuvvQZZ7ja5SETU6SRuFU5ERN7wYzUREXnFkCAiIq8YEkRE5FWXnbguLbVCVds+XRIZGYLi4sp2aFH34699Z7/9j7/2vW6/ZVlCz57B7X6NLhsSqiraJSTc5/JX/tp39tv/+Gvfte63piGxYMEClJSUeBawrV27FiNHjtTykkRE1I40CwkhBHJycnDkyBGuciYi6qY0m7g+d+4cAGDx4sWYPn06duzYodWliIhII5p9xC8vL0dsbCxWr14Nh8OBhQsXYtCgQbjrrru0uiQREbWzDltxvW3bNuTl5WHlypUdcTkiImoHmlUSX331FRwOB2JjYwG0fAfW4uLKdpm1j4oKRVFRRZvP0x35a9/Zb//jr32v229ZlhAZGdLu19BsTqKiogLp6emw2WyorKxERkYG7rvvPq0uR0REGtCskkhISMDJkycxY8YMqKqKBx98EKNHj9bqcl5VVNmRV2xFYWk1hvQP9xy3mIwwcr05EVGTNL039ZlnnsEzzzyj5SWaVV3jxLv/ewanLpZi/r1DIEkSAOCO4b1gtPDWXCKipvjFZ2mHU4VTEVD8dEUmEVFr+UVIKKoKALA71E5uCRFR9+InIeGqIOwOpZNbQkTUvfhFSLhvpbU7GRJERC3hFyGhKO5KgsNNREQt4R8hUVtJ2DjcRETUIn4REk6lduLayUqCiKgl/CIkOHFNRNQ6fhESnolrzkkQEbWIX4SEwrubiIhaxU9CgovpiIhawz9CQuGcBBFRa/hHSHiGm1hJEBG1hO5DQgjBu5uIiFpJ9yHhXiMBcE6CiKildB8SjtohJpNRhkNR2+WRqERE/sJvQiKo9gFDnJcgIvKd34REgMUAgPMSREQt4TchEchKgoioxXQfEu5V1p7hJlYSREQ+031IsJIgImo93YeE8/qQYCVBROQz3YfEj5UEJ66JiFrKb0LCYnKFhEPhOgkiIl/pPyQUV+VgkGUYDRIUhXMSRES+0n9I1FYSBoMEgyzDyUqCiMhnug8J935NBlliJUFE1EK6DwmHUqeSMMhwcu8mIiKf6T4k3LfAck6CiKjldB8SjtoV17IEzkkQEbWQH4SECoMsQZJq5yRUVhJERL7yj5AwSADgmpNgJUFE5DPdh4S9tpIAAKMs1XtSHRERNU3zkPjtb3+LtLQ0rS/jlWu4ydVNg0HyPO+aiIiap2lIZGZmIiMjQ8tLNMvhVDzDTUaDzEqCiKgFNAuJsrIybNiwAb/4xS+0uoRPnHWHmwwSFM5JEBH5TLOQWLNmDZYtW4awsDCtLuETh/JjSBhkGYoqIASDgojIF0YtTrpr1y7ExMQgNjYWu3fvbtU5IiND2qUtDqcKs8mI0JAABAeaAQCBgRYEBVkQFRHULtfoyqKiQju7CZ2C/fY//tp3rfutSUh89NFHKCoqQkpKCq5du4aqqiqsX78eK1eu9PkcxcWVUNthktm1wZ9ARWUNnLUL68rKq1BVZUORou9nS0RFhaKoqKKzm9Hh2G//4699r9tvWZba7cN1XZqExNatWz2/3717N44fP96igGhPdqcCY505CQCclyAi8pHu10nUnbg2GFzd5YI6IiLfaFJJ1DVz5kzMnDlT68t45Vpx7QoHdyXh5NYcREQ+0X0l4XDWv7sJ4HATEZGv/CokPJUEF9QREfnEr0LCPezErTmIiHyj65BwKipUIRrOSbCSICLyia5DwuH88fnWAGDknAQRUYvoOiTcFYPsGW7i3U1ERC2h65Bwr9iWpR93gQVYSRAR+UrXIaF4QsL12j3sxDkJIiLf6Dok3JWEVFtJyLIEWWIlQUTkK12HhFK7Jbhcp5cGg8w5CSIiH+k6JK6vJADXbbDcu4mIyDe6DgnluolroPbBQ5yTICLyia5D4sdK4sdjRoPEFddERD7SdUg0VkkYDTLvbiIi8pGuQ6KxOQmDLPHuJiIiH+k6JJRGh5tkTlwTEflI1yFx/YprwLU1B2+BJSLyja5Dwr1OQqrTS6NB5nATEZGPdB0SjVYSssSJayIiH+k6JJRGF9OxkiAi8pWuQ0K9boM/gHMSREQt4RchcX0lIQR3giUi8oWuQ+L6rcKBHx9hancondEkIqJuRech4aoW6lYSptoHD9kYEkREzdJ5SDSyLYexNiTsHG4iImqOrkPCMydRp5fuSqLG4eyMJhERdSt+ERKNVxIcbiIiao6uQ6KxdRLuSsLu4HATEVFzdB0Sja2TMHLimojIZ7oOCc/eTXUrCaPr9xxuIiJqnq5DwlNJXLfBH8BKgojIF7oOCW97NwEMCSIiX+g6JDy3wNY5JssSDLLE4SYiIh9oGhIbN27ElClTkJycjK1bt2p5qUYpqoBBlupVEoCrmmAlQUTUPKNWJz5+/Di+/PJL7Nu3D06nE1OmTEF8fDxuvPFGrS7ZgKoKyLLU4LjJyJAgIvKFZpXEuHHj8M4778BoNKK4uBiKoiAoKEiryzVK8RISRoPEkCAi8oGmw00mkwmbNm1CcnIyYmNj0atXLy0v14BaO9x0PaNBhp1zEkREzZKEEM0+pu2pp57C/PnzMWHChFZdpLq6Gr/4xS8wZcoUzJ07t1XnaI0//O0kPvv6MhZNubne8b2fnYXFZMAbz97dYW0hIuqOfJqTuO+++/Dmm2/il7/8JR544AHMmjUL4eHhTb7n7NmzsNvtGD58OAIDA5GYmIhTp0753LDi4krP3UmtZa2ywyBJqKisqXdcAlBV40BRUUWbzt/VRUWF6r6PjWG//Y+/9r1uv2VZQmRkSLtfw6fhpunTp2PHjh148803UVxcjNmzZ+P555/HN9984/U9ubm5WLVqFex2O+x2Ow4dOoTbb7+93RruC29zEpy4JiLyjc93N6mqigsXLiAnJweKoiAyMhIvv/wy7r77bixdurTB98fHx+Obb77BjBkzYDAYkJiYiOTk5HZtfPNtbmJOghv8ERE1y6eQ2LBhA3bv3o3+/fvjwQcfxMaNG2EymVBVVYWEhIRGQwJwzWU89dRT7drglvB+CywX0xER+cKnkCgpKcGWLVswbNiweseDgoLw2muvadKw9uBaTNdwRM1okOFQVCiq2ujXiYjIxaefkIqiNAgId/UwceLE9m9VO/E6J2HgI0yJiHzRZCXx0ksvoaCgACdOnEBJSYnnuNPpxKVLlzRvXFt5G27yPJ3OoSAoQLNF50RE3V6TPyFnz56NM2fO4NSpU0hKSvIcNxgMGDVqlNZtazOliYlrAKixOwFYOrhVRETdR5Mhceutt+LWW2/FXXfd1eGrpduDqqpeb4EFuF04EVFzmgyJp59+Ghs3bsTPf/7zRr++f/9+TRrVXrxXEnw6HRGRL5oMicceewwAsHr16g5pTHtTVQGDoeHcvMkz3MSQICJqSpN3N40YMQKAa0fXmJgYjBs3DlVVVcjKysLw4cM7pIFtoYjmJ66JiMg7n26BXbNmDbZs2YKzZ89i1apVyM3NxcqVK7VuW5s1teIaYCVBRNQcn0Liu+++w8svv4yDBw8iNTUVv/71r3H58mWt29Zmza2TYEgQETXNp5AQQkCWZXzxxRe48847AQA1NTXNvKvzqd5WXLuHm+zOjm4SEVG34lNIDBgwAI899hhyc3Mxbtw4PPfccxg6dKjWbWszb5WEQZZgNEisJIiImuHTcuNf//rXOHjwIG6//XaYTCaMHTsWM2bM0LhpbedtTgIAAsxGVNlYSRARNcWnSiIoKAhjx45FeXk5vv/+e9x22204d+6c1m1rM2+VBAAEBxpRWe3o4BYREXUvPlUSGzduxNtvv43IyEjPMUmScOjQIc0a1h5UISBLXkIiwAQrQ4KIqEk+hcTevXvxySefdLutObytuAaA4EATSsu7/uQ7EVFn8mm4KSYmptsFBOB9F1gACA7gcBMRUXN8qiRiY2ORnp6OSZMmISAgwHP8lltu0axh7aGpievgABMqq50QQkDyMiRFROTvfAqJ3bt3AwA+/vhjz7HuMCfR9MS1CU5Fhd2hwmI2dHDLiIi6B59C4vDhw1q3QxNNVxKurldWOxgSRERe+DQnYbVasXbtWixatAhlZWVYs2YNrFar1m1rs+YqCQCclyAiaoJPIfGrX/0KoaGhKC4uhsViQWVlJdasWaN129rMp0qihiFBROSNTyGRnZ2NZcuWwWg0IjAwEK+++iqys7O1blubqKqAAJq4u6m2kqhiSBAReeNTSMjXbZKnKEqDY12NogoAaHSDP4DDTUREvvBp4vqOO+7A7373O9TU1ODvf/87duzYgfHjx2vdtjZRa0PCWyURVDvcxFXXRETe+VQO/Od//ieCgoIQGhqKN954A8OGDcPy5cu1blubKM2EhNEgI8BsYCVBRNSEZiuJgwcP4q233sKpU6cQEBCAoUOHYsyYMbBYLB3RvlZThSskjF5CAgBCAk2cuCYiakKTIXHgwAFs2LABS5cuxbBhwyBJEr799lusW7cONpsNiYmJHdXOFqtfSYhGvyck0MRKgoioCU2GxDvvvINt27ahT58+nmM33XQTRo4ciZUrV3bpkKg3J6F6DwnOSRARedfknITVaq0XEG6DBg2CzWbTrFHtQVFVAPC6TgJgJUFE1JwmQ8Jg8L5dhRCNfzrvKpq7uwlw3QZbWc2n0xERedO1Fzu0wY/rJJquJKptTk/VQURE9TU5J3Hq1CmMGTOmwXEhBOx2u2aNag8/VhLeczAsyLWgrtzqQM/Qrn23FhFRZ2gyJA4ePNimk2/evBkHDhwAAMTHx3fo2gpPJdHEsyKiwgMBAEVl1QwJIqJGNBkSffv2bfWJjx49is8//xwZGRmQJAk///nPcfDgQdx3332tPmdLuNdJNDUnEd3TFRIFpVX4af/wjmgWEVG34tO2HK0RFRWFtLQ0mM1mAK5bZ/Py8rS6XAO+zElE9giAQZZQWFrdUc0iIupWNAuJIUOGeH6fk5ODAwcO4N1339Xqcg34cneTQZYR2SOAIUFE5IVmIeF25swZPP7441i+fDkGDhzo8/siI0PadN0r5a51HAZZQmhIQIOvBwVZEBURhH69QlFSaUNUVGibrtdV6bVfzWG//Y+/9l3rfmsaEidOnMDSpUuxcuVKJCcnt+i9xcWVnmqgNUpKXE/Ok2UJFZU1Db5eVWVDkaKgZ5AZ2eeLUVhYDqmJSe7uKCoqFEVFFZ3djA7Hfvsff+173X7LstTmD9eN0Swk8vPz8cQTT2DDhg2IjY3V6jJe+TLcBLgmr6ttCiqqHQgLMndE04iIug3NQuKtt96CzWbDb37zG8+xefPmYf78+Vpdsp7mJq4lWYLV5kRYiCsYLhZUYlCfMFhMRhh1u8SQiKhlNAuJVatWYdWqVVqdvlnNVRI2h4KTp4twrdK1KPDYv67g6rVq3DG8F4wWzadqiIi6Bd1+ZvblFlgACAkyQgJQwWddExE1oPuQaG5OwiDLCA404Vpl197VloioM+g2JFQfKwkAiAizoKSCIUFEdD3dhoTiwwZ/bhFhAaiocsDuULRuFhFRt6LbkHDv3eRrJQEApawmiIjq0W1I+DpxDQCRYa4V2cXlDRfdERH5M92GhK+L6QAg0GJEoMWAknJWEkREdek2JFpSSQBARGgASlhJEBHVo9uQaEklAbjmJa5Z7bA7OXlNROSm25BwP7fa10qiZ1gAhAAKiqu0bBYRUbei25BoaSXRI9i1h1MBny1BROSh25DwrJPwcfvvsGATJABXSlhJEBG56TYkVCEgS5LPz4gwyDJCgkwcbiIiqkO3IaGowuehJrcewWYUlDIkiIjcdBsSqip8nrR26xFiQWFptWfSm4jI3+k2JFpbSSiqQFEZ10sQEQE6DonWVRKuO5zyi61aNImIqNvRdUi0ppIAgHxOXhMRAdBxSDiVllcSZpMBYcFm5F9lJUFEBOg4JByKCpOx5d3rHRGEfK6VICICoOOQcDpbFxK9IoKQX2yFqH0eBRGRP9NtSDgUFUZD6yqJapuCskq7Bq0iIupe9BsSra4kAgEAV3iHExGRjkNCUWFqZSUBAHm8w4mISMch0cpKIizYjECLgWsliIig45BwtrKSkCQJMZHBXCtBRAQdh4TDqcLYikoCAGJq73AiIvJ3ug6J1lQSABBzQzDKKu2oqnG2c6uIiLoX3YaEU2l9JdEnMhgAkMeV10Tk53QbEm2pJH7SOxQAcP5KeXs2iYio29FtSDhbuS0HAPQMtSA8xIzz+QwJIvJvugwJVQg4FQGjoWUb/NU1KCYM5/Mr2rFVRETdjy5Dwul0PVmuNZWEJEuw2pzoGxWCgpIqFF2rgdXmhJMPqyMiP6TPkFBqQ6IVcxI2h4Ks7ALU2F13Nv3vVxeRlV0Am4N3OhGR/9E0JCorKzF16lTk5uZqeZkGHG2oJNwiwwIAAFev8VGmROS/NAuJkydPYv78+cjJydHqEl45aiuJ1t4CCwAWswGhQSZc5fOuiciPaRYS7733Hl566SVER0drdQmvPJVEK2+BdYuJdK28VlROSBCRfzJqdeJ169a16f2RkSGtfm+lw/VDPTLCtSguNCSgwfeYTMZmjw8ZEIHTl67hWpUTQUEWRNXuENudREWFdnYTOgX77X/8te9a91uzkGir4uJKqGrrng5XWFQJAKiy2gAAFZUNh4wcDmezx8ODjDAaJJy+UIKqKhuKFKVV7eksUVGhKCryv9t42W//4699r9tvWZba9OHaG13e3eRwun6Yt2XiGgAMBhl9bgjGpUIrVD7OlIj8kD5DQmn73U1u/aNDUG1z4sIV//uUQkSky5BwOl2f+lvzjOvr9Y8OgdEgIfO7K20+FxFRd6N5SBw+fBj9+vXT+jL1tGclYTYZMDAmDCf+XYiqGkebz0dE1J3otJJon1tg3Yb2D4fdqSLz+4J2OR8RUXehy5Boz0oCACJ7BGBArxB8knXRswaDiMgf6DMknG1fcX29qXcNRFFZDQ5+dandzklE1NXpOiTaa7gJAIb/JAKjBt+A/V/koLTC1m7nJSLqyvQZEu083OQ2b9JgqELgnY//DcF1E0TkB3QZEu6Ja4Pc+ocOXU+SJQQHmTHtroE4ebYYR/55mc+ZICLd67LbcrSFo/bRpZIkob0+79scCk6eLkJwgBHRPQOx68hZKKrAhFtjYLTo8o+RiEiflYTDqbbrfERdkiRh7LAo2BwKsi+UanINIqKuQpch4VTUdr2z6Xo39AhE/+gQfH++hAvsiEjXdBkSWlYSbiMHR8LhVPF/X+dpeh0ios6ky5DQupIAgIiwAPSNCsZnX+fB7uheW4gTEflKlyHREZUEANwyMAKV1Q4c/Z6b/xGRPuk3JDSuJACgV4RrbuLjYxf5iFMi0iVdhoRTUWEytN8aCW8kSULS+AEoLK3GUW4lTkQ6pMuQ6KhKAgBuuykSg2JCse/zHG7+R0S6o8+QUNR2eeCQLyRJQmrcjSgur8H/nuDmf0SkL/oMiQ6sJCRZwsCYMNx6UyQyPjuHHy5f43YdRKQbDIk2sjkUfPXvQgwbEA6DLOMPe77D0W/zYXM4O+T6RERa0mVIODtwuMkt0GLEXbf2RlmFDZ+dzIOicpdYIur+dBkSHVlJ1NUvOgTjbu6Fy0VWbP0wm4vsiKjb02VIOBXR4ZWE29AB4bhjWDS++eEq0t/9JwpLqzqlHURE7UGXIdFZlYTb8IE9sXjqzcgvtmLN28ex+7NzKCmv6bT2EBG1lu4ehKCoKlQhOjUkAGD00Cj8pHco/vbpWXx4NAcfZebg1ptuQHLsQAzuG9apbSMi8pXuQsLpdE0Yd8TeTU2xORT8kFuGkYMjcWOfUJy+dA3ZF0rwzQ9XET+qD+YkDEYgH1ZERF2c7n5KuZ9vrfUusC0RGmTG7UOjcOtNEbhSXI3/+/oy/pVTiiXTb8GNfVhVEFHX1XV+krYT99YYnV1JNMZsNGD2PYPx9JyRcCgq1u84gd1/P4dSq42L74ioS9JdJVFjdy1is5gMndySxtkcCkrKa5A0rj8yvy/AB1/k4JPjF3H70Gj8tF8PDOwdhr5RwZ12dxYRUV26C4krxa5bTqMjAju5JU0zmwyIGxmDgv7hOHWxFCfPXEVm7U6ygRYjRg6OxJghURhxYwQCzLr7ayKibkJ3P33yiq0AgD6RwZ3ckuZJkoTekUHoHRmEO27uhaLSalwsqMC/L5Ti27PF+PL7AlhMBky4tTcSRvdFv6iQzm4yEfkZ3YXE5atWRIRZut2dQ3anipz8cgDAT/uHY3DfHigsrUaZ1Y6/n8zHkX9cxk/7h+OeMX0x5qdRHI4iog7RvX6S+iDvqhV9buj6VURzZNlVZUyPuxGpcTfiy++v4POT+fh/e79HeIgZ944dgITRfbpdGBJR96KrnzCqKpBfXIVhA3p2dlPajc2hIDunBD2CzZgSOwCXi6z4PqcE73/6Az7MPI87b+mNO2/uhYG9wzp9ASER6Y+uQuLqtWo4nCr66qCSaIwkSegXHYJ+0SHoFRmMIycu4fPaoSiDLCEqPBBR4YGI7hmIAdEhGHdbH5iEgCxr/yhXItInTUNi//79+MMf/gCn04lFixbhoYce0vJyuHy1dtJapyFRV+/IINw8MAKD+/ZAfnEVrl6rQUWVHSUVNTh9qQw2h4KtB/4No0FCRFgAwoLNCAsyIyzIhNAgMyJ7BCAyLAA39AhARFgAqxAiapRmIVFQUIANGzZg9+7dMJvNmDdvHsaPH4/BgwdrdUnk+VFIuJlNBvykdyh+0jsUADDyp1H4+lQhrlntqKh2oqDYikCLERVVDuQXW3Em14HKagfEdY+7CAs2IzzEjPAQC0IDTTCbDDCbZJiNrl9lWYKEHysSWQIMBtdxQ93/DDIMsgRZlmA0SJ73e341GWAxGmAyyZAlVjhEXZ1mIXH06FHceeedCA8PBwAkJSXh448/xpNPPunT+1szROJQBIb2D0dwoMlzTMgSggJMDb7XaJB1ezw40IzgQDNCgi2otNowfFAEss+XeL5HVQVq7E7E3BCC0gobyittuGa1oaLKgYoqB4qu1cDuVOFQFDgdKrR6fJLRKMNskGEyGWA0SJ5wMUiu8JENEgwSYJAlSLIEo+wKlh+DyTUEZzDIMEiu7zHIEoICTaiucUCCBE8OSfV+8RyXpNrok4Cm/8W15as/Xq9Vmnmz+6tBQWZUVdkb/6LX9+ojqIODi2G12pv/xi4uJNCI0UOiWvTzz/29Wg0rS0Jc/5myffzxj39EVVUVli1bBgDYtWsXvvnmG7zyyitaXI6IiDSg2UC0qqqQ6nwCEkLUe01ERF2fZiHRu3dvFBUVeV4XFRUhOjpaq8sREZEGNAuJCRMmIDMzEyUlJaiursYnn3yCuLg4rS5HREQa0GziulevXli2bBkWLlwIh8OB2bNn47bbbtPqckREpAHNJq6JiKj74woqIiLyiiFBREReMSSIiMgrhgQREXml65DYv38/pkyZgsTEROzcubOzm9NilZWVmDp1KnJzcwG4tjqZNm0aEhMTsWHDBs/3ZWdnY+bMmUhKSsKLL74Ip9P1nO+8vDw89NBDuP/++/Ef//EfsFpde1uVl5djyZIlmDx5Mh566CHPeha73Y7nn38ekydPRmpqKs6ePdvBPQY2b96M5ORkJCcnIz09HYB/9BsANm7ciClTpiA5ORlbt24F4D99B4Df/va3SEtLA+Af/V6wYAGSk5ORkpKClJQUnDx5smv2W+jUlStXREJCgigtLRVWq1VMmzZNnDlzprOb5bOvv/5aTJ06Vdxyyy3i0qVLorq6WsTHx4uLFy8Kh8MhFi9eLD799FMhhBDJycnin//8pxBCiBdeeEHs3LlTCCHEkiVLxAcffCCEEGLz5s0iPT1dCCHEL3/5S/HHP/5RCCFERkaGePrpp4UQQvzpT38Sq1evFkIIcfz4cTFnzpyO6q4QQogvvvhCzJ07V9hsNmG328XChQvF/v37dd9vIYQ4duyYmDdvnnA4HKK6ulokJCSI7Oxsv+i7EEIcPXpUjB8/XqxYscIv/q2rqiomTpwoHA6H51hX7bduQ2L37t3ihRde8LzevHmz+P3vf9+JLWqZlStXiqysLJGQkCAuXbokjh07JhYuXOj5ekZGhkhLSxO5ubli0qRJnuNZWVliwYIFwm63i9GjR3v+Eebl5Yl77rlHCCFEQkKCyMvLE0II4XA4xOjRo4XdbhcPP/ywyMrK8pxr0qRJ4vLlyx3RXSGEEKdPn/b8jyCE6x/673//e933281utwshhMjNzRVxcXF+8XcuhBClpaVizpw5YuvWrWLFihV+0e8ffvhBTJw4USxYsEBMmzZNbN++vcv2W7fDTYWFhYiKivK8jo6ORkFBQSe2qGXWrVuHsWPHel5768/1x6OiolBQUIDS0lKEhITAaDTWO379uYxGI0JCQlBSUtLoua5cuaJpP+saMmQIRo0aBQDIycnBgQMHIEmS7vvtZjKZsGnTJiQnJyM2NtYv/s4BYM2aNVi2bBnCwsIatBXQZ7/Ly8sRGxuL//qv/8K2bdvwl7/8BXl5eV2y37oNCb1tMOitP96ON9Zfb/0XQkCW5QbvcR/vaGfOnMHixYuxfPly9O/f32/6DQBLly5FZmYm8vPzkZOTo/u+79q1CzExMYiNjfUc84d/66NHj0Z6ejpCQ0MRERGB2bNnY9OmTV2y37oNCb1tMOitP9cfv3r1KqKjoxEREYGKigooilLv+wHXJ5SrV68CAJxOJ6xWK8LDw9GrVy8UFhY2OFdHOnHiBB555BE899xzSE1N9Zt+nz17FtnZ2QCAwMBAJCYm4tixY7rv+0cffYQvvvgCKSkp2LRpEw4fPoxdu3bpvt9fffUVMjMzPa+FEOjbt2+X7LduQ0JvGwyOHDkS58+fx4ULF6AoCj744APExcWhb9++sFgsOHHiBABg7969iIuLg8lkwtixY/HRRx8BAPbs2ePpf3x8PPbs2QPA9T/p2LFjYTKZEB8fj7179wJw/SO2WCzo06dPh/UxPz8fTzzxBF599VUkJyf7Tb8BIDc3F6tWrYLdbofdbsehQ4cwb9483fd969at+OCDD7B3714sXboU99xzD/70pz/pvt8VFRVIT0+HzWZDZWUlMjIy8Oyzz3bNfvs809IN7du3TyQnJ4vExETx3//9353dnFZxT1wL4boDZNq0aSIxMVGsW7dOqKoqhBAiOztbzJo1SyQlJYlnn31W2Gw2IYRrAvThhx8WkydPFosXLxZlZWVCCNdE4eOPPy6mTJki5s6d6zl/TU2NWL58uZgyZYqYMWOG+O677zq0r6+88ooYNWqUmD59uue///mf/9F9v902bdokJk+eLKZOnSo2bdokhND/33ldf/vb38SKFSuEEP7R7w0bNoj7779fJCYmim3btnXZfnODPyIi8kq3w01ERNR2DAkiIvKKIUFERF4xJIiIyCuGBBERecWQoC7p0UcfxZ///GfP6/Pnz2Po0KF4/fXXPceKi4sxYsQIVFRUtPj8aWlpeOutt3w+7qtPP/0Uc+fOxfTp05GcnIynn37ap+0eFixYgI8//rjV1yXSCkOCuqS4uDgcO3bM8/rIkSNISEjAoUOHPMe+/PJLjBkzBqGhoZ3RxAYKCgqwYsUKvP7669i3bx8+/PBDDBs2DM8880xnN42o1RgS1CXFxcXhq6++gqqqAFwhsWTJElitVly8eBEAkJmZibvvvhv/+Mc/8OCDDyI1NRWzZs3CkSNHPOfZtWsXZs6ciRkzZuCRRx5pdP/89evXY9GiRZ69+AFg3759mDdvnud1Xl4eJk6cCLvd7rXNpaWlcDgcqKqq8hxbtGgRHn/8cQBAVVUVli9fjrlz5yIpKQkzZ87EuXPnGpzHW3+KioqwePFipKamIjU1FW+88YYvf5REbWLs7AYQNWbQoEEICwvDqVOn0KdPH5w/fx6jRo1CXFwcDh8+jEceeQSZmZmYNWuWZ4ioX79+KCgowAMPPIChQ4ciNzcXe/bswc6dOxEYGIjPP/8cTz75JA4cOADAtV/O2rVrUVhYiC1btsBsNnuuf//99+M3v/kNzpw5gyFDhmDXrl1ITU2t9z3XGzZsGB544AGkpqZiwIABGDNmDGJjY5GUlAQA+OyzzxAWFoa//vWvAFy7n+7cuROrV6/2nOPatWt44YUXGu1PRkYG+vXrh7fffhtVVVV48cUXUVFR0WUqKdInhgR1We4hp8jISEyYMAGyLCMhIQE7d+7EvffeC0mSUF5ejqKiIjzxxBOe90mShFOnTiErKwsXLlyoVxGUl5ejrKwMALBt2zYUFxdjz549DX74m81mzJkzB7t27cKKFSuQkZGB7du3N9vmtLQ0PP744zh+/DiysrKQnp6O7du3Y+fOnbj//vvRv39/bN++HRcuXMDx48cxevToeu//+uuvvfbnZz/7GZYsWYL8/HxMmDABzz33HAOCNMeQoC4rLi4O77//PiwWCyZNmgQAiI2NxapVqzxDTYqi4KabbsKuXbs87ysoKEBERASOHTuGlJQUPP/88wBcW1AXFhaiR48eAIA77rgDY8aMwQsvvIC//vWvMJlM9a4/b948zJ49G+PGjcOQIUPQv3//Jtt76NAhlJWVYdasWUhKSkJSUhKWLVuG+Ph4/Otf/8K3336L9957Dw899BCmTZuG8PBwz6Np3Zrqj8lkwqFDh5CZmYkvv/wSc+bMwZYtWzBixIjW/yETNYNzEtRljR8/HtnZ2Th+/Dh+9rOfAQACAgJwyy23YMeOHYiPj8eoUaNw4cIFZGVlAXA9CzgpKQkFBQWYOHEiPvzwQ8/WyO+++y4WLVrkOf+IESPw8MMPIzQ0FJs3b25w/ZiYGIwaNQrr16/H/Pnzm21vcHAwXn/9dfzwww+eY5cuXYLBYMCAAQPw+eefIzU1FXPmzMGgQYNw+PBhzzbPbk3159VXX8Wbb76Je++9Fy+++CIGDx6MM2fOtPBPlahlWElQlxUYGIiBAwfC4XDUG1aJj4/H7373O4wfPx5msxmbNm3ybLsshEB6ejr69euHfv364bHHHsPixYshSRJCQkKwefPmeg9dkSQJ69evx4wZMxAfH9+gDTNnzsQrr7zS6Neud+edd2L16tVYsWIFKioqYDAYEBUVhS1btqBHjx5YvHgx1qxZg/fffx+AKxBOnz5d7xwRERFe+7No0SKkpaVh6tSpMJvNGDp0qGdLdSKtcBdYIi9UVcXatWvRp08fLFmypLObQ9QpWEkQNaKyshIJCQkYM2YM0tLSPMcffPDBerfK1rVz506EhIR0VBOJOgQrCSIi8ooT10RE5BVDgoiIvGJIEBGRVwwJIiLyiiFBREReMSSIiMir/w/Z28/Um8Y8JQAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.distplot(clean_data1['Weekly_Sales'])  "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 46,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "clean_data2 = clean_data1[clean_data1[\"Dept\"] == 92] "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 47,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAB/CAYAAABi3TI1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABKIUlEQVR4nO3deVhU5fsG8HtYBUF2RAjFHRXccEMWBQVTUMw9Uyu3LM2tMrVFc88sTTOTXy6V+4K5m+ZSiYooKqmIK4Kyr7LJMMz5/WHMl2VAODMwIPfnurwumeU+zwAP884773lHIgiCACIiIiIiIiIioiK0NF0AERERERERERHVPJw0IiIiIiIiIiKiUjhpREREREREREREpXDSiIiIiIiIiIiISuGkERERERERERERlcJJIyIiIiIiIiIiKoWTRkRERFQh3t7eGDt2bJXljR07Ft7e3i+9X0VvV1OFhISgdevWpf45OTmhT58+WLp0KTIyMqrs+DNmzEDr1q2xc+fOMm+za9cutG7dGkuWLKmyOoiIiKjm09F0AUREREQAMGXKFOTm5mq6jGrj4+MDHx8fxddSqRQ3b97Etm3bcOXKFezduxc6Ouofqs2fPx/nz5/H6tWr0a9fP5ibmxe7PjU1FatXr0ajRo0wa9YstR+fiIiIag9OGhEREVGN4ObmpukSqlXr1q0REBBQ7LLhw4fDyMgIP//8M/744w/4+fmp/bgNGzbEjBkzsHTpUnzzzTdYvnx5setXrlyJ9PR0rFixAvXr11f78YmIiKj24OlpRERERDXIgAEDAADXrl2rsmO89dZbaNeuHQ4cOICrV68qLr9y5QoOHDiAAQMGwMvLq8qOT0RERLVDrV5pJJfLkZycjNTUNBQUFGi6nGplYFAP9vb20NXV1XQpRERUxxw+fBg//fQTHj9+DDs7O7zzzjt48803i93mypUr+OGHH3Djxg0AgLOzMz788EN07dq1zNyxY8fi6dOnOHPmjOKyCxcuYO3atbhz5w4sLS0xe/Zspfc9ceIEtm3bhoiICOTl5cHa2hqvv/46Zs6cCT09PezatQsLFixAYGAgevXqVey+w4cPhyAI2LdvH6RSKb755hucOXMGCQkJsLCwgLe3N2bOnAkTExOx37JK0dJ68Z6eTCZTXJaRkYG1a9fi5MmTSEtLg729PUaNGoVx48ZBIpEAANatW4fAwEB89913WLhwIXJycjB//nwMHz681DG0tbXx1VdfYcSIEVi8eDGCgoIgCAK++uormJiY4LPPPqvUsQHg1q1b+Omnn3D16lVkZGSgQYMG6NmzJz755BPY2NhUukYiIiLSvFo9aRQTEwOZTA4Li4bQ1tYpNnB5lQmCgMzMDMTExKBZs2aaLoeIiOqQf//9F3fv3sWYMWNgbm6OXbt2YeHChbCyskLfvn0BAKdPn8a0adPQuHFjvP/++wCAvXv34p133sHatWvRp0+fCh3rwoULmDRpEhwcHDBz5kykpqbis88+g0QigampqeJ2e/fuxeeffw5vb298/PHHyM/Px6lTp7Bp0yYYGhpi2rRpeP3117FkyRIcP3682KRRTEwMwsPDMW/ePADAokWLcOTIEYwbNw729va4d+8etm/fjsePH2Pz5s1q+i6W7+LFiwCAdu3aAQBycnIwZswYxMXFYfTo0bCxscGlS5ewbNkyREVFYcGCBYr7ymQyfP7555gwYQKkUilcXFzKPI6zszNGjRqFHTt24Pfff0dubi7u3r2LZcuWwdLSslLHjoyMxOjRo9GkSRNMnjwZBgYGCAsLw8GDB5GYmIjffvtNVI1ERESkWbV60ig7Oxs2NvaQSOrWWXYSiQTGxiaIi4vWdClERFTHPH/+HNu3b1dMaPTu3Rt9+vTByZMn0bdvX8hkMixatAgNGzbE/v37YWRkBAAYNWoU/P398dVXX8HT07NCK2VXrVoFKysr7N69W5HTs2dPvP3228UmjTZv3oxOnTrhxx9/VLyBNHr0aPTp0wd//PEHpk2bBlNTU7i7u+P06dOQSqXQ09MDABw7dgxaWlro378/gBerqIYOHVpsRZOhoSH++ecfZGdnq3WPn9zcXKSmpiq+Tk1NRXBwMNatW4dGjRopTlPbtGkTHj16hP3796N169aKx/fdd99h48aNGDlyJBwdHQG8WIU9ZswYTJ48uUI1zJ49G6dOncKaNWsgk8nQvXt3DB06VHF9RY+9Y8cOSCQS/Prrr4qfzciRI5Gfn4+jR48iPT1dcXllayQiIiLNqdWzLYKAOjdhVKiurKoiIqKaxcHBQTFhBAB2dnYwNzdHcnIyAOD27duIj4/HW2+9pZjoAYAGDRpgzJgxSEhIwM2bN196nJSUFNy6dQt+fn7Fcnr06KGYvCh06NAhBAYGFntuTElJQYMGDZCTk6O4bODAgXj27BmCg4MVlx09ehRdu3ZFw4YNAQA2NjY4duwYgoKC8OzZMwDAzJkzsX//frVvCr1p0ya4uroq/vn5+WHZsmVo3bo1Nm3apDjeyZMn0apVK1hZWSE1NVXxr3Bl19mzZ4vluru7V7gGY2NjzJ07FwkJCcjKysLixYuLXV/RYy9cuBBnzpwpNpmXlZUFfX19ACj2c6hsjURERKQ5tXqlkbp9881y3LkTgcDALdDW1gYAFBQUYMqUiXBx6YIpU6ZquEIiIiLNsrCwKHVZvXr1kJ+fDwB48uQJAKBp06albld4SnVsbCw6depU7nGePn0KAGjcuLHSnPDwcMXXurq6CA0NxZEjR/Dw4UNER0cjJSUFwItJrULe3t4wNDTEiRMn4OXlhQcPHiAyMhJLlixR3GbhwoWYOXMm5s2bhy+++AIdO3aEj48Phg4dCmNjY6W1FhQUFFsxVFhT0QkUZQICAjB48GAAL94MqlfvxX6FhaeGFYqOjsbz58/h6uqqNCcuLq7Y18p+RuXx9/fHRx99hA4dOqBJkyaiji2RSJCWloaNGzciMjIS0dHRiI2NhSAIAF6sLlKlRiIiItIMThoVMX36bIwfPxa//LIF48dPBAD88ssWaGtrYdKkKRqujoiISPMKN2kuS+EkQXnXVeTUtMJVQ3l5eaWuKzkB8e233yIwMBBt27ZFx44dERAQgE6dOmHx4sXFJlQMDAzQt29fxSlqx44dg66uLnx9fRW3cXV1xdmzZxX/goODsXz5cmzduhVBQUEwNzcvVU9cXFypfZq6detWbB8fZezt7dGzZ8+Xfi8KCgrg4uKCadOmKb3e2tq62Ncv+xlVRkWPfe7cOXzwwQewtrZGjx494OnpCScnJ5w/fx4bN24sdT911khERERVh5NGRejr6+Orr5Zi8uTxcHf3gCAICArag82bt+Ho0cPYv38PBEFAgwYm+PjjT+Hg0BTR0Y/xzTcrkJOTjZSUZLRs2RpLlqyAvr4+PDy6w9OzN+7du4uvvlqKNm3aavohEhERVanClT0PHz4sdd2jR48AQPFJWi/LkUgkiIqKKnVd4Wom4MWKpMDAQAQEBGDlypXFbld4ylxR/v7+OHToEEJDQ3H69Gl4eHgoPhVNKpUiIiICNjY28PPzg5+fH+RyObZs2YKVK1fi6NGjGDt2bKlMKysrbNmypdhlDRo0eOljrCg7OztkZ2eXmmDKyMjAxYsXS60OUqeKHnvx4sVo0qQJ9u/fD0NDQ8XtDh8+XGW1ERERUdXj2zwltGjRElOmTMWyZYuwdOlXmD9/AZ48icGxY4exceMm/PrrTowd+zY+/fQjAMDBg0EYMMAfmzb9in37DiI29imCg88DAPLz8+Hu7oE9ew5wwoiIiOqEdu3awcrKCjt37kRWVpbi8qysLOzYsQNWVlZwcnJ6aY65uTm6du2KQ4cOFZv8uXbtGm7duqX4OiMjAwDQokWLYvf/66+/EBUVVexj6wHAzc0N5ubm2Lt3L+7cuQN/f3/Fdenp6Rg5cmSxlTFaWlpwdnZW/F8ZfX199OzZs9i/ijzGivL29sadO3dw7ty5Ypdv2LABM2bMwL1799R2LLHHTk9Ph62tbbEJo7i4OJw8eRLAixVLREREVPtwpZESI0aMwtmzf8LBoRl69nTDunVr8ORJDCZNeldxm8zMTGRkZGDq1Bm4fPkSfvttK6Kjo5GcnIzc3P9t9tihQ2dNPAQiIiKN0NXVxRdffIGZM2di6NChGDZsGABg3759SExMxNq1ayt8atKnn36Kt956CyNGjMBbb72F3NxcbN26FWZmZorbtGjRAra2tvjpp5+Ql5cHGxsbhIeH48CBA9DX10d2dnaxTB0dHfTv3x/bt2+HoaEhvL29FddZW1tj4MCB2LFjB3Jzc9GpUyekp6dj27ZtsLS0VHzCWnV77733cPLkSUybNg2jRo1Cy5YtcfXqVRw8eBCenp7w9PTU+LE9PT1x7NgxfPnll3B2dsaTJ0+wZ88e5ObmAkCpnwMRERHVDpw0KkOjRnZ47bXXALzYO+H11/0wbdoMxdfJyUlo0KABPv98LgoKCtCnjw/c3DyQkBBfbD8HQ0MDjdRPRESkKf369cPmzZvx448/Yv369dDR0UGHDh2wdOlSdOnSpcI5Tk5O+O233/Dtt9/ihx9+QIMGDTBt2jTcvHkTYWFhAAA9PT0EBgZixYoV+PXXXyEIAho3boz58+dDJpNh6dKluHnzZrGVPwMHDsT27dvh7e0NA4Piz9OLFy+Gvb09jh49iqNHj8LAwACurq6YNWuW0v2MqoOpqSl2796NtWvX4sSJE9i9ezdsbW3xwQcfYPLkyVW6P1BFj71w4UIYGhrizJkzOHjwIGxsbDB48GD4+PjgzTffxKVLl9C2LVddExER1TYSobwdK2u4W7duw9a2as7jX7RoAZo3b4633hqHkJCLWLZsMTZt+gWWllbYt28P9uzZid27g+Dj0wsbNvyMli1b4eHDB5g06V3MmDEbgwYNRo8enXHixGmYmpq9/IAixMY+Rrt2HIARERFVxo0bNzBixAgEBgaiV69emi6HiIiIqMbiSqMK6N7dFWPHvo3p0z+ARCJB/fpGWLFiFSQSCaZMmYZPP/0IBgYGqF/fCJ06dcaTJzGaLpmIiIjKsGvXLlhbW8Pd3V3TpRARERHVaFxpVItxpREREVHFff7554iJicGlS5cwd+5cvPvuuy+/ExEREVEdxk9PIyIiojohJSUF4eHhGDlyJMaNG6fpcoiIiIhqPJ6eRkRERHXChg0bNF0CERERUa1S7SuNsrKy4O/vjydPnlT3oYmIiIiIiIiIqIJUmjSSyWRIS0ur8O1v3LiBN998E1FRUaocloiIiIiIiIiIqliFT0+TSqVYv349mjVrhoCAAISFhWHKlCnIzMxEly5d8P3338Pc3LzcjD179mDBggWYM2eOqGLT0rIhl/9v3265XA6ZTC4q61Ugl8uRkpKl6TJqrdj7USgoKIB96+aaLoWIiIio1rp75V9Y29vCtKGFpksheqVlRseivm1DaOloa7qUOk+WkwvZ8zzUMzfVdCkq09KSwMysfpnXV3jS6Ntvv8WuXbvw5ZdfAgA+/fRTNGzYEPPnz8dPP/2ElStXYsWKFeVmLF26tKKHU0ouF4pNGhH4/RBJXlCA2ZM/g0wmw/Y/foGuvr6mSyIiIiKqdVKexmPqlPlwbt4Uq3Z+r+lyiF5Zzx7F4Ormk3BwbYmmAzw1XU6dF/7LMQhyAR3fewMSrVf788Uq/OhOnDiBefPmYejQoQgPD0dMTAzef/99DB48GDNnzsS5c+eqsEwi9Qo5fg4J6elIycrCH78GabocIiIiolrpwM97IJPLceP+Q0RH3Nd0OUSvrNiQ2wCA+JvRkOfLNFxN3ZYdn4i0J2kwea38M61eFRWeNEpLS0OLFi0AAOfOnYOOjg48PV/McJqYmCAvL69qKqxlNm8OxJgxIzBmzAj8+OOLd1tCQ0Pw9tujMGrUGwgM/LHUfRYv/hLHjh1WfB0fH4+pUydh9OihmDt3NnJycqqt/rri4O6j0NfRgYGuHk6fCtZ0OURERES1jrygAKfOXYJZ/fqQCwIO/LxH0yURvZLys3OQEBmLesb18DwzD0nXb2u6pDot7tItSLQkMGth/8qvMgIqMWnUuHFjhIWFIT8/H8ePH4eLiwuMjIwAAMeOHUPTpk2rrMjaIjQ0BKGhl7Bly3Zs3boDkZF3cOrUCSxfvgjLl3+Lbdv24s6d27h48cUkRXJyEubMmYVz504Xy/nuuxV4441h2LFjPxwd22Lr1p818XBeWSlP4xEWeR9d27ZCz05OuPnoMR6GR2i6LCIiIqJa5cKRM0jOfIYB3j3RtGFDBF8NRz7fSCZSu8SrtyGXydHMyxm6BrpICH+o6ZLqrAKpFHE3o2HhYIkGTe01XU61qPCk0YQJE7BmzRq4uroiKioK7777LgBg5MiR2L9/PyZNmlRlRdYWFhaWmDp1FnR1daGjo4MmTRwQExMNe/vGsLW1g46ODnx9++Ps2T8BACdPHoeHRy94e/soMmQyGa5fv4bevfsAAPr398fZs6eVHo/EOfDzHhTI5ejp2Q3Dxg+DXBBwcMs+TZdFREREVKsc2nMM9XR10aV3D/Qf0AspWVk4+dsBTZdF9EoR5HI8DbsPYysjmLVqikZOjZH6OAXZ8cmaLq1OSr5+B7I8Gawc7aFdr27si1vhjbDfeOMNODg4ICwsDB07doSLiwsAwMPDAx9//DG6du1a4YOeOXOm8pVWgCQnA5LcjCrJFgxMIBialHubZs3+9ylcMTHROHPmTwwbNhIWFpaKyy0sLJGUlAgAGD16HAAgPPy64vr09HTUr18fOjo6RW6foK6HUecVLqNubGWFTt49Yd3YFs0b2SA47Cam5eVxQ2wiIiKiCkh6Eovr9x6gZ/u2cOzeES07t8OW7b/jz5Pn4TdxlKbLI3plPHv0BNkp2Wju6Qg9E2PY9nBGdOgDxIeEo3mAt6bLq3OeXr0HA5N6MGnZRNOlVJsKrzTavn07HBwcMGHCBMWEEQBMmzatUhNGdcHDhw8wa9ZUTJ06A7a2dpBIil4rQCIp+9suCHJIit8BWnXgPMnqUriM2qNHR1g3tgUADBjghbTsbBzful/D1RERERHVDgcCX6zcdvPsCr16+jAwNoJbJ2fcfPQYUf/e0XR5RK+M2Mu3oa2rDdP/JikMrC1gZm+OhDuxkEvzNVxd3ZL9NAEZselo6Pga6pmbarqcalPh2YjVq1fDw8MDH3zwAU6ePAmpVFqVdYkiGJpAbtG4Sv69bJVRofDw65g58wNMmTIN/fv7w8rKGsnJKYrrU1JSYGlpWeb9zczMkZWVhYKCgv9unwwLCyvVvjGkcHD3UcUy6kKvj3sDhnp6OH3qvAYrIyIiIqodCvJl+PPvS3CwtkZHb1fF5UPfHfpiQ+zNezVYHdGrIz8rB4mRsbBu2RBGdjaKy227OiIvKw+JYbc0WF3dExtyExItCUxb1Y0NsAtV+JFeuHAB33zzDSQSCT766CO4u7vjyy+/xJUrV6qyvlolISEe8+d/jAULlqBv334AgLZtnRAT8xhPnsSgoKAAp079gR493MrM0NHRQYcOHXH69CkAwIkTR9GjR89qqf9Vlxj9Yhl113at4di9o+LyevUN4e7SHrcex+Be2E3NFUhERERUC5w/eBIpWVlw79EJVq/ZKi5v1aW94rR/bohNpLqEKzchLxBg4dgYWrr/21nG0rkV9Ax1kXDzkQarq1sK8qSIvxUDy2ZWaNDkNU2XU60qPGmkp6eH/v37Y/369fjnn38we/ZsPH36FOPHj0efPn2wdu1aREdHV2WtNd7OnduQlyfFunWr8c47o/HOO6Nx/PhhzJ+/AJ99NgdjxgxHkyZN4OXVp9ycjz6ai0OHgjBmzHDcuHEdkya9X02P4NV24OfdkAuCYhl1UUMnDIcgCDj4S5CGqiMiIiKqHQ7t/wMGunro6tW91HU87Z9IPV5sgP0AxtbGMGnWuNh1WjraaOTcBKnRqciO5f631SHpWgRk0gJYOtpDW19P0+VUK4kgCIKYOyYkJODUqVM4fPgwbty4ARMTEzx79gy9e/fGwoUL0bBhQ3XXipSULMjl/ys3Pv4xbGzqzgZUJdX1x18ZBfkyvOkzBsaGhlgRuKTYu2KFpgyahMS0DOw8sRX69Q01UCURERFRzZbwKAZjRnwAj45OmLtuYak34p5n52C4zxg0s7XB9/t+1FCVRLVf+t0oXPvtNJr3aoPGfUufeZKbnIZL3wfBvrMDWrxR/qIEUt3V9fsgey5F+7dfh4GluabLUSstLQksLIzKvr4yYRkZGdizZw/GjRsHLy8vrFu3Dm3atMHu3bsREhKC3bt34/79+/jwww9VLpxIncpaRl3UAP8+yMjNwbEt+6q5OiIiIqLaYf+mPZALAnoqWbkN8LR/InWJDb0NHb3/bYBdkoGlGcybWCAhMhYF3BC7SmU9icOz+AxYO9rVqQ2wC1V40mjKlClwd3fHokWLUL9+faxZswbnz5/HwoUL0aFDBwBA+/btMWjQIDx48KDKCiYSo7xl1IX6jQlAfX19nDlzsRorIyIiIqodCvJlOPtPKJo1bIhO3mXvuVl42v8hnvZPJIo0MwuJd+Nh1dIGRrZln8Fj29UR0mwpEq9ygrYqxYbcgpa2BGatGtepDbALVfgRJyYm4pNPPsHff/+NDRs2wNfXF7q6uqVu5+XlhZ9++kmtRRKpIuFRDMLvP0Q3p9Zo1bVDmbfTNzSAR5cOiIiOQWTI9eorkIiIiKgW+DvoBFKzs+Dh2gkWRT7JqaQWHduhpW0jBF+7ibzsnGqskOjVkBB6C4K89AbYJVm0awm9+npI/Deq+oqrYwqe5yH+9hNYNrOGcRM7TZejERWeNAoKCsK4ceNgbl7++XtOTk7o2rWryoURqcvLllEXNWzCcAgADm77vVpqIyIiIqotDgX9AUM9Pbj07vHS2w7w74OMnBwc28rT/okqQ5DLEXvtARo0bFBqA+yStHS0YevcBKkxqch6Gl9NFdYtidduo6BwA2y9urUBdqGypy2VOHfuHC5fvgypVKq4TBAE5Obm4saNGzh69KjaCyRSRUWXURdq2r4NWr1mh4vXbyEvKwf6RtwQm4iIiCjuwWP8+zAKvTu3R6su7V96+35jAvDzL3tx5sxFvDF1XDVUSPRqSL/3GDnpuWjRuyn0GpS9OXGhRj2cERVyD/EhN9FiSNkrAEmc2Kv3YWhmCJPm5U/gvcoqPGn0448/Yu3atWjQoAHy8/Ohq6sLHR0dpKamQktLC8OGDavKOolEKVxGPdDHvdxl1EX5D+yD7zb8iiOb92Do9HeqtkAiIiKiWmD/z3sgCAJcPbpCt97L320vPO3/j+DLiAy9jtZdO1Z9kUSvgNjQCOjo68C0VcU+JbuehRksmlgiITIWTfOkde7j4KtSZnQsniU8Q9OeLaFvZqLpcjSmwqen7du3D0OHDkVISAjeffddeHp64sKFC9i/fz/Mzc3RrFmzqqyz1ti8ORBjxozAmDEj8OOP3wMAQkND8PbbozBq1BsIDCz90aOLF3+JY8cOF7vsyJHfsXTpwuoo+ZVWmWXUhXzeCoBRvXo4c/ZSFVZGREREVDvIpFKcDQ5Fi0Y26KTko7/LUnja/6FfD1ZdcUSvEGlGJpLuxcO6pQ3qNyp7A+ySbLs6QpqTj8Sr/1ZhdXVP7OVb0NLWgmnLJnVyA+xCldoI29/fHxKJBG3btsW1a9cAAO3atcPUqVOxf//+KiuytggNDUFo6CVs2bIdW7fuQGTkHZw6dQLLly/C8uXfYtu2vbhz5zYuXgwGACQnJ2HOnFk4d+60IiMvLw8bNqzD999/p6mH8cooXEbd3blNhZZRF9Krpw/Prh1xJ+YJIi6GVWGFRERERDXfuX0nkJ6TA3fXzjC3sa7w/QpP+79w/SbysrghNtHLxF/5bwPs1o2hpaNd4fuZt20B/fp6SPj3cRVWV7fIcvOQcPsprJpbwbhxI02Xo1EVnjQyNjaGTCYDADRt2hSxsbHIysoCALRo0QJPnjypmgprEQsLS0ydOktx6l6TJg6IiYmGvX1j2NraQUdHB76+/XH27J8AgJMnj8PDoxe8vX0UGTduXIMgyPHBB9M19TBeGZVdRl3U8IkjAQCHtvGdMSIiIqrbDh84ifr6+ujiXfGV24X8B/bBs9xcHNm8pwoqI3p1CAVyxF57CJNGDWDSonL752jpaKNRh6ZIe5KGzJjYKqqwbkkMu4WC/AJYODausxtgF6rwnkZdu3bFpk2b4OzsjCZNmsDIyAjHjh3DiBEjcPnyZRgbG1dlnRUSf+0e4sLuVkl2o86tYNOpZbm3adasueL/MTHROHPmTwwbNhIWFpaKyy0sLJGUlAgAGD36xaaA4eHXFdd369YD3br1KHW6GlVOsWXUFdgAu6TG7VqiTePXcPHGLeQ8y4RhA83/fhMRERFVt6f3HuFW1GN4u3RAy85Olb6/z1sB+L8te3D27CXuFUlUjrS7j5CbkQs7l2bQNapf6fs36u6EqIuRiL98C8b2tlVQYd0Se/U+6pvXr9MbYBeq8EqjWbNm4f79+5g2bRp0dHQwYcIELFiwAN7e3vjhhx8QEBBQlXXWKg8fPsCsWVMxdeoM2NraQSIpeq0AiaTung9ZXYoto7at+DLqovwDfJD5/DmObOI7Y0RERFQ37f+/Fyu3e3h2hY6Id9v16unDs1sn3Il5gjshPO2fqCxxoRHQracDs5YV2wC7pHrmprB0sEJCZBwK8vLUXF3d8izqKTKTMmHdxg71zE01XY7GVXilUdOmTXHy5Ek8evQIADBlyhTY2Njg+vXrcHZ2xpAhQ6qsyIqy6dTypauBqlp4+HV8/vmnmD59Nvr27Ydr164iOTlFcX1KSgosLS3LSSB1UGUZdaE+Iwdi48+7cPZcCEbMmqDG6oiIiIhqPplUinMXr6KlbSNRK7cLDZswAkf/voiDvx6EY/fOaqyQ6NWQl56JpAeJsHV6DYaV2DesJNtujkje/Q8SQm/C1t1FjRXWLbGXb0FL58UG2FSJlUYAYGhoiHbt2im+Hjx4MBYuXIihQ4dCUnw5TZ2UkBCP+fM/xoIFS9C3bz8AQNu2ToiJeYwnT2JQUFCAU6f+QI8ebhqu9NVWuIy6h3MbtOhY+WXUhXTr6aFX9864+zQWN/8JVWOFRERERDXf6d1HkZGbA/eenWFmYyU653+n/d/G88wsNVZI9GqID70JQS7AvJIbYJdk3qY59I30kXAzSn3F1TGynFwkRjyFVXNrGNvbaLqcGqHclUZLliypVNjnn3+uUjG13c6d25CXJ8W6dasVlw0ePATz5y/AZ5/NgVSaB1dXN3h59dFgla++osuoK7sBdknDJo3AkXPBOLzjEJw8uqqpQiIiIqKa7+jvp2CkXw9dvF1VzvIP8ME367bg8KY9GD5zvBqqI3o1CAVyxF5/CFNbU5g0U23/HIm2Nmw7NsWj83eQGf0Uxo3t1FRl3ZFw9TYKZHJYcgNshXInjc6cOVPs68TERMhkMtjZ2cHKygppaWmIiYmBnp4eHB0dq7TQ2mDmzI8xc+bHSq/75ZedZd7vs88WlrpswICBGDBgoLpKqzPUtYy60Gutm6Ntk8a4FB7BDbGJiIiozoi58wC3H0ejb7dOaNGxrcp5RU/756QR0f+kRj7E82fPYd+1BXSNDFXOa9TNGVHBdxB3+RYnjSpJkMsRG3YfRhb10UDFCbxXSbmnp505c0bxb/r06WjYsCGCgoJw+vRp7Nq1C3/88QeOHj0KOzs7+Pj4lBdFVC3UtYy6KP83fJGV9xyHAnepJY+IiIioptv/8x4IAHr06iZqA+ySCk/7j3zyFLfO87R/okJxoXegW08Xpi0d1JKnb9YAFs2skRgZB1kuN8SujGePnyIrOQvWbV5DPXMTTZdTY1R4T6PVq1fjo48+Qtu2xd9paNq0KWbMmIHNmzervTiiylLnMupC3iMGwMTQEOf+vqy2TCIiIqKaKv+5FOcuhaH1a3bo5KW+MdWwSSMgAXB4xyG1ZRLVZnlpz5D8IAHWrRvBsKH6PizJtlsb5D+XIeHKv2rLrAviQm5DW0cLpq24AXZRFZ40ys7OhpaW8pvn5uZCJpOprSgiMaIj7uH242i4dmijlmXUhXT09NDb1QX3YuNw49xFteUSERER1UR/7jqEzOe5cHftBBNr9b2QLTzt/+KNF6f9E9V1cZdvQhAAi1aqbYBdknnrZqjXoB43xK6E/OwcJETGwqpFQxi/xg2wi6rwpFHPnj2xatUqhIeHF7s8JCQEq1atQp8+3NyZNGv/z3vVuoy6qGETR0EikeDIziNqzSUiIiKqaY4c/BPG9QzQpY/q+0OWpDjt//942j/VbUJBwYsNsO1M0aC5vVqzJdpasO3YFBmxGXj2MEat2a+qhCu3If9vA2wtXV1Nl1OjVHjS6Msvv4ShoSFGjhyJ7t274/XXX0e3bt3wzjvvwMHBAfPnz6/KOonKlf9cir9CrsFRzcuoC9m2bAInhya49G8EslIy1J5PREREVBNE3byLOzFP0LNjWzTvoL6V24UUp/3/xdP+qW5Luf0AeVl5sHa0h2591TfALqlRN2dItCSIu3Jb7dmvGsUG2FZGMGnBU9NKqvCkkaWlJX7//Xf88MMPGD58OLp164ZRo0bh559/xm+//QYjI6OqrJOoXKd2/reM2q2zWpdRFzVwSD/kSKU4+HPZn4RHREREVJvt37QHEgDdPLtBW7fcD1oWhaf9E70Qd+UO9Ax0YdKyaiYp9EyMYdncGol34yHLfV4lx3hVZDyKQXZqNhq2eQ16Jvy07JIqPGkEAFpaWujTpw8+/vhjLFq0CLNnz4abm1tV1UZUYUcP/YkGBgZwqYJVRoV6D+sP0/r1ce4ffuIHERERvXqkz/Pwd+h1ONrbo5NXjyo7zv9O+z9aZccgqsmep6Yj+VESrFs3Qn2bqnnDG3ixIbYsT4b4kPCX37gOi7scAW1dbZhW0QRebVfu2wcDBw7Et99+i1atWmHgwIHlBkkkEhw6xE9C2Lw5EGfO/AkA6NnTDR98MAOhoSH44YfVyMvLg7e3DyZP/qDYfRYv/hIuLl0xYMCL73F4+HWsW/cd8vNlMDExwbx5X8LGplG1P5baonAZdb8eLlWyjLqQtq4OvHt2QdCpv3Dtz2B06ssJUyIiInp1/LHtd2Q9fw53984wsbKosuMUnvYf8m8EstKewcisQZUdi6gmigu5CQiARevGkGirbwPsksxaNoWBSQgSbz3Ga727VdlxarP8rBwkRsaiYetGMLLjBtjKlLvSyMnJCQYGBgCAdu3awcnJqcx/7dq1q5aCa7LQ0BCEhl7Cli3bsXXrDkRG3sGpUyewfPkiLF/+LbZt24s7d27j4sVgAEBychLmzJmFc+dOF8tZtOgLfPrpF9i6dQd8fF7HmjXfaOLh1BpVvYy6qCGTRkFLIsGR3XxnjIiIiF4tx46cgYmBIbp4q38D7JIGDumHbGkeDv0fT/unukUuK0DcjUcwszeDcVP1boBd0osNsZshI/4Z0u8/rtJj1VYJV25CXiDAwrExtKr4tWRtVe53Zfny5Yr/r1ixosqLqe0sLCwxdeos6P6323qTJg6IiYmGvX1j2NraAQB8ffvj7Nk/4erqhpMnj8PDoxdMTEwUGVKpFJMmvY8WLVoCAFq0aIn9+3dX/4OpJaprGXWhRs3s4dzMASE37yAzJQ3GFmZVfkwiIiKiqvbwxm3cffIUr/fsiqZOrav8eL2H9cePP23Dub9DMXrOe1V+PKKaIvX2feRlS9HE1bFKNsAuyaabEx7+cxsJV+/AlJs8FyPI5Xga9gDG1sYwadZY0+XUWOVOGt26datSYZpebXTyyGmcOHSqSrJfH+QDX/8+5d6mWbPmiv/HxETjzJk/MWzYSFhY/O88VQsLSyQlJQIARo8eB+DF6WiF9PT00K/fAACAXC7H5s2B8PDoraZH8eqprmXURQ0c+jqWrNyA3wN3Yuy8D15+ByIiIqIabv/mfZBIJOjm0bXKV24DxU/7v346GB378LR/qhtir9yBnqFete2fo9fACFYtGiLxbhya5eRC19CgWo5bG2Tcj0ZOWg6a92rDDbDLUe4zwtChQyGRSF4aIggCJBIJIiIi1FZYbfbw4QPMmTMTU6fOgLa2NmJiii4FFCCRvHz/8fz8fCxZsgAyWQHGjRtfdcXWctW5jLqQ5xv9YP7jb/jr/BWMrbajEhEREVWNvJxc/HPlBto2tkenahxTDZk0Cr//+TcO7z7GSSOqE54npyHlUTLsOzeBYcPqecMbAGy7tUXi3TNIuHQDr3lX/dkZtUVs6G3o6GnDtKWDpkup0cqdNPr111+rqw618PXv89LVQFUtPPw6Pv/8U0yfPht9+/bDtWtXkZycorg+JSUFlpbl75Cfk5ODuXNno0EDE6xY8S10dHhupTLVvYy6kLauDvq4d8PeE2dw5cRf6PJ6r2o7NhEREZG6nfjtALLz8uDu1hkNLEyr7bgvTvtvipCbETztn+qEuMs3AQlg1qpqN8AuybRlExiaGiDhdgwnjf4jzcxC4t142LSxhZFdQ02XU6OVOxvRrZvyHdZzcnKQnZ0NExMT6OnpVUlhtVFCQjzmz/8YX321HC4uXQEAbds6ISbmMZ48iUGjRrY4deoP+PkNKjdn8eIvYGdnj08+mQctrZevSqqrqnsZdVFDJo7A/j/O4ui+45w0IiIiolrt2NGzMDU0hEs1rjIqNGjY61j89Y84GLgLY+a9X+3HJ6ouclkBYm9EwdzeHCZVvAF2SRItLTTq1BwPzt5E+r0orqwBkBB6C4L8vw2wdapvAq82qtQr7eDgYHz33Xe4ffu24jInJyd8+OGH8PT0VHtxtc3OnduQlyfFunWrFZcNHjwE8+cvwGefzYFUmgdXVzd4eZW9Guru3Tv455+/4ODQDOPHjwEAWFpaYtWqtVVef22iqWXUhawdXkOHFs1w+VYk0pNSYFpN+ykRERERqdP9sJu4HxsHP/ducGjXqtqP7zHYF+brf8W581cwptqPTlR9Um7ehTRHCitHe+hoYF+hRt2c8OjvW4i/eqfOTxoJcjlirz1Ag4YNYNKcG2C/TIUnjYKDgzF58mQ4Oztj3rx5sLS0RGJiIo4fP44pU6bg//7v/+DmVrfPRZ4582PMnPmx0ut++aXsjxP97LOFiv+3auWI8+evqLu0V46mllEXFTB8AK4tW4eDG3fi7c+naaQGIiIiIlXs37IPWhIJunp0qfaV20Dx0/6vnvwbLr58I5peTbFXIqFfXw+mLTUzSaFrVB9WLW2QeC8ezbOyoWtUXyN11ATp9x4jJz0XLXo3hZ6xkabLqfEqfO7TmjVr0LdvX+zatQvjxo3DgAED8M4772D37t3w9fXFDz/8UJV1EhWjyWXUhdwC+sLS2Bh/BV/VWA1EREREYj3PzsH5q/+iXZPG6Nhbc2OqIRNHQEsiwZE9xzVWA1FVyk1KQerjFFg72sHAqvz9bauSbfe2KJAWID4kXGM11ASxoRHQ0deBaavq+QS72q7Ck0Z3797FsGHDlF43dOhQ3LlzR21FEZWncBm1W2cnjSyjLqSlrY0+nt3xOCkJIUfPaKwOIiIiIjGO/xqEHGke3N1dYKyhldtA0dP+7yA9KeXldyCqZeJCbgESwLyVPSTamtuz1qRZYxiaGSLhdozGatA0aUYmku7Fw7qlDeo34gbYFVHh31hLS0vEx8crvS4uLg4GBtV/XibVTZpeRl3UG5NGQFtLC8f2/6HROoiIiIgq69jRczCrXx8u3q6aLgUBwwfgeX4+DgXu0nQpRGollxUg7t8oWDSxQIOmmt0/R6KlBdvOzZGZmIm0yIcarUVT4q/8twF2a26AXVEVnjTy9fXFd999hwsXLhS7PDg4GGvWrIGPj4/ai3s5CQRBroHjap4gCJouQSNqyjLqQlav2aJjy+YIvX0XqfGJmi6HiIiIqEIiQ2/gYXw83Fyc0USDK7cLFZ72fy6Ye3vSqyU5PBLSnHxYtraHjoG+psuBTVcnaGlrIT4sUtOlVDuhQI7Yaw9h0qgBTFpwA+yKqvCk0YcffggHBweMHz8eXbp0Qb9+/dClSxdMnDgR9vb2+OSTTyqUc/jwYQwYMAC+vr7Yvn276MIBQE+vHtLTkyGT5depSRRBEJCd/Qw6OnqaLqXa1ZRl1EUFjPBDniwfv/OdMSIiIqol9m8NerFy260LtLQ1/2674rT/xCRcPn5W0+UQqU3c1UjoG+nDtIZMUujWN4R1Kxsk3UtAfla2psupVml3HyE3IxdWjvZ1eiPwyqrwuT2GhobYsWMHzp49i9DQUGRmZsLExAQuLi7o3bs3tLRePv+UkJCA1atXIygoCHp6ehg1ahS6d++OFi1aiCrezMwKWVkZSE1NgFxeICqjttLR0YOZmZWmy6h2NWkZdSFXfy9Yfb8Zf18Iw3hNF0NERET0ErmZWbgQ9i+cmjZBxxo0pnpj0gjsO34Gx/adQLf+Xpouh0hlOYnJSI1OReMuTWFgZaHpchRsu7dDfEQs4i7eQGMfzZ+9UV3iQiOgW08HZi25AXZlVGpDGIlEAm9vb3h7e4s62IULF9CjRw+YmpoCAPr164cTJ05g2jRxH1cukUhgbGwKY2NTUfen2qVwGbW/Z48asYy6kJa2Nvr27oGdh07i4sGTcA3w1XRJRERERGU6tnU/cvOlcHfvAiMzE02Xo1B42v/lW3eRlpgMM2vNfcoUkTrEhdyCRAKYtdTsBtglNWj6Guqb10dCRAwaa2KXGQ3IS89E0oNENHJ6DYaNrDVdTq1S4UmjgoIC7Nq1CyEhIXj27Bnk8uJ7CUkkEvzyyy/lZiQmJsLK6n+rY6ytrREeXnc+7i8jOQ3vjZyGrNxcTZdSK8kKCmrUMuqihkwchT1H/sRXy9ZD9+ufNF0OERERUZnyZDJYGBnBpU/NWWVUKGCEH64uXoO3Bk2CtpZE0+VQFejUpCl8ndpruoxqIZMWwNzBUuMbYJck0dKCnUsL3D11A/8s+QWSOtBq8gLhxQbYrbgBdmVVeNJo5cqV+OWXX9CqVSvY2dlV6HS0kuRyOSRFfiMFQSj29auuXn0DuLRvh9SUdE2XUitpSYBmzexq1DLqQua21pg8dgj+vXZb06UQERERvVTHzu3Q2FHcFhFVydXfC4MvXEFyUqqmS6Eq0sahMSyb142POpdIAAtHhxqxAXZJNt2ckZuSAVlevqZLqTb1TI1gylPTKk0iVHAH6R49euDNN9/EjBkzRB/swIEDuHLlCpYuXQoAWL9+PQRBqPDpaWlp2ZDL686G10REREREREREVUVLSwIzs7I3Bq/wSiOpVIoePXqoVEzPnj2xbt06pKamwsDAACdPnsTixYsrfP/yHggREREREREREalPhSeNvLy8cOrUKXTv3l30wRo2bIhZs2Zh3LhxyM/Px7Bhw9C+fd04n5WIiIiIiIiIqDYp9/S0LVu2KP6fnp6On3/+GW5ubujYsSMMDAyKB0kkeOedd6qsUCIiIiIiIiIiqj7lTho5OjpWPEgiQUREhFqKIiIiIiIiIiIizarwRthERERERERERFR3aGm6ACIiIiIiIiIiqnk4aURERERERERERKVw0oiIiIiIiIiIiErhpBEREREREREREZXCSSMiIiIiIiIiIiqFk0bVLCsrC/7+/njy5InKWT/88AP8/Pzg5+eHlStXqpz3/fffY8CAAfDz88OWLVtUzgOAr7/+GnPnzlU5Z+zYsfDz80NAQAACAgJw48YNlfLOnDmDIUOGoH///liyZIlKWXv37lXUFRAQABcXFyxatEilzIMHDyp+tl9//bVKWQAQGBiIfv36YeDAgdiwYYPonJK/vxcuXMDAgQPh6+uL1atXq5wHAHPmzEFQUJDKWbt374a/vz8GDhyIefPmQSqVqpS3Y8cO+Pn5YcCAAfj6669R2Q+eLKv3t23bhrFjx1YqS1nevHnz4Ovrq/g9PHXqlEp5165dw4gRI+Dn54fZs2er9P3766+/ivVIjx498N5776lU3/nz5zFo0CD4+/tjzpw5Kv98g4KCMGDAAAwcOBBLliyBTCarcJayv8Wq9EZZf9vz8/Px9ttvIyQkRKUsVXpDWZ4qvVHe85iY3lCWp0pvKMtTpTdK5qnaG8rqU6U3lOWp0hvKxhWq9EZZ4xQxvVFWntj+UJalSm+UNyYT0xvK8lTpDWV5qvRGyTxVe0NZfar0hrI8VXoDKD5GVnU8VTIPEN8XyvJUHVOVzFN1TFUyr5DYMVXJPFXHVCXzVB1TFc1Tx5iqZH2qjqmKZqnaF8pe86nSH2W9hhTTH8qy1NEbtYJA1eb69euCv7+/0K5dOyEmJkalrODgYGHkyJFCXl6eIJVKhXHjxgknT54UnRcSEiKMGjVKyM/PF3JzcwUvLy/hwYMHKtV44cIFoXv37sKnn36qUo5cLhfc3d2F/Px8lXIKRUdHC+7u7kJcXJwglUqFN998Uzh37pxasu/evSv4+PgIKSkpojNycnKErl27CikpKUJ+fr4wbNgwITg4WHRecHCw4O/vL2RmZgoymUx47733hD/++KPSOSV/f3Nzc4VevXoJ0dHRQn5+vjB+/PhKfR9L5sXHxwvvvfee0L59e2H//v0q1fbw4UPBx8dHyMzMFORyuTBnzhxhy5YtovOio6MFHx8fITs7W5DJZMLIkSOFf/75R3ReoXv37gkeHh7CmDFjKvNwleb5+/sLCQkJlcopKy8zM1Nwc3MTIiIiBEEQhFmzZgnbt29Xqb5CiYmJQp8+fYRHjx6plOfp6Sncv39fEARB+PDDD4U9e/aIznvw4IHg4eGh+P4tWLBA2Lx5c4WylP0tPnz4sOjeKOtv+4MHD4SRI0cKzs7OwqVLl0Rnbdy4UXRvKMvbsmWL6N4o73lMTG+UlSe2N5TlBQUFie6Nlz1vV7Y3ysoT2xtl/b6I7Q1l44qIiAjRvVHWOEVMb5SXJ6Y/yssS0xvljcnE9EZZeWJ7o6yfrdjeeNkYtLK9UVae2N4oK09sbwhC8TGyquOpknmCIIjuC2V5qo6pSuapOqYqmVdI7JhKWZ4qY6qSeaqOqZTVV0jMmEpZnipjqqJZqvaFstd8qvRHWa8hxfSHsix19EZtwZVG1WjPnj1YsGABrK2tVc6ysrLC3LlzoaenB11dXTRv3hyxsbGi87p164Zff/0VOjo6SElJQUFBAQwNDUXnpaenY/Xq1ZgyZYrojEIPHz4EAIwfPx6DBg3Ctm3bVMo7deoUBgwYABsbG+jq6mL16tXo0KGDynUCwMKFCzFr1iyYm5uLzigoKIBcLkdubi5kMhlkMhn09fVF592+fRvu7u4wMjKCtrY2PDw88Oeff1Y6p+Tvb3h4OJo0aQJ7e3vo6Ohg4MCBOHHihOi8w4cPo0+fPujfv7/Ktenp6WHBggUwMjKCRCJBq1atKtUfJfPs7e1x9OhRGBoa4tmzZ8jKykKDBg1E5wGAVCrFl19+ienTp1c4p6y83NxcxMbGYv78+Rg4cCDWrl0LuVwuOi84OBgdO3aEo6MjAODzzz+Hj4+P6LyiVq5ciVGjRsHBwUGlvIKCAmRlZaGgoAB5eXmV6pGSeZGRkejYsaPiay8vrwr3iLK/xVFRUaJ7o6y/7fv27cPEiRMr9bdKWZZUKhXdG8ryJBKJ6N4o67GK7Y2y8sT2hrK8p0+fiu6Nlz1vV7Y3ysoT2xtl/b6I7Q1l44pnz56J7o2yxilieqOsPH19fVH9UVZtYnujrDyxvaEsr169eqJ7Q1leRESE6N542Ri0sr1RVp7Y3lCWFx4eLro3So6RVR1PKRtzi+0LZXmqjqlK5qk6plL2eFUZU5XMU3VMVTJP1TFVea+pxIyplOWJ7Y2SWaqMpwDlr/lU6Y+yXkOK6Q9lWar2Rm3CSaNqtHTpUnTp0kUtWS1btkTHjh0BAFFRUTh+/Dh69eqlUqauri7Wrl0LPz8/uLq6omHDhqKzvvzyS8yaNatSTwJlefbsGVxdXbF+/Xps3boVu3btQnBwsOi8x48fo6CgAFOmTEFAQAB27NgBExMTleu8cOECnj9/LmrSoygjIyPMmDED/fv3R69evWBnZ4fOnTuLzmvXrh3Onz+P9PR05OXl4cyZM0hOTq50Tsnf38TERFhZWSm+tra2RkJCgui8iRMnYvjw4ZWuS1mWnZ0d3NzcAACpqanYvn07+vTpIzoPeNEfe/bsQd++fWFlZaV48heb9+2332Lo0KGwt7evcE5ZecnJyejRoweWLVuGPXv24MqVK9i3b5/ovMePH8PQ0BCzZs1CQEAA1q1bV6leLutvXVRUFC5fvoxx48ZVOKusvIULF2Ls2LHw8PBAWloaXn/9ddF5jo6OuHHjBuLi4lBQUIATJ05UuEeU/S2WSCSie6Osv+1z5sxB3759K/YAy8ny9/cX3Rtl1Sa2N8rKE9sbyvI8PDxE94ayPD09PdG9Ud7ztpjeKCtPbG8oyxswYIDo3gBKjytUfd5QNk4R0xtl5dna2oruD2W1qfK8oSxPleeNknkymUyl542SeUlJSSo9b5Q1BhX7vKEsT5XnjZJ57du3F90bJcfIqvaFsjG3Kn1RMk/VMZWy+lTpDWV5qvRGyTxVx1Ql81QdU5X1mkpsbyjLE9sbJbNUGU8Byl/zxcbGiu6Psl5DiukPZVlRUVEq9UZtwkmjWu7evXsYP3485syZU6lZ5rJMnz4dFy9eRFxcHPbs2SMqY+/evWjUqBFcXV1VrgcAOnXqhJUrV8LY2Bjm5uYYNmwY/vrrL9F5BQUFuHjxIpYtW4bdu3cjPDwcBw4cULnOXbt24d1331U5586dO9i/fz/Onj2Lf/75B1paWti0aZPoPFdXVwwZMgRjx47FxIkT4eLiAl1dXZXrlMvlkEgkiq8FQSj2dU2QkJCAt99+G0OHDkX37t1VzhsxYgRCQkJgaWmJH374QXROcHAw4uLiMHToUJVrAl68a7d+/XpYW1vDwMAAY8eOVblHzp8/j9mzZyMoKAi5ubkIDAxUuc7du3dj9OjR0NPTUyknKSkJq1atwpEjR3D+/Hl06NABy5cvF53XtGlTfPTRR3j//ffx1ltvoXXr1pXukaJ/i+3t7VXuDXX+bVeWpUpvKMtTpTeK5j19+lTl3iia16xZM5V7o2ieOnpD2fdPld4omle/fn2Ve6Pk90/V3ig6roiKilK5N9QxTnlZntj+UJalSm8Uzdu9e7fKvVE07+LFiyr3RtE8qVSqcm8o+/6p0htF89avX69ybxTNCw0NFdUbysbIqoyn1D3mLi9PTF+UlyemN5TlqTKmUpanyphKWZ4qzxvlff/E9IayPLFjKmVZqo6nlL3mW7t2rej+UOdryPKy1P16oybS0XQBJN7Vq1cxffp0zJ8/H35+fiplPXjwAFKpFG3atIGBgQF8fX0RGRkpKuvYsWNISkpCQEAAMjIykJOTg2XLlmH+/Pmi8q5cuYL8/HzFHyVBEKCjI/5X19LSEq6uropTyPr27Yvw8HAMGTJEdKZUKkVoaChWrFghOqPQ+fPn4erqCgsLCwDAkCFDsGPHDkycOFFUXlZWFnx9fRUTWj///LOod2JKsrGxQVJSkuLrpKQktZx6qS4PHjzAxIkTMXbsWIwfP16lrLi4OMTGxsLFxQU6Ojrw8/PDzp07RecdOXIE9+7dQ0BAAHJycpCcnIyZM2dizZo1ovIiIyMRFRWFfv36AVBPj3To0EHxe9K/f3+VTwsFgNOnT6s0AVroypUraNWqFRo3bgzgxcBz5syZovPy8vLQvn17/P777wCA48ePV6pHSv4tvnz5skq9oc6/7cqyVOmNknmq9kbJvHnz5qnUGyXzVO2Nknl79+5VqTfK+tmK7Y2SecePH1epN0rmqdIbysYVJ06cgLa2tuI2lekNdY5TyssT0x/Ksm7cuIEWLVqI6o2y8sT2hrK8Y8eOwdTUVFRvKMv7+uuv4ebmJqo3yvvZiukNZXk7duwQ3RvK8sLDwzFp0qRK94ayMfLTp09F94W6x9xl5Y0cOVLU84ayvHnz5mHYsGGiekNZnkQiEd0byvKmTp2KQYMGieoNZXmCIKBLly6ieqO8n6+Y3lCWd/nyZTg5OVW6N8qqbfTo0aLHU8pe89nZ2YkeU6nzNWRZWep8vVGjaWIjpbrOy8tL5Y2wY2Njhe7duwsXLlxQS03nzp0ThgwZIuTl5Ql5eXnCu+++Kxw5ckTl3P3796u8EfaZM2eEwYMHC8+fPxcyMzOFgQMHCmFhYaLzrl+/LvTr10/IyMhQbAxdmQ3flAkPDxdGjRqlUkahf/75Rxg0aJCQnZ0tyOVy4YsvvhDWrl0rOi8iIkIYNGiQkJ+fLzx79kzo16+fcOXKFdF5hb+/z58/Fzw9PYWoqChBJpMJEyZMEI4dOyY6r9Cnn35a6Y2wS2ZlZmYKvXr1Eg4cOCAqp2ReZGSk4OXlJWRkZAhyuVyYO3eusHHjRtF5RV26dEnUpo1F8yIiIgRPT08hPT1dkEqlwvjx44XDhw+LzouNjRU8PDyE2NhYQRBebGS4evVq0XmCIAgpKSmCh4dHpTOU5d2/f1/o1auXkJSUJAiCIGzYsEHU35nCvNTUVKFXr15CZmamkJeXJ4wePVo4dOhQhTKU/S1WpTde9rd9zJgxFd60UVmWKr2hLE+V3njZY61sbyjLU6U3lOWp0htlPV6xvaEsT5XeUJanSm+UNa4Q2xsvG6dUpjfKyjtw4ICo/lCWtX79etG98bLHWtneUJa3bt060b1R1vdObG+U9XjF9oayvJ9++kl0byjLO3jwoOjeKFQ4RlbXeErZmLuyfaEsT11jqsI8dY2plD1eVcZUhXnqGlMV5qlrTFX08apjTFWYp44xVWGWKs8ZglD2az6x/fGy15CV6Q9lWaGhoWrpjdqAK41qqU2bNiEvL6/YypZRo0bhzTffFJXXq1cvhIeHY/DgwdDW1oavr6/K73Cri5eXF27cuIHBgwdDLpdj9OjR6NSpk+i8Dh06YOLEiRg9ejTy8/Ph5uam8mlCMTExsLGxUSmjkLu7O27fvo0hQ4ZAV1cXzs7OmDx5sug8R0dH+Pr6YtCgQSgoKMA777wDFxcXlevU19fHihUr8OGHHyIvLw+9evWq1P4AVWnfvn1ITk7Gli1bFB+N6+3tjRkzZojKa9WqFSZPnoxRo0ZBW1sbXbp0UcupiOri6OiIyZMn480334RMJoOvry/8/f1F5zVq1AiLFi3ClClTkJeXhzZt2uDTTz9VqcYnT56orUeaN2+OGTNmYNy4cdDW1kaTJk2waNEi0XlmZmaYOnUqRo4cCZlMpvjo1Ioo62+x2N5Q5992ZVkDBgwQ3Rtl1Sa2N9T9PFZefWJ6o6w8sb1RVl67du1E9UZZeWJ7o6w8sb1R1rjC3NxcVG+oe5yiLC89PV1UfyjL+uCDD2Bubi6qN6rjsU6bNg1mZmaiekNZ3uDBg2FqaiqqN8p6vOHh4aJ6Q1nee++9B2tra1G9oSxv0KBByMvLE9UbJdXk8RTAMRXHVBWnyngKKPs1n9j+UOdrSGVZN2/eVGtv1GQSQRAETRdBREREREREREQ1CzfCJiIiIiIiIiKiUjhpREREREREREREpXDSiIiIiIiIiIiISuGkERERERERERERlcJJIyIiIiIiIiIiKoWTRkRERFTnTZ8+Hb6+vqUuDwwMROvWrTFnzpxS102aNAnDhw9Xy/GDgoLQunVrpKamqiWPiIiISB04aURERER1Xvfu3fH48eNSkzYXL16EqakpLly4UOxyuVyO69evw9XVtTrLJCIiIqpWnDQiIiKiOq9bt24AgOvXrysuy8vLQ1hYGMaOHYukpCTcvXtXcd29e/fw7NkzThoRERHRK42TRkRERFTntWzZEhYWFsUmja5evYr8/HyMGTMGZmZmxVYbXb16FXp6eujcuTNkMhm+//579O7dG87OzhgyZAguXrxYLD8nJweLFy9Gz5490b59e4wdOxa3b98us57o6Gi4ublhwoQJkEqlan+8RERERBXBSSMiIiIivFhtdO3aNcXXFy5cgJOTE0xNTdG9e3cEBwcrrgsLC0Pnzp2hr6+PL774Alu2bMG4ceOwfv16NGvWDJMmTUJYWBgAQBAEvP/++zh69ChmzpyJ77//Hnp6ehg7diyio6NL1ZGUlITx48ejadOmWL9+PfT09Kr+wRMREREpwUkjIiIiIryYNLp58yYKCgoAvJg0Kjz9rGfPnggNDVWs+gkLC4OrqysePHiAoKAgfPbZZxg/fjw8PT2xatUquLi4YM2aNQCA8+fP49KlS/juu+8wYsQIeHl5YePGjbC0tMSGDRuK1ZCdnY1JkybB1NQUP/30E+rVq1d93wAiIiKiEjhpRERERIQXm2Hn5OQgMjISaWlpiIiIgJubG4AXk0a5ubm4ceMGEhIS8PTpU7i6uuLy5csAAE9PT8hkMsW/Xr16ISwsDFKpFCEhITAwMEDXrl0V1wOAu7s7Ll26VKyG6dOnIyIiAnPnzoWRkVH1fgOIiIiIStDRdAFERERENUHz5s1hZWWFa9euISoqCvr6+ujYsSMAwN7eHq+99hpCQ0ORlJQEIyMjODk5KfY58vT0VJqZlpaG9PR05ObmwsnJqdT1urq6xb7OysqCg4MD1qxZg99++w0SiUS9D5KIiIioEjhpRERERPSfwlPU9PT00KVLl2L7CfXs2RPXrl1DSkoKunXrBm1tbRgbG0MikWDnzp3Q0Sk9rDIzM4OxsTEsLCywcePGlx5/w4YNiI+Px4QJExAUFIShQ4eq9fERERERVQZPTyMiIiL6T/fu3XHr1i2EhYUpTk0r5Orqirt37+L69euKvY5cXFwgCAKys7Ph7Oys+Hfx4kVs3boVOjo6cHFxQWpqKgwNDYvd5vDhwzh06FCxY5ibm8Pd3R0+Pj745ptvkJaWVm2PnYiIiKgkThoRERER/ad79+64f/8+7t27p5gYKuTq6orExETcuXNHcV2bNm3Qr18/fPLJJ9i+fTsuXbqEtWvXYvXq1bC1tYWWlha8vLzg7OyMyZMn48CBA7h06RIWLVqEX375Bc2bN1dax7x585Cbm4uVK1dW+WMmIiIiKgtPTyMiIiL6j4ODAywtLSGTydC6deti15mZmcHR0RGJiYlo2bKl4vJVq1bh+++/R2BgIFJSUmBnZ4ePPvoIEyZMAABoa2tj06ZNWLVqFb755htkZWWhSZMmWL58OYYMGaK0Djs7O7z33ntYu3Ythg4dii5dulTdgyYiIiIqg0QQBEHTRRARERERERERUc3C09OIiIiIiIiIiKgUThoREREREREREVEpnDQiIiIiIiIiIqJSOGlERERERERERESlcNKIiIiIiIiIiIhK4aQRERERERERERGVwkkjIiIiIiIiIiIqhZNGRERERERERERUCieNiIiIiIiIiIiolP8H72yuP0ZHArMAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 1440x72 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.figure(figsize=(20,1))\n",
-                "sns.lineplot(x=\"Week\", y=\"IsHoliday\", hue=\"Year\", data=clean_data2)\n",
-                "plt.grid()\n",
-                "plt.xticks(np.arange(1, 53, step=1))\n",
-                "plt.title('holidays - Per Year', fontsize=18)\n",
-                "plt.ylabel('holidays', fontsize=16)\n",
-                "plt.xlabel('Week', fontsize=16)\n",
-                "plt.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 48,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAH7CAYAAAAdASxrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5ycdbn//9d93zP31C2ppCc0aaEEIhrRRKSDOSKCIgh69BwEpPoVDgKCiAhHEVEU1J+CR7DroYghdPAoEEIooYNAetu+0+duvz9mdrKT3SSbZEt29v18PPIge889s58Zkuw977mu62MEQRAgIiIiIiIiIiIyiMyhXoCIiIiIiIiIiIw8CqVERERERERERGTQKZQSEREREREREZFBp1BKREREREREREQGnUIpEREREREREREZdAqlRERERERERERk0CmUEhERkX532WWXsddee7HPPvvQ2tq62fP+7d/+jb322ovLLrus3773GWecwcc+9rEtnnPLLbew1157Vf2aOXMmH/7whznvvPN4/vnn+209w82iRYt6vDZdr88RRxzBddddR0dHx6Cv64wzzmCvvfba5vt1/b9etWrVAKxKREREdkRoqBcgIiIitcv3fR5//HE+9alP9bht5cqVvPnmm0Owqo3OPvtsdtttNwAKhQJr1qzhnnvu4fTTT+e73/0u8+fPH9L1DaWjjjqKo446qvJ1sVjklVde4a677uK5557jT3/6E6GQLiVFRERk++lKQkRERAbMlClTePTRR3sNpR555BFGjx69xUqqgfahD32ID3zgA1XHvvjFL3LqqadyxRVXcMghhzBp0qQhWt3Q2muvvfjEJz5RdeyUU04hmUzyi1/8ggcffJATTjhhiFYnIiIitUDteyIiIjJgjjjiCJ566iny+XyP2x5++OGtttkNhfr6er71rW9RKBT4n//5n6Fezk7n+OOPB+CFF14Y4pWIiIjIcKdQSkRERAbMkUceSS6X46mnnqo63tLSwgsvvMDRRx/d4z5BEPC73/2Ok08+mVmzZrH//vtz7LHH8vOf/5wgCCrnfexjH+PKK6/k8ssvZ//992fu3Lm9Vl1lMhlOOeUUZs2axZIlS/q07tmzZzNp0iT+7//+r+r4m2++ybnnnsvs2bM54IAD+PSnP80jjzxSuf3cc8/l0EMPxff9yrHHHnuMvfbai29/+9tVj3XuuedWAp4zzjiDL33pS/z973/npJNOYv/99+ejH/0ot9xyS9VjFYtFrrvuOo444ghmzpzJvHnzuOaaawZ1xpNpli4fXdcFSjOb9t9/fx5++GEOO+wwZs2axZ/+9CcA2tra+OY3v8lHPvIRZs6cyTHHHMPPf/5zPM/rl7W8+uqrnH/++XzoQx9iv/32Y86cOfy///f/WLduXY9zV6xYwdlnn82sWbM49NBDueyyy2hvb6/cvqXnISIiIgND7XsiIiIyYA455BBGjRrFo48+WlUV9eijjxKLxZgzZ06P+9x888389Kc/5ZOf/CSf/vSnyWQy3HPPPXz/+99n3LhxfPKTn6yc+7e//Y1dd92VK664gubmZkaPHl31WMVikfPOO48333yTn/3sZxxyyCF9Xvuee+7Jk08+SbFYxLZtli5dyplnnkkymeTf//3fSSQS3HvvvXzlK1/hqquu4vTTT2fevHk8+uijvP766+y3334APPvsswA899xzlcd2HIdnnnmGz3zmM5Vjb731FhdddBGf+cxn+MxnPsP999/Pj3/8Y0aPHs3pp58OwLe+9S3uv/9+zjzzTKZOncrbb7/Nb37zG5YvX87tt9/e5+e2I55++mmAyvODUkB15ZVX8qUvfYliscghhxxCR0cHp556KqtXr+bUU09l11135Z///Cff//73ee2117j55pt3aB1vvvkmp512GtOnT+ess84iFovx/PPPc++997JhwwbuvPPOqvPPPfdcjjjiCC677DKef/557r77bjo7O7n11lu3+DxERERk4CiUEhERkQFjWRaHH344jz/+OL7vV6psHn74YT760Y9i23bV+Y7jcNddd3HCCSdwww03VI6fcsopzJkzhwcffLAqlMrn89x8881Mmzatx/f2fZ+vfe1rLF68mJ/85Ce9BmBbUl9fD0BHRwfjxo3j29/+NoZh8Oc//5kJEyYA8NnPfpbPfvazfPe73+W4445j7ty5ADzzzDOV0GbRokXssssuvPnmm6RSKerq6njxxRfJZDJ89KMfrXy/DRs2cNttt1XCuxNPPJGPfOQj/PWvf62EUn/961/51Kc+xVe/+tXK/eLxOP/3f/9HJpMhkUhs03PcklwuV1V51trayj//+U9uueUWJk6cWKnygtJr/bnPfY6zzjqrcuzGG29k2bJl/OQnP+HII48E4PTTT+eaa67ht7/9LZ/85CeZN2/edq/vt7/9LYZh8Otf/5rGxkYAPvOZz+A4Dn/7299ob2+vHAc4+eSTufLKKyvnrV27lr///e+V0HFzz0NEREQGjtr3REREZEAdccQRtLS08OKLLwKQTqd5+umnK0FFd+FwmKeeeopvfetbVcfb2tpIJpNks9mq49OmTes1kAK4+uqrefDBB7n22mu3K/zoak8zDIPm5mZeeuklPvGJT1QCKYBIJMKXvvQl8vk8Tz31FBMnTmTPPffkmWeeAUqB1htvvMHnP/95fN/n+eefB+D//u//qKur4+CDD648ViwWqwqpIpEIu+66K83NzZVjEyZMYMGCBfzv//4vnZ2dAFx00UX85S9/6ddACuCXv/wlc+bMqfw64YQT+M53vsNee+3FL3/5yx7f78Mf/nDV14899hi77757j//P5557LlCqltsR3/zmN3nssceqgqd0Ok0kEgHo8Wfl4x//eNXX+++/P47j0NbWtsXnISIiIgNHlVIiIiIyoD784Q8Ti8V47LHHOPjgg3nyyScxTXOzQVE4HOaJJ57g0Ucf5b333mP58uWVmUndZ0oBjBkzptfHWL16dWUe0PPPP19VXdVX7e3tWJZFfX09r7/+OgC77rprj/N23313ANasWQPARz7yEX7/+9/jui6LFy/GMAw+/elP87Of/YzFixczb948/vGPf3DYYYcRDocrj9PY2FipJOti23bVTKlvfvObXHTRRXz961/nG9/4BgcddBBHHXUUn/rUp6irq+v1eXie12PWVjgcrgpzevOJT3yCE088ESgFc9FolKlTpzJ27Nhez9/0/8WqVav4yEc+0uO8cePGUV9fz+rVq7f4/bfGMAza2tr42c9+xptvvsmKFStYs2ZN5c9I99ett/VFo1GgVJ23pfNERERk4KhSSkRERAZUNBrlQx/6UKUy5uGHH+ZDH/pQr5U9QRBwySWXcMEFF7Bq1SpmzZrFpZdeykMPPcTEiRN7nG9ZVq/f0zAMvvnNb/KJT3yCP/3pT30ecN59HW+88Qa77747tm33CMO66wo/ugKmuXPnks1mWbp0Kc888wz77rsvdXV1HHLIITz33HO0trby2muv9QjlNg2kejNnzhwef/xxbrrpJo477jjeffddrr/+eubPn9/rkHeAtWvX8uEPf7jq1/nnn7/V7zV16lQ+9KEP8aEPfYg5c+Ywa9aszQZSva1/a69Z90BuU8VikVQq1eN49//fTzzxBPPnz+fBBx9kwoQJfO5zn+PXv/41X/7yl3t9TMMwNvv9uuvL/wcRERHpH6qUEhERkQF35JFH8vWvf5233nqLv//971xxxRW9nvfcc89x//33c+6553LhhRdWjruuS3t7O1OnTu3T95s0aRKnnnoqRx55JI899hhXX301d9999xaDkO6eeeYZ2traKoPIJ0+eDMC7777b49z33nsPoNLWN3v2bBKJBM888wzPPfdcZZbVoYceyve///1KONc1f6qvisUir7/+OhMmTOCEE07ghBNOwPd97rjjDr773e/yt7/9jTPOOKPH/caNG8cdd9xRdaxrXtZAmjx5cq+vV1NTE+l0uteQESCVSnHooYfypS99ia997WuV47lcrqoa7Nprr2X69On85S9/IR6PV47/9a9/7cdnISIiIgNJHwWJiIjIgDv88MOxLIv//u//Jp/PV+3E1117ezsAe+yxR9XxP/7xj+Ryucqcp74aO3YsF1xwAW+//Xafd6dLp9PccMMNxOPxyoDxcePGMXPmTO677z7WrVtXObdYLHLHHXdg2zaHHXYYUKqYmjNnDo888ghvvvkmhx56KADvf//7cRyHn/3sZ8ycOXOLVUe9aW9v5zOf+Qw/+9nPKsdM02T//fev/L43kUikUvHU9WvmzJnb9L23x+GHH867777LI488UnX85z//OUDV/Kzu6urqqK+v57XXXqscy+VyLFu2jPe9732VY+3t7UyaNKkqkFq7di0PPfQQUGpbFBERkZ2bKqVERERkwI0aNYpDDjmEf/zjH3zgAx9g1KhRvZ43a9Yskskk119/PWvWrKG+vp5FixaxYMECIpEImUxmm7/36aefzl/+8hduvfVWjj/++Kpqq6eeeqoSMhWLRVatWsV9993Hhg0buPHGGxk/fnzl3CuvvJLPf/7znHzyyXz2s58lkUhw33338eqrr3LllVdWVR/NnTuXq666CtM0OeSQQwAqbXwrV66szGraFuPHj2f+/Pn89re/JZfLMWvWLNrb27nrrrsYO3Ysxx133DY/5kD68pe/zEMPPcRFF13EZz/7WWbMmMEzzzzDQw89xNFHH73F4fOnnnoqP/3pT7niiis44IADuPfee0mlUpWQEEqv8YIFC7jqqqvYf//9WbVqVSW8BLbrz4qIiIgMLoVSIiIiMiiOOOIInn32WY4++ujNnjN27Fh+/vOfc+ONN3Lrrbdi2za77rorN910E0uXLuXXv/41zc3N21RlZFkWV199NaeddhrXXHMNv/jFLyq3/fSnP638PhaLscsuu3DQQQfxxS9+sVKB1GXWrFn87ne/40c/+hG33347vu+z995785Of/KTHDnNdrXl77bVXJazqCqieeOKJbW7d63LttdcydepU/va3v/G3v/2NWCzGnDlzuPjiixk9evR2PeZAaWxs5A9/+AM333wzCxYsoLOzk6lTp3LppZfyhS98YYv3Pe+88wiFQtx333389a9/Zfr06Xzve9/j2GOPrZzzzW9+k3g8zmOPPca9997LhAkTOPHEEznqqKP47Gc/W5nnJSIiIjsvI9jSFEoREREREREREZEBoJlSIiIiIiIiIiIy6BRKiYiIiIiIiIjIoFMoJSIiIiIiIiIig06hlIiIiIiIiIiIDDqFUiIiIiIiIiIiMuhCQ72AnUlbWwbf12aEIiIiIiIiIiI7yjQNRo1KbPZ2hVLd+H6gUEpEREREREREZBCofU9ERERERERERAadQikRERERERERERl0CqVERERERERERGTQaaaUiIiIiIiIiEg/8DyXtrYmXLc41EsZdKGQzahR47CsvkdNCqVERERERERERPpBW1sT0WicRGIChmEM9XIGTRAEZDKdtLU1MXbsxD7fT+17IiIiIiIiIiL9wHWLJBL1IyqQAjAMg0SifpsrxBRKiYiIiIiIiIj0k5EWSHXZnuetUEpERERERERERAadQikRERERERERkZ3Q97//35x11hfwPK9yzPM8zjnni/z857cO4cr6h0IpEREREREREZGd0HnnXUQ+n+POO++oHLvzzjswTYsvfenLQ7iy/qHd90REREREREREdkKRSISrr76Oc875Eocd9hGCIODuu//ML37xax544K/87//+mSDwqa9v5KtfvZTp02ewYsVybrrpv8lms7S0NLPnnu/jmmuuJxKJcPjhc/jwh+fxr3+9xdVXf5u99953SJ+fQikRERERERERkZ3U7rvvwVlnncMNN3wb3/e47LJvsGrVSh544G/ceusviEajPPvsM1x++df4zW/+zF//eg/HHfdxjjnmeFzX5Utf+hxPP/0PPvrRI3Ach8MO+wjXXnvDUD8tQKGUiIiIiIiIiMhO7eSTT+WJJx5jxoxdmTPnMG699YesWrWSs8/+YuWcVCpFZ2cH55xzPosXL+I3v/kfVq5cQXNzE7lcrnLegQfOGoqn0CuFUiIiIiIiIiIiO7mJEycxadIUADzP55hjjufccy8AwPd9mpubqKur5+qrL8fzXD72saOYM+fDrF+/jiAIKo8Ti8WHZP290aBzEREREREREZFh5AMfmMMjjzxIc3MzAPfc8xcuvPAcAJ599mm+8IX/5Igjjgbgtddewfe9zT7WUFKllIiIiIiIiIjIMHLooR/k9NM/z8UXn4tpmsTjCa677nsYhsFZZ32Fyy+/hFgsSiKR5KCDDmbVqlVDveReGUH3Gq4RrqUlje/r5RARERERERGRbbdu3XImTJg+1MsYMps+f9M0GDMmudnz1b4n0k0um6OttX2olyEiIiIiIiJS8xRKiXSTzxdIdaaGehkiIiIiIiIiNU+hlEg3gR9QLDhDvQwRERERERGRmqdQSqQbz/MoFotDvQwRERERERGRmqdQSqQb13FxHVVKiYiIiIiIiAw0hVIi3bieh+O4Q70MERERERERkZqnUEqkG891cV2PIAiGeikiIiIiIiIiNS001AsQ2Zm4rosf+HieRyikvx4iIiIiIiIyfN1++8957LFHAPjQhw7j3HMvZPHiRfz4xz+gUCjwsY8dxVlnnVt1n2uvvYpDDnk/xx8/H4B169Zx7bXfoK2tlWnTpnPVVd8mHo/3y/pUKSXSjeO6+K6P7/lDvRQRERERERGR7bZ48SIWL36GO+74Db/61W958803ePjhhVx//be4/vrvc9ddf+KNN17j6af/CUBzcxOXXnoxTzzxaNXj3HTTDXzykyfz29/+hb333pdf/eoX/bZGlYKIdOO7PhilXfhEREREREREtpeR7cDIdQzIYwexBoJ4wxbPGTNmLF/5ysWEw2EApk+fwcqVK5g6dRqTJk0G4Oijj+Pxxx9hzpzDeOihB/jIR+bR0LDxcV3X5cUXX+A737kRgOOO+zjnnfdlzj33gn55HqqUEunG9VwMw8TzVSklIiIiIiIiw9duu+3OzJn7A7By5Qoee+wRTNNkzJixlXPGjBlLU9MGAE477Uzmzz+x6jHa29tJJBKV8Tal89f32xpVKSXSjeu4WKaB56pSSkRERERERLZfEN96NdNgePfdd7j00ov4ylcuxLIsVq5c3u3WAMPYfL1SEPgYhlF1zDT7r75JlVIi3Xieh2EY+KqUEhERERERkWFu6dIXueiiczn77PM47riPM27ceJqbWyq3t7S0MHbs2M3ef9So0aTT6cqIm5aWZsaMGddv61MoJVLmeR4GBhiGZkqJiIiIiIjIsLZ+/Touv/xrXH31tznyyGMA2HffmaxcuZxVq1bieR4PP/wgH/zgYZt9jFAoxIEHHsSjjz4MwMKFf+ODH/xQv61R7XsiZV3VUaZp4jjOEK9GREREREREZPv97nd3USgUueWWH1SOnXjiSVx++dVcccWlFIsF5sw5jMMPP2KLj/P//t9lfPvbV/PrX/+S8eMn8M1vXtdvazSCIAj67dGGuZaWNL6vl2OkKhaKvLjkZUKhEGPHj2HajClDvSQREREREREZRtatW86ECdOHehlDZtPnb5oGY8YkN3u+2vdEyjzfxzDAskxcV5VSIiIiIiIiIgNJoZRIme/5EIBhmjgFd6iXIyIiIiIiIlLTFEqJlAWBTwBYponrKpQSERERERERGUgKpUTKPM/HQIPORURERERERAaDQimRMt/3CQgwLRPX8YZ6OSIiIiIiIiI1TaGUSFlQ3nnRMAz8wMf3/SFekYiIiIiIiEjtUiglUuZ5HoZR+ithlL8WERERERERGa5uv/3nfO5zn+Zzn/s0t976QwAWL17E5z9/Kqee+kl+/vNbe9zn2muvYsGCv1Ydu//+e7juum/2+/oUSomUuY6LaZb/Shjl3fhEREREREREhqHFixexePEz3HHHb/jVr37Lm2++wcMPL+T667/F9dd/n7vu+hNvvPEaTz/9TwCam5u49NKLeeKJRyuPUSgUuO22W/jhD28akDWGBuRRRYYhx3UxDAOAIFCllIiIiIiIiGy/dS+8zdrn3xqQx5548PuYMGvPLZ4zZsxYvvKViwmHwwBMnz6DlStXMHXqNCZNmgzA0Ucfx+OPP8KcOYfx0EMP8JGPzKOhoaHyGC+99AJB4HPuuRfw2muv9PvzUKWUSJnveZimsfFrzZQSERERERGRYWq33XZn5sz9AVi5cgWPPfYIpmkyZszYyjljxoylqWkDAKeddibz559Y9RiHHvpBzj33QiKRyICsUZVSImWu2619D1VKiYiIiIiIyPabMGvPrVYzDYZ3332HSy+9iK985UIsy2LlyuXdbg0qs5WHgiqlRMq6t+8RgKeZUiIiIiIiIjKMLV36IhdddC5nn30exx33ccaNG09zc0vl9paWFsaOHbuFRxhYCqVEyjzXq1RKGWbpaxEREREREZHhaP36dVx++de4+upvc+SRxwCw774zWblyOatWrcTzPB5++EE++MHDhmyNat8TKfM8DztsA2CaFo7jDPGKRERERERERLbP7353F4VCkVtu+UHl2IknnsTll1/NFVdcSrFYYM6cwzj88COGbI1GEATBkH33nUxLSxrf18sxUi1Z9AKJZALTNMmkM4weM4rpu00b6mWJiIiIiIjIMLFu3XImTJg+1MsYMps+f9M0GDMmudnz1b4nAgRBgOdtbN8zLQvHcYd4VSIiIiIiIiK1S6GUCOD7PgZG5WvTMHBcte+JiIiIiIiIDBSFUiKUQqnuTMvCKapSSkRERERERGSgDPqg8zPOOIPW1lZCodK3/ta3vkUmk+H666+nUChw3HHHcfHFFwPw+uuvc8UVV5DJZJg9ezbXXHMNoVCINWvWcMkll9DS0sKuu+7KjTfeSCKRoLOzk6997WusXLmS0aNHc/PNNzNu3LjBfooyDAV+QPdpYqZpUCgolBIREREREREZKINaKRUEAcuWLePee++t/Nprr724/PLLufXWW1mwYAGvvPIKTz75JACXXHIJV111FQ8++CBBEPDHP/4RgGuuuYbTTjuNhQsXMnPmTG699VYAbr75ZmbPns0DDzzAKaecwnXXXTeYT0+GMW/TSinTxHUctA+AiIiIiIiIyMAY1FDq3XffBeCLX/wi//Zv/8Zdd93F0qVLmT59OlOnTiUUCjF//nwWLlzI6tWryefzHHTQQQCcdNJJLFy4EMdxWLx4Mcccc0zVcYAnnniC+fPnA/Dxj3+cv//97ziO5gLJ1vme322iFBiGARj4nr+5u4iIiIiIiIjIDhjUUKqzs5M5c+bwk5/8hF/96lf8/ve/Z82aNVUtduPHj2f9+vVs2LCh6vi4ceNYv349bW1tJJPJSvtf13Gg6j6hUIhkMklra+sgPkMZroLAp7eaqE0rqERERERERESkfwzqTKlZs2Yxa9asytcnn3wyP/rRjzjkkEMqx4IgwDCM0m5ohtHjeNd/u9v06+73MU3Ncpet8zZTEeV5HhAe3MWIiIiIiIiI9IPbb/85jz32CAAf+tBhnHvuhSxevIgf//gHFAoFPvaxozjrrHOr7nPttVdxyCHv5/jjS51oS5e+yC233ITjuDQ0NPD1r1/FhAkT+2V9g5rYPPfcczz99NOVr4MgYPLkyTQ1NVWONTU1MX78eCZMmFB1vLm5mfHjxzN69GhSqVQ5LNh4PpSqrJqbmwFwXZdMJkNjY+MgPDMZ7koh6CYHDdS+JyIiIiIiIsPS4sWLWLz4Ge644zf86le/5c033+Dhhxdy/fXf4vrrv89dd/2JN954jaef/icAzc1NXHrpxTzxxKNVj/Otb32D//qvb/CrX/2Wo446lptv/l6/rXFQK6VSqRQ/+tGP+P3vf4/jONx9991cc801XHTRRSxfvpwpU6Zw//3386lPfYrJkycTiURYsmQJhxxyCPfeey9z584lHA4ze/ZsFixYwPz587nnnnuYO3cuAPPmzeOee+7h7LPPZsGCBcyePZtwWFUusnW+7/cYam4EVMJPERERERERkW3x0P2PsvC+hwfksY/9t6M4+uNHbPGcMWPG8pWvXFzJRaZPn8HKlSuYOnUakyZNBuDoo4/j8ccfYc6cw3jooQf4yEfm0dDQUHmMYrHIf/7nOeyxx54A7LHHnvzlL3/ot+cxqKHU4YcfzksvvcSJJ56I7/ucdtppzJo1ixtuuIHzzz+fQqHAvHnzOPbYYwG48cYbufLKK0mn0+y3336ceeaZAFx99dVcdtll3HbbbUycOJGbbroJgAsvvJDLLruME044gbq6Om688cbBfHoyjHmuh2FUFw4GBPiaKSUiIiIiIiLD0G677V75/cqVK3jssUc4+eTPMGbM2MrxMWPG0tS0AYDTTitlLkuXvli53bZtjjnmeKBUzHH77T/nIx/5aL+t0Qi0531FS0sa39fLMRLls2kKhQKmubGHz/d8YvEYdjQxhCsTERERERGR4WLduuVMmDB9qJdR5d133+HSSy/iS1/6MpZlsWjRU3zjG9cCsHjxM/zud7/hpptuqZx/3XXfZNasQyozpQAcx+Hb376aVCrFd7/7g8rmc5va9PmbpsGYMcnNrm1QK6VEdlau63DSUZ/vcfy+x+/Cjg7BgkRERERERER20NKlL3Lllf/FBRd8lSOPPIYXXlhCc3NL5faWlhbGjh27hUeAbDbLZZd9lfr6Bm644fubDaS2h7amEwE2Vy+oQkIREREREREZjtavX8fll3+Nq6/+NkceeQwA++47k5Url7Nq1Uo8z+Phhx/kgx88bIuPc+2132Dy5Kl861vXY9t2v65RlVIiAGwulRrcVYiIiIiIiIj0h9/97i4KhSK33PKDyrETTzyJyy+/miuuuJRiscCcOYdx+OGbH5j+1ltv8H//9yQzZuzGF7/4OQDGjh3LjTf+qF/WqJlS3Wim1MjV2d7KJ488s8fxex79NXUNo4dgRSIiIiIiIjLc7IwzpQbTts6UUvueCLC5kihFtiIiIiIiIiIDQ+17IoBhmPzhb/8f6VQGO2JTV58kCMAwjK3fWURERERERES2mUIpEeCtN5ax+Onn+dNdd7PnXrvz1SvPx/d9MukMh3xg1FAvT0RERERERIaJIAhGZIHD9kyHUvuejHhBEOB5HoV8AYB0OgOAaZp4nofv+0O5PBERERERERkmQiGbTKZzxO3kHgQBmUwnodC27c6nSikZ8Uqhk0EumwcgUw6lut9umspvRUREREREZMtGjRpHW1sT6XT7UC9l0IVCNqNGjdu2+wzQWkSGDd/3MYBcLgeUKqU2llsaeK5HKKS/KiIiIiIiIrJllhVi7NiJQ72MYUPlHzLiBX5AAOSypVDK93zyuXzldrXviYiIiIiIiPQ/hVIy4nnl0KmrfQ82zpXqfruIiIiIiIiI9B+FUjLi+Z6PYZTa97p2SMikukKpAM/1hm5xIiIiIiIiIjVKoZSMeL7vEwSlSqnGUQ0ApCuhlKH2PREREREREZEBoFBKRryu0CmXyzN2/Bigegc+z1OllIiIiIiIiEh/UyglI57vl9r38tlcJZTqqpQyTROn6Azl8kRERERERERqkkIpGfF838d1XQqFIqPHjMI0zcqgc9M0cRx3iFcoIiIiIiIiUnsUSsmI57kexUKpGioWj5FIxivte5Zl4jiqlBIRERERERHpbwqlZMQrhVJFoBRKJeuSlfY9wzRxi6qUEhEREREREelvCqVkxHNcl3y+AEAsFq2ulDJNHFeVUiIiIiIiIiL9TaGUjHiu61DoCqU2qZQyTRNXM6VERERERERE+p1CKRnxfM+nUNgYSnWvlDItDToXERERERERGQgKpWTEc1yXQr5rplSUZDJBOpUhCAIMwyAIAjzPG+JVioiIiIiIiNQWhVIy4rmORz6fByAWK7XveZ5XaekD8H1/qJYnIiIiIiIiUpMUSsmI53kehVxX+15p0DmwcQc+A1VKiYiIiIiIiPQzhVIy4nmuSy6fJxwOEwqFSNYlAUiX50oRlOZOiYiIiIiIiEj/USglI1rXvKhCrkAsHgWoVEp1DTsPAE+hlIiIiIiIiEi/UiglI1ppVpRBLpcjGiuFUpVKqXL7Xuk8te+JiIiIiIiI9CeFUjKi+b6PYRjksnli8RjQs1KKADxXlVIiIiIiIiIi/UmhlIxovucTBAG5XI5YuVIqFo9hGMbGQeemoUHnIiIiIiIiIv1MoZSMaH4QAFRVSpmmSSKZIJ1KV74uFotDtkYRERERERGRWqRQSkY03/MxDMhlN1ZKASTr4mTSWQBMy8R13KFaooiIiIiIiEhNUiglI5rv+wRBuVIqEascTySTlfY90zRxHGeoligiIiIiIiJSkxRKyYjm+z6e51EsFqsrpZLxyqBzyzRxXFVKiYiIiIiIiPQnhVIyovm+Tz5fAKjMlAJI1CVJp7sGnZs4BVVKiYiIiIiIiPQnhVIyovm+TyGXA+i1UioIAizLxNXueyIiIiIiIiL9SqGUjGiu45LPl6qgNq2Uch2XQqGIaZq4rktQ3qlPRERERERERHacQikZ0XzPp1gote9Fq3bfSwCQSaUBMILSuSIiIiIiIiLSPxRKyYjmuC6FQi8zpZKlUCqdzgIQAJ5a+ERERERERET6jUIpGdFc16FQGXTefabUJpVSBni+KqVERERERERE+otCKRnRPNfbuPterPtMqTigSikRERERERGRgaJQSkY01/Mo5IvAppVSSQDSXZVSaKaUiIiIiIiISH9SKCUjmut45LM5wnaYUChUOR5PxDAMg0w6A0AQBKqUEhEREREREelHCqVkRPO8Uvte99Y9ANM0iSfipFOl9j0MA18zpURERERERET6jUIpGdE81yWXy1e17nVJ1iXIpEvte6ZhUiwWB3t5IiIiIiIiIjVLoZSMWEEQ4Pk++XyeWKwUSvm+X2nTSyQTlUHnpmniumrfExEREREREekvCqVkxPJ9HwLIZfPE4qX2vWwmS3tbB1CulCoPOjdNA0eVUiIiIiIiIiL9RqGUjFi+72MYBvlcrlIp5Xk+lmUBkEjGyXRVSlkWrqNKKREREREREZH+olBKRizf8wmCgFw2T7RcKRUEPoZRuj2ZTJJOZQiCoFwp5QzhakVERERERERqi0IpGbH8IAC62ve6Bp0blduTdQkcx6FYKGKZFq7nDsEqRURERERERGqTQikZsXzPx/M9isVipX3PoDQAHUqDzgEy6SyGaeAUFEqJiIiIiIiI9BeFUjJi+b5PIV8aXt416BwDLCuE53kk60qhVDqdxjRN/MArDUcXERERERERkR2mUEpGLN/3yGVyAJVKqSAA0zLxPG9jpVSqNOzcwFAoJSIiIiIiItJPFErJiOX7Afl8HuhWKQVEbBvf86sqpQACwHO1A5+IiIiIiIhIf1AoJSOW7/vk8wWgOpSKxqJVlVLpVKbqPiIiIiIiIiKy4xRKyYjlOi6FXFco1bX7XkAsFsXzfOKJGIZhkElvDKU8T5VSIiIiIiIiIv1BoZSMWJ7nUSiUQ6lYDN/3CYXD2FEbP/CxLIt4IlZVKeV5qpQSERERERER6Q8KpWTEcl2PQn5jpZTn+YQsi1DIKg2QAhLJhCqlRERERERERAaAQikZsVzX2RhKxWIEvk84EsayLAzDACCZTFQqpQxDoZSIiIiIiIhIf1EoJSOW53rk8wXCdhgrZOH5PuFQCCsUIghKpVKlSqksAIZh4hbdoVyyiIiIiIiISM1QKCUjluuV2vdisdLOe77vEwqFypVSpXOSdQnS6TQAlmXiuAqlRERERERERPqDQikZsVzHI5fLV3be8z2/VDVlmQRdM6XqNrbvmaZJsegM1XJFREREREREaopCKRmxPNcln8sTi5VDqW6VUpZp4vs+yWQCp+hQLBQxTRPPUaWUiIiIiIiISH8YklDqv//7v7nssssAeOqpp5g/fz5HH300P/jBDyrnvP7665x00kkcc8wxXHHFFbjltqk1a9Zw+umnc+yxx3LOOeeQyZSqWDo7OznrrLM47rjjOP3002lqahr8JybDiueWK6USpfa9IAgIh8MAhO0wnueTqEsAkE5nSpVSjiqlRERERERERPrDoIdSTz/9NHfffTcA+Xyeyy+/nFtvvZUFCxbwyiuv8OSTTwJwySWXcNVVV/Hggw8SBAF//OMfAbjmmms47bTTWLhwITNnzuTWW28F4Oabb2b27Nk88MADnHLKKVx33XWD/dRkGAmCAC/wy5VSscpx0yr9lbAjNr7nkUyWQqlMOoNpmXiaKSUiIiIiIiLSLwY1lGpvb+cHP/gBZ599NgBLly5l+vTpTJ06lVAoxPz581m4cCGrV68mn89z0EEHAXDSSSexcOFCHMdh8eLFHHPMMVXHAZ544gnmz58PwMc//nH+/ve/46iqRTbD930IIJfdOFPKACzLAsCOhPH9bpVSqVKllKP2PREREREREZF+Maih1FVXXcXFF19MfX09ABs2bGDcuHGV28ePH8/69et7HB83bhzr16+nra2NZDJJKBSqOr7pY4VCIZLJJK2trYP11GSY8X0fgFwuV10pZZYrpWwbr1ulVDqVwTAMCAI8zxv8BYuIiIiIiIjUmEELpf70pz8xceJE5syZUznm+37pjX5ZEAQYhrHZ413/7W7Tr7vfpytgENmU7/n4vo9TdCqVUgFghUp/ZiKRSGmmVLf2va5zPM8fiiWLiIiIiIiI1JTQYH2jBQsW0NTUxCc+8Qk6OjrIZrOsXr260i4F0NTUxPjx45kwYULVoPLm5mbGjx/P6NGjSaVSeJ6HZVmV86FUZdXc3MyECRNwXZdMJkNjY+NgPT0ZZnzfJ5fNARAt774HYJqlP4+hcIggCEh2a98DyqGpB4QHd8EiIiIiIiIiNWbQSonuuOMO7r//fu69914uuOACPvaxj/GLX/yC9957j+XLl+N5Hvfffz9z585l8uTJRCIRlixZAsC9997L3LlzCYfDzJ49mwULFgBwzz33MHfuXADmzZvHPffcA5QCsNmzZ1d2UhPZlO8H5PMFAGLxje17Vrm6zrIsDKP031g8VqmUIgjwXFVKiYiIiIiIiOyoQauU6k0kEuGGG27g/PPPp1AoMG/ePI499lgAbrzxRq688krS6TT77bcfZ555JgBXX301l112GbfddhsTJ07kpptuAuDCCy/ksssu44QTTqCuro4bb7xxyJ6X7Px836fQFUrFogRBAASV3fcsyyr16gHJugTprlCq3F4qIiIiIiIiIjtmSEKpk046iZNOOgmAOXPmcN999/U4Z++99+bPf/5zj+OTJ0/mzjvv7HG8sbGRn/70p/2/WKlJvu+Ry+aBUqWU7/uEwuHKjLJQyCptxwckkomNM6U06FxERERERESkX2gSuIxIpfa9rlAqiu8HhLrNN7NCVrl6qlwpVZ4pBaUh6SIiIiIiIiKyYxRKyYjk+37VTKnA9wlHNs4gsywLyjs+JpIJMt0GnTuOMyRrFhEREREREaklCqVkRHIdl3yuXCkVi+H5PuHQxm5WwzCww2F83ydZt7F9z7JMXNcdkjWLiIiIiIiI1BKFUjIieZ5XNejc9/0euzXato3neSSTCQqFIk7RwTBNnKIqpURERERERER2lEIpGZFctxRK2baNFbLwPZ9QuHruvx0J43s+iWQCgEw6g2WqUkpERERERESkPyiUkhHJdR0K+QKxeBRgy5VSdaVQKp3KYJomRVVKiYiIiIiIiOwwhVIyIrmORz63MZQK/IBQqLpSKhwJ43WrlEqnM5iWieuoUkpERERERERkRymUkhHJ8zzy+TzRWKx0wADTqv7rYNs2vr+xUiqTLlVKafc9ERERERERkR2nUEpGJNf1yOfylUopwzCwLKvqnFDIAgySdUlgY/ue5/sEQTDYSxYRERERERGpKQqlZETyXLcUSnVVSgUBpln916ErpEok4kCpUqrrXN/zB22tIiIiIiIiIrVIoZSMSJ7rketWKRUAVmiTUKo8Y8oKWcTiUdKpciiFged5g7haERERERERkdqjUEpGnCAI8AK/FEp1VUoBplndvte9nS+RTGyslAI8X5VSIiIiIiIiIjtCoZSMOL7n4zouTtEhFt8YSlmbDDovzZQqSSYTGyulDFQpJSIiIiIiIrKDFErJiOMHPvlcAYBYPEoQBBgGPQadm6aJZZn4vk8imSCtmVIiIiIiIiIi/UahlIw4vudTKGwMpXzfr8yP2lTYtvE8n2RdgkyqW/ueKqVEREREREREdohCKRlxfN8nn80DEIvF8P2AcDjc67kR28b3PJJ13SqlDANfM6VEREREREREdohCKRlxfD8gny+HUvEovucRClu9nhuOhPA8j0QyQSFfwHFcTMOkWCwO5pJFREREREREao5CKRlxfL/bTKlYDD8ICG+mfS8SieD7pfY9gEw6g2mauI7a90RERERERER2hEIpGXF836tUSkXLM6U2175n23alUgq6QikDx1GllIiIiIiIiMiOUCglI47n+eRz3WZKeT6hcO+VUqFwiCCgUimVTmUwLQunqEopERERERERkR2hUEpGnCAIyOe72vdKlVK2bfd6rmVZGFCplEqnSpVSruMM1nJFREREREREapJCKRlxXMelkC9g2zZWyCLwAyyr90HnoVDpePeZUpZp4bjuoK1XREREREREpBYplJIRx3Vd8vkCsUSsdMAAK9T7XwXLsgiorpQyTAO3qFBKREREREREZEcolJIRx3M98rk8sVi0csw0N1cpFQICQqEQ0Wiksvuej4/v+4O0YhEREREREZHao1BKRhzXK7XvxeKlUMoATLP3vwqmZWIYJkEQkKhLkk5nSvcJwPM07FxERERERERkeymUkhHHdboqpbra94zNtu8ZhkE4HML3fJLJOOlUunIf31OllIiIiIiIiMj2UiglI47nlUOpcqVUEASbbd8DsCM2nu+RqEuQSWcr91GllIiIiIiIiMj2UyglI47reuRyhY2VUoBlbf6vgm2H8TyfZDJBOlVu3zMMzZQSERERERER2QEKpWTE8VyXfC5HNB4lCAIMw8CytlQpFcH3uiqlSqGUKqVEREREREREdoxCKRlx8rkCjuMSi8XwfR8rtPlACiBsh8qVUknyuTyu62IAnmZKiYiIiIiIiGw3hVIyogRBQDaXAyAWj+L7AeFweIv3idgRfN8jkYwDlOZKGeC5qpQSERERERER2V4KpWRE8T2ffC4PlEMpzyMU3nKlVGlnPoNkXRKAdCqDaVq4jjvQyxURERERERGpWQqlZETxA59CrgBALB7HDwLCYXuL97FCIYBulVJpTNOgWCwO7GJFREREREREaphCKRlRfM8nny9XSsVKlVLhrcyUsiwLw2BjpVQ6i2lZOGrfExEREREREdluCqVkRPF9n1z39j0/IGxveaZUKGQRBJCsSwCQSaUxDQPHUaWUiIiIiIiIyPYKDfUCRAaT5/vk8+X2vVgM3/e2OujcsiwwIJEohVJdlVKuo0opERERERERke2lSikZUQI/oJDdWCkV+OXQaQtM08QyTSzLJBKNlCqlTAPHcQZjySIiIiIiIiI1SaGUjCi+71UqpaKxKBhdu+ttmR2J4Hk+iWS8vPueiaeZUiIiIiIiIiLbTaGUjCieV5opFYnYlQop09xypRSAHQ7jeR7JuiSZdBbDMAiCAM9TMCUiIiIiIiKyPRRKyYgSBAGFfJ5oPAaAAVhWHyqlomF8zytXSqUrxz3PH6ilioiIiIiIiNQ0hVIyoriOSz5fIBaLlg4YYPYllLJtPM8nmSxVSnXxfVVKiYiIiIiIiGwPhVIyoriuSyFfIBYvhVJBsPVB5wB2xMb3PZJ1CdLpUqWUAXiuKqVEREREREREtodCKRlRPNcjn8sTi21s3zPNrf81CIVCACSScXLZfGXIue8rlBIRERERERHZHgqlZERxvXL7XjxGEARgGH2qlAqFQhBAsi4JQCaTJQANOhcRERERERHZTgqlZERxHY9cNk8sHsX3fUKhrQdSUB6GbhgkknGA8rDzAF+DzkVERERERES2yzaFUv/85z9ZsmQJABs2bOCss85i/vz53HLLLWpjkmHBdd1K+57v+YTC4T7dLxQKEQTBxkqpdBbDMHEcZyCXKyIiIiIiIlKz+hxK/f73v+c//uM/+Mc//gHA1772NV588UVmzpzJ7bffzk9+8pMBW6RIf8nnCriuu7FSKtzXSikLCKoqpSxLoZSIiIiIiIjI9upzKHXnnXfyhS98gQsvvJCVK1fy7LPPcsEFF3D99ddzySWXcPfddw/kOkX6RSadASAWj+EHAeGw3af7WSELwzBJJBPlx8limCau4w7YWkVERERERERqWaivJ65YsYKPfexjADz++OMYhsGRRx4JwB577EFzc/PArFCkH2VSWQBisSi+5xHu40wpgLAdxqYUYqVTaSxTlVIiIiIiIiIi26vPodTYsWNZu3YtAI888gh77LEHEyZMAODll19ml112GZgVivSTIAjI5kqVUtF4DN8PsO2+VUoB2HYY3/OxbZt0OoNpmjiqlBIRERERERHZLn1u3zvuuOP4zne+w3/8x3/w7LPPcvLJJwNwww038MMf/pBPfOITA7ZIkf7gez6FXBEoV0r5HqFwn3NZbNvG832SdQkyqQymZeKqUkpERERERERku/T5HfnXvvY1GhsbWbJkCRdddBFnnnkmAG+//TZnn302Z5999oAtUqQ/eL5PLp8HIBaPEvilWVF9ZUdsUp0pEsmEKqVEREREREREdlCfQynTNDnrrLN6HP/lL3/ZrwsSGSiB71PIFwCIxWJggGX1uVgQ2w7jeeVKqXIo5XkeQRBgGMZALVtERERERESkJvW9dwno7Oxk0aJFZLNZgiDocfuJJ57YX+sS6Xe+75PPlSulEjGcooNpbkOllG3j+z6JugTNTS2V457nEQpt018lERERERERkRGvz++kH3vsMb761a+SL7c/bcowDIVSslPzfJ9cVygVi+I67jZVSnW1+iWTCTLpbPmoge/52xjvioiIiIiIiEif30p///vfZ+bMmXzjG99gwoQJmGbf38yL7AwCPyCfyxOJRsp/fgPM7QilEskE2UwWz/MAKv8VERERERERkb7rcyi1YsUKrrzySvbaa6+BXI/IgPF9j3yuQCwWBSAIwLL63r7XdW6yLgFQqZbyfL+fVyoiIiIiIiJS+/pcJrL77ruzevXqgVyLyIDyPJ98Pk8sHqsc25aKv1C3SimATDoDBHiuKqVERERqjeM4rFqha18REZGB1OdKqf/6r//iiiuuoK6ujgMPPJBoNNrjnMbGxv5cm0i/CoKgUinVtWPetldKBSTLoVQ6nSEWj+GrUkpERKTmFAsOzU2tTJoyUWMrREREBkifQ6mLL76YTCbDRRddtNlzXn/99f5Yk8iAcB2XQr5AfWMdvu8TDm/bdHLTNLFCIeLJUqVVJpVh3PixmiklIiJSg1zXIZfNUcgXqqqsRUREpP9sU6WUyHDmui75fJ5dYuPxPR8rtO1b5tm2TSweB0qVUqZp4jhOfy9VREREhpjreuSyOfIKpURERAZMn9+V5/N55s6dy+TJkwdyPSIDxnVc8rk8sXgU3/exbXubH8O2baLRCFCqlDJNE6fo9vdSRUREZIjlc3ksyyKdzjBqdONQL0dERKQm9blB/gc/+AFHHnkkJ5xwAv/93//NokWLcN1tfzP+wx/+kOOPP54TTjiBO+64A4CnnnqK+fPnc/TRR/ODH/ygcu7rr7/OSSedxDHHHMMVV1xR+X5r1qzh9NNP59hjj+Wcc84hk8kA0NnZyVlnncVxxx3H6aefTlNT0zavT2qX63XtvleaA2VtY/seQCQSJhSyCNth0ukMlmXiuqqUEhERqTW5XIF4IkaqIzXUSxEREalZfQ6lnnnmGX7zm99w3HHH8cILL/DFL36RD3zgA5x33nn86U9/Yv369Vt9jGeffZZnnnmG++67j7/85S/ceeedvPHGG1x++eXceuutLFiwgFdeeYUnn3wSgEsuuYSrrrqKBx98kCAI+OMf/wjANddcw2mnncbChQuZOXMmt956KwA333wzs2fP5oEHHuCUU07huuuu257XRGpUPlfAdV1iiVIoFQ71fch5l7AdxvN8kskEmVQGwzRxCqqUEhERqTWFXJ5YLEYmndWmJiIiIgOkz6GUaZocfPDBnHfeefz+979n0aJFXH/99TQ3N3PVVVdx+OGHb/UxDj30UH79618TCoVoaWnB8zw6OzuZPn06U6dOJRQKMX/+fBYuXMjq1avJ5/McdNBBAJx00kksXLgQx3FYvHgxxxxzTNVxgCeeeIL58+cD8PGPf5y///3vmvcjFelU6ZPOWCyK7wfb174XsfF9j0RdolQpZZrbVTEoIiIiO7d8Pk8oHCIIAgqF4lAvR0REpCZtU/+S67q8/PLLLFmyhOeee44XXniBjo4OpkyZwvvf//4+PUY4HOZHP/oRt99+O8ceeywbNmxg3LhxldvHjx/P+vXrexwfN24c69evp62tjWQySag8pLrrOFB1n1AoRDKZpLW1lV122WVbnqbUqHQqC0AsHsP3PULb0b4XCpUuThPlSinTNCkUCv29VBERERlCnufheT6mWfr8tpAvEItFh3hVIiIitafP78rPOOMMXn75ZYrFIrvvvjuzZs3iG9/4Bu9///u3OfS54IIL+M///E/OPvtsli1bhmEYlduCIMAwDHzf7/V413+72/Tr7vfpupgQyaRLs8disSiBD9Z2tO+FQiEMDJLJBCtb2jAtE9fx+nupIiIiMoRcZ2MVtGVZZNIZGkc1DOGKREREalOfQ6k333yTfD7PPvvsw+GHH87s2bOZNWsWsVjft8h95513KBaL7LPPPsRiMY4++mgWLlyIZW0MB5qamhg/fjwTJkyoGlTe3NzM+PHjGT16NKlUCs/zsCyrcj6Uqqyam5uZMGECruuSyWRobGzs8/qktmW6VUphgGVte2BpWSYBkKxLkElnSgFq4OP7vgJQERGRGuG4LpQ/87TtMJ2dKbT/tIiISP/r87voZ599lnvuuYcTTzyRN998k4svvpj3v//9fPrTn+a73/0ujz/++FYfY9WqVVx55ZUUi0WKxSKPPvoop556Ku+99x7Lly/H8zzuv/9+5s6dy+TJk4lEIixZsgSAe++9l7lz5xIOh5k9ezYLFiwA4J577mHu3LkAzJs3j3vuuQeABQsWMHv2bMLh8La+JlKDgiAglyuHUuXy++5haF91tY0mkgmymVypoo9Smb+IiIjUBs91ISj9PmyHyaQyBEEwtIsSERGpQds0VGfvvfdm77335vOf/zwAL7zwAv/f//f/cfvtt3PHHXfw+uuvb/H+8+bNY+nSpZx44olYlsXRRx/NCSecwOjRozn//PMpFArMmzePY489FoAbb7yRK6+8knQ6zX777ceZZ54JwNVXX81ll13GbbfdxsSJE7npppsAuPDCC7nssss44YQTqKur48Ybb9zmF0Rqk+/55HOl2U+xeCmU2p7Kpq4gK1mXIAgCspksGKXHR/mniIhITSgWHbqmQ5imWR52XiAa1VwpERGR/rRNoVSxWOT555/nmWeeYdGiRbz88suEw2HmzZtXqVbamvPPP5/zzz+/6ticOXO47777epy799578+c//7nH8cmTJ3PnnXf2ON7Y2MhPf/rTPj4bGUk83yefzwMQjcdwHQdze9r3QhaGYZBIxAFIpzJEY1FVSomIiNSQfL5QVVEdBKVh5wqlRERE+tc2DTpfunQphUKB3Xbbjblz53Leeefx/ve/H9u2B3KNIjss8H3y+XKlVCxKynG3q30PwI6EiZdDqUy6FEr5vt9vaxUREZGhVcjlsUIbL5NN0ySbztHQqGHnIiIi/anPoVR9fT1f//rXmTt3LpMmTRrINYn0O9/3yefyRKKRShn+9g4mD4fDlRbAdCrDmHFjVCklIiJSQ3K5AqFuH17ZEZvOjhQTp0wYwlWJiIjUnj6HUj/5yU8AeOutt/jNb35T2dnu4IMPZo899hiwBYr0B69cKRWLRQmCAMMwdqBSKkI0Xtp1Mp3KQACep0opERGRWlHMF0jUJSpf23aYdCpduYYQERGR/tHnUMrzPL7+9a/z17/+lSAIiEQiFAoFDMPguOOO43vf+952v8kXGWiBH5DP5YnFY/i+Tzi8TePUqth2mFh5pkQmncEwwXNVKSUiIlILPNfD8/2qimrTNPF8n2KhSCQaGcLViYiI1JY+9y/9+Mc/5sEHH+Sb3/wmzz33HC+99BKLFy/m6quv5vHHH+e2224byHWK7BDf98jnCqVQyvOr5kRsq0jExgpZhMIh0qkMpmnhOE4/rlZERESGiuNu3HmvWlCZTykiIiL9o8+h1N13380FF1zAZz7zGZLJJAB1dXWceuqpnHfeedx9990DtkiRHeV5pZlSsfJQcjsc3u7HCofDBH5AMpkgk85gmgZOUaGUiIhILXAdlyDoedw0LbLZ7OAvSEREpIb1OZTq6Ohgn3326fW2vffem6ampn5blEh/832ffD5PLF4KpawdaN+zQhYYkEgmSKczmJaF47j9uFoREREZKq7rAT1TKdsOk+pID/6CREREalifQ6ndd9+dRx99tNfbHn30UaZNm9ZvixLpb67jbmzf831se/srpbpCqWRduVLKMHBcVUqJiIjUgmKhiGH0vES2IzapzhRBb2VUIiIisl36XC7y5S9/mfPPP5+Ojg6OPfZYxowZQ0tLCw888AALFizguuuuG8h1iuwQz/NKlVKxKJ7nE96BmVKhkAVBKZRatWJNqVKqqEopERGRWpDPF3rdvMc0TTzPxyk62BF7CFYmIiJSe/r8zvyoo47immuu4Yc//CH3339/5fioUaO48sorOemkkwZkgSL9IZfJ4bke0XiMIPAJ2TvQvmdZGJTb91KlmVKFgkIpERGRWpDP5UsfQPXCoBRaKZQSERHpH9v0zvwzn/kMn/70p3nnnXfo6OigsbGRXXfdtWrLXJGdUSpVmgERi0UhoNdPQPvKsiwCApJ1CbKZ0sBT13UJggCj9+16REREZJjI5/Kb36XXMMhlc9Q31A3uokRERGpUn0OpfD7Pyy+/THNzMwC77LILU6ZMUSAlw0I6lQEgFo8RAJa1/X9uTdMkFA4TT8QJgoBcNg8B+J5fmjclIiIiw1ahUKQ+Gun1tq65UrtMHD/IqxIREalNWw2lWlpa+N73vsff/va3SjUIgGEYRKNR5s+fz8UXX8yoUaMGfLEi2yvdvVKKHauUAgiHw8TiMQAy6QyRaATP97FQKCUiIjJcua7LXntPxzB7Vj5blsXyZevo7NQOfCIiIv1li6FUa2srp5xyCq2trRx//PHMmTOH0aNHA7B+/XqeeeYZ7rnnHhYtWsQf//hHGhoaBmXRItsqnS612cUSpSBpRyv8IhG7EkqlU+VQyvOA7d/VT0RERIaW45Q+gP3kEZ/vcds9j/4ay7JwHZdi0dmhnXxFRESkZIuh1I9//GPy+Tx//vOf2WOPPXrcfsopp/Duu+9y5pln8j//8z9ccMEFA7ZQkR2RK89+isViGMaOV0rZdphYvFR1lU5nGDN+NL7n7/A6RUREZOi4Tt82LinkCwqlRERE+sEWy0WefPJJzjnnnF4DqS677bYbX/rSl3j44Yf7fXEi/SXTVSkVLw06N3dgphSUZkrEYhvb94yAcqWUiIiIDFeuu/VQyjAgl80NwmpERERq3xbfmW/YsIH3ve99W32QffbZh7Vr1/bbokT6UxAEZLNdlVLR8qDzHZwpZYeJloegplMZAgJ8X5VSIiIiw1mxUCylTltg27bmSomIiPSTLYZSjuNUqkG2JBaLkclk+m1RIv3J93zy+QIAkWgE0zB3eKZUOBzGjoQJhSwy6dKffVVKiYiIDG/5XH6r59i2TbozNQirERERqX1b3X1PZLjzfJ98rlCqbAogFN7xHfIsy8IwTBLJBOlUBtO0+jyHQkRERHZO+VwBa2wdf/jbLyo799Y11GHb4UqVtRWycFIOjuMQDmuulIiIyI7Yaii1aNEi1q1bt8Vzli1b1l/rEel3vu9RyOeJxWP4vk8ovONZbChUujBN1iXIpDOYpkHRcXb4cUVERGTo5At5Vixfz4N/fYT7/3chAP92ygkc929HVZ0XUBp2rlBKRERkx2z13fn3v//9Pj2QsZX+e5GhEvhBqVIqFsXzfSK2vcOPWaqUgkQyWa6UMvFUKSUiIjJsBUFAoVAkGo3S0tRKw6gGbDvMymWrep5sQC6XJ1mXHPyFioiI1JAthlKPPvroYK1DZMB4vk++XCkV+D5WP1RKWSGLIIBkMs6a1WsxTZNiUZVSIiIiw5XruhhB6YPW5qYWxo4bTeOoBpa9u7LHuXY4TKozxbjxY4dgpSIiIrVji+/OJ0+eXPm967qEQps/fcmSJVXni+wsfK80U6pxVAO+72PbO15qb1kWpmGSqEuQTmUxLbNP20iLiIjIzsl1XILy71uaWtlj792ZNGUCSxa9SCaTJZGIV861IzYp7cAnIiKyw/q8Bdk555xDsVjscbyjo4PLL7+cM844o18XJtJfgqBcKZWI4Xk+4S2Eq9siHAkRj8cqu+85miklIiIybDmOiwF4rkdbaztjx41m2vSpAD1a+EKhEIV8QR9IiYiI7KA+h1KvvfYa//Ef/0E2m60cu/vuuznuuONYsGAB559//oAsUGRHeeVKqVgsShD4hOz+CaVs2yaeiBMEAcVCUbvviYiIDGOu6xIE0NrSRhAEjBk3hqkzSl0Avc+VMsjnC4O8ShERkdrS51Dqd7/7HWvWrOHf//3fef755znjjDP4+te/ziGHHMKCBQs455xzBnKdItvN8zzyufJMqYDKls47KmzbxOJRALKZHJ7n4ft+vzy2iIiIDK5CoYBpmTQ3tQAwdtxoknVJRo8ZxYrlvYRSAeRz+UFepYiISG3pcyg1bdo0fve731EoFDj99NNpamril7/8JbfccguTJk0ayDWK7JBcOTCKxUoBUn+FUpGITSweAyCdSmMYhkIpERGRYaqQK2CFLFqaWgEYM24MAFNnTOm1Uipsh0lrrpSIiMgO2WIo1d7eXvUrHA5zyy23sM8++xAEARMnTqy6XWRnlEqVLhi7AiTL6nMWu0W2Ha48ZiadJQhKQ9VFRERk+Mnl84Qsi+amFkzLZNToRgCmzZjChnVNPaqibNumsyM1BCsVERGpHVscrvPBD34QwzB6HA+C0t4kJ5xwQtXx119/vR+XJtI/unbH6aqUMs3+CaXCdphYtPSYpUqpUqugiIiIDD+FXIFIJEJLUwujx4yqXC9MnTGFIAhYtWINe+y1W+X8cDhEJp3Bcz2sUP9UYYuIiIw0WwylvvOd7/QaSokMJ5VQKh7DMIx+a9+zLItEsrQ9dFellKf2PRERkWEnCAKKjkMsHqO5qbXSugelSimAFctWVoVSAAaQzxcq1wMiIiKybbYYSp100kmV33/3u9/l+OOPZ+bMmQO+KJH+lEmXdoyMxqMQBJj91L4XCoWwYxFMyyxVSlHaRlpERESGF8dxIQDDMGhpauGAgzde7zY0NlDfUN/rXKkggIJCKRERke3W53fnf/jDH+js7BzItYgMiEy6q30vRkD/DTq3QiYGBslkslQpBRp0LiIiMgy5jgOUAqZUZ7qqUgpK1VIre9mBL2yHSHVqrpSIiMj26nModdBBB/Hwww9rZo4MO5VKqVgE0zD7baaUZVkYQCIZJ53OaKaUiIjIMOU4LhDQXN55b+wmodTUGVNYu3o9xWKx6rht23RqBz4REZHttsX2ve4mT57Mn/70JxYsWMD06dMZPXp01e2GYXDbbbf1+wJFdlQ2UwqlIpFIv+28B6X2vYCAZF2iPOjcxCk6/fb4IiIiMjhK7fel1j2AseOqr3OnzZiC7/usWbWOGbtNqxwPhUN0tHfieV6/VWKLiIiMJH0Opd577z1mzZpV+TqTyQzIgkT6WzaTwzAMbDvcb1VSUApiQ+EwiWSC9Ws3YFlm+ZNWERERGU4K+QKmadJcDqU2bd+bWh52vnLZyqpQqmtDoEK+QDyhuVIiIiLbqs+h1J133jmQ6xAZEL7vk8vliEQjBJSqm/qTbYeJJ2KkU2lM08RxVCklIiIy3OTyOUIhi5amVmzbpq4+WXX76DGjSCTjrOhl2DmUduBTKCUiIrLttvkdei6Xo1gsEgQBUNpCN5/P88ILL3D88cf3+wJFdkTgBxTyBWLxKIHvE470dyhlE0/EyaSzGIaBW1SllIiIyHCTzxUIhUK0NLUwZtzoSgVUF8MwmDp9Sq878IVCIdKpDKPHjBqs5YqIiNSMPr9Df+utt/j617/Oa6+9ttlzFErJzsbzfXK5PLFYDM/zCYXC/fr4th0mFo/h+z6FQhGzH2dWiYiIyODI5wvEYlGam1p7DDnvMm3GFB578Ek818MKbZwfZUfCpDq0A5+IiMj26PM76BtuuIGmpib+67/+i0MPPZTDDjuMb3zjG8ybNw+AX/3qVwO1RpHt5vse+VypUsr3fcL93L4XiUSIx2MA5LI5XM2UEhERGVZ838d1XUzTrFRK9WbqjCm4rsfa1euqjofDYTLZrHbgFRER2Q59DqVefPFFvvrVr/KFL3yBj3/842QyGU477TR++tOfcvzxx2vmlOyUAj8gX66UCgKfcKSfK6WiNtF4FIBsNqdB5yIiIsOM67gQQCadJZ8vbKFSaioAK5ZXt/AZhgEBFAvFAV+riIhIrelzKOW6LlOmlHYe2XXXXXnjjTcqt5144om89NJL/b86kR3k+T75fIFoPEoQ0K+77wFYllWplMqkMwRBoE9KRUREhhHHcTGAlsrOe71XSo0dP4ZoNNLrXCkIyOcLA7dIERGRGtXnd+jTp0+vBFG77bYbuVyOd955ByiVPafT6YFZocgO8D2fQi5PLFaqZrIsayv32DaWZZFIJIBSKAWlvw8iIiIyPLiuQwA0N7UCbLZSyjRNpk6f0usOfKFQiHT5OkBERET6rs+h1Mknn8x3v/tdfv7znzN69GgOPvhgrrjiCv73f/+Xm266ib333nsg1ymyXXzfKw0vLVczWf08iDwUsognSo+dTmUwDFQpJSIiMoy4rgdGt0qp8b2HUlCaK7Vq+eoeH0DZtq1h5yIiItuhz+/QP//5z3PhhRfS1NQEwLXXXktrayuXX345qVSKb3zjGwO2SJHtlcsV8DxvQCulorEopmmSSWchKFVniYiIyPCQz+WxTIvmphYSyXjlmqE302ZMoVgssn7thqrjYTtMJp1VtbSIiMg22uJWZO3t7VVff+pTn6ocHzNmDL///e8JgqDf3+iL9JdMqtRW2lUp1e8zpUIWhmGQSMZJp9IEgKdQSkREZNjI5QqEQhYtTa2M2UzrXpepM0rzVVcuW8XEyRMqxw3DIAgCCoXiFkMtERERqbbFUGrOnDnb9GCvv/76Di1GpL91lEvpY/EYBmD2c/ueZVmYhkkimSCd6poppfY9ERGR4aKQy2OFSpVSU6ZOqrrNcVzC4Y2Xy7tMHE/YDrNi+SoOPWx2z8fKFxRKiYiIbIMthlJBEACw9957c8wxxzBhwoQtnS6y00lXKqWiBEb/t+8B2JEQybpEadB5AJ6rSikREZHhIp/PE4vHaG1u5cCD968cLxaKtLS0MnHSxutfy7KYMm1SrzvwWZZFJp2hcVTDoKx7Z+d5HoZh9HuVuoiI1JYthlKPPfYYDz74IAsXLuSWW27hwAMP5Nhjj+XYY49ll112Gaw1imy3TLl6KRKNYGIOyIVROGITj8dp2tCMYRoadC4iIjJMeJ6H5/mkOtO4rsfYbkPOi0WHaDTao1pq6vSpPPvUc/i+X3VdYdthOjtTTB7UZ7DzWrt6HZFohHHjxw71UkREZCe2xXfokyZN4t///d/5wx/+wKOPPsoxxxzDAw88wMc+9jFOPfVU/ud//of169cP1lpFtlmqsxRKRSNRQvYWM9jtZts28USMTDqLaZoUi8UB+T7DQTqVVignIiLDhuu4ADSXd94bO270xts8l0QiTrFQqLrPtBlTyOfytDS1Vh0P22EyqUyl02Ck6+xI9XiNRERENtXnspGJEyfyhS98gd///vc8+uijHHvssTz44IMcccQRlYBKZGeTSXdVStmEQwMUSkVsYvEY6XQawzQqF7gjje/7vPv2e5XZWiIiIjs7x3XBgJZyKNV90LkRQLI+ibPJz/Vp5WHnKzZp4TNNszzsvDrEGomCICCbydLR0YnjOEO9HBER2YltVy/ThAkT+MIXvsD3vvc9vvjFL/LKK69www039PfaRHZYJlMKSOyITWigQqlwmFg8hu/5FAvOiL34ymaytLd30tnROdRLERER6RPXcSGA5g2tGIbB6LEbK6UwoL6hjk0LnyZOmYBlWaxctrLH4wVBadj5SFcsFPG80guXSWeHeDUiIrIz2+Z36e+99x4PPfQQDz30EK+99hrjxo3j05/+NEcfffRArE9kh2TTWQzDwLbDhCMDE0qF7TDxeAyAfC6H49YNyPfZ2bW3dWDbNq0tbUydPmWolyMiIrJVjuNglCulGhrrK7OjgiAgoBRKGWbpa8MwAAiFQkyaOpEVy3sOOzdNk2w6R0PjyB52XigUMQgIh8O0tbRp+LuIiGxWn96lv/HGGzz44IM8/PDD/Otf/2LSpEkcddRRXH755Rx88MGVH9IiO5tsNkckGiEIIBQKD8j3sCyLeLIUSmUzOZzCyKuUCoKA5g0t1DfUkerMUMgXiEQjQ70sERGRLcrnC1iWRUtTa1Xrnut6RCMRQqEQyWQCp+hgR+zK7VOnT2Hp8y9XhVVQqszu7EgxccrI3rG6kC+AaZR2NWxpZ/puvnbhExGRXm0xlPrud7/Lww8/zKpVq5g2bRpHHXUU3/nOdzjggAMGa30iOySXyROLRfF9n/AADToPhUIkkonS98vmcEfgoO98Lk+xWCSeiGMYAZlMVqGUiIjs9Aq5PFYoRHNzC+/be4/Kcdd1SSRKHzg1NNazdvX6qlBq2owpPPXkM7S1tjN6zKjKcdsOk06le4RVI00qlSIcDmOaJp7nks1kSdYlh3pZIiKyE9riu/Tbb78d0zQ5+OCD2Weffcjn89x3333cd999vZ5/5ZVXDsgiRbaH7/vk8jniiVgplAoPUKVUyCSRiAOluUqu6464i9GO9k4oP99SC1/1RbqIiMjOKJcrQBDQ3tpRVSnlFB0S48cCkKxL4PnVHzhNLQ87X7lsVdXPO9M08XyfYqE4oj+cSXdmsMvXXaZp0dmeUiglIiK92mIoNWnSJADWrl3L2rVrt/hAhmEolJKdSuAH5HN5orHSJ52WZQ3I9wmFQsTLoVQ6ncEIwPd8rNDAfL+dUXNTK/Hy6xyNRWlvbcP3p6tUX0REdmrFfIFMNksQBIwdt3HIue97RONRAKLRKATVHzRNmToJwzBYsWwVBx6y/yaPGpAfwW3snueRzxdoaKwHIBaP0dTUwqSpE4d4ZSIisjPaYij12GOPDdY6RPqd5/vkcwVGjx2FAQMWkFiWRSQWwTAM0qkMQfl7W4yMUKqQL5BNZ2gc3QiUXmff88ll8ySS8aFdnIiIyGZ4rofn+7Q1twNUVUoZGNh2qV3PjtiEwhae51U+4LIjNhMm7cLKZb0NO7fIZrOVUGakKRaKwMaK8XA4RCadJp/PlwI+ERGRblTGIDXL9z0K+QKxWIwAsKyB+eNuGAYR2yaRTJBJZzCM0qeEI0Uqla607nUxTINUZ2qIViQiIrJ1jlvaea+5qQWAsd1CKQA7Umo/MwyDhoY6isXqjUymzZjS6w58th0m1ZEeoFXv/AqFIsGmBwODVOfIfU1ERGTzFEpJzQr8gFwuT6xcfj9Q7XtQmqOUSMbJlCulfM8fsO+1s2ne0EJ0kxaFaDRKa0vbEK1IRERk61zHJQigpakFy7JoHN0AlGZSmqZZNYuyvqGeYqFQdf+pM6bQ0dZRmqvYjR2xSXWmCIIe0cyIkMvksMzqa65oPEpLU+sQrUhERHZmCqWkZrmeRz5X2n0PBq59DyBsh4kn4qWZUoycSinHcejs6OwxN8OO2KRTaVzXHaKViYiIbJnrekBAc1Mro8eMqlwnuI5LrLzzXpd4IsamGdO0GVMBWLlJtVRpxzkfZ5PKqpEilUpj29Wby0QiNp0dnTjOyHxNRERk8xRKSc3KZ/P4vk8sHsOAAR08HonYJBJxMukMQRDg+yOjUiqTzgJGj50GDcOAoOt2ERGRnU+xUMQwTFqaWhjTbci54ziVXXW7RGNR2KQpbcr0yQC9zpUiKA07H4nS6QzhTUIpwzAI0HWBiIj0pFBKalY6VZpdEI1FCQgGtFLKtm1i8RjpVAYMY8RUSrU0t/a48OwSCod6tDSIiIjsLPL5ApZl0dzUWjVPynFd4pts1BEKhYhGozjOxgrgWCzK+AnjWNFLKGWYJtnMyAtgHMfBc9xeRybY4TBtau0XEZFNbHH3PZHhLJ3KABCNRTANa2BDqahNPFEKpQyMEVGy73kebS1tJOuSvd4ejUVpbW5l2owpg7wyERGRrcvn8niuSzqVrqqUMgKIRCI9zm9orKe1pY1weOPl89TpU1j2zvIe53bNlZowaZeBWfxOyghc3rfP9B7XXJZlsWK5T2tLO9N38wf0mkxERIaXQQ+lfvzjH/PAAw8AMG/ePC699FKeeuoprr/+egqFAscddxwXX3wxAK+//jpXXHEFmUyG2bNnc8011xAKhVizZg2XXHIJLS0t7Lrrrtx4440kEgk6Ozv52te+xsqVKxk9ejQ333wz48aNG+ynKDuJdLocSkWjhCMD+0fdsiziiRie5+E4Ls4ImKWUSWfx/M1fWIZCIdIpbQEtIiI7p3wuT3u5onfs+I2VUgFBZee97uoa6li/rqnq2LQZU1iy6AUy6QyJZKJy3LbDpMofjo0khUKRk476Qo/j9zz66/KsLZdsJrvZD7RERGTkGdSPKZ566in+8Y9/cPfdd3PPPffw6quvcv/993P55Zdz6623smDBAl555RWefPJJAC655BKuuuoqHnzwQYIg4I9//CMA11xzDaeddhoLFy5k5syZ3HrrrQDcfPPNzJ49mwceeIBTTjmF6667bjCfnuxkUp0poFTFFLIGNpQKhSziidLFaC6bxR0BgzzbWtsJh7b2uhpkUiOvfUFERHZ+hUKR9tZ2gKr2PTCqdt7r0rVxSndTy9XAK5evrjpuWRZu0aE4AiqnuwuCLc/UNE2LzvbUIK1GRESGg0ENpcaNG8dll12GbduEw2F23313li1bxvTp05k6dSqhUIj58+ezcOFCVq9eTT6f56CDDgLgpJNOYuHChTiOw+LFiznmmGOqjgM88cQTzJ8/H4CPf/zj/P3vf9cuHyNYpX0vGiXUy8Vlf7IsqzIUNZcr4BRru1IqCAKam1qIxWJbPC8SsWkrX/CLiIjsLFzXJQh8WppbARhTDqVc1yUStXudiRSJRjAMo2ozk6nTS6FUb3OlAAojbNi57wdbvD0Wj9HU1DJIqxERkeFgUNv39txzz8rvly1bxgMPPMDnPve5qha78ePHs379ejZs2FB1fNy4caxfv562tjaSySShcoVG13Gg6j6hUIhkMklrayu77DKy+vmlJFMOpWw7TNgeuJ33AKxQiHh5++hcJovr1HYolc3kSoNM6yymTB3X62D30vyI9bS3teNvoc1PRERksJUGlhs0N7UQidgk6xKV45vuvNfFNE2S9QmcokMkWpo5laxLMHrsKFYuW9njfMM0yGay1NWPjFa1IAi2WikVDofIpNXaLyIiGw3JoPO3336bL3/5y1x66aVYlsWyZcsqtwVBUPkUqvs2813Hu/7b3aZfd7+P3giPXF0zpSKRCKHQQFdKmSTKO/Xksjkct7Yr9DrbOzGs0t8tz/M48Ygze5zTNT8i8AOy2RzJbrM2REREhlLXh0ctTa2MGTemci3pFB0S48du9n6NDQ2sXrW2EkoBTJsxtddKKdu2SXWm2WXi+H5e/c6pWCjClgulSgKDVGdaoZSIiABDEEotWbKECy64gMsvv5wTTjiBZ599lqamjUMjm5qaGD9+PBMmTKg63tzczPjx4xk9ejSpVArP87Asq3I+lKqsmpubmTBhAq7rkslkaGxsHOynKDuJTDqLYRiEwiHC9sAPOk8kS5+EZjJZ3Bpv39uwoZn4Vlr3KkyDVGdKoZSIiOw0XLcrlGqp2nnP9z2i8c2HJfFkHN+vrg6eOn0KLz63lFwuXzV3yrZtOjtHzvykQqGIYZj878P/Q1tLG2E7jFN0qKtPVrVDRuNRWppaGbeF8E9EREaOQS0jWrt2LV/5yle48cYbOeGEEwA48MADee+991i+fDme53H//fczd+5cJk+eTCQSYcmSJQDce++9zJ07l3A4zOzZs1mwYAEA99xzD3PnzgVKu/ndc889ACxYsIDZs2f3OqhSRoZsJku0/EnmYPw5aGiswzCM8q50XtXMiVqSy+Up5POE7b69prFolLbmtgFelYiISN8VC0UMw6C5qbV6yLlhbPHnWyl0qq7Qn1Yedr5qxSbDzkOlYecjZb5pPpfnzTfe44mHn+FLp17Es08v5bwvfp2bvvMzVq3c+EFzJGLT2dFZCQZFRGRkG9RKqV/+8pcUCgVuuOGGyrFTTz2VG264gfPPP59CocC8efM49thjAbjxxhu58sorSafT7Lfffpx5ZqlF6Oqrr+ayyy7jtttuY+LEidx0000AXHjhhVx22WWccMIJ1NXVceONNw7m05OdTCaTrXza2dvA0v4WiUWIJ2Jk0hkMjJqdo5TqSLHpBfmW2BGb9rZ2HMdRSCwiIjuFfPkDlkK+UFUpRVCqcNocO2ITCocqFfvQbQe+ZavYc6/dq84PjNKw85Hw8y+dThMOh1lRnq81Y7dp7H/Qvrz84mtVr5dhGASUNqRpHNUwhCsWEZGdwaCGUldeeSVXXnllr7fdd999PY7tvffe/PnPf+5xfPLkydx55509jjc2NvLTn/50xxcqNSGXzZV3hxuc2WK2bZNIJEinMgSA53qVgfy1pHlDc6/bYm9NNpOloVEXnyIiMvTyuQLtbZ0AlUop3/exTJNweMs/u+sb6smk0sTipTb2hsZ6Ghrre50rZRgGuWyeZF3tDztPd2YI2zYrlq1izLgxJJIJDjh4f559agnv/mtZVWBnh8O0tbQplJIRKd+eJhS1CUU3H4CLjCS1945ZpCyXzRGLl8rsrdDAV0rZEZt4slQpBdRk+16x6JQ+2RzdWDlmmha/+vMtpfldoRD5fIHRYxqrqtNCoTDtbZ0KpUREZKeQL+Rpb2sHYEw5lHIdl1gittkNdLo0NNbR2tJaCaWgVC21srdh5+EwnZ0pxu1S2/OTPM8jny/QOCrKimUrmV6uHtvvgL0JhSyWLnmlKpSKxWO0trQzfbfarCoX2ZJiOodbKJKMjt76ySIjgH4KSE3yfZ98Lk8sHsMwwBqEC56IbROLx0mnSqGU53lbucfwk+5M9ejce+YfL/CFk8/ngfueYPEzL/Olz1zIwr8+WTU/IhaL0tbSRhD0ZVseERGRgRMEAYVCkbaWdgDGltv3HMchkYhv9f7dw6gu02ZMYe3qdaUd6LqxI3a57b22dT3vTCZL84aWSktjNBblffvsyUvPv1x1DWCaJp7nks1kh2S9IkPJLTgUOrMENfgBtsj2UCglNSnwA/K5ArFYjCBgUD6FC4VDJBIbK6U8r/Z+0LQ0txKJRKqOLfrnYizL4pAPzGKP9+1GLB5j6fOvVJ1jhSwcxyGfLwzmckVERHpwXRcjKP1MSyQTRMst6Y7rEk/2IZSKRmGTz1imTp9CEASsXrmm6ngoFKJYLNb8UO9COZTqqhabtuvUym0HHDyTpvXNrFuzvuo+pmnR2V77gZ1Id77nE/geQeDj5Ipbv4PICKBQSmqS5/vk84WNlVKD0L4XCoWIJ2Kk0xmCIKi5SinP9Whv7ahcvEOpGmzx088z86B9SdYlsEIWMw/cl5dffLVn+2JAJbATEREZKq7jEgDNTS2VKikAgmCLQ867WCGLWDyGU9y4q960GaUQpre5UmCQz+V3cNU7t1wmh2malefftSMhwIEHzwTo8YFVLB6jqall8BYpshPw3dL7AysUotipSkERUCglNcrz3HL7XpQgGJxB55ZlkUgmcB0XxynWXCiVTqcJgqBq1sYbr75FZ0eKDxw2u3LswENmkk5lePftZVX3t6MR2lraBmu5IiIivXIcFwNoaWqtzJMqMbAjfRs83NBYX6kOAhg1ppFEMsHK5b2FUgG5Gg+lUqk0th1mxXsrGT1mVNVg98bRjUzfdSovPf9y1X3C4RCFfJ58vrZfG5HugvL7A8sOU0hn8Wuws0JkWymUkpqUy+bxfZ9oLIJlWoPTvheyiJdnUeSyBdxibZXqtza3Ebart7Re9I/niCfizDxov8qxffffG8uyenwiGonYtLd11lxYJyIiw4vrunieT0tTa3WlFGBv8nNuc+rqk7juxkopwzCYNmNKr5VSYdsm1VnbbWrpdIawHWbl8lVVrXtdDjh4JsveWUFHe2f1DYFBqjM9SKsUGXqeU7oONgwDggA3p9EWIgqlpCaly21i0WiUkD04m0xa3UKpfDaHU0PzI3zfp7WlrWq4az6X58UlSznkAwdVbZ8di8d43z57sPSF6lDKNE2CwCeXzQ3aukVERDZVKBRIpzN4nsfY8eWd91yXSNSu2jl2S0qt7NU7f0ydMYU1K9f2mB9l23ZNBy+O4+A5LsVCkQ3rmqpa97occPD+BEHAyy+8WnU8Go/S0tQ6WEsVGXJuoYhplv6dMUMh8p0abSGiUEpqUrp88ReJ2oSsQQqlLKsyIDWXy1HsNmtiuMtmsnhe9bbNLy5ZilN0qlr3uhxw8EzWr93AurXVQ00Nw6zpC3OpHR3tHTX1d1hENirkCrS3dwBU2vccx+3TzntdIhEb0zSq5idOmzEFz/NYu2pd1bnhcIh8vlCzw84LhSKBQaV1cWovodTkqRMZM3Z0r1XUnR2dNfvaiGzKL7oYVul62rJDOOlcZc6UyEilUEpq0sZQKtqj5WygGIZBQ30dANlMDs+pnQustraOHi2Qi/7xHGPGjWG3PXftcf4Bs7qGmlZ/IhqLR2lp1lwp2fm9987yyi5SIlJbcvk8Ha2lUGpsOZRyHbeqGnhrTNMkWZesCq+7wpjeWvgMqNkdaIv5Ivh0G3Les33PMAwOOGQmb7z6FoVur4NhGARAOqVqERkZ3IKDWQ6luua0FrOaqyYjm0IpqUld7XsR2yYUHvid97o0jmoESqFU0amNKosgCGjZ0EI8sfFivb21nTdfe5sPHHZI1eDzLqPHjmLK9Mk9PhG1bZtcJqsKFNmpFYsOxXyR5qZm2lrbh3o5ItLPCrkCba3tGIbBqDGjgNJustsSSkFp2Hmx27DzsePGEI1Fe9+BL6jdHfjS6QyhcIgV761i1OhG6hvqej3vgFkzcRyH1195s+q4HQ5rIxQZEXzPJ/A8jG4f9Fph7cInolBKalKmK5SKRgj3YXvn/tI4uh7DMMhms3g1Uoqey+YoFouEQhvbIJ99+nmCIOADh71/s/c7YNZM3n37vR7tej4Buax++MrOq+uNYyKZ4L1/LcOpkYBZREoftBSLRVqbW2kc1bBxJqJBn3fe6xJPxAm6te+ZpsnU6ZNZuXxlj3PDdqhSxV1r0l077y1b2WvrXpc999qdWDzGS0uqd+GLxWO0trRXtUKK1CLf9TYdRYcZDlHM5muqw0JkWymUkprUFYTYEZtQaPAqpaLRKLF4lEw6i1MjP1w6Ojp7VEM9+8/FzNh9OuMnjNvs/Q48ZCZBEPDKi9UtfOFQmPZy24TIziiTyWBaFrZt43s+q1euHeoliUg/Kf1sNmhpbmVM9533glI177aIxWMEmxybNmMKq1as6bHTrG3bdHbU3g58QRCQSWdxXbfHkPN8voDTrTLaClnsf9C+vPzia1UBlGmaeJ5LNqMPrKS2Bb3sQG0YBgbgaBc+GcEUSklN6ppNYNthwuHBmSkFpRAsnoiTSWchCHpclA5HzetbqloaVi1fzeqVa3sdcN7d1OlTaBzVwNJNdtqJxaK0tLQRBJteyovsHDrbUpWKibqGOtatWV+TbyZFRiK3XPnY0tRaGXLu+z6WaVbtJNsXth3GtsN43YYUT50xFafosH7thqpzw3aYfL5QdW4tKBaKBEHA6lVrCYKAabtunCeVz+VJZ6pnRR1w8P5k0hneefu9quOmadHZrn9npbZ55VB8U5YdJt9em5WUIn2hUEpqUiadxTCMbdreuT90hVLpdIYA8LzhXYpeyBfIZvNVnx4v+udzmJbJ7A/O2uJ9DcPggINn8trSN3p8Uuo6Ts0OfJXhLQgCUqkUdnmDBMMwSCTivPuvZTX3ZlJkJHIcF9dxaG/rYGy5Usp1XaKxaK8zEremrqGOQmHjz7OuSqFeN0oIgpr72VcoFDGAFe+VWhanbdK+Z0DVh1D7HrA3lmWxdEn1zMlYPEZTU8tAL1dkSLkFp8fGQVCaK+Xli3jF2uiyENlWCqWkJmUyWaKxCIZh9PqP/0AJhSwSiTiZdAbDMPD94f0mNpVK0/0a3fd9Fj+9hJkH7kuyLrnV+x948EyKxSJvvvZ29Q2BUZn7JbIzyecL+L5f9e9GJBrBKRRZs1ptfCLDned6tLd1EgRBpVLKcVwSyfh2PV59Q13V5h27TBxP2A73PuzcMKp2nqsF+VwejFII19BYT0NjAwDFYpF4Ik5DY0NVEBeLRdlr3z156fmXq8KqcDhEIZ8nn6/NYfAiAH7RxbA2/77E0S58MkIplJKalE1niMZigIE1iDOlLMsqte+lMqX2PXd4V0o1b2ghGo1Uvn7j1bfoaO/cautelz332ZNINMJLz1cPNY3EIrQ2a6cd2fnkc3l6DImhVA2xZuXays6eIjI8FfIF2ttKcw3HlkMp13FIJBPb9XixeKyqGcc0TaZOm9xrpVQoFCLVWVstaqlUmnC4FMJNm7Gxda9YKNIwqp5x48dQ2GTXwQMOnknT+mbWrVlf/WCB0WNzFJFa4haKmJvp4AhFbLXwyYilUEpqUjabIxaLAmANYqWUFQoRT8RKM60MY1jvJOM4Dp0dnUS6hVKL/vkcsXiU/Q/ar0+PEQ6H2G//vXn5hVerXotIxKa9vaMmZm5JbUmn0oR6mStjmiaxeIx333pPf25FhrFcPkdHWztAZdB5EATbvPNel1g0WnmMLlNnTGHl8lU9rgEiEZuO9s7t+j47q3Qqgx8ErFuzvmrnPdf1qK9PUtdQB0b163PAwTMBWPp8dQtfNB6lpal1cBYuMsh8zyfwfAyz9zZhM2ThFh3cgnb8lZFHoZTUpFwmRyxeDqUGcaZUV6WU4zgUCoVh/eY1nSrNxeqasZHPF3hx8VIOOXQWYbvvw+MPOHgmHe2dVa0MpmlCALlsrr+XLbJDOtpTm31zGo1FyefyrF+zodfbRWTnl88VaGvtwLIsGkc1lI8a2x1KWSGLWPnnfpdpM6aQzxdo3lA9I6k07DyP69bG3BjP9SjkC6xfs6HHkHMo7UgcDoepb6ivalscNbqRabtO7VlFHbHp7OismddHpDvf9XqbcV7FMAwcXRvLCKRQSmpSqVIqBgSYW+jd7m+WZZJIlOZSZNNZ/H4edF4sOoM2bLmlqZVItwHnLz23lGKxyKEf3nzrXm8h3MyD9sU0TV5aUn3xaZomqQ6VKcvOw3M9cpnsFnfsrG+sZ9WK1dq6XGSYyucLtLW2MXrsqKrZcfY2fNiyqYbGOoqFYuXrqdNLFUMrlq3scW4A5GpkbkyhUCAINj7P6eVKKc/zCIVDlaBv3PixPWZFHXjwTJa9s6KqcswwDAI27qAsUksCz+t1PEB3ITtMvj2jHaplxFEoJTUpn8sTS8QABnXQuWVZJOtKcymy2XzVJ6c7qq21naXPv8y/3npnwCuwPM+jrbWNaLkFEkqte2PGjmb3PXft9T6+79PS3NrjzXoimWD39+3Kyy9sUqYfi9DcrDJ92XkEfpH37T2dSZPHMHHS6MqvKVPHVc4xTZNINMJ77ywf1u25IiOR7/u4rktLc1tlnpTneth2eIeqqpN1SdxuHxhNnDIBy7J6nStlGmbNbPRR2nkvYMV7K6mrT9JQrjwrForUN9RXKq3rGuqATVv49icIAl5+8dWqx7TDYdpaNHNSao/nuGytVMoMWfiui1dUC5+MLAqlpOb4vk8ulycWi2JZ1qCGUlCqpADI53L9UoLueR4rlq3krdfeJhaL0dGeYtkAvyHOpLMEflB57drbOnjj1bc49LDZm309M+ksY8aOqfq0uMsBB89k9cq1Va0Mtm2Ty2Srdi0SGUqFQoGTjv4CJx5xZtWvTUPgWDxGOpVmw7qmIVqpiGwP13EhKG3i0TVPynEc4ont23mvSzQWrdqpNhQKMWnqxF534ItEbDraamOuVC6Tw7QsVi4vDTnvCqEKhSKNo+or59l2zxa+yVMnMmbsaJYuqf7AKhaP0drSrtBfao5bcPrUvWEYBsV0bVRTivSVQimpOZ7nUcjniUQjvQ4sHmijRjcCpRZCZwcDl1wuz+uvvMm6NRtoGNVA2A7TOKqB5qYWVi5fNWDlvW2t7VWv3XNPP08QBJvddS8IAlzXZer0SRhmzwHvBx68PwBLN6mWwjDUBiU7Dd/v+9+n+oZ6Vi5bRS6nC0eR4cJxXIr5Apl0hrHjx1SOJZI7GEpFI5iGWfWzb1p52PmmP6ftiE0qlaqJ0KVrp7y1q9dXz5MKgvIIhY02beEzDIMDDp7JG6++VRVWmaaJ57lkNVdHaoxXcDD6EEpZtk2hI60WPhlRFEpJzcll8/h+QDQaIRza/hkR26txdKl8PZfZsUqplqZWXnnhVVzHpXFUQ1WFUuOoRtauWsfaVet2eL2b8n2f5qYWYvGNF5SL/rmYGbtNY5eJ43u9Ty6bY9ToRpJ1ScaNH0s2U30xOW6XsUycPKHHTjvhcIj21o5+fw4i2yPYhjeJlmURCodY/u4KXTiKDBOu69BSbg2rtO95XtXPu+1hGAbJ+mSPuVKZdJbWTVrRTLMUXnUPYoardCbDhnVN+L7PtPI8qSAIwDSIxiJV59bVJyHouQuf4zi8/sqbVeeapkVnjVSTiXTxig5mH9qETcvEdz087cInI4hCKak5qVQKgEg0OrSVUpksjrPtoZTnerz3r2W8/eY7JOoSvbYVGIZB4+hGVixfxfq1/bsTWDabw3PcynyN1SvXsGrFGj7w4fdv9j6FQoGJkycAMHrs6F5naR0waz/efuMdMt0qo6KxKK2tbXpTL0OuWHS2+c9hIpmgva2D5qaWrZ8sIkPOdT3aWtsBGFMOpYDt3nmvu/rGOgrdQqmukKa3uVJgDPth58Wig+e4rF65BoBpM0qVUk7RIZlM9JjRZUdskg3Vr9Gee+1OLB7r8YFVLB6jSf+uSg3xPZ/A8zHMrWy/V2aYJoWUOglk5FAoJTUnXd7RLRq1CYW3f3Dp9orH48Tise1q38tmsryy9HWaNrQwanQjodDmQzXTNGlorOe9fy2ntR8Hhne2dVZ9krPoH89hWiazPzir1/ML+QKJZLIy4D1ZlyAUCvWYw3PAwTPxfZ/Xlr5eOWZZFq7jklcLlAyxLf4Z3EJWVd9Qx/J3VtRE1YNIrcvn8pXq3LHlmVJQGq69oxKJRFWwPXnaJEzT7HWuVNgO09kxvCuBioUCGAYr3ltJsi7BqDGNQGl3w1GjGnu9z/hdxlb9W2uFLPY/aF9efvHVqnbGcDhEIZ/vsWOfyHDlux67zNiF0ePre/6a0Njj/FAkTKEjQ7ANYwVEhrPBLyMRGWDp8q42kWiEsL3jn35uKytkEU/EyKSzOH1s3wuCgKYNzSz713IisSiN5R1stvq9LIv6xjrefuNd9tk/TH15h5sd0dTUXGll8H2fZ59ewn4H7EOyLtnr+blsjj332aMy4NQ0TcZPGMuGdc2lcv2yGbtPp64+yUtLXuH9cw6peox0OrPD7RMiOyKTyZCI2/zxgV+S6khR31CH7/ukUxk6OlKbvV8oFMIMmSxftoo999qt8vdARHY+uVyB9rZ2ItEIiWQC3/cxDIOwveOhVDQWrdpXy7ZtJkzapddKqUjEpr1teLeuFwpFCGDFspVMnTGl8m+f73nENzOjq76+DjapSD3g4Jk8+9QS3nn7Pfbca/eNNwQGqc400WgUkeHOdz2MsMFD37qrx21HX3VGj2OGaRL4Pm6hSHiTVliRWqRKKak56VQplLIjEUKhwa+UCoVCxBNxspksnudttSXIcRzeffs93nt7GXX1dcRi23YBFgqFSNYleOPVNyuB3PbK5fIU8gXC5bbHN197m462Dj5wWO+te47jErbDNDTWVx0fNWYU3iaBnGma7D9rJq8ufb1q1lY0GqG1Wds/y9DqbEux7L213H7b7/nP077K6lXNtLSkufUHv+LfP30+y95Zvtn7JpNJWptbtY25yE6ukMvT1tLG2HGjMQwD13WJx2P9EibbdphwJFz1821qedj5pkKhEMWiM6x3n013psEIWLN6XaV1DwDD2OyHTF0tfPlulaX7HrAPlmX1aOGLxiK0NPVfFbjIUPK3Y8asaVkUOnfsul5kuFAoJTVnY6WUjT0UlVKWRSIRL4VjQYDvbX54cjqV5tWlb9DW2sGoMaOwtjNEC9thYrEYb7729g7tBpbqSEG3z3oX/fM5orEo+8/at9fzM+kMk6dOqhrCDpBIxLEjdo+ZWgccPJN8Ls/bb7xTORaJRujs6MRzq9v9RAaL7/ukUilsO8w7b73L1OmTiUQjGIbBZ//90zQ2NnD7rXduscWvrr6Od99ZPqzfZIrUunw+T2tLW2WeVH/svNddQ0N9j7lSHe2ddLT3UhUVBOSG8Q5z6VSGpg0t+J5f2XnPdV1sO4y9hcqzTVv4YrEoe+27J0uff6XqQ7yua4Md2TBGZGfhFhzYxvDbssMUU7lt2oRFZLhSKCU1J1OulIpG7B5hyWAIhSziiTjpdBowesxWglK73to163j1pdexTLNf2u4i0Qghy+LN196u2gFoWzRvaK5UahXyBV5c/BIHH3pQr+Ge53kYBoweO6rHbYZhsMuE8WSz1UMa99nvfYTtcNUnooZhEARo+2cZMoVCEd8PCPyAZe+uYPf37Va5LZGI84VzPkdzUwt/+PVfNvsYXdWFvQ81FpGh5nkeruvR0tTKmPI8Kddxet1MZHvVNdThdNsxa2pl2PnqHueallW5XhlufN8nk82yZtVaAKZNLz3PQqG41fEDdXXJXlv4NqxrYt2a9ZVjhmEQsLH6XWQ48/Lbfl1umEaphW877isy3CiUkpqTTpUHnceiPXZ/GQyVmVLlXTO8TT7hKBYd3n7jHZa/u5KGUQ1Eov3XKx6Lx/A9nzdf/1evO+BtSbFQJJ3KVNbz0pKXKRSKfOCw2b2en05nmDh5wmaHsTeObujx6Y4dsdln5l49PhE1TbNcpSUy+Eqf2gesXL4Kp+iw+/t2rbp9z71257hPHM0z/1jM4qeXbPZx6uqSNDc1914VISJDynVcMukshUKRseVKqSAoVVX3l1gsRvedEaZOmwzQ67DzaDRC+zD9t6JYLGIAq5atJp6IV0I+p+hQ31C/xftGohGSdYmqzSEOOHgmQI8WPjscVlu01ARvO3bjhnILX4d24ZPap1BKak46ncEwDCLRCKY1+H/ELcsikYxTLBZxHKeqUqqzI8UrL75KKpVm9JhRA1LJlaxLUCgU+Neb725TS1yqM929c49F/3yO0WNGscdeu/U4NwgCAs9n3Pixm328WDxGLBajWKz+hOeAWTNpbWlj9Yo1G8+NRWnpxx0ERbZFqjNNKBTmX2+9C9AjlAI4/sSj2W3PXfntHX+ieUPvW5UbhkEimeCdt95Ty4nITsZxXdpaSwFHV/se0K9t/tFYBEyj8qFLNBZl/IRxvc6VCtth0qlMr9XUO7tCvkgQBCxftpJp3YacA8TiW5+LOXaTFr5RoxuZtuvUHqFULB6jtaW9amc+keHG9/zSLnqmydHfOIOPfvVkjvivU0v/vexU2MJ7ASsSppjObnEUiEgtUCglNSedyhCNRgADawja9wzDoL6+9ElhNp3B93x832fVitW89vIb2LZdKl8fQPX1daRTGd59Z1mfL+aam1qIlHe56Wjv4PVX3uTQw2b3Gpxl0lnGjh+z1SqvXSaOJ5upbsvbf9Z+GIbB0hc2XnyG7TC5XH672w5FdkRHeyeRiM07b73H2PFjaGjs2X5iWRZfPOdzANxx252bfSNp2zae57OqW+gqIkPPdVzaWtoBGFuu7IH+DaUsyyKZiON0my03bcYUVixb2eNcwzAwgHyu0OO2nV0+l8dzfdasXMu0coui7/uYptGn6u+Ghvoem8AcePBM3ntnOZ3dqqZN08TzXLX3y7DWNeS8dV07y158lydu+jMrXlnOkj88wf/95D5a1m6+GrA04iLAzQ+/fydEtoVCKak52XSWaHku0lC07wHUl3ejy2Sy5LI53nz1bVavWkvjqAbsyOAMX29orKe1uZXl763c6g6AruvS0d5ZDvNg8dPPEwTBZlv3HKfILhN36dMaNp0dUd9Qx667T+elTT4RhdLrJTKYPPf/Z++84yQpy7V9Veju6pwmp52d2ZnZxO6yLDkqCKIgSFAEQRTFHI8ew/Ho0U+POXvAjIKoICoiElQUFBQkbQ6zu5Nz6Jy7q+r7o2d6t3dmdmd2J1PX7zcMW13dVd1TXfXW/d7P/agkE0lkk8zB1jYamya6pMbxl/q5/s2vo+1ABw/d/6cp13O5nQz0DebdhwYGBouCbDZbKAXzl/pRcypms+m4G4xMhctTHHZeW19LYCQ4aTaSjj4he3EpEI3GCYwGUFW1EHKeyWRxOp3TcoBbFAs2h71oImrD5pPQdb1owgpAFCUiwcjsvgEDg3lEy2mFsXAykC/Ztfld+JtryUQTxPond1+PI8oyqbCRrWawvDFEKYNlRyKRRLEpgL4g5XsAHu+YUyqepLOjm2QyhdfrOa5yvZraUiqrfBN+ampLp7EfHob6h+jtPrprIx6LA3rBgv/MU8+xYmUtFVUThadkMoXL7Z5WxyKLYpnQ/hny+RFd7d0EA6HCMpPZROiwfxsYzAfJVAoEGB4aIRqJFYWcT8apZ27mjHNO5eHf/4n9+w5Ouo4gCNjtNtoOtBtdJQ0MFgmpVJpgMITDaUdRLGRnOeR8HIfTQU49VL477iSarITPYrEQXoKCSzwWo693AIC6+rwolU6lcXmn37SlrLykyAFVXVuJv8TH9ucnlvANDx/9pt3AYDGjZXOF8XVyNIJstWCyKXgbqhBlidHWiU7Kw5HMMtl4Es0YTxgsYwxRymDZkYgnsNmswMI5pca7z2iahsNhx+G0H/drqarKlRfeNOFnOjkUgiDg9rrp6eqjv29gyvUCI0FMpnwL597ufno6ezltCpdUMpGkqqZi2vtfXl5KKllsvR8PNd3x4q7CMkWxEAiEjunqMjCYTcZbsh/cN3We1JG8/qarKSn1c8ftd03p7rMoFjKpzFG/dwYGBvNHOpkiOBou5Ells7lpTa7MFMVqOTyekdoV+bDzyTpzmi1mwuHIkrruqTmVdCpDb1cfVptCSdl4aLyOwzH9aAKXx1lkpBYEgQ2b17N3V2tRCLrJJJNOpUilUpO8ioHB4ieXziCMTZInRiNYffmJa8kk422oInCw76hB6IIggC6QXYKlvgYG08UQpQyWHclEstB57/DwzfnEV+IF8k6pqbrTzReiKOLxuuk82DVpQLOqqgRGg1jHhLx///M5RFFkyxmbJ6ybSWew2qy43NOfDXWOrXv4oLuiqpzSspKiUFNJklBzuaLwUwODuSYcimIxmzm4vx2b3TapO/BIFKvCW959E+FQhF/ece+UN5ROt5Perj5iMcN2b2Cw0CSTaQKjgUKelJpTx7rlzS4WiwVJlAp5jnaHHX+Jb9IOfOPXvXR66dxsju9rV0cPtStqDxtn6fmg92miKEq+KUxRCd96stkse3buK15ZF4xyaIMli5rOIogiuqaTCkax+Q91qPS31KJlc4Q6jj6BJZkk0hFjLGGwfDFEKYNlRyKRQrEqyKaFE4O8/rwoFZ+Fm1F1FjpuiKKI2+PmYGsboWCo6LFEPImqaoiiiKZpPPvP51m7YfWkwlM8HqemtmpGYp/ZbMLtcReJTYIgsOGU9ezb3XqECGUMPA3ml0g4gnks5LyhqX7aJbb1DXW85ppX8fwzW/nXP/496TqiKGK1WWnf37EkO2wZGCwnUokkwdEQJeOd9wQwW0yzvh1BEHC6nUfkStVMWr43viNLKew8nc6gqjl6u/uoW5kvTcxmcyiKUnBcT5cjS/iaWhqx2qwTuvApVgujw0aHXoOliZrNIUp5UUnLqVgPE6WcVSWYHVZG93Ud9TVEk0w2kTJK+AyWLYYoZbDsSCWTWI9jcDSbKIoFxapMGmw6XcKhCPfc+RtCwfCkj2fS2UmXT4UkSzicDvbvOUgsekj4CQVDhTLH1j0HCAZCkwac53I5ZNmExzexM9mxKKsoJXXETPCGk9eTy6nsPmxGVFEsBEan7kJiYDCbZNIZcpksyUSKgb7BopDzUCBUKO2bile86uW0rG3i3jt/w2D/0KTrKFaFZCLJUP/wrO67gYHB9FFzKsFACFVVC+V7MLud9w7H7XGROeyaV1dfw9DAMMlJnMCyLBV1nFvsJOIJRgYD5LK5Ql5WOpXG7Z352CBfwnfIaSrJEidtWsuOrbuKOgdbFAuRcIRcbuoSJwODxYiWU9E1DUEUSIzm8+MOd0oJgoC/uZZI7zCZ2NRjjnwJH2QSRjWBwfLEEKUMlhW6rpNKpvNOqQUsm5MkCZvdRjw286468XiC++/5A5/6j8/x98eewjJFt75oJMoffvNw0cDtWJjMJqw2K3t3tZJMJNF1neGh0UIG17+feg7FqhQyn4r2KxqnqrbiuHK6nC4HIkLRvjY2r8TusBXNiFoUC9Fw1AiHNpgXxm8Q2/a3A9DYkg851zQNQRTJZrJkMpkpny+KIje//QZkk8xPbr9ryhsml8dFd2ePkYliYLBAZHPZQmONklI/up5v7GEyz83klc1uQztMbKkdE296OnsnrGuxWAiHlk7YeSwSZ6B/EDgUcp7LZWdU1j+OoijYbNai8+yGzeuJReO07e8oLBMEAR1OaKLPwGAh0FQVxlLmkoEwCAKKp/i74m+uBR1G90/lpswjmU2kjS58BsuUhQ27MTCYZRKJJJqmYVEsmMwLKErJMja7lVhs+qVoqVSav/3p7/z5j4+RSqbZcsZmLrv6lbg9Lu5/7M6idXVdZ3Q4wEP3P0pXezc3v/ON2KfZRchsMaNqGnt27qO+cQXZTA6HQyKTzvDCs9s45bRNE2aPx8WkksNmmGeCLMv4Sn1EwtHCfkqSxPqNa9m5dReqqhYywDR0EokkTtf0A1MNDI6HRCyBKEkcbG1DkiRWjLU2T6czuD0uyivL2LtzH5JHmlKM9fg8vPGW6/j+t37CA79+iKve8JoJ64iiiCTLDPQOUt+4Yk7fk4GBwURy2VzBhesv8+U779msc5Y7eWTY+bh409XRTdPqxqJ1TWYTwWBozI28+IflsViMvp5+FMVCaXkJkBeNrDbluF6vtLyE7s7ewrhj7YY1SJLEthd2sKrlUDdUs8lEcDRYaCRjYLAU0HIajOnTydEIiseBKBePJxSPA3u5j9HWLio2rZryvCSZZDLxJGo2h7SAESUGBnOB4ZQyWFZExyzwFsWCvIDle5IkYbfbpjWrl83m+OujT/Cp//h/PPDrP9K0ehWf+NxHeMu7bqSsvJSe7mH6+wJFPwP9QTJZuO5N17B7516+9Kmv09PVN+39s1oVBFGkbX8H4xE6217YQTqV5vRzJpbuxWJxyqvKTqgksqTUTzZd7DrZsHk98ViiaEZUEiUi4aUza2ywdAmFw1gs+ZDzFStrCzdF6VQar9+D2+NiRUMd4WD4qN2xNm3ZwLkvP4s/P/TXiQG9Yzic9inLdwwMDOaW7JgoJQgCPr+XXDaH1X58Isp0MJlMWBRLwT3pcjtxe92TduAbJ7kEynIymSyqqo2FnNcUsihFQcRimX7I+eG4vW50/ZCL2mpVaFnbxPYXdhadd602K4HR0Izc4QYGC42ayTGuMSVGI0Wle4dT0lJLKhgjMRw65mtm44v/XGFgMFMMUcpgWREdE4EsFjOyPPMys9lClsfL96YWpVRV5Z9PPM3/fOTz/Prnv6OyuoKPfOr9vPODb6WmruqY2xAEgfMvOocPfeK9ZDIZvvKZb/Lsv56f9j7a7TZMJhmHM+9IeubJ5/D5vaxqKZ7F1XUdNatSWl467deeDIfTjiRLRQPKtSetRpalohI+q1UxAk0N5hxN04iNdbLpbOuioXll0ePjjr7yyjLKq8qPWV5zzfVXUlldwc++f/ekYf2CICDJMv09/bP0DgwMDKZLNpMlOBrC43MjyzLZbA673T6n23S7XaRTh+VKraiZtAMf5N2Us9EYZa7JpNOoqkpv16GQ83Q6g9vrOm7XmdWqYLVOLOEbGhhmoG+wsEwURXK5fMD64Z+rgcFiRs1kECQRNZMlE01g9U0uSnkbqxEkkZF93Ud9PclsImWU8BksQwxRymBZEYseckrNVYDpdBBFEYfTPqlTStM0nn/mRT77sS9y149+hdPt5H0ffScf+Pi7aWhaOcmrHZ3G5pV8/P99mNr6Gn5y213cd/fvpp3JZLVZkaR8yOqenfs49axTJnQfS8QT+Mu8WK0nNqssSRIlZSUk4odythSrQvOaJra9sKMwI2oym0glU0Vtog0MZpt0Ko2ua/R09ZLLqYWQc03TkMa65kFeTKqrr8HpdBy1HNdsMfOWd91EPJ7grh/9clJnlcNpZ3hw9JgB6gYGBrNLKpUmFAhRUpIvQdd1HcV6fM6e6eJyu8hm806pmtpSPv7Z9/G5r32MikovlVU+Kqt81NTmJ3ssZjPh4OJ3CKdSaYYHR8hms4WSxEw6jcs9+Y32dCktLyk6L47nWm5/sbgLn9vjYqB/iO0v7KSjrctwnhosetR0FlGSSAby9yfWKZxSssWEp76SwIGesRyqyZFMMmo6g5qZWbMjA4PFjiFKGSwrxp0PimKedmv3ucLpcpJJZ8iOXTh0XWfntt188VNf50ff/RmSJPH297+Fj/7PB1mzvuWEsi3cHhcf+Pi7uOAV5/LYI0/wrS/dNqNuPs/+63k0TZu0614mnaGiquK49+1w/CXeCWHQGzavZ3hwpGhGFEEgHp95SLyBwXQZv5k52DoWct6czy5Jp9K4fZ6i76MkSTQ2r0RAIHWUGfqauipe+/rL2fHiLv7+2FMTHs8HK8v09QzM5lsxMDA4BqlkisBoEH+pr7BsrieuFKuFcW1aVVWuf83bueW6D/Dai97ElRfexJUX3oQ6dvNptpiJRqOLvjQtHo0XrtXj4e06YHNML9NyKtweV5GQ7/V5qFtZy/bni0UpURRxu1043U5GhkfZ8cJODra2F012GRgsJnKZLIIkkhjNd9K2+afORCtpqUVNZwl3Dk65DgACZOLG5JbB8sIQpQyWFbFo3smgWJXj6hI3W2hqhpveeg0//tU3qaktpaTUhd1uorGplkQiyc1vv4FP/u9/smnLhlkLWpVlmdffdDU3v/0GOg528YX//irtBzqm9dxnnnqOupW1VFYXi0+pZAqn24nDMTtlDnaHHdlkKnJyTTYjajKbCAaCs7JNA4PJiEZiyLKJA61tlFWUFoL10+kM3kmCdM0WM81rmkgnU0dtS/6yi89j3YY1/OYXv6e3e2Kpnt1hZ2TYcEsZGMwnsUiMSDiK/7BmHXMtSlkUC4LIUfPoxhnPZlrsZWmxaJz+3gEsFjPllWX596aDVTkxJ7XVZsWiKIVJPICNm9fTfrBz0gk2URRxufI5XeFQhB1bd9O650BhDGhgsBjQciqMdfpMjkaQzCZMR8myc9WUYrJZGG09egmfbDaTDsendW4xMFgqGKKUwbIiHsvPlik2K6K0cId3Jp3musvexi3XfYCrLr6Za1/5Ft509Xuoqq7gf778cU4/59Q5c3Kdfs6pfORT70eSJL7++e/wj7/+86jr9/cO0N3Rw2lnnTLhsWQySXVt5aztmyAIlFeUEk8cmtX0+jzU1tew/YVdhWWKYiE4evRwaQODEyESimAyybTt72BVc8Nhj+hTzvrbHTYam1cSDU/taBAEgZtuvR6rTeEnt91ZlJMy/rjJZKLPyJYyMJgXdF1nYGAIXdcpKfOhqiqySUaa49xJSZJwOOxFQsvRERZ1OZqmaSQSSXq6eqkZCznPZrPY7bZZ+SzLKkpIHDY22LD5JHRdZ8eLu6Z8jiAIOJx2PF438XiCXdv2sGfHPiLhqDF+MFhw8mV4+YnnxGgEq//o2WuCKOJrqiXcNUg2ObVALcoSajZnlPAZLCsMUcpgWRGLjZfvWRbUKTUVitUyLy2fa+tr+Nhn/4PmNU384o57+fmPfzXlwPiZJ59FFEVOPbNYlMpmslgUC06Xc1b3zevzTKiX37h5Pe0HOgozopIkkcuphpvEYE7I5XIkx8p54rE4jWMh56qqIskyijJ11oyvxEd1XdVRg89dbidvuvV6+nr6+d2v/jDhcbvDxshwwCg5MTCYB1RVJTCSb57hL/XnQ85tJ1ZuNl3cHhfpaeYjmkwykWM0VFhIMpkMmqbS09lH3VjpXjqVDzmfDTwed5GQVF1bia/Ey7YXdhzzuYIgYLfb8Pq9ZLJZ9uzcx85tewgFw4u+JNJg+ZJ3SuWF8WRg6s57h1PSUouu6QT2T92pE/LHfCa2eEVsA4OZYohSBsuKeDSOKIpYLGakBc6UWmgcTjvv/vCtvPI1r+Cpx5/ma5//DoHR4pI4TdP497+eZ836FlzuYvEpHotTXVs1646uyWz6Gzavz2dubT00IyqITBoUb2BwoqSSKRDg4P7iPKlUKo3viDypyaiqyd8sHe0Gcu2GNfzk3m9z4y1X4/c7C8HGlVU+auvK8m6pXsMtZWAw12SzOYKjIQBKSv3ksllszvkRpRxOeyE36lhYFAuhUHiO9+j4SacyDA0Mk8lkCp33VFUtlD6fKIpVwaJYCuHwgiCwcfNJ7N3ZOqOyRqtVwevzoOs6+3a3smPrLkaHA9P+OxgYzBZqRkUQIBNNoGVzU3beOxyrz4WtxH3MEj7JbCYdjhmOQINlw9xbNgwM5pF4PI5lzOWwkOV7iwVRFLni2lezYmUtP/v+3Xzhv7/GW9/zJlrWNgGwf+9BgqMhXvv6y4uep+ZUJFnC5/PO+j4JgkBZRQk9nX24zSYAauqq8fo9bH9hJ2edfwYAiqIQGA1SVlE66/tg8NImmcjPLra1tuNwOgrHWDaTwT1JntSRiKLIysYV7Em2kognsNknv8H1+jy89qKbJiy//7E7sTtsjA4HqaxKYD/BkGADA4OpyWVzBEaDyLKE2+MiEorOm1NKURR0Pe/+vf+xO0GHYCCEbJJxuhxFjm5ZlolF42QyWcxj18bFRCqZKjRpGO+8p+v59zgbCIJAWVkpPT19uMe6+W3YvJ6//env7Nm5j01bNszo9RTFgqJYyGQyHNjfhtlkorquCr/fN+elmwYGAGomgyBJJAbzE8JTdd47En9LLd1P7SQxOrW7SpREcskcajqLrCxct3EDg9nCuGs3WFbEY4l8m2dBWJTlewvFpi0b+OhnPoTDaaOuvgKPx0ZlpY8tp6/nJ/d8i8uvuqjQmhryZZBV1ZVzNnDzeD1FlnpBENhw8np279xXyOCxWMyEwxEyRs28wSwTDkWwmM0caG2jsan+MGeUgM1undZryLLMqpYGcrnchNyocY5muBIEAbPZRK+RLWVgMKdks1mCoyF8Jb6881cAs2V+RB+zxYxskujsGKC/L0B/f4Af3/ZL3vqGD9LVMUhP93DxE3R90ZatR8dCzk1mE+WVZaiqisksFyYCZwO314V+2NigqaURq81a1AhlppjNZrxeD2aLhY4DnWx9fjv9fQNks8bYwmBuyaWziJJIMpB3VR/ulDqaw8m3qgZBFBht7Trq6wuSRDpqxAAYLA8Mp5TBsiIWjaMoCpIozlpXu+PBbLHwh8fvJpvJFjm2FlIoq6gq56P/8yFKSl284fJbJzx+/2N3AvmSPl3XilpnzzZWq4LdYSeTzmC25Gd4Nm4+iSf+8iR7d7ayYfN6BEFAFESGBoaoqaues30xeOkRiUTJZrIMD45w7svOAvI5U2azaUaz/larQvOaJvbs2IvkkWb8/bbZbQRGAsRjlYZbysBgjshmsgRGg0XXtLnuvDeOIAi43U7i8SRWa/78sOnUDTz5+L/Yu7uVkzatK1pflCQSsQRuz+zkNM0m8ViMvp5+auuqkSSJRHz299Nqs2K2mMlmc5jGwujXb1zLjhd3o2naCcUJmEwyHp8HNafS09FLT2cvVTWVeH0erDbrgo4ZDZYfuq6jZrKYFAvJ0QgWlx3JdOi2OxNPIkoiJuvEMYfJasFdV85oaw81p69FmOK4l8wm0pEENr8bQTSOX4OljeGUMlhWJOIJFKuCybSweqsomZFkhX17O/Ozo2M/E2ZF5xnFquB0Hj3/IR5LUFZeVhCL5oqyipKiGeGmNY0oiqVoRtTpctDfM0AqZYQ5zhRVVcnlcgu9G4uOTDpDLpuj42AnQCHkPJVM4/V5Zvx6LreT+sYVhEORGWc7CIKARbHQ29034+0aGBhMj1QyRTAQpKTUn/+OCmCax/I4l9tFJn0oE6llbROKVWHrcxMDvC0WM8FgaN72bbqoOZVkIkVPVx91K/Ole5lMdtZFKUEQKC8vK+rCt/GU9cSiMdr2d8zKNiRZwu1143A66OsdYOe23bzw7DY627oIhyLGddNgVtBVDXQdQRBIjIYnlO4JgoCu6VOOG/wtteSSacJHuW8QJREtp5KbZjMFA4PFjCFKGSwrEokkimJBNi18HkO+y94iDCA8ymSKruvkcjnKK+c+x2m80874BVmWZdZtXMOOF3cVSvtEUUSQRPrHciwMjo2u6wRGg+zctpu9u/cbnYeOIN9yXefg/nZMJhO1Y9ko2Vx2WnlSk1FWUUpFVTnh4wgpttttBAPBQudQAwOD2SUYCJOIJ8dCznNYrfPrirHZrRx+3ynLMus3rWX7CzsmhG+bLWZisfiiC+VOp9OMDI+STqWpHeu8h65jtU6v3HkmuL0uNPXQB7Z2wxokSZpWF76ZIEkSbrcLj9eDzWpldCTIvl2tvPDvbezd1crw0AjJZMoIkjY4LsY776nZHOlwvCgbSsupSBYzJruCmplcBHXXVSAr5mOW8ImSSCa2OEt+DQxmglG+Z7CsSMaTlJaVjAlCC4soiQiCiD42U3K86LpOOpUmlUwjiKBr+lgHu9nLcRgnmUgWrOxzjdlixuVxkU6lUcbsyxtOXs/zz2ylo62LhlX1ADidDoYGRyirKDNKnI5BJBylu7OHWDSG3WEnHoszODBEZVXFQu/aoiERSyCKEgf3tbGiobbgqhR0sB3ncS8IArUrqkkmkkSjsYIbsRBuDKDnywYnm4U3Wyz0dfXRPNaAwMDAYPYY73LpL/WTzWZxeZzHeMbskr++FQsbJ2/ZwHP/eoGDre00r1lVWC4IAmg6qWR6UV3v0ukMfWOOzrr62rxQIwr5DM9ZxmqzYrGYyOVyyLKM1arQsraJ7S/s5Oo3XDHr24O8e8rhtANjY650hvYDnYCO2WzGX+rD7XFjt9uMkHSDaaGpKiCQCkaB4pBzNZvD4rZjtitEeoZhkow7URLxrapmeE8nuXQGeYrqBdliKoheU5X5GRgsBYyj12BZkRxzSi2GzjWCIGAyyWjqzJ0qak4lFo0TCoQIhyKYLWZWNq1g/aZ1NI0NYIOjwRm1SZ4O6XSayur5EzDKyktIHfYe1m1aiyiKbH/hUAmfIAiYLWZ6u3rnbb+WGvFYgtbd+9mzcy9qTsXr82I2m3G5nPR09I65gwwAQuEwAtDV2UNjU750L5vNYbFaTqhkVZIkGpsbkESR1Njn3dM9fKh8tz9A694ubnn9B/jWl35U9Fy73UYgECIWjR339g0MDCai6zqD/UMAlJT6yGZz2O32ed0HWZZRFIVs9pAgvXbDGmSTzNbntk98giAUla8tBhLxBH09g5hMJiqry8mkMzicjjnJyRQEgbLyUhLxQ+6PDZvXMzQwzEDf4Kxvb7LtK4oFj9eNx+vBbDEzNDDCnl37eOHZrbTuOcDocMCIFTA4KmpGRRAgMToecn7Iia1rGiabBVmxIMrSmIA1EX9zLbqqETw4dYm/IIroqkYuZZTwGSxtFt5OYmAwS+i6TmrMdSMtcKbUOGaLGVVTkTj2wC2dSpNMpUDXkU0m/KU+PF43doetyPlltSp4vG4i4QhdHb0ERoPY7DaUaTqnitwbhyEIAja7vTBbOB843fkZ63E3md1uY1VLI9tf2MmVr7ussJ7dbiMwGiASjuJyz+8s92ImlUrR193P8OAIZsWC1+ctelySJGSTTGdbFy1rm17yQa6aphGLxBnoH0RTNRpbGgBIp1KUlpec8OubzSaa16xi17Y9SLI8IduuuraSc152Jk889iTnXXQ2FZXlhccUxUJPVx+r1zWf8H4YGBjkyeVyBEfz7dj9pX5yudycuHuOhdvjIjAaLJwTFMXCmvUtbHt+B9e+8bVF52aLxUw4FKW07MTPSbNFNJIPOa+urUSSJOKxBNWl/jnbntvrprsrfyNeU1vK6264jFdceg42uw2rLe+sliRpXnI6ZVnG6cq7XzVNI5lMcXB/O7oOitVCSakPt8eF1WY1uj4bFFDTGQRJIjkaQZQlLK5i56NkNiGIAorXRWIkhNk28dixlXpQvE5G9nVRurZ+ym2Jcr4Ln8k2/UYtBgaLjcVx525gMAukkik0TUOxWjAvgkwpyN+kxuOT13qPD26ymSyg43A6WFFfi9PlOGYnGEEQcHvcrN/oIhKO0tPVSzAQwmpVCqVwUzHVIC4YCNG0unFehQuTyYTP7yUWjWGz5y/YGzav476772d4cKRIKLDZbHR39rD2pNUveXElk8ky2D9If88A0lhHoak+E7vDTmA0yMjw6KK6yVkI0qk0uq7T1toOUCgRzeVysyZ22uw2GlsaaN29H4/PM6Fb1GVXXcqz/3ye3/7yAd71obcVPS84GiQWjeE4RjMCAwOD6ZHL5giMhlAUC3aHjXAogmkBxgdOt5PBgeJr78lbNrDjxV10dfSwYiw8HPKTWeFQ+IRL/2cLXdeJRqL0dvdx2lmn5JdpGrY5LC+02Q+V8KmqylUX3zxhnckm1+YaURSxWhWsY+OsbDZHf+8gvd39CIKAv8RLzYqaReHWN1hYcmPdt5OBCFa/q/Bd1jUNQZIQx8pALU4riZHgpN93QRDwN9fS+8xuUqEYimfysYFkMZGJJNBKPEUdvw0MlhLGkWuwbBgPCs4HnS8OvdVsNhfZcjOZDOFwhFAgRDyWwONx0bxmFSefupG1J62mvLIMm9027YFoXpxysfak1axZ34JskgkGgjMu18pmc5jNpgVpQ11a7idzWOeQDZvXAxSV8EE+lyMWiREMhOZz9xYVak6lv2+A7c/vYLBvCJfHhdPpOObx4nI76WzrKvqcX4qMfy8OtrZTWV2B3ZF3BQoIBVF0NvD5vdTV1xIKTgw+d7mdvPKKV7DjxV3s3dVa9JhiVejuNDrxGRjMFtls3inlL/WPnSf1Oe8sOxnWSSaLTjp5PaIoTijhkyQJNacumvN1NptjeHCUVDJF3VhjCB3mNHtSEARKyvxFJXxHkkqmGRoYXtAgcpNJxuV24vG6cbocBAIhdu/YW9RZ2OClh67rqOksiGOd93yH50mpmG2Wwrgt76KyT1l+52+uAQFGW7un3J4gCGPbXBznDAOD48EQpQyWDbFIPo9FsSoT3AkLhcliIplIEQqGCAXD6DrU1FWxbuNaTj51AytX1ePxuk945lYQBFxuJ2vWt7Bm/WrMJhPBQGjaA6N4LE51bdWCWM8dDke+re1Yl7jSshKqairZ/uLOCevanXa6OroXXWeiuUbTNIaHRtj2wg66O3qxO+24PK5pH+eyLIMg0NU59aBmvhkdHp33DKVoOIokibQdaKexeSxPKpNFsVln3T1RWVNBaZmfcCgy4bGXX3w+/hIf9919f1F3RKvNSiQcIRoxsqUMDGaDfPleiJJSH6qqIptMC9IIxaLkb0IP/747nHaaVjdOmiuloy+aLMB0Kk1Pdz7Tsa6+hlwuh9limnM3kMfnmTJrB/Ljlk9/5PP81wc/w50/+AXPPPXcpBMB84UoirhcTgRBYNe2PZOe+w1eGuiqBrpOLpFGTWeP6LyXQz6izE5xO9Cn6JRstltx1ZQx2tp9VAFWEEWyidnNmTUwmE8Wh53EwGAWiEYPiVKLpa7fbrdTVlGKr8SLw2Gf8xnacXHKdVIL0UiM3u4+goEQFot5SieIqubDGH0l3kkfn2skWaKktITAaBCH005NbSlfve1/8p0A/V5EMT+bNJ4fEY8nGB0JUFZeuiD7O5/ouk44FKGzvZtUKoXD4cBxnC5Al8vJyFAAf4kfr88zuzs6QyLhKK17D+J0OVm3Yf7KMcOhCIHREMlEilXN+TypZDJFZXX5MZ45cwRBoL5hBclking8gf2w75/JbOK1113Oj777M/7592c454IzC48pioWezl5Wr29eFKU7BgZLmVQqRSAQZN3GNfmQc9vCdLQTRRGHy042ky3qnLtpywbuufM3DPQNUlF16DxkkmWikSger3uyl5tXUqkU/T39yLJEZU0F6XQG7zzsl91uQzabmOo+3ON1c92brmHf7v1sf3En//rHvwGoqCqjZW0zq9c107RmVdG5dz6wWhVkSWLvrlZWrlrxkhirGBSj5fJiajIwFnLuL/6+yEd025MVM5LFjJrNTZqJ62+upf2x54n2jeCqnvx4kswymVgCW8nCnzMMDI4HQ5QyWDaMO6UsVmXR1FS73M4FC+Z2uhysXtdMLBqjr7ufYCCI2WLBdkReVSwWp7K6YkFmj8fxl/oYHMh3SFJVletf8/YJ64znRzidDro7e/H5vQu6z3NNNBKju7OHSDiKw2HH6/Wc8Gs6nQ7aD3TgOHndguSqQP4Gp3XvAZwuB7FojGgkNi/fkVwuRyqVorOtC4CGMaeUpqo4XXOzfUmWWNXSwM5te8ikM0Wi9ObTNtHY/Hf+cN9DbDn95EIWnNVmJRgIztvnsljJZrOkkmlisRiRYBTQqaypxOk6drmqgcE4I4OjZDNZ/KU+ctksXr9nwfbF43bT29NfJEptPOUk7rnzN2x9bjuvfM0rCsstFguhYITaFQuxp8XEown6egaorq1ClmVi0TiueSj1z3fhK5nSHSLJEudfdA7nX3QOmqbR09XL3l372be7lX/9/d888ZcnEQSB2voaVq9tomVdM6uaG2hYVT2p23o2g9NNZhMul5O2/R1k0hmqaioXjYPfYO7JO/yEwzrv5b8v+WNZQDJPHLtafU5i/aOTilLelZV0mWVG93VPKUqJkkQmlZlS2DIwWOwYR63BsqHglLJYFo1TajHgcDpoXttELBanr2eAwEigyDmlq9qCB2CPdxhUc8cuy5NlGS2nMjwwQmVNxTzs3fySiCfo6e4nOBJAsVnx+WfPwWYym0gmkvR291PfUDdrrztd1JzKgX1tSJKE2WzGatPo7e6fF/EllUwBAgdb23C5XZSU+tF1HV3Ih+rOFYqi0LKmid3b9yLJUuHcJAgC11x/JV/6n2/w6IOPccW1rz70HKuVnq5e1qxveUkIMJqm5buPJlNEQlHC4TDpVBoQEAQBi8WMruvs3rEXp8tBTV0VLrfrJfHZGJwYvT35jLaSUj+5nIptDnOQjoXNYUPTiq9xXp+H+oY6tj6/o0iUMplNBIMhcrncgk++RKMxerv7OeX0TWNL9EkzsuYCj8+Dmk1NGmp++DhPFEXq6mupq6/l4le/nFwuR/vBTvbtamXvrv385ZHH+dMf/4okSdxx77e56ep3T3i92Q5Ol2QJj9dNT1cfqVSKlQ31SLIxNn0poGayCAIkRyOYHdaCM0rLqciKCWESgdJkUxBEMR+EfsTjoizhbagmcKCHunM3HFV0UtNZQ5QyWJIYR63BsiEWHQs6typIxozUBBwOO82rG4nHKunr7ScwHEDTNMory4pmbhcCURQpqyhhsH96s5QOl4Oerl78pb4FCa2dC9ScSndnD4P9Q5gtZrzHKUbV1JYedRbY6XYy0DuIv8RXaHM9H+i6TkdbJ8lEqhCob7Uq89ZxLhFPIgj5kPNVzSsRBIFMOoPTYZ/zmz6ny0FdQw1dHT1Fjrf6xhWcdtYp/OXhv3HOy87EX+ID8p9LYHT5uqWy2SzJRIp4PE4kGCUajY5l7QiYTDJmiwWrd6J4YLVZSaXS7N21H5vNSnVdFR6v23AgGEzJQO8gAP5SP5BvPrJQ5IWciULqpi0buP/eBwmMBosmIQQEUsnUgnbj1DSN3u5ekokkdfW1aJqGKIrzNmaw22288Ox+bFbrjAQdWZZpammkqaWRy666lFQqzcHWNvbuap06l2cO8tJFUcTn9xIcDZNOtdLU0rhsxiwGU6OmcwiSRDIQxlqUJ6WieCe/pouSiOJxkApFMU0i+vpbahnZ20mwrY+SlsknFUVZIhNPYnYsnPhuYHC8zPtILhaLcdlll9HT0wPAP//5Ty6//HIuvvhivvGNbxTW27NnD1dddRWXXHIJ//Vf/0UulwOgr6+PG264gVe+8pW8853vJB7PCxGRSIRbb72VSy+9lBtuuIHh4dmx4BosHeIFUcpsOKWOgt1ho6mlkZNOXkdlTSWV1YvDbeT1e6cdYC5JEogCfb0Dc7xX80dfbz+D/cN4fJ5CV7jjQVVVrrzwpgk/45+tIAjYHTbaDnRMy5k2Wwz0DjI8NDqhw6NZsdDXM/d/x0g4QiKRYnQkUCjdS6XSeH3zk6VWVl6KzWYbc2wd4orXXYaAwP33Pli03Gaz0t3ZM+edpXRdZ2RolOf/vZUXnt3Gjq272bdrP20H2unu6mWgb5DASJBQMEw0EiMRT5BOpcnlctPaN03TSCaSBEaDdBzsYtsLO9j67Hb27mqlp7OPdCaDw+nA4/Xg8bqxO+yYjjLLqyiWQiba/j0H2LF1F6PDgZdc8wODY6PrOsODI0C+RByY83Duo2G2mJFN8oRjdeOWkwDY9vyOouWCAPFYYt72bzLS6Qy9XXm3Wd3KWjKZLE6nc96E4PESvsQJdrNTFAvrNqzh6jdcgds7eelhKBjmwd8+XDhmZhO3x0U6nWHX9j0k4gv7NzWYe3KZLKCTCsWKOu9pmobJOrUoaXHZ0TV90muro8KHxWVndN/UDWskk0wmllrQjpQGBsfLvIpS27Zt4w1veAMdHR1APlvkE5/4BLfddhsPPfQQO3fu5IknngDgIx/5CJ/61Kd49NFH0XWde++9F4DPfOYzXH/99TzyyCOsX7+e2267DYBvfvObbNmyhYcffphrr72Wz3/+8/P51gwWAbFYAlEUMFssiyZTajFjs9uob6ib07bOM8Fut42V6UxvfafTwVD/0KLpUHQixGJx+rr7cXtPvCRJUyfv4HI4FsVCOpWmv29+RL1QMERne/ekob12u41gIDSnA3Vd1wmHo/R05idDxkPONU3D6Z4fF4IkSaxctYJkIlnUgcvn93LRq17Gc/96gbYDHYXlilUhFo0TCUfnbJ+y2Sxt+zs40NqG1apgtSqIgkA6kyEajjE8MEJPVx8HWg/SuucAe3buY+e2PWx/cScv/nsbz/7reZ5/5kW2v7CTPbv2caC1na72bvp7BujvHWDvrlaef2YrO7bu4sC+NoKBICaTCbfXjcfrxu1xoSiW47rBtSgWvH4vkiRxYH8b21/YydDg8LwKrUuFTDrzkhTtstkcgUAIh9OBxWIGIV8Wt5C43C4yR7Rtr6gsp7K6gq3PFYtS+VyphesmB5BJp+np7kOSJKpqKkmn0lOKOnOF1+dBVXNzvh1REnno/j/xqQ9/jq989lv8469PEZ/F65LDYUeSJHZt20MoGJq11zVYXOi6jprOko4m0DUd22Eh5wIgHeUcJJllTHYrambi8S4IAv7mWqJ9I6Sjkx+X+fI/FTWTPeH3YWAw38zrnfu9997Lpz/9acrKygDYvn07K1asoLa2FlmWufzyy3nkkUfo7e0llUqxadMmAK666ioeeeQRstkszz77LJdccknRcoDHH3+cyy+/HIDLLruMv//972SzxpfypUQ8Fsei5LueGFkjSw9BECivyJ8b7n/szsLPLx74Pj/+1TdJJorFJ1EUkU0yvWOtqpcqqqrSfqATq816XDfnqWSKHS/u4t67fstnPvoFgoHQtJ7ncjvp7eqf85n4ZCLJ/j0HcbocU74/k8lE/xy63jLpDLmsStv+DsxmMzV11ei6jgBYrfMnyjocdiprKiYITRdfdiFuj4v77v5d0Qyn1arQ09U7J7Oe0UiMnVt3EwyE8Po8yLKMJEmYzCYUxYLVZsXhtONyOwsuJk9BTHKPCUt5V58ky6hZlXgszuhIgN6efnq7+/OuClexC2q2SyXNZjNerwezxVJwYg0NDBfc1S91Mpksu3fsZee23YRDCytwzDe5bJbASJCSUh+5bA6r9fjOsbOJ2+MknclMWL7xlJPYv/cAsbFsTMg7q6KRaJGIPd8kEkn6ewaoqqnEZJLRdO2EnLzHg81uy59j5lhYdbmdfP6bn+bK119GMpHkF3f8mo+957/5wbfvYNvzO2blnKJYFWx2G/t27Wewf2gW9tpgsaGrGug6qUD+Oj9evqepGqIsIR6jDNXqdaBNcaz5m2sBGG2d2i2FDrmUcf9rsPSY10ypI91LQ0NDlJYe6iJQVlbG4ODghOWlpaUMDg4SDAZxOByFQe348iNfS5ZlHA4HgUCA8vLZb/VtsDiJxxIoimXBuooZnDgen5vtL+4qlOdAfrb7S5/+OpFwhP/+wseKcpDsDjujwwEqqipwzPNAebYYGhwmkUhMu7ueqqp0tnWxd1cre3buo+1AB5qqYTKZWLW6oRBgfyxEUUSxWuho62TN+pY5uVnLZrO07j2IWbEc1aFgd9gYGQpQVVs1JwG6qVQKBJ2D+9upb1yBJEukUmkcbse8B89W1VQyOhwgk8kU8m0UxcJrrn01d/3wlzz39Iuceubm/PKxbKlIOILbMzttnjVNY6B3kO7OHmx2G3bHiWXDiKI4Zzf6x8pHOxyTScbjdZPL5eho66S7s4eq2kpKSv0v2WuCpml0HOwkp6pYJDN7d7Xi9fuoXVE9b0HVC0k2myM4GmTlqnqy2Swuz8Lns1ltVtAmisybtmzgkQf+zPYXd3HWeacD+e/WeBOAhXI0xyL5kPOTT90A5J0eVtv8HjuiKFJWXsLQwMis5CBKkjRlcLrX5+GSyy7i4ldfSHdnD08/+SzP/esFXnx2G3aHnS1nnMwZ55zKioa64578NJlNuDwu2g92kk6nqamrXnCx1GD20MbcuonRCIIkorjtY8tzmOzH/u7IigVRltBUFfGIKBKLy4aj0s9oazeVm5snPQbzJXyJwnYNDJYKCxp0rmla0RdK13UEQZhy+fjvw5nqoqDrunGSf4mRiMexKBZko+vEksVqs2KzWYtu2E0mmTe/84188VNf4+6f3MPb3/+WwvdeEAQURaG7vYfV6ye/QC9mkokkdquJNWsbOHLXx2+8x3NR9uzcx56d+2jds59kIlVodf2KS1/G6vUtNDatxGQ2zeiGwWqzEgwEGRoYpqJqdgV8TdNoP9BJNpM9Zli3IAjIJpnBvkHqG2e/B3osGieXydHT2culV+Q7XKVTKcoramd9W8dClmUamurZu6sVk9dUOGbPOOdU/vanv3P/PX9g4ynrC8e/zW6jq6OX9RtPvLQzlUrRvr+TSDSKewkEhI/nox3J0bpkybKMx+tBzan0dPTS09lLdU0VJeUlC5ontBAM9g0VnHCQL3mMRWLseGEnVbWVVFSVL3hnt7kkk84SCoYpKct33lsMpep2uw2LVSm6xgHU1dfg83vZ+tz2giiVRyCZTC3Yvnd39JKIJ6hdUUM2k0VRlAU5Zrw+D/1jofUnypGC9mQIglDo5nf1dVewZ+c+nn7yWf75xDM88ZcnKaso5YxzTuW0s7ew8eSWaYvnhz+Wf08DpNMZVjauWNbfxZcS46JUcjSM1essdNLTciqmaYzPBFHA6nMRHw5htk2cNCtpqaXj8a3EB4M4KnwTHhdNMtlEetIufgYGi5kFPQNWVFQUBZIPDw9TVlY2YfnIyAhlZWX4fD6i0SiqqiJJUmF9yLusRkZGqKioIJfLEY/H8Xg88/2WDBaQQ04p48K+lCmvLKOjratowF5dW8Vrrnk1v/3VAzz9j39z5mGDdqvNOutukvkg342ui6rqEq66aOKN9z0P/Yif//hX7Nm5j8BIEABfiZfNp21izfoWWtY2TdqV6chZ4HgsQSqZIhGfPCjW5XbR1dGNx+dGUWZvBryvp59gIDjtIHG7w8bQwDCV1RWz3tkpHIow0DeIrus0NuVDznVdx+5cmJlEt8dNSamfYDCMy5UX7ERR5NobruQb//t/PPbIE1w61h5eUSwEA6ETPr5HhwO07W9HNsnTduUtJNls7oTyoSRZwu11o6rqWDlhHxXV5ZSVly54t9H5IBqJ0dXZM6GxgMNpR9M0+noGGBoYZsXKOnwl3iUn6E+Hgd4BNE2jpNSPpmnzWqo7FYIgUF1bWSglPnz5xi0n8Y+//pNUMoUy5mQzmWQioUhRV775IpfL0d7eCcCKlbWk0xlKyvzzvh8wVsInSYXx/3wiyRLrN61l/aa1JBNJXvj3Np556lkeuO8hHrjvIe78zf9x09XvnvC8o4nnkP+be31ewoEwe8c6870Uzk3LHTWbRRAEkoEIrtqyQw8IR8+TOhyzw0p8ODipGcPbUEXXkzsYbe2eVJQSBAF0nVw6i8lqHE8GS4cFvXvfuHEj7e3tdHZ2UlNTw4MPPsjVV19NdXU1FouF559/nlNOOYXf//73nHfeeZhMJrZs2cJDDz3E5Zdfzv333895550HwPnnn8/999/PO97xDh566CG2bNnykrXsv1SJxxPY7Fbj777EcXtcTJZ2fuGlFxSyk5rXrCq0+Ib87HNXew/rNs5fV6ATZWR4lHAoQk1t6aSPxyIxnn9mKy1rm7j41ReyZn0LpeUlx7x5PHJmNpfL8c0v3EZXRzf/+akPULOiuuhxSZKQZROdbV00r2malZvTwEiAnq5ePDMQP0RRRJBEhgaHqV1Rc8L7MI6macRicTrbuxAEgZVNK8fcuOKCljDVrqghGAiRy+UKM+TNa5rYeMpJPPqHv3DWeacXBAWbzUpXew/rN83cLZXL5ehq72FocBiX2zmns/EzKbcbJx5PMNg3yED/EAO9gwz0DzLYP8TI0Cg//MXXJ33OTCK2JEnC7XHlyxbHtlFaUUpJmR+LxbwsrxeZTJb9ew9gt9smPR+KoojH6yabzbF/30Gc/Q5WNNQt2RLoqegZyxtcDJ33Dsfr9SCKwgSBZdMpG/jbo39n1/a9nHL6JiDvbguHIwuyn+lUhv7ufkRRpLq2ing8MSvlc8eDKIqUlPkZHR6ddDJmvrDarJx9wRmcfcEZjA6P8u9/Pn/CmV8uj4t4LM6u7XtoWduM3TG9EnyDxYmazpHL5Mgm0lh9+YkkXddBEJCmOWkuyhIWl51MNDlBWJLMJjwrKwkc6KX2rPWTZlQJgkA2kTZEKYMlxYKKUhaLhS9+8Yu8973vJZ1Oc/755/PKV74SgK9+9at88pOfJBaLsW7dOm66Ke8k+PSnP83HPvYxbr/9diorK/n61/OD1ve///187GMf49WvfjVOp5OvfvWrC/a+DBaGZDyJz++d9knfYHFiUSw43E5SqTTKYbOGoijyprdfz+c+8WV+9v1f8IFPvLtww2VRLARGgwRHQ4UbkMVMJp2h82DXUcva3B4XX7398yc8KyzLMm9778184VNf43vf+gkf+8yHcBzhEHI47QRHgwRGgif8+cVjCQ62tuNyu2YsEDqdDgZ6BymvLJ+1G8hUMoWuwcHWdqprK7FaFVLJFC63c95n3A/HbDGzoqGOg63tRS6Iq657DZ/92Bf5w28e4o23XAfkj+9gIEg4FJm0g+FUxKIxDrS2k8tk8fo8c+6GmbLc7i93MjoSYLBvkP6+vOg00DfIQN8g0cihYGdZliirKKOmtootZ5w85c1nKBDi0T/8hXNedua0Q5dFUcTtzotTI8OjDA0MIZC/SbDbbDhcdqw2KxaLBYtiXrKlNLqu03GwE03XMVumbj0OeReOz+8lmUyxc+tuyitKqa6tOubzlgrjzRNKSv3AsT+P+UKSJSqqyunvG8TtPuRkW9XSgMPpYOtz2wqilCzLxCIxMpnsvItq6XSanq5+KqsrMJlNCIn5z5M6HJ/fu6jCwf2lfi694uIZnZOnwu6wk0ql2b19D6tWNxblahosLXLpLOlwHADbeMh5NodJsSCI078GK25H4XWOpKSllsD+HkIdA/hWVU94XDKbyMSShe0bGCwFFmTU9de//rXw/2eeeSYPPPDAhHVWr17NfffdN2F5dXU1d91114TlHo+H733ve7O7owZLikQ8gUWxYF6GM98vNcrLSzm4v61IlIL8IPB1N17FnT/8JY89/DivePXLC485nY58GZrXPe/h1TOlq7MbQRKRZRl9ktBbANkkz5po4va4uPV9b+Ybn/8OP7ntTt7zkbdPEIycbiftbZ043c7jvvnJZLK07tmPxXp8uSOiKIIgMDI4QlVt5XHtw5Gkkmk0TaX9YCdnnHMqAOl0ZtYztI6HklI/o8MB4vEE9rGA+rKKUi54xTn89dG/c8FF5xacbTabja72blzuY7sBNU1jsG+Irs4ebDYrNs/kA9PjcTYdjqqqpJIpUskUyUSKktLJtxMYDfLJD3628G+b3UZFVTknbVpHRVU5FVXllFeVUVLqL3pvFmVyEUGSJO6/90Eeuv9PnHHuqbzs4vOm/fcURbFQMjn+HtKZDLG+OKqqIgA6OrLJhMNhx+6wYbPbMJvNS0KsGugfJDAaZMOm5mn/ba1WBUWxMDoaZHQ4QM2KakrLSxZUtJ0NBgeGEQQBt8dFJptdVH+70rIS+rr7i8pzRFFkw+b1vPDMi2SzuUIUgSAIJBPJeRelYrE4fT39bNi8Dk3TEAURi2XhnBd2x1gJX05dXNf4WdL6FcWCJEns272f+oY6yivLlmVZ7XJG13XUTJZU6IjOezkVi2dmDj9ZMSNZzKjZ3ITJdmdVKSa7wmhr96SilChLZBJJtJx6zG5/BgaLhcVzhTYwOAF0XSeZTOVvGgyn1JLHOeYgmqye/oxzT2PbCzt54L4/snbDaqprq4B8R5t4PM7w0MiiEBymIhgIMTIUKLhj4vHEvGy3YVU9r3/TNdz943v4/a//yGtff3nR4+M3bN0dPTQ2r5zx66uqysHWNjRdx34CuRgOp53enj5KK0pmpbQqEo4yOjxKOpUuvC9N0ye4xRYCQRBY0VDHjhd2olmVgiBz6ZWX8PSTz3LfL3/P+z/6TgRBKLilQsHwUfNlCmHmkXwG1dEErKmcTb968Ac8dP+jJBMpkslk0e9UMkUymSKVSJJOF7e2//GvvjnpdiyKhevf/LqCAOVw2qd1s3W0Lln/9fn/5G+PPsE///4Mf3/sKdZtWMOFr7xgxg0PJElCkqQJAvi44BaNxFDVHAJCkVjldDpQbAoWixmzZXGIVbFojK62vDA/05B4QRBwuZyoOZWu9m4GB4aob6jD5T7xgP2FQNM0RoZG8fo86LqObRGEnB+ORbHgL/URCUeL3H4nb9nAP594mn27W1m/cS0AgiiSiCUm5IPNNT2dPcRjcerq83lSbu/CHguiKFJZU05/9wCqpjGmICPLErLJhGkWJ3Jmg0w6O+PnjHcR7WjrIp1OU7uiZslEEhiArmqg6yQDEUw2S6F8Ttd15CkmWY6G1eck1j86QZQSRAF/cy0DWw+QTaQmD1DX864tsyFKGSwRFn4UZWAwCyQTSXRdx6ooi2pQYnB8mM0mPF4PyURyQtchQRC44S2v5/99/IvccfvP+ehnPlSYUXY6nfR09eIv9S3KrJhsNkv7gQ6cY2VJzz/zImtPWsUvHvg+Nnvx+5yL4/icC86kq72bPz34GHX1NZxy+slFjzudDkaGRygp8804VLunq5doOIrnBMsOJEkCPZ+5VVlVcUKvBRAOR+jqyGfLNDY1oGkakiQUgoQXGqtVoXZFDd2dPYXPzm638erXvpJ77/otO17cxYbN68eW2+nu7MUzRee8wEiAtv0dSLI0rYB5fYpwpngswR9+8zBmsxmrTcFqU1CsVqxWBZ/Pg2Kz5pcpytjj+cemKke1O2yc+/KzpvmJHOJobq2auipufNsbuOJ1l/GPvz7F3x97im9/+XYqqyt4+SvP57SzTikKkp4pkiQhWSWUI7SMcbEqEo6iaSqMiVUVlWULegOZz5E6iG2KHKnpIskSHp+HTDrDnp2t+HweautrFkXnupmQy+YIBvLl3NlsDvcslFjNNuWVZYwMBzhcHm9Z14yiWNj63PaCKGWxmAmGwlTWnPj5cLrous7+PQeBfGfAdDpN5SKY7KmqrqSyqoJsNkcmkyGTzpCIJ4jHEsTjCXLZLOPWJVEUMZlkZJMJWZbmTFA7UjzXdZ1IKEpvTz8D/QHqG+pm9HqiKOL1eRjoGySZSFFVU4nDaTfEqSWAllNBgORoBKuvWESebsj54ZjtCoIoTtpJr6SlloEX9zO6v4eKjasmPFeUJLKJFGb74hjrGBgcC0OUMlgWxGN5t4nVZjUu3MuE0vISWvcemPRmyOlycONb38BtX/8hD/724YLrR5IldB0G+4eoqZtoaV5oerv70VQNk9lEYCTI3T+5h/LKcj78yfcRDk/eHW8maJpGOpUmk86go6NrOu4jBIzX3XgVvd393PmDX1JRVV5wmkFe8LM77BxsbWfD5vXTdn8MDQ7T3zs4azkYDqeDvu5+yspKT6hMI5vNkk6l6DjYidfvwVfiJZlITinqLBRllaWMDI8Wdd067+Vn88RfnuQ3v/w96zasQZIlzBYzwdGJbqlcLkd3Rw+DA8M4Xc5jdiDVdZ1n//UC573s1Ekf9/q9fPenX5uxMGpagCBpl9vJq1/7Si6+7CKee/oF/vroE3k34L0Pcu7Lz+b8i86e1a6ch8SqQwN9XdcZ6Bskl81R37hi3idGxjt5qpp2TJfidDsami1mfBYz8Vic7S/upLq2ioqq8kXhCJsO2WyO4GiQdRvWkMvlFmV4tN1hx+6wk06lC13XTCaZdRvXsu35nVz/Zg1RFDFbzITDkXntPJfNZOnp6kMQBGrqqkkkk9gWyWcoCAJmsylfzuiwTzgXZtIZMpksyWSSeCxJIhYnHo/npSoddAFMsozJZEI2ySd8LZhMPI+Eo3z5M98kk07zkU9/gNKykhm/R6/PSzyeYM/OfcgmmcrKcrx+z5ITiF9KaDkVXdVIBqOUrW8oLJPMMqI08+NMEEUUr5NUMILpiIk0xePEXuZldF835RsaJ4iuokkmE01gK3EvSberwUuPxTMqNzA4AeKxfBig1W41nFLLBKfLgSgIU95EnXTyOs654Ez+/Me/cmBfW9Hz+nsGSKfS87Wr0yIaiTHQN4jT7UTTNO743l1oms5b3nnjcQsvmqaRTKYIBcOEgmHi0Th2h52GppWcdPJ6quuqCAXDRY4YWZa59X03Y7UpfO+bPy58d8Yxm82oqkZvd9+09iEWjdG+vxP3LJb5SHK+9ffoaOCEXieVTKPpOgdb22hsypfupVOZE3ZzzTaSJLFy1QqSiWShk5MkS1z9hisYGhjmiceeLKxrd9jp7uwprBcb69o0MhzA6/McU5Dq7ujha5/7NnfcfteUN2OiKBzXeXTcMXDkz3yck00mmTPPPY1P/L8P88FPvIfGppU88sCf+a8PfJaffu/ndHV0U1NbSmWVb8LPVB0wp8v4DeToSJCDre3kcrlZelfTY6B/kOBIoCgriyk6FIaCYb7++e/w7L9emNZ+2h123B43fT0DbH9hJ6PDgRPuNjYfJBJxIuHoYZ33FkfI+eEIgkBVdTmJZPGExMmnbiAWjXFwf3thPTSdVHL+rmnpdIbe7r5DIec6WJXF77iQZRmb3YbH66ayqoJVzSvZsHk9W04/mZNOXkfLumZWNq7A5/ciSiKxaIxgIEQ8npjSOXo8uNxO3vORW9E0je9+5fvEopMHVh8Lu92G1+fBZrXS29vP9hd3sXPbHkaGR8lmZ14eaDC3qNksmWgSXdUOhZznVEz24xcSLU4buqZPenz6W2pJBiIkR8MTHhMlES2nomXn93pkYHC8LI0pLwODY1BwSlmtxzUbYbD4kGWZ+sYVHGxtx+1xTXpje/UNV7J3dys//f7dfPLzH0EZy+URJJG+nn5Wrqqf/x2fBDWn0nagHbvdhiAIPPLAnzmwr403vf16SsunP4OqaRqZdIZUOg16Xjxwe1xU1VTgcNhRrEqRMFRdW0UmnWVkeLSoQ5Db4+bW972Zr3/+u/zk9rt493/cWiRQOF0O+nsH8Zf4jtp+O51Ks2/PgXwA7SznFtgdDnq7+vCX+I5b1EjEE0RCEULBMI3N+VlLBL0QKr6YcDgdVNZUMNg/XMiOWb9pLavXNfPH3z3K6Wdvwe6wY7aYCQVCBEaDZNNZujq6sdptx8ybiUZiPHDfH3nq8aexO+zccMvrZz2jZjrh6DNFVVUymSzo+oTjezIEQaB5zSqa16xieHCEv/3p7/zz78/wzFPPcedv/o+brn73hOdMlbM0UzxeN5FQhH2799O0etW8BFOP50i5jvhbJpOpSde32W0ERkP85LY7cbocnHX+GZz7sjPxl/qn3IYoini8brLZHAf2HcThcrCquaHg7lmMDPTmu7SVjL2v+Q4Jny5urxtZlsnlcgUX2roNa5BNMluf3U5TS2N+RUEgmUzOm+MrmUzS293Puo1ryGaz2Oyzf46fT0RRRFHyJcfghLL8ck3TiEXjDA4MERwNgi5gd9hmxfVZUVnOOz7wVr71pdv43jd/xPs++s7jFkclWSp0akyn0rSNCZb+Eh8lZSX5SbxF5P59qaKmsqTGOuaNl+9pqlbIljoeJLOMyW5FTWeRLcXHpa+xmu6ndjKyr5u6Es+kz8+mMsdVOmhgMN8YopTBsiAazbcVVxQLknFhXjaUlpWgazptB9rxeD0TBl2KYuHmt9/A1z73HX599/3c+NbrgHw20tDgCOWVZdgWgQDR3zeQd+h43bQf6ODB3z7CljNO5vSzJy+fGkfXddLpDOlUKu98EARcbicVVeXYHXasNuWoA9F8kHYt2WyGcDhS1H68oWklr7/pan5xx7384TcPc8W1ry48JooiNruNg/s7WL9xzaSikJpTOdDahigIc9Jq3WSSicVihALhgtthpkTCEXq68o6vxuaV+fIXWV40eVJHUlVTycjQKJlMBrPZjCAIXH39lfzvJ7/CQ/f/iWvf+FoAbA4b+/cdRBTECeWZR6LmVJ547Eke/O0jpFNpXnbxebz6tZcUbjKnChJfCMZLb7LZLOOTwrJJxuVyoGk6oUAIQRJxOOzT2sfS8hJed+NVXH71pfzziWdQtcldl8lEin/94984nQ4cLgdOpx2H03FU0WWqzoU1taXs2d3O3p37aFnbNKfCTTZ7KEfq8M9jz4591DdWcdfvbsvn1x2m40mSxGe/+l/s2bmPvz/2FH968DH+9OBjrNuwhvMuPJt1G9dMeTyZTDJev5dYNM6+3ftZvb5l0Yo9PV35HDlfiQ+EhSktnQ6SJFFVU0F3R29h4kCxKqxe18zW57dzzQ1XFsrVQsFIQWSba3q7+ohFY/k8qVSG8soTcxMuVkRRxOV24nI7yaQzhIJh+vsGiAVimExmbPYTi4RY1dLAzW9/Iz/67k/52ffu5pb3vOmExSOLYsGiWNA0jUgkxshIAFmWKa8oxV/iM8r7FpBcJkcqFEMQBRTv+ISefsKikNXrJNIzBEeIUmX1Zbzsw9ei5VTMjsP+7qJIYCCEKMtk4ykU18I3djEwOBaGKGWwLIiNi1JWi1G+t8woqyhF0zQ62romzQJqbG7g4ssu5NE//IUNm9ezcfP6wiC+p7OX5rVNC7TneeKxBL1d/bi9LlLJFD+5/S48PjdvuPnaCa4PXdcLTqhxq7bL5aS8ohS7047VOvMgf0mSaGxuYM/OVuKxeFGnp3NffhZd7d088sCfqa2vYfOpGwuPKYqFUDDEYN8QVbWVE/azs7073xFqDgOE7XYbPd29eP0TBcljoes6kXCUrvZuFMVCdW0VqWQKj3fx5ivIsszKVfXs270fr880ludSxdnnn8Hjf/kH5114NuWVZZjNZlwu1zFL9fbuauXeu35Lf+8Aq9c187obr6Ky+lBY8lw4m6bLeFBxNpMd66KlYzabcbicuFwOrDYrFsVSJHqkUilGhkYZ7B8ip6rYbbZpCaJWm5ULL70Aj9cz6eOJeII7f/CLCctNZlNBqHI47EWC1RtuvpLrXv22Cc+5/7E7cTodxGNxdu/Yy+p1zXNykzhVjtTw0Ag/+r+f4fG6+cinP0AslpnwXFEUWbdhDes2rCEwEuTJx//FU48/zW1f/yG+Ei/nvOwszjrv9CmddA6nnVgslhem1jUtyqYSfT0DAHh8HhSLZVG7SPwlfro78iW54/t58pYN7Ny6m+7OHurqa7EoFiLhyKQdaeeCvbv2A7BiZS2qquJ0zayd/VLEbDFTVlFKaXkJ8Vic4cERRoZG0dGxTfNcMxmnnL6J4OgV/OaXv8f7qwe45vorZ2V/RVHEbrdht9tQcyoD/UP09fRjs9upqCrD5XYtWtF4OaLrOmomSyoYRfE4ECUJXdMRJBHRdGL3JbLVjCjLaDkV8XDHoqbx1y/fM2H9iz91IwCSSSYTT+b3Q1yc4x4Dg3EMUcpgWRCLjIlSNsUo31uGVFSVo2s6nR3dkwpTl131SnZt38PdP/4VKxs/isvtxO6wExwNEo3EFmxAnRfTOlGs+Zuie+78DaPDAT70X++d4OBKJpKk0mmcLic15X6czvyN+WyIrLIs07y6kd079pJMprAe5hR63U1X09vTx53fv5uKyjKqag4JUC63i56uXjw+d9H+DvQPMjw4PONspqncJZIkTSqQmM2TB3tPh0w6g6pqtO3vYGVTPaIokslkZy2Mfa7w+jyUlPkIBSOFjKDLr3kVzz79Ar/71QO844NvBTiqIDU6PMp9v/g9W5/bjr/Uz9vf/xY2nnLSgohxuq6TzWbJpLP5DCNdB0FAUSx4vW4cLgeKVUFRLMcM0VYUhZq6aiqrKggFw/T19BMMhDCbTdjGSmOPxlQP+/xePvvVTxKNxohFYsSisbH/jxctG+gfJBaJk8lkeM3VrzjqtuwOO8lkil1jwpTDMbsz1YP9Q4wOB4q+F6lUmu9948cAvOMDt6BMw6XlK/HymmtexauvvIRtL+zg7489xQO//iMP/vZhTt6ygfMuPJum1auorSs74rvrQ9N00sk4guBYdAHog/2D+Xwhm4Jtlj/72cZsNlFWXkpgNFgolz7p5PzkytbndlBXX4skSWQzeSfhXJdNappG+8EOBEGguq6aVDKF1frScd8IgoDD6cDhdFCzoppwKEJ/zwDBQAhZlrE7Zt7h8sJLL2B0JMBjDz+Oz+/l5ZecP6v7LMlS4XqRSWdo298B6Pj8PkrLjfK++UBX81l7yUAER0Xe0ahmc8jTKDs/FoIgYPU5iQ8FMcvT/y4KYj6PTs1kkZXFl6tnYHA4i2sUYWBwnMTGwprttmPfmBgsTSprKtB1na6Objy+YueMLMvc/PY38sVPfZVf/OQe3v6BW/IXcZuVro5u1p60ekGOi6GBYWKxOF6vh+eefoGnn3yWV115MataGorWy2TyJUsbNq2bM+u9RbGwel0zu7btQRrr6AR5cePW972FL/z31/jeN3/Mxz7zoYIANd75qf1gJ2vWtyCKIuFQhK62btzH4ThSVZUrL7xpwvKjZfrY7DZ6u/rw+jwz2l4qlSKZSNLX08/Jp24YW6pjO4HA0fmibkUtocDOQs6My+3klZdfxO9//Uf27d5PyxTuv0w6w6MPPsaf//hXBEHgNde8iosufdm8lS5pmkY2kyWTyaKqOUAAAWw2G/5SH86xkjhFsZxQPo0kS/hLffhKvMRjcQYHhgkMB0DI58HMVCARRIHS8pJp57tl0plpiZtWq4IoCOzevofV61pwuZ3HfM50iMXidLZ1FzmZdF3nzh/8gv7eAd77kXfMKKsO8p/p5tM2sfm0TQz0D/LkX//Jv/7xLM8/s5WKqjK++YPPcd1lt0543m///DP27zlI05rGRSVMDQ0M4yvxoqoadsfi/86XlpcyODBU+LfT5WBVSwNbn9vOa655VX6hoJNMpuZclEqnM/R191NeWYZJlsmZ5Dkp0V4KmEwmSkr9+Et8JOJJRoZHGRoYQtN1rFbrtIRfyIsK177xtQQDIe67+358fi+btmw49hOPA7PFjNliRtd1YtEYoyOjyLKJ8spS/KX+okkpg9lDy6momQyZWBLreMi5msNqn53sRrPDSnw4OHO3pCCQTWYMUcpg0WPI5gbLglg0jigKiyI/yGDuqKypoGZFNaFAaEIHqOraSq543WVse2En//rHv4F8Nkcsku+uM9+kUim6OrpxuZyMjgT4xR33snLVCl515SVF66mqSjwap3lN05xnQVhtVlrWNROPx4s6b3m8bm59382MjgS44/afF322NruNWDTOyNAoyWSK/XsP4HAe36zr8XQ3sigWEokkkXB0Rs+LReP0dvWh6zqNzQ2oORXZZMJiWbzhzOOYLWZWNNQVvecLX3kBvhIv9939uwnHvq7rPP/Mi/zPR/+Xh+5/lI1bTuJ/vvIJLr3i4jkTpLLZHIl4gnAoTCgQKnR/lM0y5ZWlNK1exUmb1nLKaZtYv3ENK1bW4ivxzmoo/rijobFpJRtPOYmaFVX5bpSBEKlJgr5nqzug2WKe0pGbiCeLjnOLYsFmt7F35z4Co8GZvcFJyGazHNh7cEKn2Uce+DMvPruNq657DWtOajmhbVRUlnPNDa/lC9/+H2562xtQFKXQTORIRFEgHotzsLVtyk6p842qqoyOBCkp9aNp2pJw+dgdNlxud9Fxu2nLBvp7Bxjsz4tVJlku5GfOJZl0mt7uPupW1pJOp2e9IcJSRBgTvFesrGXzqZtoam5AlkSCgRCRSHRSB/CRiKLIW955Iysa6vjJbXfRdqBjzvfZZrfh9Xmx2awM9A+xe8deMumJJb0GJ46WU0kF8t/P8c57us6EcPLjRZQlLC47udTM/n6SSSYzxfnbwGAxYYhSBsuCWDSORVEWbZipwewgCALVtVVU1VYSCoYniBwvv+R8mtes4td3/ZaRoVEgX0bT3dkzrUHjbKHrOl1t3chyPhfop9/7Obqm8+Z33lh0I6nrOuFQhJWr6mfNRXEsnC4HTatXEQkVD6Qbmxt43RuvYue23Tz420eKnuNyOels62L/ngPIsjzj79nw0Aj3/eJ+gqOh49pnq1Wht7tvRqJWOBShu7MHURRZ2biCVCqFb4Zuq4WkpNSP2+0iHs8PJk1mE9/9yRf5zJf/k5ISJ5VVPiqrfJSWuRHI8aPv/gy7w86HPvlebnnXTbNWpqhpGulUmlg0RiiYF59CwTC5XA6Xx8mKlXWsXt/CplNOYvPpm1izroWaumq8Ps+slZ9OB7PFTGVVBZtOOYnmtU3IJplgIF++Oy7i9XQP098XmPAzm9layUSS3//6j0XHaj4ry0Hr7v0MDR7/tsZzpLK5XJFDY8eLu/jDbx7mtLNO4cJLLziR3S/CbDZz5nmn89HPfOio2XEuj4tIOMbB/e3zep6dilw2RzAQoqRscXfeO5KqmnKSyWTh35tOyTtptj6/HWCs8+bE1u+zTV/vAJFwlLoVNWTSWUOUOgJJlvCV+Fi7YQ0bTl5HRWUZiXhiSjH8cMwWM+/60NvweN3c/vUfntD5YKb77HI50XWd3u6+ednmSw01kyUVzotSVp+r4GiSzLPnIFXcjgmTUsdClCVyqTSaOrPnGRjMN4vHa21gcALEY/EJobgGyxNBEKhdUYOu6wz0DRUFV4uiyE23Xs/nPvFlfvaDu/ngJ96D2WImGAgyOhKgrHx+OggFR4MEAyG8fi8P3f8nDuxr4+a330BpWXFJTSgUprK6nLKK+e1s5PN7qW+smxAef96FZ9PV0cPDv/8TdfU1hfICSZYwmU3kcioO5/TyWTRNY+/Offztz/9g17Y9CILAzbe+btJ1j6U1KVaFYCBILBqfVj6YqqrEYnHa27qoXVGNRbGQDKbmNJR9thEEgfrGOna8uAvNmu+yaLNZuf41b5+w7k/u/TbXv/lazr7gzBPKDTm8+x06aDrIkojNacPj9+Bw2LFYzFgsJ1Z+N5dIkoTH68bjdZOIJxgaHGF4YBidvEB9rHD4mWxnQtmpDqMjQR79w1/I5XJc/YYrCucmWZZxe9y07W9HzapU1lRM8qpHZ7IcqYG+QX5y+13UrKjmhlteP2eiq3yMv7fb4yIUDNN2oIOGVfUL2nAkFIqQTCTxl/oRWLyd947E6XJisVjIZnOYTDK+Ei8rVtay9bkdXHLZRZjN5oIgPJelknt37gOgbmXtWPnt4neaLRRWmzWfc1ddQTQSo6erj0gkWsh3mgyny8F7PvJ2vvyZb/Ldr3yfj3zqA/OWe+l0OhgcGKakrOQlEV4/n6jpLKlgDMliwmRX0HIqksWEMItZXrJiRraYUbM5JJMMolgINdeyOXLpLCabBQ7bpiAIoOf3T7Qtfqe4wUsXwyllsCyIxxNYLOZFlWlhMHcIgkBdfS1lFaWEgqEiV4K/xMfrb7qKA/va+MvDjwP5wX5PZ29RydpckclkaTvYicPlpO1AB3/83SNsOXMzp529pWi9SCSK1+uhdkXNnO/TZFRUlVNTV1XkOBMEgetuupr6hjp++v276e8dKKxvs9umJUglE0n++ugTfOajX+A7X/k+nW1dXHrFK/j8Nz415SA4ET+2tVxRlGnP8KZTadScSsfBThqaVx56D0vs5spqs1K7ooZIKJJfMIXe4PG6OfflZx+XIJXN5ggFwwSDIbLZbMH91LKumZO3HHI/1Y65n2z22Su/m2tsdhv1DXVsOnUD9Q11ZDMZgsEQyUTy2E8+BpO6rvoDpDMaL7v4PB57+HHuveu3RbPakizh8Xro7Oimp6t3Rs6/yXKkkokk3/vmj5FlmXe8/xbM5skzQyLhKKFQmGQyNeNZ9mNx+Oy7x+smOBKk42DXrG9nJvSNnSd8JV5ESVyU3QEnQxRFqmoqiY9lZAJs3LKBjoOdhA4rQT+WG+dEObC3DYCauioQmPMMq+XAuBjesnYVZpOp4HCdirKKUt71obcSCoS5/Rs/JJOZn5K68ZK+9gMdi8LVOJdEwtEZl/2fCLlMjlQois2fnyjVcirmOciwtPqcqJksAIGBEIGhCIGhCCMDIZ741m/Zdv8/CQyEip4jiCLZxNyeNwwMThTjDt5gWZCIJbAoFuRZmgU3WPwIgsCKlbXoms7w0DBe3yH3wOlnn8q253fyh/v+yNqTVlNTV4WaUxkeGDkuh8JM6O7oAfKukztuvwuPz831N19b5GBIJpKYTCZWrlqxoB1xqmuryKSzjAyP4hlzEZnMJm59/1v4wn9/tRB8Pp2sq/7eAR7/8z945slnSaczrFy1gje/442cfNqmgjtlMndJPJZgcGCYPTsPsvm0TVO+vtVmJTAaJBaLH7OTWSqZpq+7n2wmS2NTA7lcDrPFtCRvrsoqSxkeGiGVSk+5jngcrZ6TyRSpZBKLxUJ9Qx1ev2fJ3LzPFJPJRFlFKSVlfqKRGAO9A4RCYQQdECZx6gmAzth/xj/bfCmGIIhjvwUEUUAUBBAELBYzoigWAo0lWeIvD/2NXDbHG958beF7LooiHq+bnq4+stkcK1bWHvMcMFmOlKZp3HH7zxkeGuEDH3s3vpLJu1OGQxE8Pjdud97JFAlHUFUdQSDvelMs0zoHHfndzeVUIqEIfb0DJJOHHJRur5uR4RFESaS+oW5BymX7xsR0j8eFzbG0cia9fg+dbXlRTxRFNp1yEg/8+o9sfX4HF7ziXAQhf84c79I32+RyObo6uimrKEUURZwux4K63pYaJpOJ5rWr2L19L6lU+qhB6A1NK3nzO9/ID7/zU+64/ee87b03z8t4QFEsBIMhhgdHqKgqn/PtLQTZbJb9ew5QVVc5L9EIuq6TS6dJBqKUrF4xtkzDZJ39cHGzXUEQRTRVK8o2lC1mPPWVjO7voebMdYiHfW8lcz5XylaydNziBi89jDv4ZUgkHMW+hGazZ4N4PIGiWJbtTZXB5IiiSH1jHbquMToSwOP1AHnB6oa3vI7/9/Ev8dPv3cVHP/MfOFwOOtu7iESiVFSV4XDO/mA7HIoUBLKf/eAXjA4H+I9PvrdI1BnvtLdu49oFP14FQWBFQy3ZbIZwOILbnXdheH0e3va+N/PNL/wfd9z+c97xwVsmHSyrqsqOF3fx+J//wb7d+5FNMltOP5kLXnEuKxrqJqw/WXZPLpfj21/+EQN9g9SuqDlq1zCLxUx/7wBNLY1HfV+RcISerl4AGptXkkqm8Zf6jvqcxYokSTQ01bNz254xoeT40TSNeCyRz4Nyu6hvqMXpcr5kWoWLoojb48Ltyed9aJo29ltH1zQ0/dBvxpfr2tjjOpquoeZUNFUjp6n5bkuaippTGR0O4va4kGQJQRC46rrXIMsyjzzwZ3K5HDe+7Q1FwpTX52FoYIhcLkdDY/2U12td1+lq7yaXU3Ed1sjjwd8+wo6tu7juTdfQtHry70MkEsXhtBdev6yiFE3TSCVTxOMJwsEw4WAEVVNBF7AoU4tUk3139+89yLe/fDu1K6r5wMfejdliRhAEPF4PQwPDiGLe0TrfwlRfTz8ALrcLu3165caLBZPJRHlVGUODI7hcTiqrK6ioKmPrc9u54BXnYrFYCIcilFeWzcn206kMvT0DNK1uJJ3OUFLqn5PtLGcURaFlbTO7tu9GEsWjlo+efOpGrrnhSn79899x3y/u53VvvGpe9tHlctLd0YPX51mSkzXHorujl0g0RtU8bU/LqWRiKbScWui8hw7iHEyUC6KI4nWSDEQw24o7KZasriN4sJdQxwC+xurCclGSyKQyh8r+DAwWIcaRuQw52NqGKEmsam7AvsRmCY+XRDyB2+00nFIvQfLC1Ao0XSc4Gio4fhxOB29863Xc9rUf8uBvHuK1170Gr99LKpli785WZNNYi+QS36x0vcvlcrTtb8fhcPDc0y/yzJPP8qorL6GxuaGwzninvTUnrV40bZnzosdK9u7aTzwWxz7mQmpqaeTaG17L6Wdvwuu1YzvMhq5pOtFIjA/e+hkCo0G8fg9Xvu4yzjr/jBnnVMiyzFvf8yb+95Nf5Yff+Skf+dT7pxzE2+w2AiNBkrXJo/7NwuEIne3d+Ev9+ZKiYAiPd+mG9TqcDiqqytH04yuJyuVyxKP5kqDSilLKykte8p1KBUGYVVHa4xvh4L72ImHqimtfjckk84ffPIyqarzp7dcXtikIAl6fl9BoiP25g6xqaZi0/Hx4cISRoVG8h+VIvfDsNh7+/Z846/wzOO/Csyfdn1gshqJYaFrdWCR4iaKIzW7DZrdRWlZSCLKPxxOEAmHCwTDqWOmd2Zx3F071OTWtbuQt77yRH37np/zwuz/lHe+/pfDePV43/b2DiKJITV31vApTA32D+Ukqs1x03loqlJaX0t87WAhK3njKBv78x78Si8ax2a1EwpGZt4WfBrqu093ZQzgYZkV9LbqmYZ9mhqBBMXaHjZa1zezduQ+X23XUSeKXX3I+o8MB/vroE/j9vlltVjAVkiQhyhLdXT2saj76JM9SIxgIMTw0jHOO3ISToasaqWC+zN7md+VdTLI0ZwKQxWkjORqecB5wVZdisiuM7O0qEqXGUdPZBRGldE0nPhxEU1VEUQJRQJQkBFFElPMOY8bcx+MuZISJ/2+wvDHu4JchmqYhCAI7t+6mrr6G8qqyZT8TnognsVgVw2b+EkWSJBpW1XNQaycUDBeEqZM2reNHv/omAvkOUYeHHIuiyJ7d7fR29+N02imvLMftdR13LllfTz/ZbI5UKs0vf3ovDavqedWVFxceH++019A0f532povJZKJ5dSO7d+wlmUwVBLPzLzoHl0uZNFz7x7/6JqXlJVz7xtdy0snrTui75y/xcfPbb+C2r/+Q+35xP2+4+dpJ1xMEAZNJpr93gIamlZOuk81mSSfTtB/oYM36lvzzdLDalrYIU1NXRTIW4Xd/+dmEwdlUn30qmSKZSGK2mKmtr8Ff6ltwd95ypbSsBF3XadvfkRemxv4mr7ryEiRZ4v57HkTN5XjLu24qukF1e91EwlH27mqlefUqzJZD5R6xWJz2gx24DsuR6u3u487v383KVSu47k3XTDpQT8QTSJJM85qmY57PRFHEarNitVkpKfWj6zqpZIpEPEkolO+0qKkquqZjsphRjgi5P/nUjVz3pmv45U9/zd133MONb31DobzR43XT192PIAjU1E28QZorhgaG8Zf6EAVxypytxYzVquD1eUjEE9jsNjZt2cCjf/gLO7bu4sxzT0PTdFKp9KxObKg5la6Obv791HMA1Nbnm4koi2TyZCni9rhobG7gQOtBPF7PUcfhV19/BcFAiN/88vd4/Z6jlrLPlJra0knzo6rFUnZs20dpWemy6bCYyWRpP9CBw+EgOcfZa4ej5VRSgXznPcXrRMvlMNnm7rsjmWVMDitqKotsOXRNF0SBkpY6+l9sJRNLYnYcEuVFWSITL142X2STaVLBGLLFhKrnQNfzmYq6jo5+yAUuTFk9jyCJCGL+R5REJLOM1edCfAlVBS13DFFqmaJYFRSrQldnN8FAiJVN9YvGmTHb6LpOMpHEOs1sDIPliSRJNDat5EDrQSKhSOFGzl/i5bUXvWnC+vc/dmehQ04qlebg/nYEAUrLSikp92O326Y9MxOLxujvGcDpdvLNL9yGrum8+Z03FokFhU5789QBcKZYFAsta5vYvX0vkigWSnHsU+Q3ebxuPvDxd8/a9k86eR2veNXL+fNDf6VpdSNbztg86Xp2h52RoVGqaitRlInntFQyzchIgEg4SmPzSrKZLIpVWfKdOWVZJqeJ7Nu9v6j72pFomkYiniCbzeJ0OWlZ14zL/dIp0VtIxr/bba3tuL3uwvf/kssuQpZk7vvF/ajfuYNb3nNzkUDucjuJxWLs2dVKy9pVKIpCLpfjYGsbVput8DrxWJzbv/FjFKvCre97y6SdBMfDzNeubz6uY14QhIJI5S/15UWqVJpkIkk4GCYYDJNJZ3A47AUB7bwLzyYcivDQ/Y/icru48nWXAWPlkmP5WZIozXmeH+THA6NDo/msHAHMlqX5va+oKmfPzn3Y7DZWrKzF6/Ow9bntnHnuacDYmGeWxnTpVJoDrW0kYgmCY4HqVTUVyCZ5yZ83F5qSMj/ZTJaujm48Ps+UYwpRFLn5HTfwrS9GuON7Py8IWrOBqqpceeFNE5bf/9id2O12Oto6Wb9x7bKY1O3u6EHVNExm07yKUrl0llQohsVtRzLJZBIp5DnudGf1OAl3DxWJUgD+ljr6X2hltLWbys3NheWSSSYTS6GXzb7L8mjouk5yNIxsMSGdwPlE1w4JWVpOJZdKk44mcFb651QANJg/DFFqmaCpGTLpfBDuqua6sfBVqFtRzr69nex4cSf1jSsoLStZdhbIZCJZmNFbDhdVg+NHkiUamxvYv/cgkXAUl9s5reNdUSwoigVN0wiMBhgcGEKxKlRWlePxeY46MFdVlfYDnVhtVv704F852NrGze94IyVlh7I4FrrT3nSx2W20rGtm9449iJKILMtM9fHNRWbdFde+moP72/n5j++hdkXNpLkpgiAgyhIDfUPUT5JblYgn6GrvBqChqYFUKk155eIUAmeK1+ehpMxHOBSdUJqQy+WIReOATll5KaXlpS+Z8u3FRFl5KejQtr9YmLrw0guQZIl77vwNP/jWT7j1fW8uKlN1OBwk4gl2b99Ly9pmBvoGyKazBXFdVVV+9N2fEQ6G+OB/vbfgBj2cdCpNNpNh3YY1kwq2x4MgCFitClargs/vpV7Pl+7u3bkPQRQLwthlV72SSDjCo3/4C26Pi5ddfB5wKNi9s6MbRKismhthKpVKEQqEGegfIhAIsW7jWnRYkk4pAKfLgWJVyGQymM1mNp5yEk89/jTpVBqTyUQkFD2qOD1dIuEo+/cdpLklfy6tri3lqtdfisvjQhJFNDWDKC3Nz3CxUFFdTjqTYXBgCO9Y7uVkmM1m3vnBW7AqMjaHFfcRZX+SJE2a7QYUHI7RSIxoJFr0+7qbrphymxbFQigYYqh/eF5E47kkX7Y3gtfnmfdta5ksyWAUe+nYtnV9glg028hWM5JJRsupRW4hxW3HUelnZF8XFSc3FcbAgiiiaypqJjfn+3Y4uVSGXDKN+QTHI4IoIBzWgnj8vYe7h7D63Nj8TgRj8m1JY4hSy4RMOs2rz3vDhOX5mRAbqsVC+/4OQoEw9Q11RSUCS514LN96V7FZizpRGLw0kWWZptWN7Nu9n0gkSmXV5AHX8Wictv3trFxVX7hoi6JY6GqUzWTpbOuio60Tr99LWXkpTpdjguNkqH+YZCJJIBDij797hFPPPIXTz95SeDyZSGJeBJ32povT5aBp9Spadx/APc85TJIsccu7byrkS/3n/3xg0ptKh8PO0MAQVdUVE85l4VCE7s5erDYrldXlRMNRnK7FVS55ItTW1RAa3UUul0OW5YKLRTbJ1NZX4y/xG+6GBaasohRd12k/0FEkTF3winORZZlf3HEvt339h7zzg28tOn5tdhupZIrd2/egaVpRjtT99zzI3l2t3PjW62hYVT9hm9lMllQqlc+rm4WMvKkQBAGX20nTmlW07t5fyMsRBIHr3nQN0XCUX//8d7jcTk45/WTgMGGqrQtJzAeuzwbZbJZIKMrg4DCxcBRBFMllc2QzWbx+L4pl6bqnBUGguraStv0dmM1mNm3ZwON//ge7duxlw8nrCIfDJ/T6uq4z2D9EZ1tXwQ07mZvmj3//JYpt+YwXFwJBEKirryGbzRIKhI9aKudwOigr93D1xTdPeOyeP/6QPz342CHBKRojGokRG/t3LjexRA/gta975VH3z+ly0tPVi7fEM2ti9nyTyWRpO9CB0+mgtq4MVVUpr/AiSRKpRBQAs8UyZwJrOpYkE01Qsrou7+YRBKQ5LpUXBAGrz0l8KIhZLj7nl6yuo+NvLxIbCOCsPKxZgZ4XieZLlFIkMJkEbA1HCJ6iSGAgdMKvL8oSZruVVDBCNpHEUeGfV8HNYHYxRKmXCJIs4fV7iUZjbN+6i4ZV9bMyy7YYiMfyAb5WwyllMIYsyzSvWcW+3fvRtMlblqXTGb7y2W9RVlHKGeecyulnn1rUVt1kNuE2u9F1nXg0zt7RICaTicrKcjx+D1arQjKRpLuzB5PFzB2334XH5+YNN19TeI3F1GlvJvj8Xuob6+ho66KmZn5dRj6/l5vfcQP/99Uf8Ou7fscNt7x+wjriWK7A0OBwUVaNrutEw1E6DnbS2LQSURTR0Zdk2PFUWBQLdQ21HNyXb2jhcNppWt1YlGNksPCMu/zaD3bg9hwSps552ZlIssRdP/wl//e1H/DOD72tqG28YlWQZBnpsAmWfz/1HH95+G9c8IpzOev8MyZsa9wlt+akFhxTlNvONl6fh5VN9bTtby/k5UiSxFvefRPf/tL3+On3fo7dYWf1unz5SL7zoZu2Ax0IokBp2dRdNo+GqqrEojGGB0cJjgbzLmmbFc+YO6LtQAcAHq8L2zx9FnOF1+tBFAVUVWVVSwN2h52tz25n86kbiUViZDLZ4xKgx/OjhgaG844o47wx54iiSENjPXvTrUSjsaOGcEtTTK7GonF+d88fMJlMON0OnC4nbo+LmroqnC4nTld+mdNpL/zb4XIUjWsm356EJMt0dfTS1NKwJKspujt60HUdk9k0ZbniXAmsup4P8Qaw+lxoORWT1ZIP6J5jzA4r8eHghMBzb0MVXU9uZ3RfV5EolS/hS6C45+fcqGdz/Okzd01YfvGnbjyu1/NVeECbpOGL6GWoc5hw1wD2Uh8W9/TjNwwWD4Yo9RLD6XSQzWRp3XOA8opSautrjjvYebEQG+sqZbNZkZborKjB7GMymWhe00QqEZn0ca/Pw41vvY6n//EsD9z3EH/4zcM0r1nFGeeeyslbNhbaJAuCUOhWlcvl6OnupauzF5fbia5pmCxmfv3z3zE6HOA/PvnegkthMXbamwkVVeXkcjk0Xef+v9wJR1zf5/JGZv3GtVxy2YU8+uBjNK1u5LTDnGfjOJ0OBnoHKasoK9yYpdNpItEoA32DnH72FjKZDDa7fUkJgtNhvGuaw+mYNxHCYOaUV5ah6zodbZ1FQcdnnnsasizx0+/dzXe/8j3e/eG3F50jDs+K6mzv5uc/voem1Y1cc/2VE7ahqiqRUITmtU3z3kChrLyUXCZHd2dPIS/HbDbzzg+9la9/7jt8/5s/5kP/9V5q6/Nly5Ik4Xa7ONjajiSK+Eomd7Eeia7rxGNxRkeCjAyNoOZUzBYzLo9rwo3H6PAokG9sYV/iYrQkS1RWV9DX04/b42bD5nW8+Ox2crkcgiCQSqZmLEqlUikO7GsjGU8WZRypU7hsDGYPSZZoWr2KPTv35jPBZuho9Pg8fOOHX8Iylvc4mzicdgIjAcLlJZOWBi9mAqPBBSvbg7GQ82A+5Nzmd6Flc1jc81M6L8oSittBOpLAZD00uSGZZHyN1QQO9FJ79kmFjnuiSSabSKNr2ryUuulTTApr2Rwj+7qQzCYkszz2+9D/T1n1omn86bOTi1yyxYSmSsQHA2QTKexlHiMEfYmxtNUIg2OSTKRQVbXoBtJkNuH1eRgdDhAKhlnV0jjjNu6LiYJTyqYY5XsGRZjNJiTRzu/+/DN0QDxs5kqSJM46/wzOOv8MhodGeObJ53jmqWf52fd/wa9+eh8nn7qRM849jabVjYWbSVmWcXvyA7ZUMkUmk2Xf7v088+SzvOrKSwrBpIu5095MqK6tov1AJyPDo/M+UL38mldxcH87v7jjXupW1uaDiw9DFEW0sVDj8SyMVDJNZ1s+T6qxuYFUMk11TeW87vd8IAgCFZXlx17RYMEZP26PFKZOPfMUJFnmx//3M779xdt4z3++A7u9+EYmEo7y/W/9GKfLwdve++YJOW6aphEOhWloXrlgzufKmgqyuSwDfYN4ffl9sNttvOcjb+crn/0m3/3q9/nwp95fcEZJsoTL7WT/3oM0rxWPeiOZTCQJBcIMDgyRSWeQTTI2u21SQXy8w9grLj2Xs887BY/PjclkXvKZSCWlfnq7+tB1nU2nbOBff/83+3bvp3ZFDfFofEbXl0g4SuveA3lxcOx8rus6Tz3+NBdectZcvQWDwzCb85Nlu7bvQUylC5Nf00GSxCJX5fSfJ3H/Y3cW/p2IJ0kmkiTixUHgDqed9gMdbDh5/ZxkRs4FmUyW9oOdOJ2OglA3lTt+rtBVjVQwimiSMTttZJMp5OP4Ox0vFpedZCg2Ybm/pY6RvV0ED/ZRsjqfGScIAug6uXS2SMSaC9RsDl2fxNVEPhi+428vTvlcQRInCFayRcZ1zXlH3aYoiZgdVrKJFKHOASMEfYlhiFLLnEQ8wdc+923edOsNRaHBgiDg8rhIp9Ls2r6HmroqKqsrlqSNezxTyuawG3ZNgwlIsoLFKrB3dyuapk+48YO88+Syq17Jq197CQda23j6H8/ywjMv8vSTz+Ir8XL62adyxrmnUlZeWtReWVU1SktdnH/haXh9Hnp7RoDF32lvugiCwIqGWrLZDOFwBLd7/jKmJEnilnfdxOfH8qU++j8fnJAf5XQ56O3po7SiBFmWiUZjdHf0IEkSKxpqiccTOJaw4G6wPKioKkdHp7OtG4/XXRCmNp+6Eel9b+GH376Db33hNt730XficOadb2pO5YffuYNYNM5H/vv9EyaONE0jFAyzor5uQc8zgiBQu6KGXDbH6EiwIF57fR7e+5F38LXPfZvvfPl7fPi/318QUGRZxuFy0rr7AC3rmooE70w6f64Z7B8mEY+POVXt2CY5bx/OfJfszBcWxYK/1EckHGXN+hYsFjNbn9vOquYGgqHwtMKpi/KjnPZCTl8sGuPnP76Hbc/v4JLLjn6zZzB7WK0Kq9c1s2f7XkRJmrSL5mxyZDi6mlP5yv/7FkMDw3zyf/+zIGibzWYS8SQD/YNU11bN6T7NFt0d3YWyPci/t2gkOq/7kHdKRbH6xpybOgVn0nwgK2ZkxYyazRVt11Hhw+K2M7KvqyBKQf6cnU2k51yUSkcSKM7Jt2G2K6x/w0WomSxqJjf2+/D/P/J3lmQiha5Oz9FpsloOhaD73dh8SzsEPRGIIIoiimd5j2cNUWqZYLZY+OPffwnks3LEMXEmkUgy2D/M5z/5FV77+ss5/6JzioI/LYoFk9lEX88AwUCYhlX1S65jUzSanyE4Wo2+wUsbi2KhZW0T+/ccJBQIIckyNrt1gggrCAJNLY00tTTy+huvYuvzO3j6yX/zyAN/5uHf/4mGppX87zc+wXWXvW3CNsZnIpdKp73pIkkSDU0r2btrP8FACEWxYDab52Um1ePz8OZ3vpHvfuX73HPnb7jxbcXNHCRJQtN0RsZawEeCETrbu6lbWYPJZEJAwDaHoc8GBtNlvOvckcLUxs3reccHb2FVcy1enwuX24UoCsRjCT7+mfdhtVkJh5NFr6XrOuFgOD+ZtAg6ZomiSH3jCrLZXJF4XVldwbs+9Da++cXb+L+v/YAPfvzdKGNliiaTjMNpp3X3flrWNaFpOkMDw0RCEXTy5fieo3Qqm8D8miPmlfLKMkaGA9gddtZtXMv2F3bmQ+WjsQlO+CNRcyqd7d0MDQwVhe7v2bGPn/3gbuKxOFdffwUer6dwDdNUDZPZhCiKmC3z5/h4KeFw2Fm1ujHfLOCIXK8jnU2HL58NJFniLe+6kf/95Ff56e0/5wOfeHfhfORyO+nt6sPn985pw4TZIF+2N1rktvz13b/jprdeM/WT5oBsKkMyGMPfVIOmqkhmed7Lxmw+F5HekSJRShAESlbX0fvMHlLhGIo7f48kmU1kYkls/rmbZNRUjVQggts5xYSJIBxXrpVpipJsfZKcqUIIeiBCNr40Q9AVKV/qKDvyTTsEPS/KCbJEahlWXBui1DJBlMyF2cBdO17E7rAXLjL//YWP8vMf/Yp77/ot257fwY1vewP+w7IcxjvjJJMpdm7bRd3KWsorypZM15rxTKmlXCZlMPcoisL6TWuJxxMER4MMDYyQU3OYTSasNuuE491sMXPaWadw2lmnEAqE+Pc/n+fpJ58tlItORiKeWFKd9qaLyWSiZW0ToUCISCRGJBwhl82BriOIIhaLGbPFPCfvee1Jq3nla17Bw7//E01rGjnjnNOKHnc47fT19OMr8Y113uvhgovOJZPO4HDal0wZgsHyp7KqAjTo7CgWptZvXEtJiZNrL71lwnPuf+zOCaJUKBSmvKp8UbkZJEmisXkl+3bvJxaNFxxfDU0redt7buZ73/wxP/j2HbzrP95WyLE0mU3YHDb27GhFkAQURZk0J+pohENhnnnqea645hVz8r4WA3aHHbvDTjqVZtOWDbzw7620H+ikpMxPKpmeciJxPD8qEU/i9XvzDolsjt//+kEee/hxKqrKefeHb6V2RQ29PYfcNKFgiM2nbVryeaOLnUPNAjqKzgdHOpvmgrLyUl5/41Xc+cNf8uiDj3Hpa/LfH1EUMZlNdHV007ymadFWHxS67bmchX186vGneeIvT/KmW1/H/Y/diabpSJKEPDYGmCuBNRWIoGVzWP0utKyK2TX/E/smmwVREtFUrSjGxN9cS++/9zC6r5vq09YAebEmE0+i5dQ5E88y0QS6rpOOpbjgQ9dgsinFwe+zPFbMJtL0v7ifio2rirYjCAJmu5VcOrskQ9D1bI5HP/2zCctf+dmbQVh+Y1vjivMSwON18+4P38pTTzzNfXffz+c+/iWufeNrOfO804u+mFargtlsoqu9h9BomJVNK5ZEe9h4NIYoisuqw5bB3CAIAg6HHYfDTnVtFbFonJGhEUaHA2joKIqColgmXLA8Pg8XX3Yhr3j1y6ds56zrOrlcbsl12psuZrOJsorSQjv3TCZLKpkiHo8TDceIhqOomoaOjiRKmC1mzGOz7SfKZVe9koOtbfzyjvtYsbKOyupD7hBZlsnlVPp7++nt7iWXzdHYvJJUOk1N+eK5aTcwAArOpiOFKdM0A6tDwTAlJT7q6msW3cDaZDLRvHoVu3fuKwpyPunkddxwy+u564e/5M4f/JKb33FD4X2bzWZ8JTMrr8tmsmx/cRdP/+Pf7Nq+B13XufLai2f9/SwWBEGgqqaC/XsPsn7TWmRZYuvz27no0peRTCYnFaXCoQj79x5AkuVCeWR/7wA/ue1Oerr6OP+ic7jqutdMKInOZrJYrVZDkJonyspLyaQz9HT14T0seH4+OOPc09i1fS8P/uZhVq9tYuWqeiAvggZGgwQDoUXZpVvXdbo6uoBDTSHa9rfzq5/9mjXrW0gksqTTASLhKNV1lQWX6lwRG8g3V7D6XGiqOudlcZMhiCJWv5PEcBjzYfdCZrsVV00ZI/u6qNqyukiwyaWzmOdAlNI1jWQggpZT+fu3f4tvVQ0rX3by7Ly4KE7s3KfrpCJxep/ZTbhzgJUv34zFVezCWooh6Lquo03WaXAZs3ym8g2KUNXiA1kQBM654Ez++3//k9r6Gu760a+4/es/IhwKF60nSRJen4dUKsWOF3YxPDSCri9uX3wsFkdRLMtSCDCYO0RRxOV20tC0kpNP20jz6lUoioVIKEIoGCadSk94jiAIyFNkBeiaTvOapiXZae94MJtNuNxOKqsqaF6zis2nb2Lj5vWsXttEdU0lJrNMLBojFAwRCoaJRWNk0pnjOp+Ioshb3nUjitXCD7/z0wl/G7vdxvDgKB1jIecNTSvRdd0o6TVYlFTWVFC3ooZQMDyjQWckFMHtcVLfuHidmGaLmZa1TWRzuaLv6Vnnnc4V176aZ//1PL/91QMzfl1d1+k42Mkvf/prPva+T/Oj7/6U3u4+Lrn8Ij795Y9POVmwXHB7XMgmGZNJpmVtM1uf24HJJBMKFneX1XWd/r4B9uzYi2JVsNtt6LrO43/+B1/4768RDkV413+8jevedM0EQQogmUwVQtAN5ofq2irKK0oJB8PHXvk40TSNRDxBNHIoEFsQBK5/87V4vG5+cvtdpJKHgs+dTgcdBzvJ5XJztk/HS3A0yMhQAJcrXx0RCob5wbfvwOPzcMu7b5rXbFxd00mM5P9uVp8LBAFphh0xZwuLy4EoS2hH5C6VrF5BNp4i0nvIgSdKEtlE6siXmBUy8RRqVmVw20HQdapOaZm11w4MhAgMRYp/hqPEUyorX76ZZCDCrl//jeE9nRPGmkeGoM/V+58t0pEEzHNo/0JjTIUsQ1asrKP9QAeSLBcs9OP4S/184OPv5vE//4P773mQ//fxL/GGm6/llNOLVWy7w04ul+PgvjaCgTC1K6oX7c12PBYvZGMZGBwPsizj9Xnw+jxkMlki4QiD/UMEAyEEUcButx8zjFQ2ydidL90SUkEQsCgWLIoFt8dNZU0FmqaRTmdIJVPEYnGioQjhcARdA0HI58ZMdmM0GW6Pmze/80a+/aXb+eXP7uNNt15fmFU2mU0k4gl6OnspqyjF6XIQDkcWfSaGwUuXqtp8V8iuzp5pdbaMRmNY7VYamxsWfUOSoiDnsXIggEsuv4hwKMJjDz+O2+3iFa9++TFfKxQM8++nnuNf//g3A32DmEwmNm3ZwJnnnkbLuqaCOHd4Do+maciyjCRJyyYTSZIkqmoq6O7oZdOpG7j7x/cwMjRaFKWVy+XobOtieGgUjy/f6TESjnLXD3/Jzm27WbdhDTfdev2kUQdqTiUSjeJw2CktL5m/N2aAIAjUrawlm80RCUVwzZLAms3mSCaSaJqGIAh4/V40NUc4FCmIuDa7jZvf+Ua+8fnvcs+dv+FNb78ByF9T4/EEA32D1NRVz8r+zAaZdIa2g504xwSpbDbHD779E1LJFO/9z3dgd8w8p+hE0FSVZDCG2WlDMslomopoWpjzsyiJWP1u4oOBIreUp74cyWJiZG8X7tp8wyvRJJOJJrCVuGfVnafrOsnRCGomy8jeTkpWr8AyVs6ojkU+IAj5bQoAh/7/RPZDEAT8zbU4q0po/9sLdD6xlVDHAPXnb5zQfW8phKCrmSzxwQD2upfWudgQpZYhJWV+HC47nW1dBEaDuN2uolwVURR5+SXns/ak1fzs+3fzo+/+jBef3c51b7qmSMSSZRlfiY9YJMaOF3ZSVllGVXXFtG8i54t4LIFFsRh2c4NZwWw2UVLqp6TUTzKZIhQMMTQwTCwaR5JEqmtKikJINVVDkiWstqXVIGA+EEURq1XBalXyYaR11aiqSjqVJpVM09XRTSqZwul2TmtAsnpdM6+68mL++LtHaV7dyFnnn1F4zOVx0X6wkw2b15FOZ3C7XIv+5t3gpc3hwlR19dSDz3gsjkmWaVq9aslc5xwOO01rVrFvVyuusTGIIAhc+8bXEo1E+e2vHsDldnL6OadOeG42k2XbCzt4+h/PsnvHXnRdp7F5JTfc8npOOW3TpGLz4Tk84WCYlnXNy26SwF/ip7ujh5M2rUUQBLa/uItzXnYW6VQaTdc5sK+NVDJVKAPbuXU3d/7wFySTKV5/09Wcf9E5k55no9EYuqqxsmEFJWX+RevCW87kG4rUs3dXa1Em20zQdZ10Kk06lUYn3+Clsroct8eF1ZZv7JLL5di7q5V4LF4QcJpaGrn0ilfw0P1/Yu2GNZx65mZgPPS8H5/fe8zul/OBrut0duTd0CaTjK7r/Opn99F+oJO3ve/NC5KxN955z+Z3oeVymGzWBS2rtjhtpIKRok58oiThb6pheHcnuVQGWTEjSiK5lIqWzQezzxa5ZJpcOpN3SQkClZubgbwgpWsakmIBTUPXNHQddE1F1/SxoPLDJXYBobDksOX6oaWCA31tUQAAQQxJREFUKCIr5qLP2+yw0nzZWQztaKPnmd3suvdvrDh/I96VxcfGYg5B1zWNaH+AXCpLLplZ6N2ZV5bG6MZgxiiKQvOaJkaGR+k40Dmpa6qiqpwPf+r9/OnBx/jj7x5l/96DvPGtr+ekTev+f3v3HR9XdaeP/7n3Tu9FvdqSi4wr2GDkioML7l5TQzAE0zcJgeS3BMgmZElCAmEXcMKXwC6BJJTQDIlDCS0Q3DDG2Aq4y5ZkW10aSdPr/f0xlqIyY1t31P2882LXGkmPz8j6zJz5zLnndPk6k9mIWCyGxoYm1NfWIy8/F+lZaUPmcrn2ptRQGQ+NHPGGShaysjPh8/rR3OzC/n0ViEaiUKlUiEYjsNqsGDO+iBP5MyRJEgxGAwxGAyw2M45VHEd9XQNMJtMZrXZctmYJDh88ij/9/jUUFhV0TETraurh9XhRPLYIgUAAWdkZ/X1XiFKWk58d3ztClvHG+384+e5xZ/Ebxp8zFpphthrYZreieFwRDh8o71i5I4oirrvlGtz07W9ArVHDbDHH75ccX+nT2uLG9275Mfw+P+xOG5asXIjSuRd07GV3RgRAM0ReYPQljUaNjMx0NDe5UDxuNHbvLMPcr81CQ30jak/UQaVWwWqzIBQK4fU/bcJH732C3Pwc3HHPt5CTl90jLxQMwev1wpnuQH5BHrS6kbGqbLhSqVTxPdn+uR9+f+CMrk6IRqLw+/2IhCMQBAEWmwU5+dkwmY0J94RVqVQYO74YX5XtQyAQhO7kv/myNUuw78sDePHZl1E0dhScaQ6IogitToPKI8dQMmncoO9h52pyoamhuWOfq398sAVbP96OS1YtwnnnTx2UMUWDYQTbvHAU5yIaiUBnH9xGuCAKMKTb4O52El9aSSHqvzyK5sPHkTGpqOP2cCDYp00pX1MbIv4gmg5WIXNyMTQmfXy/1WAY1oKMU+63JcsyIMvxJpUsA3Kn2zo+jnXcHvYFEWhxQ63XQuz0BqQgCMicUgxLXjqOfrgL5X/7DM5x+cifPblL46nHJugZDkUnAvY1X7MbYV8AlR/vhm3tbCz6z2sgCPEmnHByE3tBJQE8fY+GE0EQkJ6RBovFjMojVXA1uWC2mru80ypJEpauXoxJ087B7598Hv/vv/8Xs+bNxGXX/FuXJ0RRFGGxmBGLxXD8WDWqq2uRX5CLtAznoK9G8Hi80Ol1XU6cIOpLgiDAaDLAaDIgNy8bHrcXzY3N8PsDI+6kvYGkUqkweswo2Bw2lB86ikAweNp9oERRxPrb1uHnP/wV/vfXz+Lu+78PnU6L8oNHAQDF40cDMXnAl/ETKZWTn40Tx6pxvPJER/MGAAKBIEKhECZOLhm2DYO0DCfCkTAqj/xrY3e1WoXMLDv+bdF1Pb7+dy89hsnnTkTp3AswbsKYXj+2RiIRyIhvoD4SpWemo662HtNmTMGrz7+BluZWxKJRmC1mqDVqHK88gd898UfUnKjFxUsvwurLV/S49DwWi8Hd6oZao0bJxHGw2riH1FDRvifbV2X7IIliwisTgoEg/IEAIMtQqdVwpjths1thMp3ZabNanRbjzxmHvWX7IEkS1Or4pa7X37YOD/zwV3jmiedw573f6ngDqbnJheZGF5zpjtNm95dQMNRx2h4AHDpQjpef24hJ087BykuXDtq43DVNgAzonfHLIVW6wX/cURt0kLQaREPhjv2tDGlW6J1WNB6o6mhKiSoVwt4AdJa+mStFAiGE/UHU7TkCUZKQde7Y+O3BELRWw2k3gI9fxidAOMOHfK3ZALVBC29dM2JCtMfPXu+woOTf5qFm1wHU7DoEd3UjRi04D5Zuq5LbN0H31DZBjsWgH8TGYtgXgL+pFXW7D8Nb70JteR0ckBD2B6Gzm2E4+Xs2EhtSADc6PytodVqMnTAGReNGw+fxweP29Pia/MI8/OC/vo8lKxdi2yc7oJZkpKVZkJ3j6PJfQWEmbHYrjAYDKo9UoWzXl/GTywbxhACf1wedTsvGAA2I9g3SRxUXYsKk8Vyh1wfsDhumTJsIs8UMV5ML0cipn3EtVjNu+NY61Nc24MVnXoYsyyg/eAQmsxHpGWnxk2gMQ3MPPKLuBEFAbn4O8gpz0Xpy8/NQKISgP4AJE8cP+73RsnOykJOXhRZXa8fms12OB+/E7rDh+luvQcnEcWf8nC7LMrxeH1zNLQgEgigszB+x8wGjyQCL1YqSifHLYg7uPwxHmgOSSsL7b/8dD/7kf+Dz+nD7XbfhsqvX9GhI+bw+tLrakJ2XhcnTJrIhNQTpDXqMP2ccvF4vIpEIYrFY/Pfb1YIWVwskSUThqHxMmnoOzp0xBYWj82G1Wc6oIdXOaDJgTEkx3K3ujvl7ekYarvrm5Sg/eAR/2/R+x9eaLWZUHK1COBzu8/t6Jtov2xNONrSbm1z43w3PIC3dietvvSZprUciEUhi/75p7q7518l7QHyvpsEmCAKMGTZEQ13/vdJKCuBraIWvKb4xu6RWIeT1Q+6jzbT9LjdCbb74aqzJRVDrtfHL9KIxGJz98zijNRtgLcyCqE18X0RJRO75E1CyZg4EScTBTVtwbOuXiHWbY4qSCI1BB2+9C4EWd7+M9XRikSjcNU1oO9aAhr0VyJxaDEdx/EoAORo9KxZeDH710IDosmrq6LGEq6bUahXWXLECU86dCLPFhMuXru+R076XjqSSYHPYEA6FcfhAOQxGAwpG58FitQz4Et/2ptRgr9giIuU0Wg3Gji9Co8OKo4croNZoYDzFPhbjJozFs6/8GpFIBEaTEbfcvg6SJMFkNkKlzhqxL0ppZGpvTAHA8coTEEQB50yeAKNp8Pdy6Qv5hXmIhKNobGiEzW5L+nXJmlWJhEIh+Lx+ADKcaQ6kZ6bDZDaO+NrPyctETq4Tv3/1N4AQPynN4/Fi2aoFWLJ8Hlpb/TB1W3EaiUTgbnXDYrVg3IQxQ2KPIErObDFhbMkYHD5QDlEUYXfa4XDaYTQZ++wyXrvDhsLifFSWV8HutEMQBMycPQNf7dmHN1//G0omjkPR2NFQq1Xwe2OoPl6DwtEFffJ390Zz478u2wuFQnjysd8hHArjznu/nfT3uMXVAofTDmda/67u8tW7IEhifGNxSRgyjQO1Xgu1SY9IMATVydV2zrF5OL7tKzTur0LB7Mnxx9qYjGgonPIKr2gojJDbh7qyckgaFbKmjgEAhP1BGNKtXS4l7GuSWgVLTjr8Ljd8ja1QadU9/j5TpgPnXHYRjm//CnVl5Wg9Vo+ii8+DIc3W8TWCGG9MeepcAACdbeBWTMmyDG9dM/zNbhzb8k+Ysp3IveAcAPGfocqo79gwfiRjU+oso9VpMbakGE0Nzag4UglBFHtcLlM0djSs9jM7/UOtUcPutCMYCGL/V4dgsZiRPyq3x4Sov8RiMfh9AegN+iHzZEBEyrQ3z01mEyoOV8LV7ILVZk36ItNqs2DNwmt73P6Xvz/X30Ml6nPtjSlJlKA36mC2DMzz6EAQBAGFRfmIROInjGXnKHux2H60fTgchU6vxaiiAtgctmG331YqzBYzPK0uXHfZt3t87o33/4BorLnjY1mW4XZ7AFlG0bjRSEt3DvreQHRmHE47pp43GWqNut8arVnZmQgGQqivqYfNYQMAfP2bl+HIoaP43RPP4Yc//w/o9TqYLCbUnqiDM90J0wBeGh8KhnC0vAIWqxmyLOP5372MqqPHcNudNyI7N6vH18uyjBZXC9Iz0lFYlN+vb1bLsfhJc3qHBbFoFLoBet1zpgxpVrRW1kHWyBAEASqdBrZRWWg+dBx5F06Mv2YSBIT9oZSbUoFWL/yuNrQcrUHOjPFQ6TSIhiMQ1SrorP3/cxFEAQanBWqDFp6aJoT9Aai77ckmqVUonDsVtsIsVHz0BfZt/Afmf+8yaBKsqpdlGZ4W94A1poKtHvia21D50W5IGhWKFs6Ib0YfDENUiTBnOYbcCYH9gU2ps5AgCEjLcMJsMaGy4jiaG5pgsVm6rJpKNmnxur2oralDVnZml9vbj4L3+/z4cs8+ONIcyC/I6ffLDvy+AGRZhl6v40opohFCr9dh/MSxqKuuR1XFcegNOugSbfqa5LUVX3TRcCUIArLzer7YGgnaTxg7sPcQYr28ZCQQCMLv90MUBKRnpiMtwwmj0XBW1rooiskv1er04wgGgvB5fUjPTEdeYe5Z1bgbKfp7LzlBEJBfmItgIIC2NjcsFjP0Bj2uv20d/ufnv8affv9qxyVyOoMelUeqMGHS+AFZjSjLMiqOxi/bU6lU+OCdj7Bjy06svHQpppw3qcfXx2IxtLhakZWTiYJRef0+xmgkAr/LDfvobMixGFSn2TNpoKm0GmgtRoS8fqhP/h6llRTAdaQarZW1sBflxC/h8/igtytvHMUiUQRa3KjbcwSSVo2MycUAgEgwDEte+oA2U9R6LawFmfA2tCDU5oNKr+2xYMFakImJV3wNlZ/sAWIy3r3/jz1yFv94HTy1LgACdLb+bapFAiG461yo3rEfQbcP41fNhsaoQywSRSwahS0vE2IvLs0dztiUOotpdVqMHV+EZqcdR8srEq6a6i4QDOG/7voFJk+biIXLLsLYkjFdJoV6gx46vQ6eNg/Kdn2FzOx0ZOdm9dsTq9fjBQDoDHpIZ0EXmehsIYoisvOyYLFZUH7wCFpcrbBYzWc00Twb3lEiGo5UKhXGloxB0O/B6+/9vsflep3fXIpGovB4vYhFY/HLmcYVwWqz9mrvnJHqVI+DsVgMba1t0Oq0mDC5BBbr4J4IRkNbvFk8Gvv+eQA+rw8GowHF40Zj6erFePP1dzBxcgkumD0Der0OruYWNDU2Iz0j7fTBKWpudMHV2Ay70479Xx3Exhf/gmkzpuCSVYt6fG17QyqvIAe5+TkD0qwOtnoRDYbjm5wLQp+eYtdX9A4Lgm4vZDm+WsqSlwG1QYfGA1WwF+VAVEkI+wOIRWOKrzYJtHrhrW9B27F65M6cAJVWjUggBI1JB7Vh4Bt1okqCKcuBoEEHb30zREnV5dQ9IL4hffGi80+5Qkxj1MFTG1912l+NqVg0Bk9tM5r3V6GlohZ5pZNgznZCjsUQCYZgycvo2Kz+bDD0KogGlCAIcKY7YLaYUHH0GJobmztOt0jE7rBh+b9dgo/f34xHHngc+YV5uHjpRZg+c1rHSitBEGAyGyHLMhobm1Ff14CcvGxkZmf0+abQ7U0pg4Gn7xGNREaTAROnTMCJ49WoPlYLk9mY8ESizs6+tRNEw4dGo0Yspsfesv1QqdUdx9ID8dURfp8fwWAQKrUaOblZcKQ5upwGTMlXg8ZiMtpa2pBXkIvMnAyuIKczolarMXbCGHxVtg+hYAgarQZLVy/C/q8O4MVnX0HR2NH/usLi6DFYbdZ+XXkXDARxtLwCZqsZjfVN+L/f/B6Z2Rm47uarezRko9EoWltaUTiqYEBXmf6rYWGGIIr9um+SUpJGBZ3NjECLBxqDDoIowDk+H7W7DyHkDUBj1AEyEA2GISpoIMWiMQRcbtSXHYFKr0XGpCLIMRnRaBSW9PRBW8kqCAJ0ViNUOg08tU3x1WIGXY/xnGoFkiCK/d6Y8je1ovVYHao/PwB7UQ4ypxRBlmWEfAGYMh2D0tQbTEOvgmhQtG8y7Eqz48jhCsjyvzY170ySJKxYewkWr/gadmz9HB+8/RGe/e1zeOOlTbho8VzMWTCrY3NiQRBgsZgRi8VQc6IOtdV1yCvIRXpGWp+90+n1+AAAesPZuYyf6GwgqSQUjMqHzW5D+cEjCASCI2q/HaKzjU6n6ziWXhQFCBDg9fggCIDNYcXoMaNgtphG/KblfU0UBEw+d+KwP7GRBp5er0PJOWOxt2w/JEmCpJJw/a3X4Gc//BWeeeKP+N5/fgcqlQqyLKP6WDVGFRf2yzhkWUbl0WMQJRHRSBRPPvY0YrEYbr3zhh6X8cf3qHOjaOxoZGSl98t4kvGcPHlPazHGmztDlN5uRrDVAzkWgyCKSBtfgNovDqHp4DFknzsWgigi7AsoaoCE3H64qxvhrm5E/qxJ8csBfQEYHJYhscJHpVXDmp8BX1Mb/E1tUOu1Z3YpXMcpsZ0bUwJ0tr7bTy3o9qHtRAOqPimDzmrCqIumQRAEhLx+6O3mfr9scChiU4o6CIIAR5oDJrMJlRXH0NQQXzXV/UhhANBoNJhzUSlmzZuJvf/cjw/e/ghvvPRXvP3GuyidNxNfWzIf6Znx5b2iKMJqsyAaiaKq4hhOHKtBdk4mnOmOlC/r67xSiohGNovVjEnTzsGxihOor2tAbl56l+Z5LBqDWquBRnt2vbtENBwZTQaMnzgO+786CK1Og8KifNgdttOuhCRAo9XizX+8iHA4jGg0Ft/IWCVBbzBAlPjzI2VMZhOKxo7G4YPlsNltcKY7cfX1V+B3/+8PeOuNd7Hy0qWwWMyoralHWoazXw41amxogqvJBZvDhqcf/wNOHKvBt/6/m5GR2bXpFA5H4GlzY9yEYjj6+ZS9RDx1LqgNOogqEaohvKJFVEnQOy3wNbRCY9RDZzPBlOVA04EqZE0bA0kT31fKkGbtVa4ck+FrakFdWTnURh3SzxmFWCQKURKhsw+dS4YFUYQx3QaVXgtvbROikUjHHlvJhH0BeOtdMGbYOzWm4k3IvmhMRcMRuKsbcWzLl4iFoyhedQEkjRphf3z1WudTAc8mbEpRDxqtBmPGFcHptONIeSX8fsBkSnzMsiiKmDT1HEyaeg6OV57AB+98hE8+3IqP39+MqdMnY+HSi1A0djQEQYCkkmCz2xCNRHHieDWOVR2Hw2lHZnYmzBaTopVO7SulTFw1QXRWUKvVKBo7CjaHFfv3HoEoiTCZTIhGo/D5/Djv/KlcNUk0TFisZkybMQVqtYp12wuipIHOoEHE40WbqxnZuVl9vj0CnZ3SMpwIBUOoqjwOu8OG80vPw1dl+/D2n9/FhEnjMWZ8EQwGPY6WV2HilJI+Xc0YDARRWV4Fs9WMd9/8AJ9/+gXWXLkCE6dM6PJ1oVAIPo8P4yeOhc1u67O/vzf8jS3QO82AIPTYs2io0VpM8De7EYtGIUoS0koKUPHRbnjrXDBlORAKhBANR3p1CWLYH0BrVR28dS4UzJ0CUSUh5PHDlOMcktupaE16qAqz4KlzIejxx0/dE0Us/vG6Ll8nx2LwNbmx/8+bUThvKtLGF/RpY0qOyfDUNaPm84Pw1rlQtHAG9HbzyZP2VDBmOnrstXi2YFOKEuq8aqr6RC0a6xsRi8ag0WqgN+gTTh7zCnNx3S3fwJorV+Cj9zbjkw+3YPfOMowqKsADj/7w5Pe1f3U6IAMQBOz98gC0Og1ycrNhd9p6NbFqXyll5UaeRGcVh9MOk8mIiiNVaG5yQaVSwZlm5wtbomGGp8IpZzIZYTL13SUlRACQnZcFvz+A5sZmWO1WXHXtpSg/eATPPPFH/PDn/wGD0QBXsws1J2ph6HQKZvz/CRCE9v/iNwqI/1mI/5/4n09+XcfHgoDKI1UQJREH9h7Cn19+E9NnnovFyy/uMrZgIIiAP4AJk0sG7TL+aDiKQIsHloL4SeTSEG8Ii5IIQ5oN3rpmaIx62ItyULX5n2g8UAVTVnyVWTQYPuOmlCzL8Da0or7sCDQmPdJKChEJhqEyaKExDd1LhyW1CpacNARa3fA1tKLhWGPC+xz2h2DKcqDi71/A19CCvNJJEKWTjam69j2mlD3u+l1uNHxVgcZ9lciYXATHmFxEwxHIsSgsZ9FJe4mwKUWnpNFqMKqoAPmFufC4PWioiy+rlWUZOn3iY9qtNitWX74cl6xciO2bP8OHf/sYfp8fV6+6pcfXvvHBH2B32BAOhVFxpAqVR6qQnpmG9Mx0GE2G047Pc7IpZbH1btkpEQ1/Gq0GY0uK0VDfiKOHKmG183GAiIgoFYIgYFRRAULBEDweD0wmE9bftg4P/3QDXnz2Faz/92thsVpw4ljNye+Q8a8jRmQIECB3hAGCjH99jHjzSu50gwBAPvkVoWAYTz/+B+TmZ2PdjVd1eaPJ7w8gHA5jwpSSQW3GeuubIcdk6GwmqPXaYbGyRWs2wN/cFl8RpVHDXpSD5sMnkD9rUnyVk9d/xg2lSCAEV/kJ+Bpb43shiQJikQjMOc4h/8agIArQ2y1Q63Vw1zQi5AvE/w07jVut12Lc8lIc374XdWXl8DW1oXjx+VDrtdAYtIobU2F/EM2HT+DE9r0wZTmQd+FExKIxRENhWPLPrpP2EmFTis6IJEmw2qyw2qwIh8Noa3Gjvq4RrmYXBIgwGPU99oHQ6rSYv3AO5n5t1ilP9AMAtUYNm8aKWCyG5iYX6mobYDIbkZ2TecojoN1tHoiieEYNLCIaeQRBQEZmOqxWC9Rn+RM6ERFRX5BUEorHF2HvP/fD7w9g9JhRWLH2Evzl1bcwceoEXDjnAtj6+I2ggD+ADQ/+FqIo4tY7buiy76zP60MsFsPEySWDvpG/u32Tc7MBauPQ3U+qM0EUYEi3wnOiCZJahbSSAjQdPIaWozVwjMlFyBOAnCGfUVPJ19SKuj3l0FqNcI7LR9gfhM5mgko3fPazU+k0sBZkwdvgQrDVC7W+6ynugigif9YkGNKsqPh4N/a99jGKl1wAY7rtZGOqCRAAnfXMGlOxSBStlbWo+mQPRLUKRYtmQBCF+CWP2U6o9cPj96g/sSlFvaZWq+FMd8CZ7kAwEERrSxvqaurham6BKIkwGg1Qqf71qyWKIjRJrrdua3Fj12d7MPW8SZAkCaIodmycGAwEcehAOVQqFTKzM+BMd/Y4Ftrr8UKn13IvBaKzXKqHJhAREdG/aDRqjJ8wBl/u3guVJGHJyoVYumoBtFoNrHYrpE4v4iVJwvFjDb3+O/Ly0xGNRgEZcLs9+Nl/3w2L1QydXteR5/F4IUkSzpk0Djrd4B9s5K1thiAK0FoMUA2jg1U0Rj0knQbRUBimbCe0FiMa91fBOS4fciyKaChy2v2xIsEQGvZWIuByY/TF0yHL8ZVveodlgO5F3xElEaZMB9R6Hbz1rviBETpNl8acc1w+dHYzyv+2A/vf+ASj5k+Dc1w+1PpOe0ydpjElyzI8DS5Ubf4ngm0+jF85CxqjPn7SXpr1jBtbIx2bUpQSrU6LjKx0ZGSlw+/zo6W5FXW19fC0eSCpVDAY9ZCk5NfHRmNR/O+GZ2B32DD3a7Mw+6JSWE7uD6XVaaHVaRGNRlFTXYcTVTWw2S3Iys3qOCra4/ZCp9OxKUVERERE1If0Bj3GnTMW+788AIvNgszsdKxd/M0eX/f6e78/uZpJRiwWgyzH4n+ORjtui/8nIxaL3ybHYkhPt+CyS9b3yGs/WbetzQ2tVovxE8YMmZM5PXUuaK0mCJIISTN8XkoLggBjhg1tVXWQNGo4x+ej+rP9CLZ5IUgiIoHQaZtS/qY21O8ph85ujq+w8gZgynQM272QBEGAzmqE2qCFv6kNgTYvVGpVl0vpjOk2TLh0Po68txNHP9wFb0ML8i6ceMaNqWCbDye270NrZR3yLjwH5pw0hHwBaEwGGIZhM6+/DJ9KoiFPb9BDb9AjKzcTXq8PriYX6msbEYlGkJllT/g9drsNt955Iz5+7xP85dW38NYbf8N5M8/FRQvnYFRxYfzUPkmC1WqBLMsI+APYv/cgtBoNsnIy4W7zQNdtySUREREREaXOarNg9JhROHK4Anl56Qm/prnJhe/fem+vs5/+06NJP9fa0gaTyYgxJUVD6s1nX0PLyUaMatg1Y9R6LdQmPSLBENLGF6D6s/1oPHAMWVOLEfL4TtlciYYjqN1TjmCbF8WLz0csHIFKp4bWMvy3UJHUKpiyHNBajfDWx0/oU+u1Ha8v1Xotxq0oxbFtX6H+n0fgb2pD0aIZp21MRUNh1P2zHLVfHIJtdDYyp45BJBiCpFHBmGkfFvuRDRQ2pajPCYLQcSJMTl42PG4v1Gpg43vPAnL88+1FKEkSpp43CVPPm4Ta6jp8/P5mbP9kB3Zs2YnC0fmYv2guZsw8F2qNGoIgdDS+wuEIqiqOo6mhCVqt5pSrsYiIiIiISJmMrHQEAgHEYrGEnzcYDbjs6jUQRAGiKEKSRAiiCFEUIYoCRCH+sSTFbxNO3m5Ocnp2LBqDxWpC8biiLluCDLawL4CwNxDf5Nw4+JcSKmFIs6Klog4aow6WvHQ0HahC9vRxCPuCkGMxCGLiN/r9zW7Ul5XDkGaFdVQWwr4grAUZI6qxotZrYc3PRLDNB1+jCxEZHRuhC6KIgtmTYUy3ddlnSu+wJGxMybEYmstPoOofZdBaDBi94FzEIlHIsgxLdhoXVHQzdKqcRqT4BunxpYkRbQTuNg/qq+vR0tIGSSXBZDJCPPngl5WTiSuvvRSrL1+OT7fsxEfvfYI/PPUCXnvhz5h90YWYd/FsONPiR5eq1SrY7FaEQmFY7ZaODCIiIiIi6lt5BbnwulsSfk5v0OHipRf1OlOT5IASURIxZnzxkHvT2V1z8uQ1uwkaw/BsSqm0GuisRoS8fqSVFOLI+zvhqW6Ezm5GJBhOuOl2LBJF9c79CHn8KJg7FdFgGFqrYURu0C2IAnQ2IzQmHfzNbQi0eCCqVB2XNibaZ8penNujMeWpb8GR9z9HLBzB+JWzIEgSIoHgyZP22ILpjj8RGjAqlQp2hw12hw1+fwCN9Y2ora6DHJNhMBmg0cSvFdfpdZi/cA7mXTwbB/Yewsfvb8Z7b36I9978EFPOnYj5i+Zi4SVzEItF8fNH7oFKpYIoRBDwuaHRaiFKQ+OacyIiIiKikUAUxQFbtaRSqYZcQwoAPO0n79ktw7qxoHdYEGjzwlqYCUmjRuP+Y8ifNRFhXzBho8nvcqO+7AiMmXZY8tIQCYZgcPbt6YtDjaiSYMywQ2sxwtvQgpDHD5VeA1GSOvaZKn/3Mxz9cBd8ja3IOb8kfiofAEktoeLDXfDVt2D0xdOhs5sR8vphyuJJe8kIsizLgz2IoaKpyYNYjD+OgRSJRNDiakX1sRr4/X5oNBoYjIYeR5I2N7rwjw+3YMtH2+Bxe/HsK7/GNy//To+8N//xInSGxEuBiYiIiIhImVg0hGAggFAoDAGIH72GeMOq8mgNZHR6HdX5j51ebnZ+pVVUlNNxSaAsy5BUEiSVCtoh+ibz3lc/QuP+Kpxz5QI4x+T1eL0ynHgbWhBo8aDm8wNo3F+FyVcvgqRVw1aY2eXr5FgMB9/cjuod+zBuxSzo7CYY0q3Q28+eTbplWUbI44e33gU5GoPaoIMgCIhFYzi+7SvUf3kEc7+zBnpb/AT5WCSKSDAMSa2CpNei5nANDE4LDGkju5F3KqIowOk0Jf388G3x0oigUqmQlu6EM80Bj9uL+tp6NDU0QxBFmExGSCc3EHSk2bHmihVYvmYJdu3YPayfBIiIiIiIhhtR0kBv1CAm+1B5pBLRk2/mCwIgtP8v/sHJ2zv9+eT/2r9BEIDq6qb49woCTGYTMrOdQ3qO761zQWczQWPUDelxngm93YxAiwfOcflo+KoCLRU1sI3KQiwS7bKBu88V30vKnJMGQ4YNAKCzJm8ujESCIEBrNkBt0MHvciPQ3AZRJUGl1aBgzmQY0q2Q1Cq8+9Pnenzv4h9dA63ZAL3z7GniKcGmFA0JgiDAbDHBbDEhryAXzY0uVJ+oRSQSgd6gh04XX+qo1qgxc875sJ5F3XkiIiIioqHCaDLgnCkTBnsYA0qOxeBrbIWtKBsag36wh5MyUSXBkGaBHItB77CgcX8VbKOyEAmGoTnZlJJlGce3fIlIIISc80sQDYVhzc9Iuhn6SCdKIoxpVmjNBngbWhD0+KDWaZE2vgBqQ5LL8gQhftLeMG9i9rez8zeKhjStTovsvCxMmzEZ4yaMgUolwdXsgrvNk/TUDyIiIiIiov7gb3YjFolCZzND0ibeoH240VpMEFUSHOPy4GtoQbDNh7Av0PF5v8uDurJyWPIzoLebO1YLne1UWjUsuWkw56YhFo0i5PUnbdSJksiT9s4AV0rRkCVJUsfG6F6PDw11jWioa4AMICvbMdjDIyIiIiKis4CnNn7ynsFpgZTk1MDhRpREGNJssOYHUL1jH1xHqqF3mGFMtwEAqj7Zg2gwjJzp4xGNRmE5i/dE6k4QBGhNBqj1OgRaPECybbq5QuqMsClFw4LRZIDRVIDcgmy4mlogCAI2vvssIACCIHYcKavR8kQDIiIiIiLqO57aZkAAjJmOEbXyRWvWQ2M2wJKfgebDJ5A5pQjRUAQhjw91e8phG5UFjcUAvWPkNOP6kiiJMDgtEGORwR7KsMamFA0rarUaGVnpiMVicLd5UFtdB51ei8LRBYM9NCIiIiIiGoE8NU3Qmo3QWQ2DPZQ+JYgiDGlW2EfnoLWyDm0nGmHKSUPlx3sQC0eQde44iJIIne3s2ty8twS1Cpfc/834SZOy3HE5n6CSgOggD24YYFOKhiVRFGG1WWC1ccNzIiIiIiLqP576+Ml7Kv3I21NJY9LDVpQN1ad74SqvhiU/A3Vl5bAX50Bj1MGQbhtRq8P6QyAKQJA6TpvswIbUGWFTioiIiIiIiCiBSCCEYIsH1sJMSJqR9/JZEARkFWXCefsaRMNRiCoJ827/N6gNWgiShJA08u4zDS38DSMiIiIiIiJKwFvvAgAYnVZI6hH68jkm44MHX+px8yX/dR0EbtZN/Yzr8IiIiIiIiIgS6Dh5L8M2uAMZDGxI0QBgU4qIiIiIiIgoAU9dM0S1CqZs52APhWhEGnFNqU2bNmHZsmVYvHgxnn/++cEeDhEREREREQ1Tnppm6B1maAwjb5NzoqFgRF0UW1dXh0ceeQQbN26ERqPBVVddhZkzZ2LMmDGDPbR+p5MAOdJze39BJcVPA2DeKZk0AqKhSI/bJY0KnpA8qHlDeWzMY95IGRvzmDdSxsY85g1m3lAeG/OYpzTrvMvnQaVVQ6OTIGkERWOzmNQQ0fP7YhDQ5gkPep6Y5Cq9ZLefzlC/v2db3lA3oppSW7duxYUXXgibzQYAWLJkCd555x18+9vfHtyBDQA5EsU7P362x+2Lf7wOrbUtvc5TZ9nw7v1/PGvytNk2vPNfPfMuuW8dWmsGN28oj415zBspY2Me80bK2JjHvMHMG8pjYx7z+iJr2U+/CUDq9dhEyHAf+qrH7eaxE3ud1R95kkaFS+77RsLboaAJN9Tv79mWN9SNqKZUfX090tPTOz7OyMhAWVnZII5o8IU8fux6alOvv++i713GPAAB9+DnDeWxMY95I2VszGPeSBkb85g3mHlDeWzMY15fZAGA2FTVqywAgKEw8e2x6JDIU+UXwt9Q2eN2fXEJxJrBHx/zRrYR1ZSKxWJdjqyUZfmsP8JSrddg7LILFX3f2ZSnNSW+Rlxr0mHyskmDmjeUx8Y85o2UsTGPeSNlbMxj3mDmDeWxMY95fZEFAIjFepUFAJCTrDaSZeYx78zzRqgR1ZTKysrCzp07Oz5uaGhARkbGII5o8ElaDfJKe7/MT5ITb8w0YvOQJE+tQlrpzEHNG8pjYx7zRsrYmMe8kTI25jFvMPOG8tiYx7y+yAKAWPqoXmXFA5O87JZUzGPemeeNUCPq9L1Zs2Zh27ZtaG5uht/vx7vvvot58+YN9rCIiIiIiIiIiKgbQZZH1tqwTZs24cknn0Q4HMZll12Gm2666Yy/t6nJg1hseP44hvrpdkM9b7ic/jHUxsY85o2UsTGPeSNlbMxj3mDmDeWxMY95gzm2oX46G/NGdt5gE0UBTqcp6edHXFMqFcO5KUVERERERERENJScrik1oi7fIyIiIiIiIiKi4YFNKSIiIiIiIiIiGnBsShERERERERER0YBjU4qIiIiIiIiIiAYcm1JERERERERERDTg2JQiIiIiIiIiIqIBx6YUERERERERERENODaliIiIiIiIiIhowLEpRUREREREREREA45NKSIiIiIiIiIiGnBsShERERERERER0YBjU4qIiIiIiIiIiAYcm1JERERERERERDTgVIM9gKFEFIXBHgIRERERERER0Yhwuj6LIMuyPEBjISIiIiIiIiIiAsDL94iIiIiIiIiIaBCwKUVERERERERERAOOTSkiIiIiIiIiIhpwbEoREREREREREdGAY1OKiIiIiIiIiIgGHJtSREREREREREQ04NiUIiIiIiIiIiKiAcemFBERERERERERDTg2pYiIiIiIiIiIaMCxKUVERERERERERAOOTakRxuPxYMWKFTh+/HjKWb/5zW+wfPlyLF++HA899FDKeY899hiWLVuG5cuX45lnnkk5r92DDz6Iu+++O+WcdevWYfny5Vi9ejVWr16NPXv2pJT34YcfYu3atVi6dCl+9rOfpZT1yiuvdIxr9erVmD59Ou6///6UMv/85z93/Ps++OCDKWUBwFNPPYUlS5Zg5cqVeOKJJxRldP/93bp1K1auXInFixfjkUceSTkPAO666y5s3LixT8b30ksvYcWKFVi5ciXuuecehEKhlPJeeOEFLF++HMuWLcODDz4IWZZTymv33HPPYd26db3KSpR3zz33YPHixR2/h++9915KeV988QWuuOIKLF++HN/73vd69fPrnPXxxx93qY8LL7wQt9xyS0pj27x5M1atWoUVK1bgrrvuSvnfduPGjVi2bBlWrlyJn/3sZ4hEImecleixOJXaSPbYHg6Hcd111+HTTz9NOS+V2kiUl0ptnOq5TEltJMpLpTYS5Smtje5ZqdZGorGlUhuJ8lKpjUTzilRqI9k8RWltJMpLpTYS5aVSG6ealympjUR5qdRGorxUnje656VSH4nGlkptJMpLpTbadZ4jpzqn6p4HKK+NRHmpzqm656U6p+qe107pnKpzVqrzqe55qdRF97y+mFN1H1+qc6rueanURqLXe6nURrLXj0prI1FeX9TGkCfTiLF79255xYoV8sSJE+Vjx46llLVlyxb5yiuvlIPBoBwKheRrr71WfvfddxXnffrpp/JVV10lh8Nh2e/3ywsWLJDLy8tTGqMsy/LWrVvlmTNnyj/4wQ9SyonFYvKcOXPkcDic8phkWZarqqrkOXPmyDU1NXIoFJK//vWvyx999FGfZB88eFBetGiR3NTUpDjD5/PJ559/vtzU1CSHw2H5sssuk7ds2aI4b8uWLfKKFStkt9stRyIR+ZZbbpH/9re/9Sqj+++v3++X58+fL1dVVcnhcFhev359r36G3fNqa2vlW265RZ4yZYr82muv9fYu9sg7cuSIvGjRItntdsuxWEy+66675GeeeUZxXlVVlbxo0SLZ6/XKkUhEvvLKK+VPPvlEcV67Q4cOyXPnzpWvueaa3tzdhHkrVqyQ6+rqepWTLM/tdsuzZ8+W9+3bJ8uyLN95553y888/r3hs7err6+WLL75YPnr0qOKxybIsz5s3Tz58+LAsy7L8ne98R3755ZcV55WXl8tz587t+Nndd9998u9+97szykr0WLxp0ybFtZHssb28vFy+8sor5cmTJ8vbt28/4/uaKO/JJ59UXBuJ8p555hnFtXGq5zIltZEsT2ltJMrbuHGjoto43fN2b2sjWZ7S2kj2u6K0NhLNK/bt26e4NpLNU5TWRrI8pbVxqjwltXGqeZmS2kiWp7Q2kv37Kn3eON08tDf1kSxLaW0ky1NaG+06z5FTnVN1z5NlWXFtJMpLdU7VPS/VOVX3vHZK51Tds1KZT3XPS2U+lWx87ZTMqRLlpTKn6p6XSm0ker2XSm0ke/2otDYS5fVFbQwHXCk1grz88su47777kJGRkXJWeno67r77bmg0GqjVahQXF6O6ulpx3gUXXIA//OEPUKlUaGpqQjQahcFgSGmMLS0teOSRR3DrrbemlAMAR44cAQCsX78eq1atwnPPPZdS3nvvvYdly5YhKysLarUajzzyCKZOnZryOAHgJz/5Ce688044HA7FGdFoFLFYDH6/H5FIBJFIBFqtVnHe3r17MWfOHJhMJkiShLlz5+L999/vVUb339+ysjIUFhYiPz8fKpUKK1euxDvvvKM4b9OmTbj44ouxdOnSXo0rWZ5Go8F9990Hk8kEQRAwbty4XtVI97z8/Hy8+eabMBgMaGtrg8fjgcViUZwHAKFQCD/+8Y9x++23n3FOsjy/34/q6mrce++9WLlyJTZs2IBYLKY4b8uWLZg2bRpKSkoAAP/5n/+JRYsWKcrq7KGHHsJVV12FUaNGKR4bEK8Rj8eDaDSKYDDYq/ronnfgwAFMmzat4+MFCxaccX0keiyuqKhQXBvJHttfffVV3Hjjjb1+nEqUFwqFFNdGojxBEBTXRrL7q7Q2kuUprY1EeSdOnFBUG6d73u5tbSTLU1obyX5XlNZGonlFW1ub4tpINk9RWhuJ8rRareLaSDY+pbWRLE9pbSTK0+l0imsjUd6+ffsUP2+cbh7am/pIlqW0NhLllZWVKa4NoOccOdU5VaI5t9LaSJSX6pyqe16qc6pE91dpbXTPSnU+1T0vlflUorzOlMypEuWlMqfqnpfKnCrR671UaiPZ60eltZEoL9XaGC7YlBpBfv7zn2PGjBl9kjV27FhMmzYNAFBRUYG3334b8+fPTylTrVZjw4YNWL58OUpLS5GZmZlS3o9//GPceeedvXqSSaatrQ2lpaV4/PHH8eyzz+JPf/oTtmzZojivsrIS0WgUt956K1avXo0XXngBVqs15XFu3boVgUBAcWOlnclkwne/+10sXboU8+fPR25uLs477zzFeRMnTsTmzZvR0tKCYDCIDz/8EI2Njb3K6P77W19fj/T09I6PMzIyUFdXpzjvxhtvxOWXX96rMZ0qLzc3F7NnzwYANDc34/nnn8fFF1+sOA+I18jLL7+MhQsXIj09vWOCoTTvv//7v3HppZciPz//jHOS5TU2NuLCCy/EAw88gJdffhk7d+7Eq6++qjivsrISBoMBd955J1avXo1f//rXZ1zLyR7rKioqsGPHDlx77bVnPK5keT/5yU+wbt06zJ07Fy6XC5dcconivJKSEuzZswc1NTWIRqN45513zrg+Ej0WC4KguDaSPbbfddddWLhw4ZndwdPkrVixQnFtJBuf0tpIlqe0NhLlzZ07V3FtJMrTaDSKauNUz9tKaiNZntLaSJS3bNkyxbUB9JxXpPq8kWieorQ2EuXl5OSk9LyRaHypPG8kykvleaN7XiQSSel5o3teQ0OD4ueNZPcXUFYfibJSed7onjdlypSUaqP7HDnV2kg0506lNrrnpTqnSjS+VGojUZ7S2uielep8qnteKvOpRHntlM6pEuWlUhvd81KZUyV6vVddXa24NpK9flRaG4nyKioqUqqN4YJNKTqlQ4cOYf369bjrrrt61SVP5vbbb8e2bdtQU1ODl19+WXHOK6+8guzsbJSWlqY8JgA499xz8dBDD8FsNsPhcOCyyy7Dxx9/rDgvGo1i27ZteOCBB/DSSy+hrKwMr7/+esrj/NOf/oTrr78+5Zz9+/fjtddew9///nd88sknEEURTz/9tOK80tJSrF27FuvWrcONN96I6dOnQ61WpzTGWCwGQRA6PpZlucvHQ0VdXR2uu+46XHrppZg5c2bKeVdccQU+/fRTpKWl4Te/+Y3inC1btqCmpgaXXnppymMC4u86Pv7448jIyIBer8e6detSrpHNmzfje9/7HjZu3Ai/34+nnnoqpTG+9NJLuPrqq6HRaFLKaWhowMMPP4y//vWv2Lx5M6ZOnYpf/OIXivNGjx6N73//+7jtttvwjW98A+PHj+91fXR+LM7Pz0+5Nvr6sT1RXiq1kSgvldronHfixImUa6NzXlFRUcq10Tkv1dpI9LNLpTY65xmNxpRro/vPLtXa6DyvqKioSLk2+mqecqq8VGojUV4qtdE576WXXkq5Njrnbdu2LeXa6JwXCoVSft5I9PNTWh+dsx5//PGUa6Nz3meffaa4NhLNkVOZU/X1nPtUeUpq41R5SmojUZ7SOVWirFTmU4nyUnnOONXPTkldJMpLZU6VKC+VOVWi13sbNmxQXBt9/frxVHl9/XpjqFEN9gBo6Pr8889x++23495778Xy5ctTyiovL0coFMKECROg1+uxePFiHDhwQHHeW2+9hYaGBqxevRqtra3w+Xx44IEHcO+99yrK27lzJ8LhcMeDnizLUKmUl0daWhpKS0s7LrFbuHAhysrKsHbtWsWZoVAIn332GX75y18qzmi3efNmlJaWwul0AgDWrl2LF154ATfeeKOiPI/Hg8WLF3c0zP7v//5P0busnWVlZaGhoaHj44aGhj65NLUvlZeX48Ybb8S6deuwfv36lLJqampQXV2N6dOnQ6VSYfny5XjxxRcV5/31r3/FoUOHsHr1avh8PjQ2NuKOO+7Ao48+qijvwIEDqKiowJIlSwD0TY1MnTq14/dk6dKlKV82+8EHH6TUXG23c+dOjBs3DgUFBQDik9o77rhDcV4wGMSUKVPwxhtvAADefvvtXtVH98fiHTt2pFQbffnYniwvldronpdqbXTPu+eee1Kqje55qdZG97xXXnlFcW0k+7dVWhvd895+++2UaqN7Xiq1kWhe8c4770CSpI6v6U1t9PU8JVme0tpIlLdnzx6MGTNGUW0ky1NaG4ny3nrrLdhsNkW1kSjvwQcfxOzZsxXVxqn+fXtbH4myXnjhBcW1kSivrKwMN910k6LaSDRHPnHihOLa6Os5d7K8K6+8UlFtJMq75557cNlllymqjUR5giAoqo1EWd/61rewatUqRXWRKE+WZcyYMUNRXZzq31bJ80aivB07dmDSpEmKaiPZ+K6++mpFtZHo9V5ubq7iOVVfv35MlteXrzeGrMHYyIr614IFC1Le6Ly6ulqeOXOmvHXr1j4Z00cffSSvXbtWDgaDcjAYlK+//nr5r3/9a59kv/baaylvdP7hhx/Ka9askQOBgOx2u+WVK1fKu3btUpy3e/duecmSJXJra2vHxt+93dSvu7KyMvmqq65KKaPdJ598Iq9atUr2er1yLBaTf/SjH8kbNmxQnLdv3z551apVcjgcltva2uQlS5bIO3fuVJTV/vsbCATkefPmyRUVFXIkEpFvuOEG+a233lKc1+4HP/iBoo3Ou+e53W55/vz58uuvv644q3PegQMH5AULFsitra1yLBaT7777bvnJJ59UnNfZ9u3be70pZ/e8ffv2yfPmzZNbWlrkUCgkr1+/Xt60aZPivOrqannu3LlydXW1LMvxjSofeeQRRVmyLMtNTU3y3Llzez2eRHmHDx+W58+fLzc0NMiyLMtPPPGEoseY9rzm5mZ5/vz5stvtloPBoHz11VfLf/nLX84oI9FjcSq1cbrH9muuuaZXm3ImykulNhLlpVIbp7u/va2NRHmp1EaiPKW1key+Kq2NRHmp1EaivFRqI9m8QmltnG6e0tvaSJT3+uuvK66NRHmPP/644to43f3tbW0kyvv1r3+tuDaS/fyUPm8ku79K6iNR1m9/+1vFtZEo789//rPi2uisfY7cV3OqRHPu3tZGory+mlO15/XVnCrR/VU6p2rP6qv5VHteX8ynOufJct/Mqdrz+mpO1Z6XyvNGstd7SmvjdK8fe1sbifI+++yzPqmNoY4rpSihp59+GsFgsMuqnKuuugpf//rXFeXNnz8fZWVlWLNmDSRJwuLFi/vkHfq+smDBAuzZswdr1qxBLBbD1VdfjXPPPVdx3tSpU3HjjTfi6quvRjgcxuzZs1O+jOrYsWPIyspKKaPdnDlzsHfvXqxduxZqtRqTJ0/GzTffrDivpKQEixcvxqpVqxCNRvHNb34T06dPT2mMWq0Wv/zlL/Gd73wHwWAQ8+fP79U16P3t1VdfRWNjI5555pmO45u/9rWv4bvf/a6ivHHjxuHmm2/GVVddBUmSMGPGjD65VLOvlJSU4Oabb8bXv/51RCIRLF68GCtWrFCcl52djfvvvx+33norgsEgJkyYgB/84AeK844fP95n9VFcXIzvfve7uPbaayFJEgoLC3H//fcrzrPb7fjWt76FK6+8EpFIpONY3zOR7LFYaW309WN7orxly5Ypro1k41NaGwNxf9vHp6Q2kuUpqY1kWRMnTlRUG8nylNZGsjyltZFsXuFwOBTVRl/PUxLltbS0KK6NRHn//u//DofDoag2BuL+fvvb34bdbldUG4ny1qxZA5vNpuh5I9n9LSsr63V9JMq65ZZbkJGRoag2EuWtWrUKwWBQUW0kwjnV0JlTDfX5FDBy51TJXu8prY2+fv2YKO/LL7/s09oYqgRZluXBHgQREREREREREZ1duNE5ERERERERERENODaliIiIiIiIiIhowLEpRUREREREREREA45NKSIiIiIiIiIiGnBsShERERERERER0YBjU4qIiIion91+++1YvHhxj9ufeuopjB8/HnfddVePz9100024/PLL++Tv37hxI8aPH4/m5uY+ySMiIiLqC2xKEREREfWzmTNnorKyskdTaNu2bbDZbNi6dWuX22OxGHbv3o3S0tKBHCYRERHRgGJTioiIiKifXXDBBQCA3bt3d9wWDAaxa9curFu3Dg0NDTh48GDH5w4dOoS2tjY2pYiIiGhEY1OKiIiIqJ+NHTsWTqezS1Pq888/RzgcxjXXXAO73d5ltdTnn38OjUaD8847D5FIBI899hguuugiTJ48GWvXrsW2bdu65Pt8Pvz0pz/FrFmzMGXKFKxbtw579+5NOp6qqirMnj0bN9xwA0KhUJ/fXyIiIqIzwaYUERER0QC44IIL8MUXX3R8vHXrVkyaNAk2mw0zZ87Eli1bOj63a9cunHfeedBqtfjRj36EZ555Btdeey0ef/xxFBUV4aabbsKuXbsAALIs47bbbsObb76JO+64A4899hg0Gg3WrVuHqqqqHuNoaGjA+vXrMXr0aDz++OPQaDT9f+eJiIiIEmBTioiIiGgAXHDBBfjyyy8RjUYBxJtS7ZfnzZo1C5999lnHqqVdu3ahtLQU5eXl2LhxI374wx9i/fr1mDdvHh5++GFMnz4djz76KABg8+bN2L59O/7nf/4HV1xxBRYsWIAnn3wSaWlpeOKJJ7qMwev14qabboLNZsNvf/tb6HS6gfsBEBEREXXDphQRERHRAJg5cyZ8Ph8OHDgAl8uFffv2Yfbs2QDiTSm/3489e/agrq4OJ06cQGlpKXbs2AEAmDdvHiKRSMd/8+fPx65duxAKhfDpp59Cr9fj/PPP7/g8AMyZMwfbt2/vMobbb78d+/btw9133w2TyTSwPwAiIiKiblSDPQAiIiKis0FxcTHS09PxxRdfoKKiAlqtFtOmTQMA5OfnIy8vD5999hkaGhpgMpkwadKkjn2m5s2blzDT5XKhpaUFfr8fkyZN6vF5tVrd5WOPx4NRo0bh0UcfxR//+EcIgtC3d5KIiIioF9iUIiIiIhog7ZfwaTQazJgxo8t+TrNmzcIXX3yBpqYmXHDBBZAkCWazGYIg4MUXX4RK1XPaZrfbYTab4XQ68eSTT57273/iiSdQW1uLG264ARs3bsSll17ap/ePiIiIqDd4+R4RERHRAJk5cya++uor7Nq1q+PSvXalpaU4ePAgdu/e3bHX1PTp0yHLMrxeLyZPntzx37Zt2/Dss89CpVJh+vTpaG5uhsFg6PI1mzZtwl/+8pcuf4fD4cCcOXOwaNEi/OpXv4LL5Rqw+05ERETUHZtSRERERANk5syZOHz4MA4dOtTReGpXWlqK+vp67N+/v+NzEyZMwJIlS/Af//EfeP7557F9+3Zs2LABjzzyCHJyciCKIhYsWIDJkyfj5ptvxuuvv47t27fj/vvvx+9//3sUFxcnHMc999wDv9+Phx56qN/vMxEREVEyvHyPiIiIaICMGjUKaWlpiEQiGD9+fJfP2e12lJSUoL6+HmPHju24/eGHH8Zjjz2Gp556Ck1NTcjNzcX3v/993HDDDQAASZLw9NNP4+GHH8avfvUreDweFBYW4he/+AXWrl2bcBy5ubm45ZZbsGHDBlx66aWYMWNG/91pIiIioiQEWZblwR4EERERERERERGdXXj5HhERERERERERDTg2pYiIiIiIiIiIaMCxKUVERERERERERAOOTSkiIiIiIiIiIhpwbEoREREREREREdGAY1OKiIiIiIiIiIgGHJtSREREREREREQ04NiUIiIiIiIiIiKiAff/A3TvJ6mwDmyJAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 1440x576 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.figure(figsize=(20,8))\n",
-                "sns.lineplot(x=\"Week\", y=\"MarkDown1\", hue=\"Year\", data=clean_data2, marker=\"s\") \n",
-                "#sns.lineplot(x=\"Week\", y=\"MarkDown2\", hue=\"Year\", data=clean_data2, marker=\">\") #, palette=\"tab10\")\n",
-                "#sns.lineplot(x=\"Week\", y=\"MarkDown3\", hue=\"Year\", data=clean_data2, marker=\"+\", palette=\"tab10\")\n",
-                "#sns.lineplot(x=\"Week\", y=\"MarkDown4\", hue=\"Year\", data=clean_data2, marker=\"o\")\n",
-                "#sns.lineplot(x=\"Week\", y=\"MarkDown5\", hue=\"Year\", data=clean_data2, marker=\"x\", palette=\"Spectral\")\n",
-                "plt.grid()\n",
-                "plt.xticks(np.arange(1, 53, step=1))\n",
-                "plt.title('MarkDowns - Pro Jahr', fontsize=18)\n",
-                "plt.ylabel('MarkDowns', fontsize=16)\n",
-                "plt.xlabel('Week', fontsize=16)\n",
-                "plt.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 49,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAABKsAAAH7CAYAAAADyBzYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gU5fbA8e/MtjQgBAggCIrSOwQIiHRsCHZEsaOoiAoo1iv+9F7sBbkCIoJe7Hqv5apwLQgoFnqRohSlhxLSd7M79ffHJkuWtE0jAc7neXwkM7M77042sztnzjmvYtu2jRBCCCGEEEIIIYQQNYBa3QMQQgghhBBCCCGEECKfBKuEEEIIIYQQQgghRI0hwSohhBBCCCGEEEIIUWNIsEoIIYQQQgghhBBC1BgSrBJCCCGEEEIIIYQQNYYEq4QQQgghhBBCCCFEjSHBKiGEEEIUMmHCBFq3bk16enqhdQ8++CCtW7dm3LhxhdZ5vV7atWvHpEmTKn1Me/fupXXr1vzzn/+s0DZlcfjwYZ588kkGDx5Mx44d6dWrFzfddBMLFiwo93O2bt2ahx56qFLGV9n++c9/0rp1a1q3bs2mTZuK3e7OO++kdevWXH/99ZW274ceeojWrVuXuM0nn3wSGl/+f+3btyc5OZkxY8awZMmSShuPEEIIIaqPs7oHIIQQQoiap0ePHixcuJANGzbQv3//sHXLly/H5XKxYsUKTNPE4XCE1m3YsAHTNOnVq9fxHnKlS0lJ4aqrrsK2ba644gpOP/10MjIy+Oabb5g4cSIbNmyosUGnyrBo0SLat29faHlubi4///xzNYzoqKuvvpru3bsDoGkahw4d4quvvuL222/nvvvuY+zYsdU6PiGEEEJUjASrhBBCCFFIjx49AAoFq3bu3ElKSgqXXXYZn376KZs2baJTp06h9WvWrAGgZ8+ex3fAVWDmzJl4vV4WLFhA48aNQ8tvvfVW7rjjDt566y2uvPJKzj777GocZdVo2rQpixYt4p577im07scff8QwDGrXrl0NIwvq0qULl1xySdiyW2+9ldtuu42XXnqJnj170qVLl+oZnBBCCCEqTMoAhRBCCFFIy5YtqVu3LuvXrw9b/uuvv6KqKnfccQeKovDLL7+ErV+7di2JiYmceeaZx3O4VWLt2rWceeaZYYEqAEVRuOGGG7Btm7Vr11bT6KrW4MGD+f3339m3b1+hdd9++y09evSgVq1a1TCy4nk8Hp5++mkcDgdvvPFGdQ9HCCGEEBUgwSohhBBCFKIoCt27d+e3334LW/7rr7/Spk0bzjjjDFq3bs2vv/4aWmfbNhs2bAjLqrIsi3nz5nHBBRfQoUMHzj33XP7xj3+Qk5MT9ryRbneslStX0qlTJ0aNGoXP5yu0/uqrr6Zv375YlhW2fMeOHbRu3Zp333232OeOjY1l69atoWyxgnr37s2mTZu46qqrQst0XWf27NmMGDGCLl260KlTJ0aMGMG///3vEl8DwOLFixk1ahSdO3emR48e3H333fz1119h2+zfv5+7776bvn370rFjRy666CLmzJlT6LVVhiFDhgDw/fffhy3XdZ0lS5YwdOjQIh/3v//9j+uuu47u3bvToUMHBg0axHPPPYemaaFtrr/+esaMGcPLL79M165d6d27N3/88Ueh5zIMgzvuuIN27drxv//9L6JxN2nShK5du/LTTz9hmmZo+b59+5g8eTLJycl07NiRESNG8NFHH4XWT506lbZt25KRkRFa9scff9C6dWvuuOOOsH1MnTqV7t27o+s6Dz30EBdccAEbNmzguuuuo3PnzvTp04d//OMf+P3+0GNs2+bVV1/l/PPPp2PHjvTp04fJkyeTkpIS0esSQgghTjUSrBJCCCFEkXr06EFGRgY7d+4EghfcK1asCPWjSk5OZs2aNaFAxI4dO8jMzCQ5OTn0HI8++ijPP/883bp1429/+xsXXHABH3zwATfccAOBQKDM2xW0efNm7rjjDlq2bMkbb7xBTExMoW0uvvhiDh8+zMqVK8OWf/XVVzidTi688MJiX/+VV16Jrutce+213Hjjjbz55pv8/vvv2LaNqqo4neHdFB5++GGmT59Oz549efTRRxk/fjw+n49HH32UFStWFLufTz75hDvvvJPo6GgmT57MTTfdxNq1axk5cmQoYKXrOrfeeiubNm3ipptu4rHHHuPMM8/khRde4PXXXy/2ucvrtNNOo23btixatChs+YoVK8jOzg4Fswr6+OOPuffee6lVqxb3338/DzzwAE2aNGHu3LmFxrhmzRq++uorJk+ezGWXXVaolNK2bR599FGWLl3K008/zQUXXBDx2Fu2bInP52PPnj0A7NmzhyuvvJJFixYxcuRIHnjgAerUqcNjjz3Gc889B0D//v2xLCvs95T/7zVr1mDbdmj5smXLOOecc3C5XACkpaUxZswYWrRowaOPPkq3bt14++23mT59eugxr732GjNmzODcc89lypQpXHXVVXz33XfccsstYUE1IYQQQgRJzyohhBBCFCm/b9X69es544wz2Lp1K0eOHAkFo3r16sVbb73FmjVrSE5ODpXE5Qezli9fzieffMITTzzBqFGjQs/bv39/xowZwwcffMCNN94Y8XYF7dy5k1tvvTUUDImLiyvyNVx00UU888wzLFy4MKzp+4IFC+jduzcJCQnFvv6rrrqK1NRUZsyYwa+//hrKImvQoAEjRozgzjvvDJXCHT58mC+//JLbbruN++67L/QcQ4YM4cILL+Sbb74pso9XTk4OU6dO5aKLLuKll14KLR85ciTDhg3jhRdeYMaMGWzZsoUdO3bwyiuvhAI3V111FbfeemuhDKzKMmTIEGbNmkVWVlaoP9W3335L586dadiwYaHt582bR9euXZk5cyaKogBw7bXXMnjwYL7++mvGjx8f2tbn8/Haa68V24j/mWee4fPPP+fJJ58s1JuqNPljzc+Seumll8jIyODf//53qGH86NGjGTduHPPmzeOyyy6jZ8+eREdH8+uvv3LeeecBwfdvw4YNOXjwIFu3bqV169bs37+fP//8k9tuuy20v8zMTP72t7+FZkYcOXIkF110EV988QUPPPAAAF988QX9+vXjb3/7W+hxjRs35v3332ffvn00a9asTK9RCCGEONlJZpUQQgghitS2bVtq1arFhg0bgGAJoMPhICkpCQgGsxwOR1gGSqNGjUIX3t988w2KotC/f3/S0tJC/7Vr144GDRqwZMmSMm2X7+DBg9xyyy0AvPnmm8THxxf7GurVq0dycjLffvttKINl8+bN/PXXX1x88cWlHoM777yTpUuXMmXKFAYMGEBMTAyHDx9m7ty5XHrppRw+fBgIBrBWr17NuHHjQo+1bRvDMADwer1FPv9PP/1ETk4OQ4YMCXvtDoeD5ORkli1bhmEYJCYmoigKs2fP5scff0TTNBRFYe7cuTz77LOlvo7yGDJkCIZhsHTp0tDrWbRoUZFZVQD//e9/ef3110OBKoAjR45Qu3btQiWaUVFRoWDosWbNmsVbb73F+PHjGTlyZJnHnX/MFUXBNE2WLFlC3759w2Y2zO+7Zts233//PW63m169eoUCkrZts3LlSq6//npUVWXVqlVAsLm8oij069cvbJ/HZui1adOGI0eOhH5u1KgRy5cv51//+hepqakAjBo1is8//1wCVUIIIUQRJLNKCCGEEEVSVZXu3buHmqz/+uuvdOjQIZTFVKtWLdq2bcvq1asBWLduXVimzO7du7FtmwEDBhT5/LGxsWXaLt/HH3+MqqrYts3OnTupV69eia9j+PDhLFu2jJUrV5KcnMxXX32Fx+MpNuhyrHr16jF69GhGjx6Nruv88ssvTJ8+nd9++41XX32VJ554AgC3281///tfli1bxs6dO9m1a1coSFWwjKyg3bt3AzBx4sRi95+WlkajRo2YPHkyL730ErfeeisxMTH07t2biy66iAsvvBCHw1HkY/1+P9nZ2WHLYmJiCh3TorRp04YmTZrw/fffM3z4cNavX8+hQ4dCmUfHcrlcrFy5ki+//JI///yT3bt3hwI2TZo0Cds2Pj4eVS36num0adNQVbXIXmGRyM+oSkhIID09HZ/PV2TD/7POOgsg1ES+X79+PPnkkxw+fJjU1FQyMjIYNGgQX3zxBatWrWL06NEsW7aMDh06UL9+/bDnOjZDz+12h5X3PfDAA9x555089dRTPP3007Rv355BgwYxcuRIGjRoUK7XKYQQQpzMJFglhBBCiGIlJSXxyiuvEAgEWLVqFddcc03Y+l69evH++++TlpbGX3/9xZgxY0LrLMsiNjaWV199tcjn9ng8ZdouX6NGjZg+fTpjx47l8ccf59NPPw31DyrKkCFDiIqKYuHChSQnJ7Nw4UIGDBhQbOkgwPbt2/nPf/7DpZdeSuvWrUPLXS4X/fr1IykpiUGDBoUCKpqmMWbMGFavXk2vXr3o3bs3N910Ez179iw2CJf/2gH+/ve/07Rp0yK3qVOnDgBjxozh4osv5ttvv2Xp0qX89NNPLFq0iM8++6zY2e8WLFjAww8/HLZs/Pjx3H333cWOqaDBgwfzySefoGka3377La1ataJ58+ZFbvviiy/y+uuv065dO7p06cIll1xC165d+fvf/16okXhxwTWAO+64A1VVmTlzJl988QXDhw+PaKz5tmzZQlxcHE2bNg1lMRUl/9i73W6AULbUr7/+ypEjR0hISOCss86iZ8+efP311xiGwS+//FKoJBUoNvCWr02bNnz99df8+OOPLF68mB9//JHp06fz1ltv8cEHH4QCZ0IIIYQIkmCVEEIIIYrVs2dPdF1n4cKFZGVlFeoxlJyczNy5c/nqq6+wbTtsfZMmTUKZKPl9hPJ9/fXXofK9SLfLd+WVV9K5c2cmTJjA//3f/zFv3jxuv/32Yl9DXFwcAwcOZPHixVxzzTXs27evUADnWBkZGcybN4/Y2NiwYFW+mJgYmjRpEgpSLFiwgBUrVjB16lSuvPLK0HYHDx4scT/5GUcJCQn06dMnbN3y5cuxLAu3201GRga///473bp147rrruO6667D5/Px0EMP8fXXX4dmrjtW3759efPNN8OWnX766SWOqaAhQ4Ywf/58Vq5cyXfffcewYcOK3G7fvn28/vrrXHLJJaGm5flKChgVZeLEifj9fv773//yzDPP0L9//0Lvi+Ls3r2bzZs3c/HFF6MoCgkJCcTExPDnn38W2ja/11ejRo2A4HE588wz+fXXX8nIyAiVKfbs2ZO3336bL7/8kuzsbPr371+m12OaJr///jtxcXEMHjyYwYMHA8H3zMSJE/n444956KGHyvScQgghxMlOelYJIYQQoljt27cnJiaGDz74AJfLRbdu3cLWd+/eHafTyaeffsppp50WFggZNGgQEOxBVND333/PPffcwxdffFGm7Y519dVX06FDB2bOnBma+a04w4cP5+DBg8yePZtatWqVGnDo2rUrTZo0Yf78+WzdurXQ+g0bNrBly5ZQ4CG/9OzYWe3mz58PHO2jdKw+ffrg8Xh444030HU9tPzgwYOMGzeOF154AUVR+Omnn7jxxhv5/vvvQ9vExMTQqlUroPhMpcTERPr06RP2X1mCVUlJScTHxzNv3jx27txZbAlgZmYmUPj1L126lJ07dxb7+osTFRXFI488QmpqKi+88EJEj9F1nSeeeAJFUUI9zRwOB+eeey4//fQTmzZtCm1r2zZz5sxBUZSwzLd+/frxyy+/sGbNmlBD/KSkJBRF4dVXX6VevXp07NixTK/FNE1uuOEGnnrqqbDlnTt3BkrPyhJCCCFORZJZJYQQQohiOZ1Ounbtyk8//URSUhLR0dFh62NjY+nYsSNr167lsssuC1vXv39/Bg8ezLx589i7dy99+vRh3759vPvuu5x22mmhksFItzuWqqo8/vjjXH311fzf//0fc+fOLfZ19OvXj/j4eBYsWMDll18eKv0qjsPh4MUXX+SWW27hiiuu4OKLL6Zjx444nU42btzIZ599RocOHbjpppuAYNDJ6XTywAMPMHr0aJxOJ4sXL2bZsmW4XK5iG6wnJCQwadIknn76aa6++mpGjBiBYRi89957BAIBHnzwQQAGDhzImWeeyaOPPsqmTZto1qwZf/75J++++y7JycmFgkSVxeFwMHDgQD799FNOP/102rRpU+R2Z599NqeddhqvvfYagUCARo0asWHDBj799FM8Hk+xr78kgwcPZuDAgXz00UdceumlYYHSdevWhQJ0hmGQkpLCwoUL2b59Ow8//DDt2rULbXv//fezfPlyrr/+eq6//noaNGjAt99+y6+//srNN98cduz69evHv/71L+DobJgJCQm0bNmSrVu3cvnll4c1kI+E2+3m+uuvZ9asWdx1112ce+65+P1+PvzwQ6Kjo7niiivKfGyEEEKIk50Eq4QQQghRoh49evDTTz+RnJxc5PpevXqxdu3aUCZKPkVReOWVV3jjjTf47LPPWLx4MQkJCZx33nnce++9oSbVkW5XlE6dOnHVVVfx4Ycf8tVXX4WyVY7lcrk4//zz+fDDDyOaBRCC2VVffvklc+fO5aeffuJ///sftm3TrFkz7rrrLm6++eZQ0KtVq1ZMnz6dV199lZdeeonY2FhatmzJm2++yXvvvceKFSvQdb3I3lo33XQTDRs25M033+Tll18mKiqK9u3b8/zzz9O9e3cgmEU1b948pk+fzhdffEFqaioNGjTg2muvZfz48RG9nvIaMmQIn376KUOHDi12G7fbzeuvv84zzzzD/PnzQ8fpkUcewTAMpk6dysaNG+nQoUOZ9v3oo4/y888/8/jjj/PJJ5+Eln/44Yd8+OGHoX03atSIs88+m0ceeYRzzjkn7DmaNWvGRx99xLRp0/jggw/w+/2cddZZhUo2IVjyFx0djcfjCWWtQfBvYOvWrYVmAYzUPffcQ3x8PP/5z3949tlncTgcdOvWjeeff176VQkhhBBFUOzipqcRQgghhDiJPP744yxatIilS5eW2OBbCCGEEEJULymSF0IIIcRJLyMjg//9739ceumlEqgSQgghhKjhpAxQCCGEECetTZs28cYbb7BhwwYCgQCjR4+u7iEJIYQQQohSSGaVEEIIIU5atWrV4pdffsEwDF544QUaN25c3UMSQgghhBClkJ5VQgghhBBCCCGEEKLGkMwqIYQQQgghhBBCCFFjSM+qCKSne7EsSUATQgghhBBCCCGEqChVVahbN7bY9RKsioBl2RKsEkIIIYQQQgghhDgOpAxQCCGEEEIIIYQQQtQYEqwSQgghhBBCCCGEEDWGBKuEEEIIIYQQQgghRI0hwSohhBBCCCGEEEIIUWNIsEoIIYQQQgghhBBC1BgyG6AQQgghhBBCiJNGbq6XnJxMTFOv7qEIcUpyOFzExdUhOjq23M8hwSohhBBCCCGEECcFXdfIzk4nPr4+LpcHRVGqe0hCnFJs20bXA2RkpOJ0unC53OV6HikDFEIIIYQQQghxUsjOziAurg5ud5QEqoSoBoqi4HZHERtbh5ycjHI/jwSrhBBCCCGEEEKcFAxDw+OJru5hCHHKi4qKRte1cj9eglVCCCGEEEIIIU4KlmWiqo7qHoYQpzxVdWBZZvkfX4ljEUIIIYQQQgghqpWU/wlR/Sr6dyjBKiGEEEIIIYQQQghRY0iwSgghhBBCCCGEEELUGBKsEkIIIYQQQgghaqArrxxO375JvPrqtCLXHziQQt++SfTtm0RGRka597NgwRclPkdKyv7QfvL/GziwN1ddNYIXX3yW9PS0cu+7KhiGwW233cB7771d3UMR5eSs7gEIIYQQQgghhBCiaIqisHTpYsaPn1Bo3eLFi47rWG6//S66dk0CIBDws2PHdubPn8cvvyxj9uw3qVev/nEdT1EMw+Af/3icLVs2M3Dg0OoejignyawSQgghhBBCCCFqqA4dOpGSso+tW38vtG7x4u8466yWx20sTZueTocOHenQoSPdu/dg5MhrmD79NdLT05g5c/pxG0dxtm3byl133cby5b9U91BEBUmwSgghhBBCCCGEqKFatmxFkyZNWbLk+7DlBw4c4PffNzNw4ODQMtu2+eij97nhhqsZNKgPQ4f2Y8KEcezYsT20zfjxY3n22alMmjSe887rX2SJ4b59exkx4nwmTbobXddLHF+LFmcxYMBgFi36htzc3NDypUsXc+utNzBkSF8uv3wYc+bMwjAMAB5++D7Gjx8bNu4LLxwUtsw0TS64YCCffPIxCxZ8wbBhg1m1agU33XQtAwf25rrrrmLZsqVhY5k69f+IiormjTfmlzhmUfNJGaAQQgghhBDipOD3ZuF0e3C6PNU9FFHD/PRbCss2pFTrGPp2asw5HRuX67H9+w/khx8WM3bsuNCyJUu+o127DiQmNgwte//9d3jjjVncccfdtGzZipSU/bz++kymTv0/5s17J7TdggX/ZfjwSxk16jpq1arFX3/9GVp35EgqEyfeRbNmzXn66edxuVylji8pqSdff72ALVs20a1bEp9//gnPP/8Ul156JWPHjmPbtj+YO/d1UlL2M2XK3+nVqzfTp79EIODH44li+/atZGdnsXnzJnRdx+VysXnzRnJysklO7sO6dWvw+Xw8/fST3HjjGBo3bsxbb81lypRH+OyzBdSuXQeAKVOepEWLs8t1jEXNIplVQgghhBBCiJOC35eNaZScBSLEiWjAgMHs3PkXu3btDC1bvHhRWFYVwKFDB7nxxjGMHHkNXbt256KLhnPNNdexdevv+Hy+0HYxMbFMmDCZnj2Tadu2fWi515vD/fffQ506dXjuuZfxeKIiGl98fF0A0tPTsCyLOXNmMXjwedx//0P07JnM6NE3cs89k/jmm4Vs376N5ORz0DSN337bAMDatatp2bIVuq6xZcsmAFas+JXmzc/gtNOaAKDrOuPG3cuIEZfRo0cyEyc+gKYFWLNmVWgcEqg6eUhmlRBCCCGEEOKkoGsBomy7uochaqBzOpY/q6kmaNeuAw0bNmLJkkXceOMYDh06yJYtm3jyyadZvXplaLsJE+4HID09nd27d7Jr105++ulHAHRdA2IAaNq0KU5n4XDAY489yLZtW5kx4w1iYmLLNdadO/8iIyOdQYOGhC0fOvR8XnjhadavX8MVV1xN8+ZnsHr1SpKSerJ27Wr69DkXXTfYsGEdnTp1YeXK5SQnnxP2HO3bdwz9OzExESCs9FCcPCSzSgghhBBCCHHCs20bQ/NjW1Z1D0WIKtG//0CWLl0MwJIli2jbtj0NGzYK22bXrp2MG3crw4cP5b777mbBgi9wOoNlfAXjuHXrJhS5D6/XS9OmzZgzZyZ2GQK/qamHAahfP5Hs7Owi9xEbG4fb7cHr9QKQnNyHtWtXY9s269evo3PnrnTq1JkNG9aRk5PDli2b6N07PFgVFXU000tR1LzXJQHqk5EEq4QQQgghhBAnPMs0sCwTy5ZglTg59e8/mK1bfyclZT+LFy8qlLlk2xYPPjgRwzCYP/8DvvnmB157bR59+/aLeB/PPPMSkyY9wLp1a1iw4IuIH7dmzSo8Hg+tW7ehdu3aQLAksKDs7Gw0LRDqL9WrVx+2bNnExo0b8Hpz6NChE126dGfDhvWsWrUct9tD585dIx6DOLlIsEoIIYQQQghxwrNMA8s0sU2zuociRJXo2LET9erV5/PPP2Hz5o0MGBDer8q2bfbu3cOIEZfRosXZqGrwcn/58p9D60tTt24CPXsm06/fQGbNmk5mZkapj9m9eydLl37PeeddSFRUFM2aNSc+Pp7vv/8ubLtFi74BoFOnzgB06dINl8vFu+/+i1atWhMTE0OXLl3Jycnmgw/eJSmpR0TN3cXJSXpWCSGEEEIIIU54lmViS2aVOImpqkq/fgP54IN3aNOmXaESQFV10LBhIz7++H0SEuqhqioLF37Jzz8vAyAQ8Ee8r3vumcTo0VcyY8YrPPLI46Hle/fuYePG30LPt23bH7z//tvUr9+AsWPvAsDhcHDzzbfx8svPU7t2Hc49tz/bt29j3rzZDBw4JNQE3e1207Vrd5Yt+4FRo64DIDGxIY0bN2Hjxg1MnvxI+Q+WOOFJsEoIIYQQQghxwjMMHVQFSzKrxElswIBBfPrpx4VmAcw3derzTJv2PFOmPERsbCxt27Zn2rSZ3HvvnWzcuIFGjSJrMt+oUWOuv/5m5s6dzbBhI0hMbAjA7NkzQtvExMSSmNiQYcMu4eqrr6VOnfjQuiuuuBqPJ4oPPniHL7/8jHr16jNq1HXcdNOtYftJTu7DL7/8RJcuR8v9unbtRkrKPpKT+0R6WMRJSLGlG1mpjhzJwbLkMAkhhBBCCFFTZR05QHbGIWJqJ1C3QdPqHo6oJgcO7KJRo+bVPQwhBCX/PaqqQr16ccU+VnpWCSGEEEIIIU54hh5AdbhkNkAhhDgJSLBKCCGEEEIIccLTtQCqw4llSrBKCCFOdBKsEkIIIYQQQpzQbNvCMk1UhwPbkp5VQghxopNglRBCCCGEEOKEFmyqbqMoCjaSWSWEECc6CVYJIYQQQgghTmimaYCioKBgSxmgEEKc8CRYJYQQQgghhDihWaaBDaAoWFIGKIQQJzwJVgkhhBBCCCFOaKahowCKogDBHlZCCCFOXBKsEkIIIYQQQpzQdM2PqjpCP9u2XY2jEUIIUVESrBJCCCGEEEKc0AxdQ3UUCFZZklklhBAnMglWCSGEEEIIIU5oph5AkcwqIYQ4aTirewBCCCGEEEIIUV6WZWGZJi5PwfvwEqwSJ4crrxzOgQMpjBp1HePHTyi0/sCBFK68cjgAX375HfHx8eXaz4IFX/DUU08U+xwpKfu56qoRYctcLhf16zcgOfkcbrnlNurWTSjXvivTX3/9yaxZ/2Tz5t8A6NixM+PHT6RJk6bVPDJRVhKsEkIIIYQQQpywLNMIX6AoUgYoTiqKorB06eIig1WLFy86rmO5/fa76No1CYBAwM+OHduZP38ev/yyjNmz36RevfrHdTwFpaencffdt9O06ek89NBjWJbNW2/N4a67buPttz+iVq1a1TY2UXZSBiiEEEIIIYQ4YRUKVtm2lAGKk0qHDp1ISdnH1q2/F1q3ePF3nHVWy+M2lqZNT6dDh4506NCR7t17MHLkNUyf/hrp6WnMnDn9uI2jKAsXfommaTz33DT69u1Pv34DeP75V0hPT+Pbb/9XrWMTZSfBKiGEEEIIIcQJ69hglY30rBInl5YtW9GkSVOWLPk+bPmBAwf4/ffNDBw4OLTMtm0++uh9brjhagYN6sPQof2YMGEcO3ZsD20zfvxYnn12KpMmjee88/rz6qvTCu1z3769jBhxPpMm3Y2u6yWOr0WLsxgwYDCLFn1Dbm5uaPnSpYu59dYbGDKkL5dfPow5c2ZhGMG/14cfvo/x48eGjfvCCweFLTNNkwsuGMgnn3zMggVfMGzYYFatWsFNN13LwIG9ue66q1i2bGlo+4YNG3HNNddRu3bt0LJ69eoTExNLSsr+El+DqHmkDFAIIYQQQghxwjIMHUVVQj8rioJtSxmgCKdv/Qn9jx+qdQyu1v1wtTqnXI/t338gP/ywmLFjx4WWLVnyHe3adSAxsWFo2fvvv8Mbb8zijjvupmXLVqSk7Of112cyder/MW/eO6HtFiz4L8OHX8qoUddRq1Yt/vrrz9C6I0dSmTjxLpo1a87TTz+Py+UqdXxJST35+usFbNmyiW7dkvj88094/vmnuPTSKxk7dhzbtv3B3Lmvk5KynylT/k6vXr2ZPv0lAgE/Hk8U27dvJTs7i82bN6HrOi6Xi82bN5KTk01ych/WrVuDz+fj6aef5MYbx9C4cWPeemsuU6Y8wmefLaB27ToMHnxeoXFt2LCO7OwsmjdvXq7jLqqPZFYJIYQQQgghTliGFj4TILYd/E+Ik8iAAYPZufMvdu3aGVq2ePGisKwqgEOHDnLjjWMYOfIaunbtzkUXDeeaa65j69bf8fl8oe1iYmKZMGEyPXsm07Zt+9ByrzeH+++/hzp16vDccy/j8URFNL74+LpAsG+UZVnMmTOLwYPP4/77H6Jnz2RGj76Re+6ZxDffLGT79m0kJ5+Dpmn89tsGANauXU3Llq3QdY0tWzYBsGLFrzRvfganndYEAF3XGTfuXkaMuIwePZKZOPEBNC3AmjWrihxTTk4Ozz//FImJDRky5IKIXoeoOSSzSgghhBBCCHHCMvQAaoFglZQBiqK4Wp1T7qymmqBduw40bNiIJUsWceONYzh06CBbtmziySefZvXqlaHtJky4H4D09HR2797Jrl07+emnHwHQdQ2IAaBp06Y4nYXDAY899iDbtm1lxow3iImJLddYd+78i4yMdAYNGhK2fOjQ83nhhadZv34NV1xxNc2bn8Hq1StJSurJ2rWr6dPnXHTdYMOGdXTq1IWVK5eTnBz+O2vfvmPo34mJiQBhpYf5srOzuf/+e0hJ2c8rr7xGVFRkQTdRc0hmlRBCCCGEEOKEdWywSlEULMusxhEJUTX69x/I0qWLAViyZBFt27anYcNGYdvs2rWTceNuZfjwodx3390sWPAFTmewjK9gDLdu3YQi9+H1emnatBlz5swsU9A3NfUwAPXrJ5KdnV3kPmJj43C7PXi9XgCSk/uwdu1qbNtm/fp1dO7clU6dOrNhwzpycnLYsmUTvXuHB6sKBp0URc17XeHjPHToIHfddSt//rmdZ555ifbtO0T8OkTNIcEqIYQQQgghxAnJskxsy0JRj17WKIqCbUrPKnHy6d9/MFu3/k5Kyn4WL15UKHPJti0efHAihmEwf/4HfPPND7z22jz69u0X8T6eeeYlJk16gHXr1rBgwRcRP27NmlV4PB5at24TanCenp4Wtk12djaaFqB27ToA9OrVhy1bNrFx4wa83hw6dOhEly7d2bBhPatWLcft9tC5c9eIxwCwd+8e7rjjFlJTU3n55ZkkJfUs0+NFzSHBKiGEEEIIIcQJ6diZAAFQFCyriOVCnOA6duxEvXr1+fzzT9i8eSMDBoT3q7Jtm7179zBixGW0aHE2al4Qd/nyn0PrS1O3bgI9eybTr99AZs2aTmZmRqmP2b17J0uXfs95511IVFQUzZo1Jz4+nu+//y5su0WLvgGgU6fOAHTp0g2Xy8W77/6LVq1aExMTQ5cuXcnJyeaDD94lKalHRM3d82VnZzNx4nhM02DGjDl06NCx9AeJGuu496zKyclh1KhRvPbaa+zYsYOXXnoptO7gwYN07tyZ2bNn8+qrr/Kf//wnFJUdOXIko0ePZv/+/UyePJkjR45w5pln8sILLxAbG0tWVhb3338/e/bsISEhgWnTptGgQQM0TePRRx9l48aNREVF8cILL3DWWWcd75cthBBCCCHEKcXQNXzZ6dROaFj6xuVkGoWDUoqiYMlsgOIkpKoq/foN5IMP3qFNm3aFSgBV1UHDho34+OP3SUioh6qqLFz4JT//vAyAQMAf8b7uuWcSo0dfyYwZr/DII4+Hlu/du4eNG38LPd+2bX/w/vtvU79+A8aOvQsAh8PBzTffxssvP0/t2nU499z+bN++jXnzZjNw4BBatDgbALfbTdeu3Vm27AdGjboOgMTEhjRu3ISNGzcwefIjZTo+c+fOJiVlH/fccx9erzc0ToB69erRuPFpZXo+Ub2Oa7Bq/fr1/O1vf2Pnzp0A9O/fn/79+wNw+PBhrrnmGh5++GEANm7cyEsvvUTXruFpf0888QTXXnstw4YNY8aMGcycOZPJkyczbdo0kpKSeP311/nss8+YOnUq06ZN4+233yY6OpqFCxeycuVKHn74YT766KPj+bKFEEIIIYQ45Rh6AM3vK33DCiiqN5WiKNiWBKvEyWnAgEF8+unHhWYBzDd16vNMm/Y8U6Y8RGxsLG3btmfatJnce++dbNy4gUaNGke0n0aNGnP99Tczd+5shg0bQWJiMOg8e/aM0DYxMbEkJjZk2LBLuPrqa6lTJz607oorrsbjieKDD97hyy8/o169+owadR033XRr2H6Sk/vwyy8/0aXL0ev+rl27kZKyj+TkPpEeFgCWLVsKwPTpLxZad/nlVzFp0oNlej5RvRT7OE6V8eijj3LZZZfxwAMPMH/+fJo2bRpaN3nyZFq3bs2ttwbfvH379qVDhw7s27ePHj168OCDD6KqKr169WLFihU4nU5SUlK47rrrWLRoEYMGDeLdd9+lcePGGIZBz549Wb58Obfccgv33nsvSUlJAAwZMoT58+dz2mmRR1WPHMnBsmRGESGEEEIIISKVnX4YX3YaDZu1rtJ9eLOO4I6KCS0zDQ2Hw0VCo+ZVtl9Rcx04sItG8rsXokYo6e9RVRXq1Ysr9rHHtWfV1KlTQ0Gjgnbu3MmKFSu44YYbgOAMBG3btmXy5Ml8+umnZGVlMXPmTNLT04mLiwtNsdmgQQMOHjwIwKFDh2jQoAEATqeTuLg40tLSwpbnP+bAgQNV/VKFEEIIIYQ4pQX8XizTLNOMYmVlGAGUAjMBBilYklklhBAntBrRYP3DDz/k2muvxe12AxAbG8ucOXM466yzcDqd3HLLLSxduhTbtlEUJeyxx/6cz7ZtVFUt9Jj85UIIIYQQQoiqYds2hubHtu0qLckzAgFUR3iwSlEkWCWEECe6GhG1WbRoERdddFHo5/379/Pvf/879LNt2zidThISEsjOzsY0g7Xphw8fJjExEYDExERSU1MBMAwDr9dLfHw8DRs25NChQ6HnSk1NDT1GCCGEEEIIUflMQ8e2rLzAUeG+UpXBtm0MQ0c9NrNKUbGraJ9CCCGOj2oPVqWlpeH3+zn99NNDy6Kionj++efZs2cPtm3z7rvvMnToUFwuF0lJSSxYsACAzz77jH79+gHBZu2fffYZAAsWLCApKQmXy0X//v35/PPPAVi1ahUej6dM/aqEEEKc/EzTICv9UOkbCiGEiIhp6MF/KAp2Fc3MZ1km2FaRlRdVtU8hhBDHR7UHq/bu3UujRuFTbiYkJPDkk09y5513csEFF2DbNjfffDMAjz/+OB999BEXXXQRq1atYsKECQDce++9rFu3jmHDhvHee+8xZcoUAK6//no0TWPYsGFMnTqV55577ri+PiGEEDWfqWvo/tzqHoYQQpw0DD0AClCFZYCWaUIRLUHyZwM8jvNICSGEqGTHdTbAE5XMBiiEECe3XG8WWWkHaHh6q+oeihBCnBTSD+9F8+diGToJjZrhiS5+xqfyCuR6OXJgF1ExhZ87kJtDw2ZtpFftKUhmAxSi5jhhZgMUQgghaiJd82OZUjIihBCVRffn4nA4saHKmp1bpkEwfasINiD35IUQ4oQlwSohhBCnPCOQm1cyIgErIYSoKMs0MQ0d1eFAURRMw6iS/eh6AFUtJliF9K0SQogTmQSrhBBCnPJ0zQ+KLf1NhBCiEpiGFvq3oqpYVtUEqwzNj+pwFr1SzulCCHFCk2CVEEKIU5plmVimiYJSZU2AhRDiVGLkzwQIKIqKVUWZVYaul9CTSpFglRBCnMAkWCWEEOKUVrA8RS5shBCi4nS/D8XhAIINdC1TL+URZWfbNqahoaiOEraRGxDixHfllcPp2zeJV1+dVuT6AwdS6Ns3ib59k8jIyCj3fhYs+KLE50hJ2R/aT/5/Awf25qqrRvDii8+Snp5W7n1Xps2bNzJ+/FiGDu3H5ZcPY+7c2RgFvuvNnTubvn2TGD78vGL76d199+307ZvEe++9XeHxlPY848ePDTum/fv3Ytiwwdx33z2sWrWiwvuvbBkZGVx88RDmzp1d5fsqJm9WCCGEODUUvIiSYJUQQlScFgg2V4dgZlVV9KyyTANsG0UprsG6LQ3WxUlDURSWLl3M+PETCq1bvHjRcR3L7bffRdeuSQAEAn527NjO/Pnz+OWXZcye/Sb16tU/ruMpaN++vUyceBedO3dl6tTn2L9/LzNn/pPs7GwmTLg/tJ2iKKSnp7F+/Vq6du0e9hzp6Wls2LDuuI67Y8fO3HXXBABM0yA1NZXPP/8PEyfexZQpf2fo0AuO63hKMm3a8xUKipaFZFYJIYQ4pRm6BooS/E/uwgshRIXYthXWS0pRqqZnVXAmwNLGIsEqcXLo0KETKSn72Lr190LrFi/+jrPOanncxtK06el06NCRDh060r17D0aOvIbp018jPT2NmTOnH7dxFOXzz/+D2+3h739/lp49k7n00isZNWo0//3vJ2HZVVFRUZx9diuWLl1c6DmWLv2eM85ocTyHTa1atULHtHPnrgwePJRp02bSuXNXXnzxGbKyso7reIqzbNkPrFz5K26357jsT4JVQgghTml6wI/qcIAtzXiFEKKiTEPHKpDxFGywblX6+dWyzCKWWeRkHAbAVmQ2QHHyaNmyFU2aNGXJku/Dlh84cIDff9/MwIGDQ8ts2+ajj97nhhuuZtCgPgwd2o8JE8axY8f20Dbjx4/l2WenMmnSeM47r3+RJYb79u1lxIjzmTTpbnS95FLeFi3OYsCAwSxa9A25ubmh5UuXLubWW29gyJC+XH75MObMmRUKGj388H2MHz82bNwXXjgobJlpmlxwwUA++eRjFiz4gmHDBrNq1QpuuulaBg7szXXXXcWyZUtD248adR0vvfQqHs/RYIrL5cI0zUIlfwMGDOKHHxYXOjctXryIQYOGFHqNmzdv5P777+GCCwYwYEAy11xzOZ999p/Q+vzxvffefIYNG8w111yO3+8Pew7LsnjssYe44IKBbNu2tcRjqqoqN998Gzk5OSxe/F1oeUrKfh577CGGDz+PoUP78dBDk9izZzcAP/ywhL59k0hJ2R/a/pVXXqRv3yT2798XWvbSS89y2203AMEyxQULvuDxxx9m6NB+DBs2mFdeeTEsuAeQk5PDiy8+w/jxE3G7XSWOvbJIGaAQQohTmh7IRXU4sQxDglVCCFFBpqFTqDDPtrEtK9THqjIYhs6xO0r5axNbln9Dv8vvlBsQopDlKav5JWVltY6hd+Me9GrcvfQNi9C//0B++GExY8eOCy1bsuQ72rXrQGJiw9Cy999/hzfemMUdd9xNy5atSEnZz+uvz2Tq1P9j3rx3QtstWPBfhg+/lFGjrqNWrVr89defoXVHjqQyceJdNGvWnKeffh6Xq/TgRFJST77+egFbtmyiW7ckPv/8E55//ikuvfRKxo4dx7ZtfzB37uukpOxnypS/06tXb6ZPf4lAwI/HE8X27VvJzs5i8+ZN6LqOy+Vi8+aN5ORkk5zch3Xr1uDz+Xj66Se58cYxNG7cmLfemsuUKY/w2WcLqF27DgkJ9UhIqAeAz+djzZpVfPDBO1x00XDcbnfYeAcMGMwbb7zGli2baNeuAwDp6emsW7eG++57iDlzZoW2PXDgAPfccwe9e/fl739/BsMw+fTTf/PCC0/ToUMnzj47mNmWk5PDggVfMGXKP/D5vERFRYXt8+WXn+fXX3/m5Zdn0LJlq1KPaZcu3XA4HGzcuIFLLrmcQ4cOctttN9KgQQPuu+9BbNvmrbfeYNy4W3nzzXdJSuqB0+lk9eqVXHzxJQCsXbsagPXr13LaaU0AWLFiOUOHnh/az/TpL3L++Rfx9NMvsH79Wt58cw7NmjXnssuuDG0zY8Y0zjjjTC688GJeeeWFUsdeGSSzSgghxCnLtm0MQ0NVHXIXXgghKoEe8AfLqo9RVCZURZhaoFBz9ez0w9i2jRbIzavslnO6OHkMGDCYnTv/YteunaFlixcvCsuqAjh06CA33jiGkSOvoWvX7lx00XCuueY6tm79HZ/PF9ouJiaWCRMm07NnMm3btg8t93pzuP/+e6hTpw7PPfcyHk94wKU48fF1gWDPJ8uymDNnFoMHn8f99z9Ez57JjB59I/fcM4lvvlnI9u3bSE4+B03T+O23DUAwqNKyZSt0XWPLlk0ArFjxK82bnxEKsui6zrhx9zJixGX06JHMxIkPoGkB1qxZFTYW0zS58MKBPPTQJGJi4rjxxjGFxnvGGWdyxhlnhpUC5pcANmvWPGzbv/7aQfv2nXj88X/Qo0cyvXufw9/+9n8ArF+/Jmy/Y8bcTq9evRk4MDw7a9681/nqq//y7LMv0aFDx4iOqcPhoHbtOqSlBZvXf/jhewQCAV5+eSYDBgxm4MAhvPLKawQCAd5//x1iYmLp2LEza9cGj0dWVhZ//rmdVq1ah/pwHTiQwt69u0lOPie0nw4dOjFx4gMkJfVkzJjbadWqNb/88lNo/erVK/nuu6+ZPPmRiMZdWSSzSgghxCkr2KA32GhT7sILIUTFaQEfDucxWRhVcDPA0AOoxwSrfFnBCzpT13B7oio9QCZObL0ady93VlNN0K5dBxo2bMSSJYu48cYxHDp0kC1bNvHkk0+zevXRjLH8RuLp6ens3r2TXbt28tNPPwKg6xoQA0DTpk1xOguHAx577EG2bdvKjBlvEBMTW66x7tz5FxkZ6YXK6YYOPZ8XXnia9evXcMUVV9O8+RmsXr2SpKSerF27mj59zkXXDTZsWEenTl1YuXJ5WFAFoH37o4GexMREgLDSQwiW273wwivk5vp56603GDv2JubNe4f69RuEbde//yAWLfqWO++8Gyg6+AfQu/c59O59DoFAgL/++pO9e3ezZctmADQtvESyqH5X3333NVu3/s7FF19Ct25JJR67kqxfv5Zu3boTHx8fWhYfH0/37j1Yty4YNOvVqzf/+c9HAKxbt4b69RswZMj5fPXVfwFYvvwX4uPjadu2Xeg5Ch5TgAYNEkPH1O/38+yz/+CWW24PBQ2PF8msEkIIccoyDR0IBqgURZELGyGEqCDdnxtqrh6SVwZYmQxDC/YbLMCXnR5cp2uAnNPFyad//4GhTKAlSxbRtm17GjZsFLbNrl07GTfuVoYPH8p9993NggVf4MwLIBe8J1e3bkKR+/B6vTRt2ow5c2aW6SZeamqwX1z9+olkZ2cXuY/Y2Djcbg9erxeA5OQ+rF27Gtu2Wb9+HZ07d6VTp85s2LCOnJwctmzZRO/e4cGqgqV1iqLmva7wcbpcLnr0SKZfvwG8+OI/ycnJ4csvPy805gEDBrN372527NhORkYG69atLrJflWmavPLKi1x44SDGjLmO2bNnkpWVWeS+izqu27dvpWfPZL7+ekFYZlxpAoEAWVmZNGgQDLJlZ2eFyhwLSkhIKHBMz+Hw4UPs3r2LtWtX06lTFzp16sKuXTvJyMhg5cpf6dWrN6p6NBR0bPacmtdrEOD112cQFxfHFVeMxDCMUC+rYHVC5U+eETaOKn12IYQQogYzC8wmpShgm3JhI4QQ5WUaOpZlhl0E5avMwJFtW5i6EZZZZZkGuTnBi0dDD6AoipQBipNO//6D2br1d1JS9hfZCNy2LR58cCKGYTB//gd8880PvPbaPPr27RfxPp555iUmTXqAdevWsGDBFxE/bs2aVXg8Hlq3bkPt2rWBYElgQdnZ2WhagNq16wDQq1cftmzZxMaNG/B6c+jQoRNdunRnw4b1rFq1HLfbQ+fOXSMew8qVy8OyzADq1q1LgwYNOHz4UKHt8xvXL136PT/+uCSvBPCMQtvNnz+P//73E/72tyf4+uulfPDBJ0yYMDnicY0aNZqnn36R+vUTef75pyJ+3IYNazFNk06dugBQu3Zt0tKOFNouLe0IdeoEj+nZZ7ekfv0GrFmzivXr19ClS1fatGlHVFQUa9euYvXqVfTqdU6h5yjODz8sYevWPxg0qA8DBiQzYEAyOTk5vPXWGwwYkBzx85SHBKuEEEKcsnTNj5J/UaWoWNKzSgghys00dGwKZ2LYVG7/KMs04Zj9+LIzCoxDA0WVYJU46XTs2Il69erz+eefsHnzRgYMCC9Zs22bvXv3MGLEZbRocXYocLx8+c+h9aWpWzeBnj2T6ddvILNmTSczM6PUx+zevZOlS7/nvPMuJCoqimbNmhMfH8/3338Xtt2iRd8A0KlTZyDYQNzlcvHuu/+iVavWxMTE0KVLV3Jysvngg2DD8Eiau+f78svPeO65qWEZP3v27ObAgRRatDi7yMf07z+IH39cwtKl3xdZAgiwceNvtGnTjkGDhhAdHQ0cPabHnouKEh+fgMfj4d57J7Fu3RoWLvyy1MfYts077/yL2rXr0L//QAA6derCmjWrycjICG2XkZHBqlUr6dixc2hZr169+fnnH9mxYzudO3fD6XTSvn0nPvzwPbzeHHr1ijzI9OyzL/PGG/PD/ouOjmH48Mt44435ET9PeUjPKiGEEKcsI3C0XEVBCfawEkIIUS7B8rvC98IVRcGsxMxV0zQKNXH3Zh3N4DB0TUq7xUlJVVX69RvIBx+8Q5s27QqVAKqqg4YNG/Hxx++TkFAPVVVZuPBLfv55GQCBgD/ifd1zzyRGj76SGTNe4ZFHHg8t37t3Dxs3/hZ6vm3b/uD999+mfv0GjB17FxBsDH7zzbfx8svPU7t2Hc49tz/bt29j3rzZDBw4JBQ4crvddO3anWXLfmDUqOsASExsSOPGTdi4cUOZG3pfc80N3HnnLUyZ8jCXXnoFR46kMm/e6zRtejrDho0o8jEDBw7mvffm89dff3LPPZOK3KZt23a8885b/Oc/H9Kixdls2bKZt956A0VR8PsjP6Z9+/and+9zmDFjGuecc24owyw7Ozt0TE3T5PDhg3zxxeesW7eGKVP+QWxsHAAjR17LggVfMnHiOG666VZs2+Zf/5qLy+Vi5MhrQvvp1asPU6Y8RHx8PGeccSYAXbp0Ze7c2XTo0Ik6deIjHvNZZxUO8jkcKvXr16dNm3ZFPKLySLBKCCHEKUvXAjjy7tgpqswGKIQQFaEFfDiO6SMFoKgqlqkX8YjysUyjUC5Dfr8qCDZYV5TKn4FQiJpgwIBBfPrpx8VmAU2d+jzTpj3PlCkPERsbS9u27Zk2bSb33nsnGzduoFGjxhHtp1Gjxlx//c3MnTubYcNGkJjYEIDZs2eEtomJiSUxsSHDhl3C1VdfGxYEueKKq/F4ovjgg3f48svPqFevPqNGXcdNN90atp/k5D788stPdOlytNyva9dupKTsIzm5T6SHBYA2bdoybdosXn99Bo8++gBut4tzzunHuHH3hvW6Kqht2/Y0atSY2NjYIksAAa677iaOHEnlzTfnEAhonH766UycOJlvv/1fKMgUqXvvvZ8bbriamTOn89BDjwHw22/rueOOmwFwOp3Uq1eftm3bM3PmXNq37xB6bMOGjZgxYw6zZk3nH/94HIfDQdeu3XniiadDvx+AHj164XA46NSpa3ASIYJZbECZj2l1UmyZ+qhUR47kYFlymIQQ4mRiWSYHd/+BJzp4t8rQNZxOFwmNmpfySCGEEEU5tHcHqqoUarCuawE8UTHEN6icmaS8WWlkpR3EE310prJNvywkdf9OdM1P8zbdadGpDwoK9U87s1L2KU4cBw7sopF8lgtRI5T096iqCvXqxRX7WOlZJYQQ4pRkGkZYm4FgyYhkVgkhRHlYloWpBwrPBEjwgsSsxDJrXfOHNVcH8GalE1u7Lk6XO1gGKLMBCiHECU3KAIUQQpySji1JkWCVEEKUX7CpuVLkOkVRsco5xbllmhiGhmno6H4fWiAXLdeLKzombDtfdjqJp7fE78vG1INjsSVYJYQQJywJVgkhhDglGfoxF1aKim1p1TcgIYQ4gQVnAiyaoqiYVqBMz5eVfojc7IywiS8UhwOHw4kntlaoDwuAFshFD+QSU7sumakpGEZ+g3Vp4yGEECcqCVYJIYSocXJzMnFHxeBwRj5dcVkdW0YimVVCCFF+WiAXtbjMKlXFsixs2w4LMhXHtm28mUdweaJweYpuilyQLyvYXD22VkJeGWAARQlOmhHpPoUQQtQs0rNKCCFEjWLbNjkZhzGNyps5qiiGFkB1hAer8i9shBBClI3m9+FwlnAf3LaxI7whYJkG2HahvlTF8WWlARBTuy4OlztYBkgweVZmeRVCiBOTBKuEEELUKIYeQPP7qrQxrm3bwcyqYxoBy4WNEEKUnW3bGIFcVEdJ2bCRNzy3LKvY/ldF8Wanoygq0XF1Qg3WgwNDbkAIIcQJSoJVQgghahTN78PQtUqdOepYwbv2FC4NkQsbIYQoM9PQSy+3K8PNAMs0ynQu9mWlEV0rHlV14HS6MYwC/QflnF5j2bYtn7lCiGJJsEoIIUSNkpuTidPtqdIywOBzF/0FOdIyFSGEEEElNVcPKUsZoGVSli5Tvqx0YmrVBQgrAwzuVs7pNZXfl40vJ726hyGEqKEkWCWEEKLGME0DPZCL0x0VnAa9ilglZm3JXV4hhCiL/IbmpYm0DNDUNRQ1snCVbVn4stOJrR0MVjld7mDwLC8wJpk7NZepaegBf3UPQwhRQ0mw6hTiy07HMquuB4wQQlSUofmxbVBVFVOvuswqXQugqEV8BCqKZFYJIUQZaX5foR6Ax7KJPHPVMDSUCJur+31ZWJZJTO0EAJwuT95zBD9DJFhVcxmmhqEFqnsYQogaquRPFXFSCeR6cbqjcDuiq3soQghRJL83G4fTgVLlwarcoi+spH+GEEKUmeb34XCV1Fw92CMw0l6Ehq6hFnVDoQjerGAZWWyBMkAA09BQUOUGRA1m6BqGLsGq0lx55XAOHEhh1KjrGD9+QqH1Bw6kcOWVwwH48svviI+PL9d+Fiz4gqeeeqLY50hJ2c9VV40IW+ZyuahfvwHJyedwyy23UbduQrn2XZleeulZPvnk40LL58//gBYtzq6GEYnykmDVKcQyDSxDB48Eq4QQNY9t2/i9WTjcHhQlOGtUqQ17y0kP+Iu9sJJglRBChLNtG8s0UFRHoSCSZZpYpoHLE1XicyiqGvweGgFT10oNfuXz5QWrQplVzmCwytADuFxRSGl3zWWZevD6xDRRHZFl0p2qFEVh6dLFRQarFi9edFzHcvvtd9G1axIAgYCfHTu2M3/+PH75ZRmzZ79JvXr1j+t4jrVjx3YGDRrKyJHXhi1v0qRpNY1IlJcEq04hwanaA0TFVvdIhBCiMEMPYFkmrvwLobxmvEolf4G1LBPLMnCphS+sbEWRZrxCCHGMnIxUstMPoSgKiqricLhwOJ2oTheqokIxNxUO7dlGrbqJRMfVQVFUTKv0zCrbtvM+C0oOfuXzZafhdLlxR8UABTKrdB2XK0oyq2oo27YxDSP4vjANCVaVokOHTvz223q2bv2dVq3ahK1bvPg7zjqrJTt2bDsuY2na9HQ6dOgY+rl79x4kJfXktttuYObM6Tz22JPHZRzF2bFjO0OHnh82RnFikp5VpxhdkyaGQoiaSQv4sI+Z/ynSZrxlYZlG8TfapQxQCCHCWJaJN/MI7uhYPDFxuDzRKKqCYegEcnPw5WTgcBbOgjJ0jfU/fM6erWsBUFUF0yg9WBU8R0d+HvZmpRNTOyGUhet0Hc2sslHknF5D2ZYV/MyltElPBEDLlq1o0qQpS5Z8H7b8wIED/P77ZgYOHBxaZts2H330PjfccDWDBvVh6NB+TJgwjh07toe2GT9+LM8+O5VJk8Zz3nn9efXVaYX2uW/fXkaMOJ9Jk+5GL6U1Q4sWZzFgwGAWLfqG3Nzc0PKlSxdz6603MGRIXy6/fBhz5szCyDsPPPzwfYwfPzZs3BdeOChsmWmaXHDBQD755GMWLPiCYcMGs2rVCm666VoGDuzNddddxbJlS8OOR05ONmed1bKUIypOBJJZdYoxdAlWCSFqptycLFzu8AueqghWmYZRbKxKUapmn0IIUVZVVQZdVgFfDrZthcr/FEVBcTgprf95dvqh4ONzvXmPU7EjmOjHsqxiM7WK4stKIz7xaHnP0WCVFjyn23JOr4mOftYqmBGWh1ZU1s8/kbnsh+Oyr+LU6duP2n3OKddj+/cfyA8/LGbs2HGhZUuWfEe7dh1ITGwYWvb+++/wxhuzuOOOu2nZshUpKft5/fWZTJ36f8yb905ouwUL/svw4ZcyatR11KpVi7/++jO07siRVCZOvItmzZrz9NPP44qgLDcpqSdff72ALVs20a1bEp9//gnPP/8Ul156JWPHjmPbtj+YO/d1UlL2M2XK3+nVqzfTp79EIODH44li+/atZGdnsXnzJnRdx+VysXnzRnJysklO7sO6dWvw+Xw8/fST3HjjGBo3bsxbb81lypRH+OyzBdSuXSeUXbZgwRc8+ugDZGdn0aVLNyZOnEyzZmeU67iL6iOZVacYQ9OCXwKEEKIGsUwT3e9DdYR/GbKrIHBkGIFir4MUmQ1QCFEDGHqArCMHqnsYAHgzj+B0u8v8uOy0YLBK8/uAYLAqkgwayzQizoYyDR2/L5vY2kebOjuc+WWAwWCVbco5vSbKD1apDlWarEdowIDB7Nz5F7t27QwtW7x4UVhWFcChQwe58cYxjBx5DV27dueii4ZzzTXXsXXr7/h8vtB2MTGxTJgwmZ49k2nbtn1oudebw/3330OdOnV47rmX8ZTSjy5ffHxwkoP09DQsy2LOnFkMHnwe99//ED17JjN69I3cc88kvvlmIdu3byM5+Rw0TeO33zYAsHbtalq2bIWua2zZsgmAFSt+pXnzMzjttCYA6LrOuHH3MmLEZfTokczEiQ+gaQHWrFkFEApW5ebm8n//N5W//e1JDh8+xPjxt5Oenl6Wwy1qAMmsOsXYVrAJpqqW/UuHEEJUFV3LxYawLAIbBSuCu/Bl3lfAj6oW9/GnSGaVEKLamYaB35dNbbshilJ995b1QC6alktUTK0yPzY7/SAAmj8vs0pVMSOYOMOyTCLNq/Jl5zVXz5sJEApkVhkaKCrWCdqHUA8EZ60tqsTyZJB/M0pVHcctWFW7zznlzmqqCdq160DDho1YsmQRN944hkOHDrJlyyaefPJpVq9eGdpuwoT7AUhPT2f37p3s2rWTn376EQBd14Bgf7emTZvidBb+PvTYYw+ybdtWZsx4g5iY8jU73rnzLzIy0hk0aEjY8qFDz+eFF55m/fo1XHHF1TRvfgarV68kKakna9eupk+fc9F1gw0b1tGpUxdWrlxOcnL476x9+6O9qBITEwFCpYdDh15Aq1Zt6NWrd+g80759R6699nI+//w/3HTTreV6PaJ6SGbVKcaG45ZqK4QQkfL7cgo1Vw32N6n885WhBYpt5Bq88y/BKiFE9bIsEz2Qi6FVb8aJLzsDtbR6v2JkHZNZBaBAqdmrpq6hqJGFq/JnAiyYWRVWBlhFNz2qmm3bpB/eR25OZnUPpcpYpomNclyDVSeD/v0HsnTpYgCWLFlE27btadiwUdg2u3btZNy4Wxk+fCj33Xc3CxZ8gTMv6FkwabFu3QSK4vV6adq0GXPmzCxTz7fU1MMA1K+fSHZ2dpH7iI2Nw+324PUGg9jJyX1Yu3Y1tm2zfv06OnfuSqdOndmwYR05OTls2bKJ3r3Dg1VRUUczvfKD+fnjbNz4NJKT+4QFxBs1akTz5mewffvWiF+LqBkkWHUKkmCVEKImsW0bvzczdIGRT1HV4J3xSt6XrvlRHcVkVikKtvQ3EUJUM1PXsCwDvRqDVaZp4MtJx+WJLtdjvZmpKKqKFsgNC1CVlr1qGBpKhAEyb1YaADG140PLVIcTRXVg6toJe07X/D70QC6+7PSTtkG8oWuoqoLqcGDqhszEG6H+/QezdevvpKTsZ/HiRYUyl2zb4sEHJ2IYBvPnf8A33/zAa6/No2/ffhHv45lnXmLSpAdYt24NCxZ8EfHj1qxZhcfjoXXrNtSuXRsIlgQWlJ2djaYFqF27DgC9evVhy5ZNbNy4Aa83hw4dOtGlS3c2bFjPqlXLcbs9dO7cNeIx/PzzMn7+eVmh5YFAgDp14iN+HlEzSLDqFKM6HBgyI6AQogYxdA3LNAvdvVdVFauSg+v5s0wVV4KiKIr0NxFCVDtD13C4PPh9OdU2hoAvGxulXE3eczIOY9s28Q2agG2ja0dnBystKBEMYkR2ieLLTscTUyvUpyqf0+XG0AMnbB9Cb1YaTrcH09BP2u/tpqEXCEraEc0UKaBjx07Uq1efzz//hM2bNzJgQHi/Ktu22bt3DyNGXEaLFmeH/paWL/85tL40desm0LNnMv36DWTWrOlkZmaU+pjdu3eydOn3nHfehURFRdGsWXPi4+P5/vvvwrZbtOgbADp16gxAly7dcLlcvPvuv2jVqjUxMTF06dKVnJxsPvjgXZKSekTU3D3f999/y7PP/h2//+jfzY4d29m7dw9dunSL+HlEzSA9q04xqupAO0k/9IQQJyY94KOoBiWK4ghNb1xZTNMocpYpy7KCM1wp0rNKCFH9DD2Ayx2F5s+pllkBbdsmJ/MILlf5epzmN1ev1/gM0g/uQfP7cEfFghJZGaAjwotTb1YasbXrFlrudLkxdT14Tj/BygANPUDAl407OhbNtPD7csqV3VbTGUZ4UNIyDSjn++1Uoqoq/foN5IMP3qFNm3aFSgBV1UHDho34+OP3SUioh6qqLFz4ZSjbKBCI/DrwnnsmMXr0lcyY8QqPPPJ4aPnevXvYuPG30PNt2/YH77//NvXrN2Ds2LsAcDgc3Hzzbbz88vPUrl2Hc8/tz/bt25g3bzYDBw6hRYuzAXC73XTt2p1ly35g1KjrAEhMbEjjxk3YuHEDkyc/UqbjM2rUdXz//bc8/PB9XH31aNLT05gzZxatW7dh8ODzyvRcovpJsOoUozqcJ+0dGiHEiSk3J7PQXXHIa8ZbySUwlqGHN2zIs3zBfBqd0YbmbZNkxlQhRLUzDR2Hy42ha5iGhtPlOa771wO5GLpGVExcuR6flXYIp9tDnfqNAQj4fQSfqeQbArZtY5oGrghmH7NtG192Oo2atym0zuF0B8sJT8DMKl92BigqiqLgcnvwZacTF1//uAcsq5pp6DgKNPeOZKZIETRgwCA+/fTjQrMA5ps69XmmTXueKVMeIjY2lrZt2zNt2kzuvfdONm7cQKNGjSPaT6NGjbn++puZO3c2w4aNIDGxIQCzZ88IbRMTE0tiYkOGDbuEq6++NqzU7oorrsbjieKDD97hyy8/o169+owadV2hJufJyX345Zef6NLlaLlf167dSEnZR3Jyn0gPCwBnn92SV16ZxezZM5gy5WFcLifnnjuAcePuiThjU9Qcin2yFkJXoiNHcrCsE/8wpe7/C9u2MLQADZu1LrbBsBBCHC+WaXJwzx+4o2KL/CIeyM0Jnq/K2eD3WNnph/FmHcEdFRNapvl9LP3PTBqf2Y52yRdg6hoNm7WqlP0JIURZ2bZFys7fiYqJw+/LISGxKVGxtY/rGNIP7UPzlz+jZ/n/3sHpdNOmx2B+/vJNOvQZRuMz2+L3eanb4DSi4+oU+TjT0Dm0ZxueCIJkmt/L0v/MonX3gTRr0z1s3cpv3kdRVboNuhLTMGh4estyvY7jLfiZuBW3Jxol78La782mfpMWuE+i7Crbtjmw63fcUTEoioLm9xJXpwFx8fUr5fkPHNhFo0bNK+W5hKio6siOrUlK+ntUVYV69Yo/30t48VSkKJimNFkXQlQ/XfODTfEf4jaVWsKha7mFmqvnZKYCeTNHKYpkVgkhqpVlmih5tdEOhxN/7vHtW2UaenDSC3fp2U1FsSyTnPTD1EpIDJb+EQwsAahqXjl2CY8tqlS7KN68mQBjahUuA3S43MFZBVGwT6DSbr8vCxtCgSoA1aESqMbeZVXBtqyw/pGK6kTXpfJDnJxMQ5eebOUkwapTkW3LjIBCiBoh4MsO+1JelMq80DC0QKEsrZyM/GBVIO+Ls33Szr4khKj5gmVywXOQw+U67oGKXG8WKCXcRCiFNzMNyzKpVbchTrcnOCOg3xdcqZQ8cYZlmhGff335waraCYXWOfNKKDmBygCDfcJScbnDSz6d7ih82Wkn1eeSZYVfuKsOB0ag+ma+FKIq2baFaejSE7UcjnuwKicnh4svvpi9e/cC8PDDD3PeeedxySWXcMkll/Dtt98CsGXLFi6//HLOP/98Hn300VCT3f379zN69GguuOAC7rzzTrze4J2arKwsxo4dy4UXXsjo0aM5fPgwAJqmMXnyZC688EIuu+wyduzYcbxfcs2jKBKsEkJUO9u2yfVmldiLxYZKy3SyrOCXhWNLoHMyjgDBzKr8vcoU2kKI6lIwm1RVHVimedy+t9m2hTfzCC53+UvOstMPAlA7IRFFUXB7YkLBKkVRMa2SM6siDZF5s9JQVAfRRZRIOgv0rILSZyCsCTS/LzgL5DHZv6rqwDRN9EBuMY+sHLZt4/dlV+k+8h2bMa2qDgxDO6kCcqJmsm3ruE66YNvBG6CKqmDq2gkTPK8pjmuwav369VxzzTXs3LkztGzjxo288847fP7553z++ecMHToUgMmTJzNlyhS+/vprbNvmo48+AuCJJ57g2muv5X//+x8dOnRg5syZAEybNo2kpCQWLlzIVVddxdSpUwF4++23iY6OZuHChTzyyCM8/PDDx/Ml10iqw4FehpkghBCiKpiGhmkaJfbPU6DS7kQZetF3bXMyDoevtyOb2lkIIaqCZRqEn4HsYs9flU3z5xYZ1C+LrLRDOJyuUHmeOzq2QBmgUmI5jKlrKGpk4SpfdjoxteKLzM7NLwPMF8k53bbtas18yMlMLXKyEQjOAFfVgSRDD5CZmlLgxk3VObbcU1EUsO1Tssm6fN84vmzLxjT143fc8/YTDJwrGMZx3PdJ4LgGqz766CMef/xxEhMTAcjNzWX//v088sgjDB8+nOnTp2NZFvv27cPv99OlSxcALr/8cv73v/+h6zorV67k/PPPD1sOsGTJEoYPHw7AxRdfzA8//ICu6yxZsoQRI0YA0KNHD9LS0ti/f//xfNk1jupwVvndGSGEKI3mzy39DnoFMkFN0yCQ6yUr/RCH9m7nyP6/Cl2A2baNN79nVYGZB+XOlxCiuhi6FjZrlaKqBHK9x2Xf3qwjOFxFB0wilZ12kLj4BqEgktsTTaBAZlVJWQ2GoaFEOKGGLyuN2CJKACFYBmgaet65PLJSQM3vIy1lV7VUH+haAC03p1AJYD6n20NudkaVZohpfh9+XzYBf9WXnQbfA4Uv2E+1YJWdl/Etjh/btkI9047L/gq8zxVVCZYEnmLv84pwlr5J5cnPdsqXmppKcnIyjz/+OLVq1eL222/n3//+Ny1btqRBgwah7Ro0aMDBgwdJT08nLi4OZ940p/nLAQ4dOhR6jNPpJC4ujrS0tLDl+Y85cOAAp512WlW/3BpLVR1omu+Un5lACFG9cnMySr0oUlW1TF/kTEPHl52B35uFoQew857D6XLjLGJ2qYAvG0PXghc2YXeT5a6XEKJ6GEYgLGDjcLnx+3KondCwavera/i92RHNxFcc27bJTj/EaS06hJa5o2PxZgbLrYPBquKz+48N1BXHsix8ORk0aHp2kevzy8sNQyfSPoSWaZDrzYRDCgkNmx3XWbN9ORklBulU1YFumegBf9hstpUpNycTT3Qs3sx0YmsVHQSsLMESzcK/51Otp49NMJvPtqxS+3eKypF/LrBsC8fxyNs55tSjqiqWaWAqSqGSX1FYtf5VnH766cyYMYPExESio6O5/vrrWbp0KZZlhQVR8oMqRQVXigu22LaNqqqFHpO//FQWTLU99e5eCCFqDs3vI5DrxeF0lbidojowjchLEvy52WSlpYCq4ImJIyomDndUTKEZAPPlN1evU/80LMsMnRcls0oIUV1MXQ/7rupwODH1QJXfjfd7s1BUtUI3Mn3Z6ZiGTq2ExNAyT1QMAX/eTVJVxbKsYjOEgmWApQeJ/N5MbMsipnbhmQCB0I2Q/M+PSIJVpqHj8kRh6H7SD+89boET0zTwZR3BVcrsi4qqBpvfV8UYDB09kIs7KgZDD6BrVVt2ahl64d+zEgxinVJsG9uysE6AnmonC9uyUBT1uM0SattWoSoCRVHzGq7L77001Rq1+eOPP/j6669DP9u2jdPppFGjRqEG6RDMwEpMTCQhIYHs7GzMvPThw4cPh0oKExMTSU3NK+UwDLxeL/Hx8TRs2JBDhw4Vei5hSwqiEKJaWJZFRur+4CxRpVwUKaqKqUeeWaUH/DhdURHfrcrJKwGMb9AEONpkXfoJCCGqi1lMKZxRxQEEvy8bZ4VLAIPfuQtmgbmjYrEtM9R3SyHYN+ZY+eUxx87YWhRvVhpAsRlAzrzeT4YeCPZGiiAYEMz2ceCOikXL9ZFxOOW4NGb3+7LAptTMGqc7ityczCoZk64dzXZTFIVAlffHKpxBp6oODO3UClaFEjKOY8PvU5lt29gEm50Hg+ZV/13Ptq2w/mwQ/FFRFEyZVKBU1Rqssm2bp556iszMTHRd58MPP2To0KE0adIEj8fD6tWrAfj888/p168fLpeLpKQkFixYAMBnn31Gv379AOjfvz+fffYZAAsWLCApKQmXy0X//v35/PPPAVi1ahUej+eULgEsqKSpg4UQoqr4stNDpXelURUV04z8XGVogTKVbuRkpOKJjiMqbzYpQ9ewkWCVEKJ6WFZwpqpCVQCKUqX9Rm3bwtD8xWahRior7SCK6iC2Tr3QsvyytfwZAaHoci/LjHwmQF9WOkDpmVW6HsxeiaQM0NBDASNPTCx+XxaZRw5U6eeBbVvkpKfi9JScVQXB8iE7rxSwsuV6s1Dz2qy43B68WWlV+rrNAsc6n+pwhAXNTgW2HSz/s+zjEzg51R17jI9HMDq4z8JntvxJBUxpuF6iag1WtWnThrFjx3LNNdcwbNgw2rZty8UXXwzACy+8wNNPP80FF1yAz+fjhhtuAODxxx/no48+4qKLLmLVqlVMmDABgHvvvZd169YxbNgw3nvvPaZMmQLA9ddfj6ZpDBs2jKlTp/Lcc89Vy2utaRRVrfIUXyGEOJahB8hOOxhxzw1FVbFLKBkpyLaDM2aV5WIrJ/MIcfH1Q4Gz/LvwJ8I050KIk09xLRqcLleVzgZn6Hql9DLNTj9EXHz9sOyoooJVRZ1jj50hriTerHRc7qhiP0sKntMjvQFhGEZYkNATHYsvK52s9ENVdjGp+X2Yhh5xNrCiquTmZFbqGCzLIuDNDmWjqQ4nlmlgVFHgKH/WxWMz6BQ1WO56KglmGCp5/5bvHVWuwN9xMMOzao+5nRcoL+60pqjBCSdOtV5tZVEtXb2+//770L9Hjx7N6NGjC23Tpk0b/v3vfxda3qRJE95+++1Cy+Pj43nttdcKLfd4PDz77LMVHPHJR3U4T7m7F0KI6mXbNplHDqI4HGXsHahgmSYOZ8mPCTUpjfBix7YsvJlHSGjV5WgzXj2AJzpW7nIJIaqFXUzARnW40HK9WJZVJb1XTUPDrmCgyrZtstMOktisVdhyd1QsAJr/6IyGRV0kWqYZ8bnXl51WbFYVFAxWaRHfgLBMHYczOvSzogR7H3ozDqOqKrXiG5Tw6PLxZqWXafZFV14pYK2EhpX2PjA0fyjDJ5+iKuT6snF5okt4ZPkUd2Guqiq6ZRYZyDoZ5ZekqYoCKMHXXUxm+N/+9gDbt2/jgw8+DVv+zjtv8dprr3L++Rfx2GNPhq27//57yMzMZM6cf1V4rAsWfMFTTz3Bl19+R3x8fJnXl9fevXt48805rFq1nMzMTOrWTSApqSc33XQrTZo0jfh5UlL2c9VVI3ji/56i37nnBhcqKpZl4qDk3qkVEsH5TFHzvuNKs/Uindqdxk9hqurA0CVYJYQ4fvy+bAK+LNxl/fKrEFETyrKWNvtyMrBMg7g69cMvbDj1ZiQSQtQMlmUWeYGTH4Q3qijzRAvk5l00l5/fm4Wu+alVN7w3bCizKjeYWWUrStFlgFbZygBjahc/Y50zVAaoodh2qReN+U3fi5rIyRNTi+y0g+RkHqnUGxm2baP5vThLmWgkbDyqimWblVoSGsj1oqjhr9vpjiI3K71KsoztYt7jwZWn0ARQBbN8FAXbKj5Y27VrEnv37iE9PT1s+apVK6hduw6rVq0IW25ZFhs3/kZSUs/KH/dxcujQQe6442YOHjzAPffcz8svz2Ds2HH88ccWbr/9Jg4cOFDm57Q52j8qWIVnV2l2lR3BzNJKXjBdMuuKJsGqU5TqcGDqMguBEOL4ME2DzCMpuMoz5bZtRzRri2kaZcoMyJ8JMDa+Pk53XmaVFsj70ijnRiHE8WcaBnZxIRtFQdeqpm+VFsHsrKXJTi/cXB0IZedogbwyQLvozKrgTICln8MNXSOQm0NsreIzqxz5DdaNyPoQBgMoRa9TFAV3dBxZR1LIOLyv0iYoMg09mA1cxgwp1eHEX4mzAuZ6M0LZxaF9qA6sKuqPZZXSTNw0To1g1bGBjOD7tOjvHl27dgdg06bfQssCgQC//baeq64axZEjqfz55/bQur/++pOcnGy6d+9R+QM/Tr788nNM0+LFF//J4MFD6dq1OxdeeDGvvDKLQCDAJ598WPYnLaJ/VJVm0pfhueWavGgSrDrFnTJ3L4QQ1Son/TBYVrnTnCPJdDJ0LeK78nB0JsC4OvXC7sLnp+PXVLrmJ/3gHvliI8RJyDA01GICNg6ni4Avp9L3WanN1RWFuPj6YctVVcXliSaQl1mlqhQZ8DGKmQXxWL7s/ObqpWdWGbqGUkwmV0GlrVdVFU9MLQK52aTu/wutEjKbzHJOdORyecjNyayUzwBD1zB1rcjffVX0x4K8kv1ibizZnDrXJscGSUrqodSixVnUrZsQFqzasGEdhmFwxRUjiY+PZ+XK5WHr3G43HTt2xjAM3njjNS6/fBiDBvVhzJjrC2Vi5ebm8vLLzzF8+HkMGnQO48ePZevW34sd+759exkx4nwmTbob/ZgZm5ct+4G+fZP4/ffNYcvnz5/H8OHnYUQYjMzPIjv2ONWtm8C9995Ply7dQ8tSU1N56qknuOSSC+jfvxeXXHIBr7zyItoxs0sW7B+1d99eHpvyCOdfMJALLhjA3//+GBkZGWHH5Jln/s4ll5zPoEHncMsto1m69HvKwraLvfUQRlFULMuQFhRFkOLIU5xp6BWeplgIIUqi+X14s9LwxMSV7wkUJaIZAXUtt0wXW96MVKJrxQezCQqU2CiKWqMzq0xdIzsjFRSF+AanoShy30mIqmboARxOd4UbkJfGNLRi+9Y4nMG+VcFytcr7u6+05upph4itXa/IDC1PVGyoZ5WiqEWWbRu6FtarqLgxebPSAIgtpmeV35uN0+1GUR3BbC1FKTWbxzLNUgt2FEXBHRWLoWuk7vuT2vUaEVs7odzHLX9Cj7JSVBXbttADuXiiY8u173zBpvdFj6Eq+mNBMFCpFHO0VVVF1wNUfqesoD9+O8DvG8pePlaZ2nRqROuOjcC2UQoeeyXYbFt1OIt8T3Xt2p2NGzeEfl61agWtW7eldu06dO2axMqVy7n66mAf6N9+W0/Hjp3xeDw89dQTfP/9t4wZcwdnntmCr79ewP3338M//zmbjh07Y9s2Dz00iR07tjF27F3Uq1ef//znI+6++3bmzXu3UG+oI0dSmTjxLpo1a87TTz+PyxX+956c3If4+Lp8++3XtGnTLrT8m2/+x9Ch5+N0RvY9LTm5D59++jG3334zI0ZcRo8ePWnW7AwALr74ktB2lmVx3313oygKkyY9SFxcHMuX/8J7782nSZMmXHnlqELPnZaWxt1330m9evV4+KFHMS14441ZTJp0F7Nnv4XL5WLGjGmsXr2Ke++dTJ06dfjqq//y2GMPMX/+h5xxxpkRvQbbtiL6G1cUsCy7Us7DJxsJVp3CbJRy39URQohI2LZF5pEDON2ecn8AK6oaUVmAEQjgKOYiryg5GanE1QlmADgcThTVEWrGa1k1986uYei4PFHk5mShOl3UOabkRghR+TJT9xMXn1jh4EBpTF0vNhAV7G1iY+g6LrenyG3Ktc9KaK4OkJV+kHqNmhe5zh0VE5oNUFFVzCLOsaau4ci78N26Zim7tqwERUFRVFRVRVHUvNmzgo+Njosvcl82NpZp4nS5825AKKWWkttl6JfldLlxOJxkHTmA5vdSp17jcpVQBnJ9OCK8cD+W6nDiy06v8PsxNyej2AbvR4NiPjzR5bzZVATTKP49rjqcVTYLYU0TDGQc/VlRwLKLD1h07dqdmTNfwTRNHA4HK1cuJzm5DwBJST355z9fQtd1XC4XGzasY8SIy9i1aycLFnzBgw/+jeHDLw1u2z2JI6mHmTNnFtOnv8aKFb+yevVKXn55Bj169AKgV6/eXH/9SP71r7k88sjjoTF4vTn87W8PUKdOHZ577mU8nqhC43Q6nQwdegHff/8td911L6qqsm3bH+zc+WehJvAlOeecc7nnnvuYM2cmL7/8HAD16tWjd+++XHPN9TRvfgYAhw8folatWkyYMJmzz24JQPfuPVi+/BfWrVtTZLDq3//5EE3TeOGFadSuVRuny0P79h245prL+e67r7nwwotZt24tPXr0ZNCgIQB06tSFunUTMEsJfBdkW3bEAelgZp0ZTD0VIRKsOoWpDvWU+UAQQlQPb1YGhuYvU1bV/h0b2bl5Bb0vvhlFUVBVFdPQSnyMbdsYhlbsNObHskwDX3Z62KxV4Rc2NTezytACqA4HzigP3ozDOBxO4urUq+5hCXHSMk0Df64XhzOzyoNVhh7A5S58AViQHsit1GBVZTRXD+TmoOV6qVVM8NwdFUPmkWBGi6IUvgFh2xamaeDKu/hNP7SHmFp1adisdbD5cF4DYtu2sCyLuDpFZ3AFL/RVbNvG6XJj6nrwBkQpjcINwyhTlpOiqkTF1kLz53J4/5/UbdC0zO8NPeDF4Srf79Hp9uD3ZmEaerl7jVmmiRbwhWZrLIrqcOLLyazkYFXx2YPBCaCqZhIBgNYd87KaaoDiAhm2ZRUZsOjWLYnc3Fx27NhGw4aN2L59K3ffPRGAHj164ff72bTpN5o0acqBAyl0796TtWtXAdC79zmh8jtD1+jZM5k35s5G13XWrFlFVFQUXbt2DyvR69kzmWXLfggbw2OPPci2bVuZMeMNYmKKf99ccMEwPv74fdatW0O3bkl8/fVCzjijBa1btynTMRo58houvngEv/zyE8uX/8KaNav48svP+frrBfzjH89xzjnn0rBhI1599XUsy2LPnt3s2bOb7du3kp6eRsOGRf+u165dQ/v2HYiLiwv2O7UVEhMbcsYZZ7J69UouvPBiOnbsxBdffMaRI6n06XMu55xzbuh4RyJ8tscIKMFAfHGZdacqCVadwhwOB5oEq4QQVUTX/GSnHShzU/UDu//Am5WG5vfhiY4NXtjoJWeBWqYRTKmP8APem5WGbduhzCoAp8tztL9JGe6cHW+GHkBVHcFZqqLjyEo7gMPhJDquTnUPTYiTkqlrKCjkejOpXa9hWKlaZbIsM1jiV8KdddXpJOD3ElMrvtL2WxnN1bPS8pqrHzMTYD539DFlgMecYy0zPLMpNyeTxNNbcnaXvmUah2UaOBzO4P9dbgwjkHdOLzlYZRlauUrd3FHRmIZO+qE9NGzWKuLyTNPQsUwTl6d8WRT5n3WB3BxiSmg0XxJdy8W2KfFzMxgUy8RKaFRsgKmsSsweVFWMgF7ppa41TXGBDCUvs9tRxCV68+ZnUK9efTZu/I09e/bgdrvp0KETAKed1oTGjZuwbt0ajhxJJTY2ljZt2rJqVbCP1aWXXljkODIzM8jKysTv9zNgQHKh9ceW7Hm9Xpo2bcacOTP55z9nF/vead26DS1anMV3331Nly7dWLToGy6/fGTpB6YIMTGxDB58HoMHnwfA+vXreOKJR3nppWc555xzAfjyy894/fVZpKUdoV69+rRr1wGPx8OxsybkjzcrK4stWzYzZEj/QvtLSAje/Jsw4X7q12/A//63gJ9++pEXX1Tp128ADz88hdjYCIK3Zew/FcysI++9XzWfMSciCVadwlTViS7BKiFEFbBMk/RDe3G4XGW6ALAsi4xD+4Dgl3BPdGyo70hJylrSnD8TYMFGwCdMZlWBzAtFVXF7YoLH2umKOLNMCBE5XQ+AomJbNprfR1RMrSrZj2UWPyNdPofTjZabU2m9TYJlXn7c0RU7d+TPBFgroZhgVVQMpqFjGjqqw4l1TPaMZZkFegdq6IHccgXgLdPA4XRhmQZOpzt0AwK75BsQhqFH1Ny9KA6nC0MLYOhaqVlx+SqjDYfT7SEnM43ouPhyvRf83uxSA1DBYxecybGy3vemoRdfeqgEuzhZponDefIGq4oLZASDVVaxs0R26dKN33/fjNvtpnPnbmH9opKSerJx4wbS09Po2rU7DoeDuLg4FEVh1qy5OJ1OLMvKK8NUQIE6deKJjY2jbt0Enn9+WqnDfuaZlzh8+BCTJo1nwYIvGDZsRLHbXnDBMN57723OP38YqamHOe+8C0o/LnlM02TkyEu44oqrufba68PWde7chVGjrmP69Bfx+/1s2bKJZ5+dyk033crll4+kbt1g8Pa2224o4pmDfyexsbH06pXMzTffCgSz3JwuF4qiEhMTPBd6PFGMGXM7Y8bczu7dO1m8eBH/+tdcZs36J/ff/3Cpr+HY2R4jkX+ztKpuiJyITuKzgCiNogabCNfkDAIhxInHtm0yj6RgGXqh6bBLk51+KFTy5/dlA8GGq8GMg+I/+Ms6e1BORiqKqhJToEGv0+XG0PJ7VtXM82JRmReqw4HLE8WRA7vkBoQQVUDze3E4nThcLnzZGVW2n4IBm+KoeT2bKqvnqKHrQGU0Vz9IdK34Ys/5+YF0ze87ekFeoDTPMo+e4/NnoCtPsMo0TZyuYMAoeAMif4bXkm9AmIZeYkZbJPRA5OdfQ9eIbJ6w4jmcLkw9UK6WHrZt4/dmRfQZHXzfp5dniEXsN1juWdpNrKJmizyZlBbIKK5stVu3JP7443c2bFhHjx49w9YlJfXkzz93sGnTRrp3D67r1KkLtm3j8/lo06YdbVq3pXXrNqxes4qPP/4QVVXo1KkLGRnpREfHBLfJ+++bbxby9dcLw/ZRt24CPXsm06/fQGbNmk5mZkaxr+G88y4iOzuL11+fQdeu3YssybNtO68ML/z1OhwOEhLq8cUXn+Lz+Qo9bu/e3TRu3ISoqCg2bfoNRVG48cYxoUBVauphduzYETqnhL4/5v3JdezYid27d9PizLNCx+SM5i2YN+91NmxYh2maXH/9SD766D0AmjU7gxtvHEP79h05eDCyBv3lmdkvf+ZSmRXwKAlWneoinGVLCCEi5c1Kw5eTibscvV3SD+0J/TtsinbbLjGApGuBMl1o5GSmEls7IezuldPtySsZUQt9caopguWOhZc7nC4cThdpB3bnXZwJISpLsEzOidPlJuDLrrIL6fxy5tLYKJXW16fSmqunHaR23eIneygYrILgNWPBAJJVoMF5RYJVCgT7XikKDpf76GyApQSrLENHrUDZWX55ZqQ0vw+Hs+LZE4qq4ss7XmVhaH4sy4wo89nhdBPw5VRKgNSyrFJDdLailPkG1ImmpGCEoijYxSQSdOuWxM6df/LXX3+SlNQrbF1SUg9SUw+zbdsfdO/eA4CWLVszYMAgnnzyMT755GNWr1nJW2/NZe7c10lMDGZBnnPOubRp047777+XhQu/ZM2aVbz00rN89NH7oSbmx7rnnknk5uYyY8Yrxb6O+vXr0717T9avX8v5519U5DaWZWLqWmhG0mP3cejQQW677QY+/fTfrF27mp9/Xsazz/6Dzz77D+PH3wtA27btsSyLV155kTVrVrFw4Zfcffft6LqG3x8M5B773COvGkVOTjYPPnQfy5b9yPLlv/LggxNZvXolrVu3xeFw0K5dB+bNm8Nnn/2bNWtW8fbbb7Fhwzr69x9Y7GsOc+xsj2VQU2+YVgcpAzzV2TamoUectiyEECUJ5HrJOnKAqHI2IU4/uJfouDr4vVnhwSryZklxFP2xpWu5qMWsK0pORirx9U8LW+Z0ekIXNsFGvjVvCuGSMmGdLjd6IJfM1P3Ua3zG8RuUECexo72FgoEFW1EI5HqJqYIecaZpEMm1jepwEMj1VkpZVmU0V9cDufi9WTRt2bnYbfKbeBcM6NiWBXnxGlPXUNTgOHK9ecGq2PIcYyWYLWQTKgMMlnAWH8QPNm03K5RZVdbyTC3gxeGoWJ8wAJc7itzsDGrVbVCm0qGA3xf5LGWKcvR9X8Feacd+hnmz0oktkOEMwT+Bk/2mi11CIONo5mHh99LppzcjIaEehmFw1llnh62rUyees89uSWpqKi1anBVaPmXKP3jjjdd455238pqON2TsbXcwcuQ1wXOb28NLL73KrFnTmTlzOl6vl9NPP51HHnmciy4aXuQYGzVqzPXX38zcubNLLAVMTu7D+vVrGDBgUOFjkF+SqDqCGXeGhsPpDr3mjh07M2fOfN555y3efvtN0tPT8HiiaNeuA9OmzaRbtyQgOPPf3XdP5KOP3uerr/5LYmIiAwcOwel08vHH76NpGsfe5WvYsBH/nD6L12bPZOpTT6AoCq1atubll2fQsmVrACZMmEx0dDTz57+Zd9wac9ddE7j44kuLfb3Hvr7yxKrySwEdZfhOezKTo3CqU5RKSyUXQpzaDF0j/dAeXJ6ocn3pty2LjMN7aXh6K1L3/0UgNztsvWWaUMx3+2DT8cg+0gxdw+/NIu7sTmHLnW43hpaXraBQI4NVpWV0uDzRoTvgFW2YLIQofNHsdLrwZaVVTbAqwr5JTqcbvzeLWnUTy9UUvKDKaK6enX4YgNrFzAQIhTOrgLAMVsPQQq89NycDh9ONyxNdpnHYto2iKjjz+iE5XG5MI+8GRAnZssEASsXO9aqqopsmpqGH9l/S/gxdIyqm4jM6KqqKZVll7qXmz8ksdZwFOZ3BUsCKBqvsAhkj2WmH+HXhfLoPuZqEhqeHlqsOx9HP4iqQn91V0bLPiogkkGFbFkoRPcU+/XRBsY+ZN+/dQsvcbjfjxt3DuHH3oAdyg43r8/ad3x+rVq1aPPDAozzwwKNFPu9FFw0vFLi66aZbuemmYM+nzp27FhnYWrHiF/r3H1SoIbmdlyyhoKAoeZMuWBbkfXfJ/+7VosVZTJny92Jfb76rrx7N1VePLrR8zJjbAWjUsDHfL/ox7Hx5xhln8szTz4d+tiwrrCw2OjqaCRMmM2HC5FL3XxTbLnq2x9KU1rfsVCNH4BSnOhxlqrEXQoiiWJZFxuF9wdKLcl745GSmYmgB6jY8naiYWviPyawqLi3asixMXY94pqKczGBz9dgCzdUBHHmzAdq2DTY1shSwYPZBcWyCmQ5CiIoz9EDYBYfT5Ubz+6ok88PQIpuRTnU4MC0Tb9aRCu0vv7l6WbJSi5KVdhCAWsXMBAjFBKsKlOYZuhbKDMrNySQ6rk6ZbxZYpo7TnX+zxMbpcgdvyNp2KFu2yMeVMwOiKJGUZ5qGVu7yoKI43W68mZG/F0xDR9f8Zfqszs/cregN7oJ92XLy3r/Zee+ffKrqqLQy12PZto2pa+h6AD3gx9A1TNMIZTIdN6WUiClUfu9M27aC+UXH7La0Etny+PDDd5k69f9YvvwXrrzy6rB1hmGgBQLohoZpmximgWEaWLaFrgfQAv5K/10EZ9gr/W+usr735c/2WJH7nVXxezkRSWbVKU51OOWiRghRYdnph9A0f7nL/yBYAggQn9iUQ3u2hX35tim+BM4yjTLNuRKaCbBOeLDK6XIHy0Hys5dqYINLXfejlJJB5nC6yPVmERVb+ziNSoiTVyCvX1VBiqoQyM3B6Uqo1H2ZeiDiGek8nmiy0w4RFR1X5gykfJXZXD0qplaJs5E6HE6cLg9aXhmgfcxEFqau4cib2Sw3J5OYWnWLfJ6SmIZBTO3awb6DEMqSMAy9xGxZ2zIr5XyvOBxoEZRnGpVc0eB0ufF7szF0LaJsKT2QW+4+ZYauVSgTr2B2cMAbzJ4+NtCmOpxo/iq6NskLIqiqip13U8oygu/D/GyrYGZP1eVzHA1klBCsUhTsvEbblZXhXdRbPJjRZKDajkrNJF+9eiXr16/lzjvvpl27DmHrBgxILvXxDz34Ny4efmmljScYhCr59VVm+V1Fg21V9Xs5EUmw6hSnqg40zVcjy12EECcGX04m3sxUPBXsn5J+aA9RsbWJjq2NJyaOtAO7QutUVS32jm4wlTxy3oxUHE5Xoea9oQubvNmjamZmlV5q5kWwCXQOlmVVuERIiFOZbdtofi/OY/p6Ol0evFlpxNau3GCVYei4oyILPCmqitPtJiM1hfqnnVGui+tIm6trfh/b1v2Ayx1FdGwdouLqEB1Xm+jYOjicLrLSD1GrhBLAfO6oGLTcvMwq+2hmVf4McS5PFLZtk5uTWa6+e7Zl4XZHoSgKal7QAfKCgIpabECqsjJYnE4X/twcSrtNoPl9EWcCR0pR1WB5+zEZw0XJ9WaV74JcUdA1P54K3JQKZgcH36v5M/56s9KO2Y0Cee+Jyu7bU3AWvuBbXwm7/rEsC8U0cTirNlhVKoVQME1RKum9UsR+FQUsy67068DnnptWzBBsXpv1Rt7Oi3mwHewpZZlGhbM+8/dp2zZqKVnpJfUKK8deK/Toqvq9nIgkWHWKC34gBDMTpL+JECe+/Luex+vDzTR0MlP3446KrdA+bdsm/dBe6jdpAYAnOg5D10J3ipVSglVlmQI8JzOV2Dr1Co03/460oQdwOt1hJSo1haEHSs2iyO/PYmj+EjMdhBAls0wD27ILBX0dThd+Xza65q+0CWosy4QIS1XyOV0eAr4cvFlphTJFI6H5fRE1V/9r03L279iI6nAWmqXNHRWD5vfR6Iw2pT6POyoGLRAMVqkqodmoLfPoTICa34dlGuWaCRAIfZdVHY7Qvw1Dw+WKzrsBUfjC3zT1cvWWOVawWiGn1CCLlutFreTv3C53VDCAWiehxMClZZn4fdnl+mxwOF1ouTlQp165x2kUuOFSXLAKgLwZASs9WFXKbISKomKZJqrDWYXfoyILZCjkBXTL0Di/xL3aVpGlh8H9mME/yipmmQatWrUu9UaabQeD905FKdPEAcU+WZk2r3iAsDLKGIMzpkY2Y+fJTIJVArCDH6wSrBLihJd15ACxdRLwRMeVvnElyO/xVNG7xN7MI+iBXOomNgUIlVHkl9qoqophFN0jxtD8qI7IP8xzMlJDQbGCjmZWBXA6Pce3f0UELNMMftGO4Au0oqoEcr0SrBKiAgxdC8vEKEhRHPh92ZUXrCphps+SuKNiyE47hCe6Fi532Rp2a35fqd/9Arle9m5bz2kt2tMu+QI0v5fcnExyc7LI9WaSm5OJ5vfSsFnriMaaX/KlKCqWEQx8FexjVLGZAIOz8gGoqjMUEDJ1HZcrqthzumkYldrI2NACOKKLvsSyLAtDD+CuQHZSUVSHAy3gQ/PnFpv5ZFlmsLcklCsQ43C60PwVq8awTD0UTMsPVumBXDS/L/zzyrYLBUbLqqhxBvuTlVR+B1Zej7OimptXhoi/W1Ry4KzY3mzHJUAXfP+ZphFR8CU4DDWYiefyVOjvs7hzeJH7hbys9IoHqyrcl05RsU0Du4p/L1Wtot+lJVglALAMHcrZ86Akkr4oxPFj2xaB3BwUVT2OwapApfyNpx/aA0DdxOCMQJ6Y4Pj9vmxiayegKA4ss+jMKl0P4IjwS6Xm96H5fUVmIRzNrNKwo+2IP2AzDu9HUVWi4+rgyitBqQqlzQRYkNPlITcnOJ35yUg+W05+vpwMLMOIqKypLCLt6wOga/5i32cutwdfVjpxdepXzoVkOS/MFVVFdTrJTN1PvcbNIy4HzG+u7o4uOaC9c/MKbMvkzA7JKIqCJzoOT3Qc8Q2alHms7qhY0g/uCY3btPKCVaYZOt/m5uQFq8qYWWVZFqrDEbpxoqoqDkdeZpUeAKV2CcGqyBrbR0JRFfRA8QGj/Azhqjh/ORwufNkZRe7bNHTSD+2tUBmfoihYto1paGGzppVFwcf683or+r1ZeDOPhAerlGBmTXnnS3Q4nOi6hrtAADc4eUrpM6wpeVldlV2qWXAckQQy8gNnlHNWuWP3WdxrDwXoKrPksIj9m7pepve9klcKaVkmjooEq8oSLFFULNPAUpQKlSBGMttjqUNRwLLzs95O3N5Vuq5VKEPy1M4rE0DwC4NeBVPEaoFcjqTsLNMFlhCi/ExDx7Zt/L6sct+lL6tArq9Q8+HySD+4F09MrdAFiic6L7Mqb0bAYBlg0ecSQyu96Xi+UHP1Ii6AnXlfag0tOPtXpD2rcr1Z5Oakk7r/Lw7t2UZORmqVnFPLcjGrOhyYhlZlMypVJ9u2SD+497i9x0X10HJ9ZBzehy87vfKe0+8j7eDuiHsUabk5xWYeqQ4HlmlU2iQ1lmWWu+m1yx2F5s/Fm5UR8WMiaa6en1XV6Iy25Wp4fix3dAy65seyTBTl6Dk9+HNwm6PBqrJNEGGZRliJtOpwhj6b8mduLO6cHryIrpxLIofTHcoYKnJfEfYJA8r8OeJ0e/B7Mwt97zZ0jSMHdmHoWoX6TUHw+ru8M2EGJzCxQmX9eiA31Jvs2FJAVXUEP4vLKS4unoyMw2ha4Giwwo4sxyYYlLOqbDa2sgYyKiXLu5TXrqBU6WdqMEhb9ptMiqJimkaFjkGkGenB/QX3aRh66Dt1OXdaKTN+KoqCYegYmh9DD1TPzJXlZNs2mhYgI+MwcXHx5X4eyawSwRp7zV/pz5ubnUGuNwvl8H7qJjY95Wtuhahqhq6F+tBpAV+pMxJVBj3gC83gVF75/aoSGjULfaGIysusCgWr8m6xBev3j975sywTyzRxeSI7v+RklhCsysu2MHUNxY4ssyp40WvhjgqO1zJNsjMOk5V2EJcnmtjadYmKrVMp57+yznoICpo/t9x3wGsqQ9fJ9WYQFRtXKRfQombSArm4o2PJOLwf1eGslPNZdsZhArk5eZkvJWef2raNFsgtscxPUVVyvVmVUm5rmkcnirBtmw0//pfGZ7Yn8fSzI3q8OzqG7LQDRMXERvQ3H0nQZNeWVVh5WVUVkZ8J6fYEj5Pmz8XtiQ5dHJv5n10Eg1XuqJhQOV+kLFPHXeCCSFUdBRqsa/ndqot8rGnoOCLMtiuN6nCi5XqLneBCC+RG1Cdsz9Z1bF29mD7Db4k4yyz/GAZ82aFzo64FQpOVRNq8v8R9qCqav3zfLwoGQ/x5n+3x9U/jwM4tRcwI6KjQtUl0XlAuMzM1FLyzLRvTMiIKXNi2jaqoVZJdFQzcKJEFrGwbpRLGYdvBli8lvXbbtnE4XJXRvq3M+y7t8arqKPf3qNCNzjLu3rZsFFVBVZ1lOia2nXc+r/QDebSkMTg3gIqqqjU648rhcFKrVt3Q32N5SLBKBO9e6JUbrLIsKzj1cFwdAn4vWWkHqFOvcY3+gxLiRKcH/MEPVocTX3Z6lQerTNPIu5tdsZ4tvux0NL831K8Kgr0xnG4PgdzwO9SWGR6sKi7bqjg5Gam4PNG4owp/cDoKzgaoEFGDdcs0w3qlqg5H6M51sOxiH3Xq28TVqfisYYZetlIVh8tNbk4GMbXiK7zvmsQ0NGyCgcfouHj5XDkJ2baFqWu4o2NQVJX0g3uod9qZuCvQrkAP5BLIzcHtickrlSo5WGUaOrZlllgy5HJHkZudQa26iRUOSJva0VnS9EAuh/ZswzSNiINVqqqiOpxkpqaQ0Kh5qX8XpTVX1/w+9mxdS6PmbSo066Gha2i5XmJq1w2dGzW/F090LFZe5qehayh553V/Tma5mqvblh3KjoW8zKq80pP8fodFZVbZeTdBXJVVBph3TA09UOT7Vcv1ltonzNA1dmz4CcsyObDrd85s3yvi/TvdHnIy04iOi0cP5HLkwG4cTmfEpa+lCTZZ95brsQV7JgXyss+iYmsTUzuh8IyAqhOzgpnB0dGxYRfJWWkH8WWnRxRctiwLI+AnsXHLijf4Lvi8psnB3X+EWh1Esr1lGSQ2Ktxnsyx82RlkpKYQFVN80MDvzaFuo4aV/t0xkOvlyIFdoZuQZRU8F1s0aHxGmT/vLcvi4K4/gp8l5fiuEKwesKibeHrE/Ql1LUDqvh0R/47Lw7as4E3p2NrUbdC09AecwCTVRQTLRXS9UtNd9YAPK6822hMVgzcrPZTRIISoGprfi+pw4XC6Cfhyip09r7JU1vOnH9oLQN2Gp4ct90THhe6+AsHSvGPKd4rrY1WcnIxU4oqYCRDCZwMEJaJSoWPHU5DD6cITE0t2+qFKOVa6FijT3VWH04UW8FVKan9ORioZh/fj92Zh6IFqTUHX/D6cTlfwItjvq7ZxiKpTsGTE4XDidLtJyytjKq+czCN5z+WJqFTaNDRKuxWvqGpe76eKlwIahha6KM5vMp5+cE+Zyn9dnigCfi+5ORmlbltac/VdW1ZhmQYtKphVZRp6qPdLfpBA8/sKTBNvFXrtFW2uDqA4HKihnlVaXml34fNWcBbGyj2f2SjoWuH3RP4sraX1wtn9++pQ9t/BXX+Uad8OpwtTD+DNSuNIyk6cLlelBaogrxpD90dcSluQXeBY+31ZAHhiahFbO6FwZpWq5gVqKu/aJJIJBQru37at8O8glaCsM0/mX6NV9DuEFvCV2tvT4Qr2PKtsmt+Hqpb/ppLD6cLQA+U6zwa/I5a/x6UnOgZQSN33J7nerDLss2opqnrKTIwmwSoRUtFZNwryZWeEegUoikJUdGzwjkZeL4JThfTrEseLbdvomh+H04WiKNiKQqCKL+SDvZ0q/jzpB/fgjoopVNIVFVMrdPcVyCsDDP/iahhaxGOwbRtvZmqxDZtV1YHqcIaaxkfyZdyyrBJL81TVgYJNTlFTc5eRqQfKdIdXURRsmyIvmsrCti1yMo/gz80m/dBeDu3dwcHdf5B+aC++7Ax0zX9cg1f5FxwOp6voKc/FCc80wkteHU43iqqSdnB3uS7adC2A35uJM28CBNsKXryVRAvkokRwgRXMZM0o85iOZeh6KDsrv2+TZRpkHN5fpudxR8WQmZpSYr8jywo2Vy8uaBKWVVWnXpn2f6z8EkDbtsOCVXB05i1TD2aVWZaF35tVrswqIOziLb9sSFEdmHmz1hZ1nirphkN5OV3OUAl7QaZhlDo5hOb3sXPzShJPb0nztklkpx8q83lOUVUyU1NweaIq/YI2v9WAWY7AccHrDL83L7MqJo7YOvXw+7KLDEZX1rVJae/5ojjdbnzHBNEqPA7TKHNw1IYK95/U/bmopfQXdbrcBHzZlX6jM5CbU+ay3mM5HA68WWXvX3jsZ0l5OF1uXJ4o0g7uJjv9cKnbG4Ye9r3UssxK7b14qpFglQhSVY6k7KyUxsCmaeD3ZYf1TAhmWMWScWjvKXMnPL8PT1Vnt4iay+/LPm4X0/lp0vlfgp1OV5V/OGoBH2qEjc2Lk/93Ujfx9EJf4D0xcfhzj37ht6FQAEkP+CMeQyDvy3BsETMB5nO6PKHeXxGVAVpmqbEyV9507RX5smnbNoZxtFQmUg6HI3RRUF6GFsCyTNyeaDwxcUTFxAUbOgdyyTyyn8P7dhS6K15VCl5wOF2eUKaXOLkEA8bhy1zuKCzTJOPQ3jJndfiy0lAKzKYUSQZBIIJyLchrau3LrFAGo503w1r+33d+sEpRFI7k9RuKlKo6cLhcpB/aU+wNs9KaHe/6fTWmoXNmx95l2ndRFILZIbZlhcqvNf/RMjI7NJ29g4AvC9u2iS5jM17LNHC4PGGlmPn/drrcofdTUe+bqmgq7XAES+WOLTs0jdIDPDs3r8A0dc7qfA4Nm7cGKHN2lTsqhqjYWhWazaxEStmbv0PeDdy895zfl43LE43D6QqVmfqK+L5UWcEqM+/GVlkybBxON7rmr7RJFOBoll9ZqKqK5i//GGzbymsjUPL3h/wbnSVNEFBWlmWia7kVfi863VHByQPKeE1V1IzVulb27PD8vonZ6YdKfT8YAX/Ysd7zx1p++u9c/tq4/IRojF7TSLDqFFLSH4gnKgaH00V2xmEO793Oob078GanlSvQEsj1FnnnSHU4cHmiOHJg9ylxcWGZBlqu75R4raKwQK6XtIN7yEk/HPGschVhGnrY3SOny43m91WobKY0kdypK01uTiYBXzZ1GxauufdEx6H5faFsKlVVCn3ZN8pQGpddwkyA+fIvbFDUiO64m0bpKf2KoqA6HBHdkStOfqlKWVPZHXkBnYp8QQrklewUpKgqLrcHT3Qc7qhgqWNVvtfyBX//weOgKAqK6qiSsoVj6YHciEsATka2bREoZ5+a8iguA8IdFY2m+ck4nBLxedXQNXzZ6WEzxYUyCIq5ELZtCyOQGyojK0l+pklFLvBsywr7+87NycTliaZO/dM4krKzzM/ndHkwDZ3M1KKPU0nN1bVALnv+WEPD5q2Jq2hWlRVsB+FwebBtE4fTFWxAXuCmpaFroVmzcnOCf2NlzawyTROXJ7ypfP7sfk6XO2+2v6JvQJSnnK00wfJQO2/GxaPy+0oWx+/NYs8fazntzHbE1alPVEwt4hs05cCu38s+hirs5Xfs7zBSZoG+i35fNlGxwRkf87P3irq5V1kVCkZ+k/0yUlS1Uj9jdM1f5h5YDpcbfwU+f4K9PSP7/uD2RJGZur/SzveGFgC74u9HJThNX5k/h4OfJUePt6FrLPtsNnu2ri3XGFSns9RMef2YUt+stIMAbF//I1tWfFtls0yerCRYdYrYtu4HVnz9bokXLPmNgaNia6EokJV6kEN7tnEkZWeZ7qD4stOLrY8PflFxlDuV/0RiGjqGESgyFVyc3DS/j7QDu3B5ooJ3lQKVP9vmsXTNXzigQPgd7MpkWRZGGcvSipJ+aA8AdRNPL7QuKqYW2HboNSiKI+zLf/BiIBDxHTtvxMEqLeIyQNPQI2qs7HJH4fdmlTuz1CpwR7osVFXFskyMCsyq5M/JLLHnSbDURiU7/VC59xGpY0tP3J4ovFlpVTrlNoCm5YbeP6cizZ9L2oFdlZphUBI9UPydeE90LH5vJllphyIKwnqz00EJnzEp/9/FNYrOn7I80gusYFPr1HIHhS0r/II8N6/JeL3GZ5CddrBc543gccomJ6Nw1mNJzdV3bwlmVbXoUPGsKtM0cHuicbrcWHmZv+6oGLTco6/HLFAyk59RFh1Xu0z7sUwjNNNgvvyLW4fLjWEU34fQMs3QjZ6M1P2V2r7h2JuV+X0li/P/7P1XkBxpeh4KP9+Xtmx3V3tvgIZ3gwHG23WzZnaXu0tSJPdQdOenxKPzh3SjC+pCDDGCF5IiFFL8OjyiKBMStRTNkuvIWT9+ZsdgMAAGAw800L67vK/0/0VWVpfJqsrMysbM7OCJmFhsd1VldlbmZ973MTff+xkMAAtHH6n9bGx2P4rZJAoZ780Ov8GwHKSy+7Wtqqo7RvrFXM3IOxjpByG0haFLKPVtzJErJU+JepwQQKmQ9q9o5tJ7EjAT1VRF8jzPmeOZs9dSyoATAkhtLfuSFK/IFU9rFztwvIhiJuGqASxL5VrQAmD6b6qKjO3la57PoVLIdmzONa+Ni9kkBsfnMH/4IazduIBzL/7tXWnu/bzgXrHqYwLKsChk4o5lQZYxMB8IQVUkZONrjhZhluFtp40NxwvQNR2ZxIbj83cKTVPvCovFCVRFBsOwqJT9o9Pew4cfilxBcnMZLC+AYdhatPluQ66Uaz5xFlheQMmDxt8JrGJzr92yzPYqOCFg64tipXVZBV9CaYNxpa5rDdLHbihkExCCkY6JLiwvQJWrnlUOFoaaQ2keqW6acslNTxtaM3XQIzuqB/8yTVVqXmidwAkBkyW3y+wbuVICqVvoWwwGP2ULdlBlGVKl+HPfZGmHUiEDXVc9379u4ESyIgTDKGSTKHRhK2qqglI2CV5sTWUzpYD246PbjYRlAOy9GN041lgm47HxWQBAanPZ0+cKwRBy6a2WOaid0bQiVbB89SxGZ/Z1LOo7ha4p4MUQWJavMVV5MVjzCzMIqRUGAaBcyIAQAiHorlhlGEaD9QRgjg0wAJbdaUDYMaushkOllMfbP/xzXHzt7325xynT6FtlGEbLxrkexWwS67cuYnrfiQZm2cjMPoAQbLqUAnrB+q2L2F650fV1lDLQNdX1eGjOl+bWUyrla8UqShkEI/0tzCqWF1DIJJDeXut57JXKRVAP/l0Wc1LyaY5x02BrhtfikapIjvz3LFiekKnN5Z6LKqZflT++aZRhoOmq43WGlSpbv0azmmqZ+LonKatVBG83d2iaWmOUAia7tJhLIdQ3iL0nHsPBBz+D1OYdnPnxX/hu3v/zinvFqo8JRqcXAZhGxm5ACAEnBCDLziQQUrngqIDOiwHI5bzvErl8ahvlHv1Z/IIiV6osjd5TPO7BOfzoBHmFqkhIbt4Bw7K1yZmtRpvvNu1XkVo7tgzLQZHLuyJF7SQjcQPTr2rKtuBkLWStQgSlFFods0p3+VxZSYCdwHKCubhx6FmlKUrHaPvGz+YhS2VPhRVT5unterMcj4rHcAtFKjsyJyWEgOUFZJPO5VleYOcjxPXIanECRa5AN/SPjediPTRNNVkQoT5IldKuFwadSFYIIRCDYeQz2yh0YLyV8pmaZLQZDGtKpe3mZ9Nc3d0SmeV4z+yXesaPUWcyHo2NgeUF175VFgghEMQgMturtbmxk9H08tV3oKky5n1gVQGAoRumyTfH155PXgxBshi/RrWAUcesEkNRR2zVehCgZVyolwGaPkG0bbGKUIpKVYK4vXIdSxffcHV8OzAcB6muWalrKgzdaHtf3Tj/KhiGxfzhBxt+LgRCiI1OY+vO1V0d41RFwuW3foKrZ37q+DhuCxm6qoASClWRoCpybY4HgKBtIiADIRiGVM5je/UmSvm0p/lF1zVoqtS2UNgNJnMy2fP1rxUyvKydCPHMMpOlkusCGcvxMGB6inpldBmGDtmh95+b83LqkWk3l1h2DIahI+VxXOWFAIq5lC3brpkFXy7moGsqwlWv1Km9x3Diqa+ilE/j7R9+40PFmPyw4l6x6mOCUFX7bkXEuwUvBJBPbXYcsAzDQDGXAtuBtdAAQlEp+duFl8p535M7vMKSMRB8sAWUjxM0VUFqc/kD2VCqiozkxh0QQhuYhZRS6Ia2q/IZTVWga5rtAt8A3ZXujSyV28pInKJSzKFcyGJgpNWvCjDZE0A9s4oxY5+r0DS1Y8HMYtzE127i1ns/QyGb7MoW2PGscigD1MzFt1NwgohcctN18VJVZVDG25RtFi0rnorm5WKuhbHXDizHQ5UllAoZ18dxgnbSU4bloMneWS1OoCkSOF780PhW3U2TVqlUgAGreWXdv7snu2z232sHQgiEQBi51CYKWXuvm0I2CVZoZVVZ7zcA2y69lw0WywmQykVP8329912lXICh6wiE+0ApRWx0BqmN256/c8qwDYbr7czVFbmC5StnMTK9iMjAsKdj2YFheVDK1IihQp0MkNJqscjy6qoyytzAkms2j1NmUcgAw/G1BoTdfauqpo+SxYLvG5rAzQuvYXu1O8OoE0z2kV4r6Jj/a/8dZpMb2F65jtmDp2uJifUYnT2AUj69q1LrzTtXoVcDkrIJBwmUhLi613VdNwNJKK2FfgihnWJVqG8QpXym5TuypKMcLyATX0dy447rZ8z0q3L1lgaYzEm553WcXYOtXMg4KvqxHO+5UaB0YPR1Ai8EoCkSMok1T0VCtZrC6ad/2s44270JazeXFDLb6B+eBMsJSKwveToHi7VZtmkCNqc9WoW1UF+s9rOhiXmc/vSvwjAMvP2j/+25GfFxwb1i1ccEhBAMjEwjs73qacFDGRa6pqOYb28qpyoStKr0zQlYjkepw+e5hbVhl6Vyz4mGvcIwDKhVgz3KMHfVmPbjDE1TocoVZBIbd9XAUFMVpLZMmQbHCy2/pwzbkzmmk+MbbVZinCBUu5H+bm5NGUlv5upW8dzOrwowpWWEMrXutBl/rte+W9OYdweGYWBr+RqunX0J7/z0r/HS3/wxXvnWn+Dci9/CzQuvQQxFMFJlmbYDU0sDpF0XZ7quN9C9nYBhOWia6tqwVfVgyloPA3C90NZ1HVJTsms38IEgcsntXWGTmmlO9iwZynFdkzc1TUU2semeDaDr0DUNHC9CKud3tVDjFJn4WkdGkZ8o5VLgOLNww7AcdE3dNXkxAKhqaxJgOxBKwQfCyCbXW2QZ5UIWMIyOLB2W41uKq4bhPuLeAmUYT9dGrTOe3vFtMos2g+NzqJTyPaW7mobrGrKJdaiKZFvk31y6DFWRfPGqAuqLSKZXqXVEXgxCkUrV31NodT5G5UIWoktzdV1TwfJijUllgRAKA/UJr+3SABUQwtSaIsce/xIisVFcfO05FHpufho1ZrPVBLHDjXOvghMCmD14yvb3I9OLIIRiy4PRulOs37yIQKQflGEdGbozLOfKE9OUge4kAQJoYFaFojEYho5ym7mRMgzEUASapiK+ehP5dNzxWKzKEjwSk2tgGAbFHse9ZiaOYRh464d/jqvvPN/1vZRhochl1/OPySpTPPl1AQAfCKFSKiCX3HK9jtwtv1bKUEdNsea5xNB15NNxRGOjGByfRXJ9yfPamBNEFDKJlr1Gc9pjrVgVbWT1R2IjeOCZX4MYjOLdF/7mriUqfxRxr1j1McLA6BQUueJ5gcuLARTS8bYL/UoxD7hgGNQ6FT4VlmoeOpTuamHACXRNhWHs+NR80OfzcYE5IbNQVRnF3N0Z+DVNRWprxdzMCvasQo4TUC5kd62AZj6T9s8ew7DQFNlXKaBhGI6TsjohvbUClhfasp1M5kSoiRlGat4nzXHI2cQGLrzyXSxfPQtFrmB4ai/2n/oETn36V/D0L/9/8diX/k/0D0/aHkuvFpBqzCqYC5tOC5n6xbcb8GIA+bS7gk6vZvYMy7lmBalyxXVX1DrH3SikdOqOs5yASinfdn5S5AqSG0vIpbZcPwtWdLrlXXI3AhM6QVMVVIo5ZFObu8Zis6DIEhS5DIbdYYtyYnBX0x+VirtCEaUUQiCETHytdo/ruoZCOg5O7Mz0tktNNUMcvLEBOCGAUj7t3stHkXaMp5uKVbEx07fKSypgPYRAsGq4HrdlxWbiaxCCEURiIz0dx4KuKWCFgJmgRRlYYyUvhmAYBpSq1FJTVVDKQFNNz1O3SYC6pjYkPVowj0vNBoFqygCbff8Mw6gWy0zPKsqwEAIhnHjiy2BYFudf+nZPzHhCaY3xKZXtGzzJjTtIbd7B/JGH2vq98kIAsfFZbO6SFLCYSyGbWMfU3mMYmpg3JYdd1itmsark+Hx0XatNl7ViVWjHm6xTImA9OF4wPesyCaS2Vhwd3zRX7625xvIiKsVsT40YVWlMD7ZCV7ZXrnctQpnjETELby6gqWpPrDLAlKIWcynXBRWpUuw5MdoOHB9AyUGwSvNcUipkTEnewDAGJ+YhlQueZXiUYWDoWgvbrTntsZBLgg+EbPcHYiiKk5/8JQAEK9fPezqPjwPuFas+RrDYC+ktb0adpEPik2HoKOVTLdHBXT+TEN/S8qzECU4QUcqlPlCjdZPpYh7fMqL8oJMfdF3/uZcjKnIFhFIIQgD5dPyu/L3lQhaKXLE18LVgmkDruyYFNFlOHQoZhPjqM+M2Kasd0tur6B+e6shMEoORltQha1GnSo2pOtai49Ev/jYe+tyv4/BDz2Bm/0kMjEx1ZQdZBrzW66yEqk4LYV3X2jLaOoFSBgRG10W5hfoNlVewHA+pVHBVMJXKRVemrBZ40fRzkH2+380Nh/01sHyJ7Gj5pUIWibVbAACW590zq+q64YRhdt2zqRukSglGtZCb2V7dVZPWSinX0oQy0x+ZmveH3+iUBNgOlDLgxRDSW8uolPIoF7PQYTgq8BKQBoaI1oZ55ATWfei2iGhK0arsomIWIARi1WQ8GOlHINyP5EbvUhEhGIYslW2LItnkBvqGxns+hgVNVSGIIQCojtOWZ5Upc5MrJRBihmYQSlGueka5LVZpVdajHSjDVItVCqAbLamLhq4D1blMKhcgBMOmH1ooimOPfwnlQhbvvfb3jvwL7cBwfO35NH0lG+9rwzBw49zLEIMRTC0e7/hZY7P7USnmkEtuejqXTli/eRGEEIzPH8LY3AHIlVJX2xDL11FTnY2nZkiI+e9KMQdUZbwWQlFTJuWkIGKa8Icgl4uO1lVypQimx+YaIQSUYZDsIRXVVFzUr1kS1Z9Ljj2F3a5rm78fQ9eRS225+gyrcZhNbdrOsXYwDANyudDQ6PALhJqsyW5zcfNcYgVyRAZGMDQxDwCepYCAFQAQb1gnNqc9FrPJjl6pQiCE0elFbNx6/56/cRvcK1Z9jCCGogiE+2pyJS8wI1wzLd4gilSBXu2Oufo8XkCpkPKlU2R1rSg10yLkyt2J2LaDtfG1YBDSU3S8Hyjmkkis3/65HgwtaRqpdlOzid01ewbMRZed9K8ZlGF2jQUhS50XYhwvopTzTwro1FOmE6RyAaV8GgOj9n5VFoRguHFBYhhm1LhhNGzwADPtj2G5hm6tUxi6DkqZ2iZOVSTAQMf7x6vpKGCyUwrZpCOWj+mB0FvyoiWhdDMOlYtZVxLA+mOxvPfkw3bolubECQEUs8laMVPXdWSTm8hsr4ATAmA5oSalcAOzWGVee5YTUClk76pnVDNKuRRYljMjxsUg0lvLvhcGgWoTKpuy7QhzgohysXUt4McxuyUBtgNlGPBiEOmtFRRScfAOxmXALGDWS/fkSsm1wXfD5wkBFDNJx3Kd5mJ0OZ+FGAg3bHgGx2eR3lruWYJKCEEgFG0pmkjlIsqFrK/FKkPXa/cOIbTKRNDBB5qLVebasVn+6OJIbRlJlLK1zbJeNbeuR/31lEqFBlnawMgU9p/6BJLrS7hx/lWX52TCZDZLUGSp6ivZeF/HV28gl9rCnmOPdrXQGJ5aBKGMI4meGxi6jo2lSxgcn4cQCGNoYgEMy2Hz9mVH73da/DeZyOa4WSnlIYihhueM5XgIwQiKNv5z7cCwXFcWveXT5lUGVw+LwRdfX0Ih637v0syQzlcbbJRhsbV8vev7GZZznUqoyo1JgFvL1/Dm9/8MWZeJ7IRSCGIQudSWo3V1Jy9VP8BxfMdgFbu5JJ/eBiEUob5BCIEwIgMjSKx5L1YxLAdVlmrNDsMwGtIeDcNAMZu0Tbuux9TicaiKhK27kPj5UcS9YtXHDP0jU0hvrXruEhFCwPEissnNhsGqXMiCeKB6UoaFpii+SJTq09AYhnPtCeMnVLnSEJXKUOYDjShV5Ary6TgMQ79rPicfBExfH/M+5HgBcqWMYi6za8fTNNU0rnRgxGtSyHO++93ommZOyB0WYpRhzHP1qWCqyJXeWVVbnf2qLAiBsGnwXLcgMXTNtoBTzJiLAm/nZgBV2S6AnTGpiwzQ61WwGBhOxgWzWNJ7cYRQ4tg/T1VkaIrsWTrBcgJkqeSbIbmTNCdaZTBWSgWoiozU5h0U82kIwUjt+aAMA1VyN9+oilwjF1FKoenaB9Z8UBW5gRnDMCwYjkdq847v7F25Uoam2zehLBZirmkt0CucJAF2AmVYsLwAo/pvJ7ACCKzrJ1dKnlPDACtUQ6+ZSHeDrms1dg9QNRlvKtgMjs9BUxXXG0ynsD63f2jC18+tLyIxLA9d1xqYVZRhIFQLROVitVjl0mCdgLadg00ZoPldqqrcwiw1pWk7Pkr1TB8AmN53ApN7j+H2pbewedt7kahdgWF7+Tp4MYjx+UNdP4PjhR2Jno/F8uTmHUjlAib2HAFgPg/DU3uxtXK9a0OGUOq4UK6qOylpUjEPsc5c3UIoGkPBhYUDywsoF9vLvwFAU2RPDOi2x+R48GIQueSGGVrgsAFsGIYpEWti+gTCfRie3IP46nUX0kvnY66ZBLjzfORSJjNva9l9YYQyLDRNcUQG2I0U6npYVjL5zDYqpbyZ2Fu3vm6XBBiKxmrj+9DEPLKJtZ7Wxiwv1FjGuq41pD1WSnloqtLiV9WM/pEphKIxrN6TAtriXrHqY4aBkSmoitRTogjL8VCkcq0LpusayoUsOA8deAC+SJSaK/gsL5jacptY0bsBuSl5g+F4SOX8B9KNNwwducQGGJat6s6TP5dywFokcF0Xhw8EkU9t7tqkqcoVx0sgk9li+C4F1FQZxEHJhPro5SZXyj2ZqxuGgc07l8GwPCIDnf1RxGDElNFaPg2ENCRa1aOQTdTigV2dj66DUKbmbwLsdIs7LQq1pohit2A5vuZP0wl+FThZTnQc/e0HY4YXAsilNn0ZhzWHaU4sL6CQjiOxfguqKkMMhBoWq5QyUFXZ1VisKBUQunO/m5KhDyY0Q6oUWm45luNBKEVqa9lX5mypkOlYtGE5HrJcRtlhUcYJ/GBtMizXUZZti2rh2JLL9+pvw/ECCtm4o2etuSBQLrQWqwZGp0EI6dm3qh2yiXUQSruOx05Rb65ugWE5GIYOvioNtNgIFvuqXMiCMqxtGl7b4+g6CCVtvy/KsLVz0DRTvt7c+ED1Z1K5CDEYbvmMA6c+if7hSbz/xg+QT3lYOxMCqVKAYTNPm9LLCccS79HZ/ZDKBWTia+7Pow3Wb14EJwQwPLmn9rOxuQNQ5QqSm7c7vpdhOcgOx0Jd3QkRqJTyDSw2C6G+waqNh7NRwGz60I7hA4pSaTHf7xWUUoihCORKGfG1m472MFZKXP18VMjEEe4fxsj0IuRKCZkuKYxWgqkb36oWKVy1Yb21fM3TnsRks3Vnv8nlIogPbLZO4AXTuyq1tYLE+hK2lq9ia/kaUlurtueYz8QRrks6HZyYh2EYSPWQxmftiWWp3JL2aElaO8kAAfN7nVo8jmxyw7VE8+OAe8WqjxksFkMvUkDA9CTJpbfN9L1KCbrhLhGrHn5IlJoX6IQQGD76YblBMw0UqHZaNc2xtt9PlAtZSJUSOF6sLh75Ko33g5Ox7Abqo78tUGpKD7I+y5EsVEoFV9RyhmF9Z/ypDjenLC+gnM/4woKw895wCsMwcPmtHyO+ehPzhx/oShG3Ot21REBKoSlyg48QYBaI5UoJof7OiwI7aJoCXgw1SEa0WrGq/X2j1SV4eYHF6OhWYFCr/lnW+dy+/LanlCrKMNBU1ZHnRKWUA8P15vFBGRaGrrVNd3IDp0EcZtqiYhYs2pguw0DL/dMJzd5oLC+g5NC3w28Us2lbaSbHi9A1DentVV+Km5qmolLMgm3jBWTBKkj2Iomth6rKnllVvcBMJ05Dqya29XoOVtffCQPBqGcDaCqkcqElEY/jRUQHx5HywbfKDtnEOiIDI45Ywk5gl9DHcHwtVZMQCqmpIG4V6dxce123jmP/HkqZmkTeSgSsnwN1TasmpZZg6FqN5dXwGQyDY49/CRwv4tzL33ZdyGc5DnK51VdSkSoo5dPoG3QuvRye3GNKxnySAipSGdurNzA2d7BRdjo2B5YXu7LJKMNCkcqOvBBVVQahDAzDMFlsdsWqaAyaqriSuvGCiGIHs22p1Lu5ettjiwEwHI/k5h1kU1sdr0PznKOpCor5NCIDwxiaXAClDLaXrzk4quF4PtQ0tUWKV8gmwbBm8JPFsnKDbmEmFirlAlifxpN2MKXfIYjBMIRACEIgDIbjoCpllAtpsPwOs1OWypBKeUTqilV9QxNgeaEnKaB1HsVsoqUxV0sC7FKsAoDx+cOgDIvV6xd6OpefR9wrVn3MIARCCEVjSDk08msHaxNSzKVQymd6WuCYGyilJ1mFZa5eD47jUXJoYOwnTF8EexmDfJdTpFRFRja5WfOIAMwuplQquIoc/ihAVxVbyRYnBFApFVDeBb+oSjEH1oV5JMsLqJRyvm3sgB0pRTf45eW2s/hx3zEzDANXzzyPtRsXMHfoAcwdfrDre4Rqp9uSy1FKoaoqFFlqKJAXq91CL8wqTVUhBENgWLa2uLI6l51o+aqqNMh9vaIb01GVd3wupHIB18++hHd++lee7mk+EEA2udmxQKbrGiSfjFE5XkSp0LtfmillcLbhEAKhznMSaY0QbwfTG01puN8tH5q7HZqhyBJURWr7t/FiAIpcQSbeu1efVC7WEm07oX4t4AcUqdxT6qVXmMUlyRxnfGpssBzvKGmqfhNrMS2D4f6W1w2OzyKb2vQ9jdLyduvzUQKoqUoLQ8piVhFCwImBljWIHaOs+3HUjkysBmZVlZ1ZPxZpqgJKd+TYzTJAC0IghONPfhlyuYgLr37PVUGYMmZTotlX0ioURIfGHH8Wy/EYnlzA1vI1X9KFN29fgaFrmFw40nTODEanFxFfvdFxrrDGB80Be11TTCN9RSpD11Rbb0mniYAN50DNlMdyyb6BoEhF34qwdmAYFmIwglI2ifTmnbbXS9PUhuCGYjYJGAbC/cNgOR6x8Tlsr1zvOldShnNsK9LM9FGkCqRSHtP7ToAQiq07TopjjSCEgBLSkamvaWpPNgK9wPQeFcCLoYY1TL25+s5rKQbH5pBYX+ppjcLyIsqFnEmQaPqOOSHgiC3KCSLGZvdj8/alDzyQ68OGe8WqjyEGRqeR8aH7ygtBFDJxSKV8W3NLp6AM7cnTyS4SmGE5yHLFcQfCL9jJkwCAsmxLqtluI5cyzQSbF/+cICKb3PBlsfNhgVxNArSDIAaRTW75KpFRFRm65s6000zPMTfefkFxEcnM8QKyyfWenn3N4yRqGAauv/sSVq69i5kD92PviccdddAtqYDFkrTSoxS5idrukG7d5uTAcSIIw9QMvFVFhoEuzCpV6SmhDzA3Bd28bepj7S0jaLlSwtnn/8Z10ZlSBoSQjlRzRar0bOheOx7DQlWUnhdfvUpPG2AYLYv4djD9hHSba0F8NxfvBqmU7/qdCIEQKsVsLVnNK0q5FDje2bxurQX8GF+VSnlXos6dgBCCcjHnixEzYDIQpEr3tDK1jhVcMxm38W0aHJsDDKNnZnwzipkEdE311VxdN4wWZiPDsDUpnCCGGp4fwzBQLmRcF6sMXQffgf3XPKZb77FgMvmY2vxiJ02z0Dc4joMPfgbprRVcO/uS43MkhCAYHWi5ryyfsGjMebEKAEZnrbS+3prOALB26yIiAyOIxFrln2NzB6GpChLrtzp/CHHGfNU0BZTQmmTOVgboIhGwHpwgopBOtBTpNVWBtosm3xbMdMIwFEVCso1/oKrIDUJQy1w93G8yfUZnFlEp5buynViWg1wpOCquNI/JhazZ1OsfmUJsbAbbK96kgKwgVsNM7PcQbmSKdwuW/U09swoAhibnIVeKPdnjWEmRlVK+Me3Rgbl6PaYWT0BTFcfhBh8X3CtWfQwRG52Bpio962IJpaAMC0J7p8yzvIhS3nsqYL25esM5Ev98epxCq5Ps1INl+Raj6N1EuZhHpZi19e5gWA6aouwK2+iDgtoh7pwy5gY9m/RP/miairq/7xnOP/N/019FclysYlgemqoi34PJvlXEcQPDMHDz/Ku4c/kMpvedwL6TTzkeM6xOd6UmA2SgqXJLqk4xm6ilCXkBywmglAVrmfEqEgi6pAGq5uK7FzCcAKnU2c9OqYtCtjrORx/5AiqlPM6+8LeuPdk4IWDKg9sUz6VyoeciXD2sWHivMEMEevcRqp0PJY6LZ3obXzKG4+7q+GkYBoq5lKPkUZYXejo3VZGgSCXHzDpCKQghPaedGobekvB5N8Hx5rNox8LYWr6Kiz/7vuv5gzIsCl1YIvVjmWUy3iwDBEwGDsvxvvtWWT45/T4Wq4hh1MIqLFDKgFSvHy8GG4pVilSGpiquzdUBdGTNmDJAc9wwGy0E9c1EvdpwsAoogo1nVT0mFg5j5sD9WLl6Fms333N8jnb3dDa5gVA05uiZrsfQxDwYlus5OSyfjiOf2sJEE6vKwsDIFHgx6EgK2K1wr+u6yaqru9Z2Buu8GATLiyi4SAS0zkFTlZbzaC4Q7TZ4MQjD0JHYWGopUrc02DIJUIZFsPqsD0/uASEU211SAQmlMHTdka1IcxPX8quK9A9hdGY/yoUs8h72ghZTX2nTeFWkckMCYSdcP/cK3vnpX+96Unk+vQ1eDNU88ywMjs8DAJLrvUkBOSFQVTrUJQHmkq4aqNHBMYQHhrFy/dzPnVVLL7hXrPoYYmDU9K1Kb/beneMEseXB9wJKGWia5sl8ulM8KicIKOZSvqYVdYM5SNukJ1EKQ9fuCr1T01TkkuvgOpjMcmIAudT2rk8QdwuK1Hkzy4sBVIpZ31IZpVK+1rF1A7Zqtu+HFNBi8bkpFvNiEMVMwjMrRJbcJ2XduvgzLL3/Jib3HMX+U590db6UYcAJgVrnm1IKTdOgKYptB8tt4VzTVDCcAMowYChbu4e6pQEahg5d13pnVlEKXdfaFpwMQ2+QXZbyaVCGxejsfhx7/EsopLdx/qXvuPJgIoSAE0Rk4q0sO5PhkLX1RfIK0w8o4/n9JvvBv+UKZVgoijMpla5ptvcAw3KmoaqPkt5OUOQKNE11VLCzEqO8GttXinnA5fVmhQCKmWRvrE1VbcNiuzugDAs+ELK9xstX38XGrfeRTbpL4+N4EZVCtmtaGWXM610uZEEpAyHQuq6ilMHA6ExPZsB2yCbWwYtBiB4KRXawNlnNxc7668qLwQZj7loSYJP8sdIl6c3uOA3HpLQm1Tc/p9FgXVVVUErNYjohjtazi/c9idjoDC6/9RPP6YyGYSCb2PDEZrPS+raXr/X0vK3fughCKcbmDtj+nlCK0dn9SKzd6tgQYRiuazPCNLI3/y0VLWZVqwyQEIJQNIaii0RAC/WpbBbsLEJ2GxwvglIGiY3bDUEczd6HhXQc4f6h2hqCEwIYGJ12JAUEnLHZ5Eqj6qSQSYDlBAjBCIan94IQgi1HPlmtMGXO9o3PSinvqNmxefsKbr//JlKbd3DlzPOezsMp8pl4C6sKMNnIkdgoEj0WqywGpbU+litFqLLkillFCMHU3uMopOPIJd37if284l6x6mMIXgwi3D/Us2+V36B1HRc36LSQoZSBrvXu0+MGzUmAzfA7Dc4OhXQcuq53iXlnABhdu74fBWiaCl3vTvXmBBG55EbPG0zD0E35q4dilWXw7IcUUFPlBg8Ep8fnBAGZxJqnha5bOdbS+2/i1oXXMT5/CAcf/IynjagYjDSEJdh9QiGTQMiTX5VS2xiSqgGuZY4M0l4GaN5D/iyCjQ6SMvM4O+dQyqcRDPeDEILhyQUceuizSG0t473Xn+sae10PhuWgaxqKmcZNgarI1aKIf+wWk8lZ8ZzKaUoK/OsyUspAkRwa1KqKbYqXKek1fJX0dkKlmHMsZbGeMS9zjWHoKOaS4LoYqzeDUgrD0LtKWjvBLL5/MIUqC3YsF1WRkY2b7KP1G87ZNEA1rYwySG0tt33GNW3H+66byfjg+CzKhayvQR1m0WTCtyKhrqlVpmrj/VrPLuLFIGSpXBtfa/LHOkaZoeu1cciOla5Xf99prCKE1oIiVLVVBqhVfQelUh6CGHL0jFFKcfSxZyEEQjj/8nc8sUYrxSwUqYyoC3P1eozNHoAiV7C90pmF0w66rmFj6RKGJ/d09NMZmz0IXdewvXKj7WsoY66zu/kgWqiUciCUtj1uqG/QtQwQqKaTSqWGcU+u7K5fVadzsViQpUK26n24wxo1DMMsnvQ3Fk9GphdRyqfbFoEsUIbtGiBlGAZUuQJKG4tV4f4hEELACwEMjM54TgVkOQFypdQyr+u63pJAaIdiLo1Lb/4QfUMTmDv0ANZvvueKregGuqahmE22TTsdmphHJrHesx9gQ9KjC3P1eozPHwLDcli9fq6nc/l5wr1i1ccUA6MzyMTXXHXjdxumFNB9WplaTe9pB1N21T7W1k/YJQHWg7LOjRG9Qq6UUMylHBn6WSybbgbPH3Y49Z+pbdA9LITqocoSdMPwzKrx655UpAqohw2GVzmgruvQOtzfja/VcOu9n+HGuVcwOnsAhx/6rOfNkBAId9wQyBVzgerFr0rX9VqxilIGMMxFmLkAI23ZKbqu+7av5ngO5TZyZa1JhlbKZxCMDtT+/8TCYew7+RS2l6/hypmfulp08oEg8pntxsW9VNydRjQhkDyGOsgufNkcnUpVSupkrlHlSo310gyGZXsqzjiFYego5TNdk/nqQRm27T3VCXLFZIt5KVayvIBCNuFZvtCuMPhBI721AsPQEYzGsHnnimt2tCXFT6wvIZvYaBhTDMOApqo15mC5kLWVAFqIjc0BgG9SQFkqm4l0PkoANU0Fb8cMYxiAEBiGAV4MVQsc5rW0K1bpugaWFzE0MY9w3xCkUqFB+qRrKjibxM96mF4yrPnMV8d06/40Cygmk69SKnSVANaDF4M48eRXoMgVnH/5u67X0tmEyZrwet2HJuYR6hvEzQuve/IeTazdgiKVMbHHXgJooW9oHGIo6ih9sNNzYaUuAiZbTgxG2q4HQn0xKFK5arXgDvWyW8MwTGbRB2DyDZjrTV4MIr29YjK+6nwg5aqXXXigtVgFoGsRkuE4SOXO9gG6pkLXd5LaDcNAIdvY1Bud3Y9yIVMzH3cNQlr8Ea3iVaf1nqYquPDqd0Epg2OPPYu9xx9DbHQGV97+aU/eUe1QzKVg6HrL9bYwNDEPGAaSm7f9O6ZHH1WW4zE2dwibd676HqbxUcW9YtXHFLHRaeia6pnCvBugVZmc24fTzly9HiwnoFLM3RW5W21yaDNIsywHuZzfNVmiruvIJNbB8oKjwgAhBAzLIZfa9rzByMTXkVhfQi65iUoxB0Wu3HXjdjdyF3ODHu+pQCdVyj11oZmqf5lXmc7OeRQ9m057kQNqquyIUp/cuI03nvufuHnhNYzOHsCRRz7Xk1xOCEZaWJf1d6tlGhrud8+sIoZRC4iwuuosx1djzklbtpIpa/CH7UMZDkqlZMv40zW19rfquo5yPoNgZKDhNbMHT2Hu0ANYvX4et9573fFxCSFgOAHZxE56XLmQ8yUFsBksJ6Ccy3h6rywVW5K0eoHJbjSLBN3Q7I1WD5Yz4793W2YuV8rQddWVSTDL8ZCK7ueaUiHjmVVnJer1JjH+YPyqOiG5cRuUYXHw9KegqQq2lt17BZl+emGUCxnEV2+gXGVb6JoKGDtS7nIx29G3KRjphxiK+iYFtNaAfharDE1r2yxjWN40Ra/+Xiqb90q5kAUnBBrCenRNrUmqIrERDE3MQ9d0SOVC9dop4IXOTTkrKc4a082Zo1qs0uqkaaV8R3N1O0QGhnHk4c8hm1jHlbfdNQqyyQ1QhvU0ZwHm37X3+OMo5VLYuPW+6/ev33ofvBiq+fW0PQ4hGJvdj+TGnc7FI0I6rql0XauVoSulfEdvyVDU3NyXXPpWAY2yW01VYNQVaz4IUIaBGAijkNluGIstuWK4iVklBELoH57E9kpnaZ6pGtE67muaw56kcgGqXEG4f6d4MjJlSQG9+Z9xQqDFaF2Ry12bDlffeQGFdByHH/k8xFAUhFIcfewL4HgR51/5ru/BWDvm6vbMqr7BcbC82LMUsB7FbBIsL3iyyplaPAZdU7GxdMm38/ko464/wYVCAc8++yxWV1cBAH/5l3+JZ599Fl/84hfx+7//+5BlszL/H//jf8TTTz+NL3/5y/jyl7+Mb3zjGwCA9fV1fP3rX8dnP/tZ/N7v/R6KRbNTm8vl8Lu/+7v43Oc+h69//euIx82BQJZl/PN//s/xuc99Dl/5yldw8+bNu/0nfygxMGL6Vn3YpICEUtfd4Hbm6rXPrC4C70YSn6YqHYdoQmmVfbU7vlXlYgaqIrtKZ+QEEVIp7zpVDKhungtZs/NfzCK9vYrE+hK27lxBfPUmssnNu8LaUqT2SYDNMDfoHHKJDc8FukopB5bzvnkmhMAAGvwM3MIwjKqpvLfz8CIHNJkP7VHKZ3DupW/j7PPfhK6pOP7EL+Doo1/o2TBZDIZrcdeA+RzV3+OWlM0t3dqobhKt4gwhFCAmQ0SrFqvaXZte01TrYd0Pity6GagfU6zCSD2zysLeE49jYs8R3HrvZ1h3sXnheAGyVEGpkIFe9Q3cDdmElc7qduzTbfzJ/IITNoSqym2PTSiFAWPXu5/lQtY1s4xUZXluzk3XNFSKWVcMrmaYPibeuvSqLO3K99wrkhu3ERudxsDoNILRGNZvXvT0OYQQ8IEQWI5HensFqa0Vk9VoyTblClRZ6piIRwjB4PgcUpt3fGkKZRPrACHoG3SXSNcJBtBWIs+yLHRdq7FZrXWHJX+sh6bpDXJUXgxieHIPguEBVEp5aKoKtos5uclYI3XFqh0ZoFE3hktld8wqC6Oz+zF/+EGsuZQw5ZKbiAyM9DQ3Dk/tQd/QOG6+97qrxpdcKSKxdgvj84ccFcDHZg/CMHRsd/A2Mn3y7NczmqY2eEdVuhQGrUTAggffKkJINdUz68iAvBm9FNvbnhOlEIKRBh86a4yM2BQrR2b2oZBJoJjrzr7vJK1Xa4EC1jGtpt5OgYwXgxgYnfYsBTQ9N/WG714qFcBy7eerjaXLWLtxAXOHHsDw5ELduYRw9LFnUSlkcemNH/hqMJ5Pb5tm9pHWtRNgfkeD43NIri/5dtxiNolQ1L2PKgBEY6OIDo5h9Z7ROoC7XKw6f/48fvVXfxW3b98GACwtLeG//tf/ir/4i7/Ad7/7Xei6jj//8z8HAFy8eBH/7t/9O3znO9/Bd77zHXz9618HAPyrf/Wv8Gu/9mv4wQ9+gCNHjuCP//iPAQD//t//e5w6dQrf//738Uu/9Ev4oz/6IwDAn/3ZnyEQCOD73/8+/sW/+Bf4/d///bv5J39owQkiIrFRpH2OQO4VLC+inM84XoR1Mldv/FzBdbqIFzhaMBDsyuZG13UU0gnwgvuNBieIyHow8zMlmFW6sxCAEAxDCITMRR81FwzxtVsoZJO7yj5oTlnpBo4XUamUPCVmmRv6kucikQWW41HuQQqoqUqt2OIVbuWAslS2lR2qiowb517Bz/7uvyO1eQd7jz+Oh5/9LYxUDTy9QFXk2qbC2kRYBWdeDDYUqwrZqmlowN1mQ1MV8IFQ7RwtPzGWE0yfJELbMqs0bSdu3g+YscetBXVFruyYq1flDXYLLkIIDj7wGUQGRrB89ayrY/OBAHLJLVRKuZ7vqU4ggOuNgFefKyfoVqwyDB2aonbcUBLSW9G5G3RdQ7mYBefB8J5Q4urcKqU8DPSW7styAqRy0XWTwjAM817/gCQ77WD6Q6UxOD4HQggmF44gE1/rSUpOGRZiKApFLiO9vQpDb+/bZIfB8VmoiuyLAW82sYFI/7CvbEpC0JIEaIFazKoqI8oaD+wZZUZL4ZwyDPqGxjE0PgdeCHZtzJlNLDOZUFNlGA0yQB0GzLlGVWSIAW9JsnuOPYq+oQncufS2o42lrmvIpbZ6ZrMRQrD3xOOQSnmsXjvn+H0bS5dhGHpXCaCF8MBwTQLbDlaog2HoUBUZlVIe2eQmtldvYnv5GoqZBDhegKHrkEoFiKFWc3ULgVAUlGE9P2NW2INULnZMpFPkClKby7h96W1cePXv8Np3/yte+Kv/H1777n/xndljetfVpfKlExCCEVsZ644UsDO7ijCM7fiu62bTSSoXGpiq7RjoI9P7HPlktQPL7xitG4YOuVxsO54UcylcfutH6B+exJ7jj7X8fmBkCntPPIHtleuu1zGdUMjEEe4b7LhXHJqYh1wpeUpHtD1m1l0SYDOmFo+jmEshs73qy/l8lHFXi1V/9Vd/hT/4gz/AyIhJw+N5Hn/wB3+AcDgMQgj27duH9XXTxPLixYv4kz/5E3zxi1/EH/7hH0KSJCiKgrfffhvPPPMMAOCrX/0qfvCDHwAAXnzxRXzxi18EADz77LN4+eWXoSgKXnzxRXzpS18CAJw+fRqpVKp2jI87YqPTyCQ2PlRpcJRS6IbzVECnXXpTnlAxZWpSGYosQVWkGlVY1zRfqtdKpQTSpTPMsBwqJfdeIt1gdRq9LPZNA2TZNeuhk3E9w7BmAUsMIpfcQmrjzq5tPJ2YOTZDEIPIpbZc3/+KXGnwHvAKhuUgVUqeWXam505PpwDAnRzQXIQ0Xuft1Rt4/Xv/DUvvv4mRmX145Iu/jfkjD/bsEyFXijVDXKsI1c7vzXMSoKo0ULQtk2OG46EqUpVZZV/Q0GTZV3mBKSnLtoxDal1SmGWq3K47SCnF2PxB5FNbrgyYKWVACEU+Hd9VGRbD8Si5LBCrirwrPkaE0q4bElMm2PkhYzkB5UJm17qf5gbQmz8ey4mOz83yM+FcsHLbgTIMSg5YAfXQVKVBDvdhQbIqt4uNzwEAxhcOgxCCNY/sqnrwQgCcGAQfMDesTotVsdEZ89w2epOsGIaBXNJbIl076JoKhhU6Smd1XQMf2ClWGbqOSjHX8ncToK3MXQiEMTS50DW1lBBaZXpZ0m5AN0xGlSVNk6oScy/MKsAcS8bnD6KUTztKsStkEtA1FX0ezdXrERudweD4HJbef9PR+krTVKzduIC+wXHHG2lLCpjeWmmrUCDE9HfcWr6G+OoNpLZWUC5mQSkxm5jBsGkKXi1odWJWEUoRjA6g6DH8xwp7KBeytizhjaVLePU7/wUv/vV/xDs//Stcf/clZONrCPUNYnr/SaiK3JFF5gdMc3V7CWggFEU0NtrVt4plTd8qRZZQKeaQTW4ivnoTW8tXkVhfqioAdp6PQiYBPhAC31QgG5leBHqQArIcb/qGyhWoSvsmqqYquPDKd0EZFkcfe7Zt4Wj24CkMT+3F9bMvIRNf83RO9TAMA/l0HOE2EkALQxNzAOCLFNDyUXXL9q/H2OwBsJyA1RsXej6fjzruarHqj/7oj3Dq1Kna/5+cnMSjjz4KAEilUvjGN76BT37ykygWizh48CD++T//5/jWt76FXC6HP/7jP0Y6nUY4HAZbnbyGh4extWVWQLe3tzE8bFIbWZZFOBxGKpVq+Ln1ns3Ne3GQADAwOg1D15BJfLiKd5Rha4u2buhmrl4Pk3q/isTGbSTWbyG+ehPx1RvYXrmBreWrSG2t9CztkeVK1006w/KQy0VfmUaGoaOQ2QYn9BY377YbXinlukqGCKUQQ2GoqoL46k2U8mlfN3a6pjli1zWDMoy5QXPZTZLKBV+KFCZdvX0BphsUSerYNXRzHk7kgLVkmTpGma7reO/VvwPLCzj96V/F0Ue/4Nr3ww66poFl+ZpMQ7SYVTbXyjAMFLNJb94fhtGwcDMXWKRqsF6VAWr2z6kVee4XKGWgaVpL8VJTJJBqmk8pnwLL8R3DE0an9wGA68U2LwagVVO8dgsMa3pzuSkQm75s/hfQKMN0LVY5mQ8ow0JVlUbjZ12DXCmhkE2a883Gbc8JpOVCxrMvHWWYlnNrB0UqQ1NkXySgnBBAKZ929T1/mJpm9Uhu3IYQjNSkSUIghKHJPdhYet8XKTCltFbYcVqs4oQAYmOzWL7yTk9BHcVsEqoio29owvNnNENT1ZqhvB1YlgMMA1yNWVVEpVyAoeu2f7cTi4dOIISAUlptQJjFKqM6pmuqyY6tVAswXotVADA8ZbFh2qfmWdjxCfNHern3+GNQpDLuXD7T8XWGYeDi68+hmEth7siDro4xNnsAALB1p31BQwiEwPEihGAYYjAMXgi0NBGtwmD9OkFTWxuloai3REALLC9ALttbhNy58g4MQ8fe44/j5Cd+EU9+7f/C41/5Rzjx5C9g//1PIxgZwMaSex8wp9A1DcVcssWvqh4jM/tqPrDtQBkWilRBYu0mUturKBezACXgxVBV5RBuZHNlEgjbJCYLgRAGRqaw7VEKaJ4LRamQ7VgwvXrmeRQyCRx55POdi5WE4PDDn4UYiuDCK9/rWZYplQtQpDIibczVLfBiCNHYqC/FqqLHJMB6MCyH8YXD2Fq+tqvs7Y8CPhQG61tbW/iN3/gNfO1rX8ODDz6IUCiEP/3TP8WePXvAsix++7d/Gy+99JJttbbdZGUYRrW63vge6+f3YNItCSFIb364fKs4TkC5mHW0EOxmrl4PlhN2ZGpVqZr5n/lvuVJEetu5f08zdjbznc+HEALdMKpx7P5AKhehyr1tNCjLumJ86boOpeLc34YTRHBiAJn4OtLbK75tTjSts49SJ/BiEMVcytVkaHar/JFMmAmYSU8LBFnyL5LZkgNm4httN9V2ssNiNgldUzF/+EH0j0z6ci6A6RPE8kJNHmOZsVbKrclrvSQBAo1yFUIpQCwzXrMQbrTzrNKUWoKXXyAEDaxSXdcbCrGlfAaByEDHTVog3Ifo4Bi2ukgI7CAGw7tqRksIgUEIJBfPm8nm899Di1IWqtKZwatrKgxHG2Kz0FDIJEzPvuWrSG7cRj69DUNXoUhlZJPuPfI0TUWlVOipgEgIHKUwFnNJ3yR4hJBqSpSzphPQmgRYyMTxyrf/8wcaAmPoOlKbdzA4PtvwzE3uOQq5UkJi7ZavxysXsmB5ocGnqR0OPfgZEEJx/pXvep5Ld8NcXdfVjqbnJnvVLCBxQgBypdQ2CZAyrC/rdcowNfY4CIVu7BSrKKW2BRS3EINh9A2Nd2XDAKZfFScEIHYw0neD6OAYRmf24c7lMx29R6+dfRHby9ewePJJjEztdXWMUN8gIgMjHaWAlDJd5w+r+CKGdq61Kiutxaq+WE/BSAzLIRhtnSsVuYJ8agsTC0cwf+RBDI7PNTR/CCEYnz+E9Paqq/HLDbol0wH1UsDOxc9AuK+hOMgwrO36wND1jk290Zl9KOZSnguEHB9AKZdCuZCznUc2li5h7eZ7mDv8oJm81/XzRBx7/EtQpDLee+3ve2pwW2b27czV6zE4MY9scsOxuqcdCj4UqwBgevE4YBg4+9O/3rX78aOAD7xqc/PmTfzKr/wKvvKVr+Cf/JN/AsA0Uf/mN79Ze41hGGBZFrFYDPl8Hlp1MxWPx2uSwpGRESQSJkNCVVUUi0X09/djdHQU29s7MZiJRKL2no87WE5ANDaG1IfMt8o0rUXHjoKFbubqbiAEQpArBc8FK11TzeQRh90+L7G8drAorr2yqthqQp1TxpfZQXEn26CUgRiKQK6UEV+76YuRpdUd9QJCCFheQCax4cgnTVXkqtmzP5s6hmGhyrInfxe/I5mFQAhSOY/U1rLtAtHOXD2fNpmtkdiob+cBmGlS9f5TLCeYEgIbZtVOB8sds0rXNDAc13ANCaE1zypLlqS3eR40Va7JBv0Cw5pSwJ1zbJQgFnMphNpIAOsxOm12ZT+MixuWZRv+xk7QNBW61tkzyisIpdAUteN4pyqyIwEiy4vIpxMoZOMwDL2usx0Cw/IQAiGUCllHhrn1MBm4vUnjWI5viRZvhqrIqBTzXc2q3YATRFPu5HAuNZMAd5akqc1lVIo5XHj1ez1vHLwil9qCKksYHJtr+PngxDz4QMiVobYTdEsCrEcg3Icjj3wehXQcV8487+l4mcQ6OF5sKyv2BtLxPqIMU/N85sUg5EoJFbtilaaB8+C/aXtMyu7IAEFq46o1hlvzilvPw2aMTC0in9rqOu5mkxvoGxz3VfK65/hj0DUVSxfftP39nctnsHzlHUzvP4nZA6dsX9MNI9OLyCY2PIXxWKjYFgZbhd4Wk9GtnLgedoWzdNX/JzY63fZ94/MHAQCbty97PnYnWGz+SAdmVSgaQ7hvyFPTyQ6lQha6prYtVo1UGdlepYBW6qZczoOxCR9auvgGorFR7Dn2qOPPjMZGsXjySaQ27yDZA9upUE0C7MRkszA0uQAYBpIbvaWtFnNJMCzXs9Ig1DeI+z7xNVRKebz1w2986JRQdwsfaLGqUCjgd37nd/BP/+k/xW//9m/Xfi6KIv7tv/23WFlZgWEY+MY3voFPf/rT4DgOp06dwnPPPQcA+Pa3v40nnngCAPDkk0/i29/+NgDgueeew6lTp8BxHJ588kl85zvfAQCcOXMGgiBgYsI/yvNHHQOj08glN3ctnc4reF5APh3vWEDQVAWaB/lXJwgBk2GVibsvWLnpADEs11KMs1ICpXIRpXzG8XciV0pQpXLPBqm1pEKHjK/6FCO34MUACGVqcbK9QJUl9KKGYzkemiI58vhR5YojpoUbUIZxXVTQNRX6LkQyC4EQVFVGYn2ppYCmyJWWxXUutQWG5RwVUNzAABq9pAiBGIzYFqt2TEPddbA0VYYgNm5OTMkIU2PyaJpqy6wyDL029ixfeQdv/uB/+ZKsavqYFWtjT32xStdUVIo52yTAZozMVBeePi10/QRTLYo7CaPQFBmGDW/y2tkXceXMT3s6D/NeNqq+VPZwmk7HMCzEUBi8GALDcrabUDEQQj614bhAr2uaGX3dI4uTYfmu0styMQuQ3ozVm0EpA8PQUSm2siHtYF7rncJxPpMwC9TlAt73ORnKKZIbtwEAsbGZhp9TSjExf7jqC+NfynDFJhGvE4YmFzB/+EGs33wP67fce2hlE+voG3JeNNF1rfu6yDDAdliLUMrUbOCsYpXlYycGd0y3dU3tKZWy8ZjUZFapMggltQK1pigglKJSKoDjxZ4ZnMNVNkx8tT0bRlUkFLNJRH2SAFoIRWOYWDiClevnW9YTW3eu4trZFzEyvYj9J5/y/JwPVZPbEuu3PZ9npZQHZdjW75aQhmc8FDXncy+JgJ2Q3loBZdiObMJAuB/9w5PYWLq0K+NOIRMHoUzXuXxkZhGZ7VVfJGBW+mC7YpUQCKF/ZApbPXh1sbwAVVVamkuVUgHFXAqjswdc79em9h6HGIxg6f03PX8X+XQcgXAfOAfNmL7YGHgxiOvnXkY26Z3VW/Too2qHwbFZPPDMr4FhObzz47/E5u327MafV3ygxapvfvObSCQS+O///b/jy1/+Mr785S/jP/yH/4BYLIY//MM/xO/93u/hs5/9LAzDwG/91m8BAP7gD/4Af/VXf4XPf/7zOHPmDP7ZP/tnAIB/+k//Kc6dO4cvfOEL+PM//3P8y3/5LwEAv/7rvw5ZlvGFL3wBf/RHf4R/82/+zQf1534oERubgWHovpjY+QnKsNBUtUbPtoPTrrdbCIEQpJJVsHLuK+UmOthMTimjlM8gm9w0pSN3riC+eh2pzTvIxNeQ3l515HNSSG+D4f2RpRkGHDO+KsXuflWdwPGCWWjr0XRd9iGZjxODyKc2uzKcyqW87wbUnMsETGD37n3ANP0llCKxvtSwSJIrrZLbfGobkYERX4tmpl8VZ3bV6/5IIRi2NXctZJJgebGhuOX0OPVR0hYIw9Y2W5qqwND1lkWSrmm1U0usLyGX3MQ7P/lLXHz9uZ66zlYaoZUWWl+ssjZ0TlgQwUg/IgMju24S6wXW4s0JW0ZRKi1SS8MwsH7zIlavnfNlEd8pEVBVJN9YXYRSsLyIlAMJtKrISGwsQVUl3yTH7cY2XddRzKZ8Y7HUw0zhTXTdZNglARYycfQPTWDxvicRX72J5Svv+H5+3ZDcuI1obNTWI25iz1HAMLBxyx9vG8MwUHZZrAKAhWOPYmB0Gpff+klN7uIEimwWTdz4VcnlEuRKue1ax2KrdirwUoapFaB5MQSpUkSlkIMYjDS8z9B1R3JIJ6AMWy1WKTB0Y8ezSlNACYVUzvfkV2UhFB1AuG+ooxQwlzTZyH6Yqzdj4dgjIABuvfd67Wfp7VVcfP059A1N4Mgjn+9pro4MjIAXQz3JXyvFHMRQtGUTz7Jcw1gcig4AhPTkW2WH9NYK+ocmurLjx+cPoZhLIedTMlw98rVkus5zi8V26lT8dIpaU6+DLG10Zh+K2WRNwuYWDMshGOlv+Xl622zkDXRgs7UDZRjMHjpd2xN5QT4Td8SqAsx5+sRTXwEMA2//6C+wcvVdT0UyK/THL4T6BvHAM19HdHAM7732d7j13s8+kAbOB4UPJCP4+edNyvJv/uZv4jd/8zdtX/PMM8/UUv/qMTk5iT/7sz9r+Xl/fz/+03/6Ty0/FwQB//pf/+veTvjnGP3DkyCUIr217EhH7BSGYeDqmecxPLUXg+Oznj6DEwTkM3GIoYitN4wbc3W3EIJWwWoV/cNTjroBTpIALZgxtgTZ5DooZUAZFpwYbJjA5UoRmcRa1VvM/vhypQRZKvuy0AIAluNQLuZqFOx20HUdcqVcS/TxDEJQLuS6Gh92giJVbGnHbmAZsCY3bmNwbNY2TtgwzMhlJ90ZNyDU9NCQK0XHlGFVtb/3t5avYuXaOZz8xC/2tMlmOR6EUiQ3bqN/eALByAAUqQSmzjvH0HXkUluY3HvM83HsoKoyAqE+87kgjCmtpRRCIGxbVC9mEwh77GAxNl5A5r1g3k+qLIEXAi1SrPrColQqYHB8DtHYKG5ffhvxtVtYPPE4Jvce83ROhFJIlWKV5bYjcS3lMgCcFasAYHRmP26cf6W2OfgwgbIcSvls1/tdrpRaNhXFXKpWeNlYeh9zhx7o6Vw6NRlURfJtwwxUU1dVFZn4GgZGZ2znFblSQmprGYRS1wXYdqCsGVpid72lcqHqi+a/1NJMvs1DrpRsC8MWmpMAreCLqb3HMLP/JNJbK7h+7mX0D0/66q/UCaoiIZtYb3t/haIDGBiZwtqt9zB3+IGeO+hS2WRUui1WUUpx9NFn8cZz/xMXXvkuHvzc/+HI4yyXdOdXpcgShEAI4f5hpDbvALzQ0qzSNKWFrdoMQigYhoGu6+DFIJRKyZQ/2vzdfsnc69myJitZg67rtbmlUir0LAG0MDy9F0vvvwm5UrItclpsjb5Bf5lVgCmtm95/H+5ceQezh04DIDj30rchhqI48dRXemaOEUIwNDmP7eXrpqeYhzGjUso3jENW0qkQCKNU3EnvowyLQLjPcyKgHRSpjHx625EUbXRmP66ceR4bS5d8/64K6XgLW9MO4f4hBML92F65jqnF470dM5NAINzfUYExMr0PV888j+3lawgffbin49UjvbVi2s448Iyyw+Seo1i6+AaWLr7RUb5pB02VUcqlMDa73/F7+gbH8eDn/yHef/05XDnzU6Tjazj04GccN44UuQK5XEQ46l+xCjCZqPd/8pdw6Y0f4eaF11DKpbHv/qd8PcaHFR+4Z9U9fLBgWA59g+NIbfrrW5VPbWHl2rt479Xv1TTqXs5NlaW2sgmpXPSckuQEZsGqgEx83RHrxUwCdD5582IQQiAMTgjYSkd40Tx+rkO3tJD1zxQXqKZ1SaWuVH8vflV24AQRxVzKFauoHrqumd1RHzZaLMeDMiwSG7dt2WWqIsPQtV0xoGZYzpEM0YLdJh4ANm9fQXprxZHJa9dzYljwgSAy8TVkE5stiYvFfBq6piIa89cD0KhjPDHVmHPAXIhL5UJDN8kwjGoHy51flVV8Ym2KnFYXHjBlaNU3NL6/7vmolPMIRvqx98TjeOjzv4FI/xAuv/VjvP2jP/ckc2U5vubhUi9DK+XNRbvTYtXIjClJ2fLhXvAbLMdDKue6jjOyzRhvFSzFYATrNy/21F0klLaVPeuaVtvM+gleDECqlJDPtI7rpUIGifUlMCzna5GM5QRIpYLtOFvMJMD6xMy1A8Pyta5+OzSz28qFTNVfZdhMhnrosxAC4ap/lTt/P69IbZo2FLHxubavmdhzFOV8xnPHvx413yYPpttCIISjjz2LUiGDS2/8yNEzYZmrRx0wfAzDgKbIiMRGIQRCGByfg6q0JrhpqtYxqdQCU016FcQgVEVGMZtskwToU7Gqfky32LK6Bou6KzUVUHrByPQiYBiIr960/X02sYFgZMC2IeYH5g49AIbhcPXMC3j3hb8BpRQnP/G1htTbXjA0sQBVkZCJe/POqZTyDebquq6B5QRwYhBGk5Kg10TAZljPqROGDyeIGJ5cwObty76kflqQpTKkcqGjuboFQghGZxaR2lzuedwrZhJdE5PFYBj9w5OefavaIbW1jP6RKc9zKcNymD1wCqnNO66leYWMef84MVevBy8EcOKpr2Lv8cextXwVb/7gf9WklN1QzJprNT+ZVRYow+LwI5/DnmOPYuP2JZx76Vt3bU78IHGvWHUPiI3NIJfe9sU/yMLW8lUQQqFpKt7/2fc9byhYXkA+tW37fqXSu/yrG4RgGFIp1zWRaCcJ0N/z4QMhFDJxFPOt3SVFrqBSzPlqitssQ2qHXvyq6kEpU4159ybn0VR/E9lYjgfLcUiuL7UUSWWpZGMD6t9xpVLeke+ZrmmQSvaF2lxyEwCwcvWcL+dFKQMhGDHTa5oewXyVHh/12VwdIDVmAMsJtYWiEAzD0HUo0s73IleKUOWKB78qBawQsL13rOQowCrK7nicWNB1DQYh5oZNlmppheG+Qdz/qX+Aww9/DqV8Bm9+/89w/d2XXY1/pgRarm4Gd2RopXwGnBBwLNcKRWMI9w/7IgUsZOK4/NaPcefyGSQ3bqNSKvRWJCIEhtFeCmgYOor5VDWtq7EQnYmvgRMCmD/6MIq5FLI9GI5ShoUi25+Dru8UUBSpgrd/9L8dL1a7QQiEUMwkat4yVkhGZnsNfCDoe/qhmUCrQW32oZPKUOSKb1JDO3C8gEopj1IHXz5VkZuSAKuSlQFzc8UJIo499sW76l+V3LgNhuXQ30EmNzqzDyzHY90Ho/VyNXQgYCOjcYLY6DT2Hn+syq59t+vrs4l1hPoGHTGFFamMQLivVvDgxSCGxuega2qDjJ/AcHQvMRxXZVaZTQlFrkCsK1YZhgEQ4lszkjAMaPWzVE2BbujmvEJQXX+UfGOnRwZGIIaitg0jwzBq5uq7BV4MYu7QaaQ270CRyjjx1FcRCPf79vmD43OmTYAHKaCuaZDLjQzyWtAJy7WsKUPRGEr5tOdmZjNSll+Vw+s/Pn8YilSuedf5AWsO6WSuXo+R6X0wDB3xNfvipxNomopSPt21WAWYY1ohk3AlKe6ESimPcj7jmhHVjKl9x8HyQtsAgXaw9rVe1BuEEMwfeRD3f+KXoMoVvPmDb2Ddgey76FMSYKfzWjj6MI4+9izy6fiHLiRtN3CvWHUPmFo8AUEM4dyL3/LFA8QwDGzeuYrY+Cz2n/oEUpvLuHP5bU+fxXI8ZLnSsqnRVAW6rvtqrt4OfCCEcjHT0RjXTRKgGxBCIATCyMY3Wr4bk1XF+H9MSrqaAPfqV1UPluM8d88s+YifYFgeLC8guXG74ZpXCjlbJo4fML9Dgkq5Owsxn96GYegtm3ipXECllEcg3I9MfNW34jMhBGIoDCHYKOPJpbZAGRZBH6nOuqaBMkxtw8PyQo3FZMk06g2Nra5Z2CWzSlMViG1kH5Rhax19kzlgtGyONU0FgWEbeU4IwcTCYTz6xd/B+Pwh3L70FjaWLrk6P4DU/NxqxapcynVq1+jMPmTia57ZrRZuX3obq9fP49rZF3H2+W/ilW/9J7z4zf8Hb//oL3D5rR97MqJlGNa2gCGVi4iv3UI2vmkrg8tsr6F/eBJjswfAsBzWbro3lrZAKdPWM6/eeD2b3EAmvtbTsepBCAEvmqxFuVJCJr6GfDoOIRjeFTkeYP6tzfdBKZ/ZFaZoMwQxhMz2KsptEn4VudKQBGhtlOqf676h8ap/1Q0sXz27uycMILl5GwOj0x39lxiWw9jcQWwtX4PiMJikHWom4z1IducOPYChyQVcO/tixwabYRjIJjYc+VUZhgFd11s2e5wQwOD4vNlAqCuCMg6KVSxrjuv1LKx6Rpmha2BY3rdGFKUMWMY8L73KkNY1DTCM2hwv+MSsIoRgZHoRyc07LcwzqVyAXC76bq7ejJkD92N0dj+OP/Fl3yVsLMdjYGQKiXX3xSrLc7LeSN/QNbCsYPpENs0hob4YDF33LdU2vbWC/uFJR6EZADA0MQ9OCHiYv9ujkLYCYZwVT6KDYxCCkZ7Y8qVsCoZhOCtWzR4Ax4s4//K3fQmPSG9596uqB8sJmNl/EvHVG66aRvn0NliOh+iBsWohNjaDhz7/D9E3OIb3f/Z93Dj3SsfXF7JmOEhgl+0XxmYP4PFf+F2TzflzjnvFqnuAEAjhxJO/AFkq4/zL3+loOOsEueQmKsUcxmb2Y3LPUYxML+LG+Vc9GxUyLNcimbA2kXcDplxIQC652XZD5iYJ0C0opeDEAFJby7UFsarIKBeyu0IlZzih7aYC2PGr8q9Y5d1oXVUkkF6iANuAYTmwgojk5h1USnmz+yqVfGc81IPleRSz6Y6b/nIxj2IuZe+FkTBZVfvvfxqUYbFy7Zyv52eXBBgZGPa1YKypcsNmjWU5GLp5PayCUH0iYLEqL3LdwTKMts8OpWzN18HyxWtmVlmMPmsxZ7fR4QQRhx76LPqGJnDtnRdcNQIYjkO5kIVh7MjQSvmMoyTAeoxWUwF7Wejquo742i2Mzx/Ck1/7v3D/p34Z+099AqMz+wEY2Lx9BRdff851GhnLC5CK+VrXXJElpLZWkNy4DUIAMRRu2VRI5SLKhQz6RybBcjxGZ/Zj684Vz2m2lGGgKYpt517X1NoMY8WnJ3qIz7Y7NsNx1US5HMRQ2PfGQz1YTqjeU+ZfpakKSoWM4znk6jsvYPXGBU/HpgwDXgwivbVsO7coUrnFXD0Q6W8Zb2f2n8Tw1F5cf/elrmznXlDKZ1DOZzDYQQJoYWLPUeia2nPMfaWQhRAI9+TTRAjBkYc/ByEQxrmXvlVj2jajlE9DkSsdWWMW5EoJociArQ8WxwsYHJ8HIQRSuWjK7RycP8Ny0HWjYR4L1rF/NE0DJ/jHGLfSAAFAbZABYqfh4JNnFWBKAQ1da2EfWffsbjKrALOgdOyxLzq6f71gaGIBxWzSdRHJSsBulAHqVQsG07u1XnJnzet+SAHlSgmFTNwVw4cyDEZn9iO+erPnYrSFfCYOTgg4kssCdcXPjdue57mdxOTuxSohEMJ9T38NcqWEs8//taMglE5IbS2D5UXXMjw7TO8/CYblsPT+W47fk0/Ha3LyXiAEwjj5yV/G+MJhLL3/Zsf9bDGbRCgaa2kE7QYjeDcICx9G3CtW3QMAs3p/5OHPIZtYx6W3ftzTQ7W1fBWEUgxP7QUhBIce/Ax4IYj3Xv07aKr7wZbjBUjlQsOgqci7Z65uB5PhVa5Nts1wkwToBQzDgmFZpLeXoakKitkkKKW7MkgxDAtNkdoW4Pzyq2oAIR0LZO0gVyq++Vo0g2FY8IKI1OYdFLLJFpPt7udWxKU3f+w4WYVhOWiK1CLVsaCpCrKJNXBiwPY8cskNEEIRG5vB2NxBbCxd2jUtu2EY1SRAfyWAzQl99d+tJdOoTwQsZJOuFn71aCdXYRimsVhlGDD05mKVDEIZW2ZVPQghOPTQM1BVBVfPPO/43BiWN9mN1WFYVWRI5QJCLplVob5BhPoGe4qjzmyvQpUrGJ7aC14MIjY6g5n9J3HowU/j9Gd+FU/90v+NvqEJ3Dj3qqvFNKkWAaVyAbnUFuJrN6FIJYihSFsTWMuvqn94EoBpvKqpSs8eG3YNGkWRaoVYy+S3lEuhWC1c+QGWE8AHgr6ZO3cCZZgG2Va5mAeM1iK0HXLJTSxfeQdXzzzvaZy2js+LoWrBaofhZZ8EmLCVyTT7V3VjAHtFavMOADja7Edjowj3D/csBWyXBNg89nQDJwTMgA2GxZmf/KWthKlWNOlirm4VcTttclmOx+DYHBiWA9/BRL8eDMuCoLFY1SAD1FVwnH+NOEJojfFlrWus8AqpQ8PBK/qHJsAJAWyvNjYJcskNEMq4kiRpVdb+hwlDkwsA4FoKaDE7m6+19exzQrBhLA73DYHlBVw981PPCXUW3PhV1WNi4TB0TcX2ij/JuoVMHJEBd8WTkelF6JqKpMdmSSETB6GMY2Z239A4Tjz5FZTyGbz7wt96LpIBJrPKDInqfb/ACwFMLR7H5p0rKOW7z8NmUEfcl0IZYBa999//NDghgKtnnm+7Ty62SQKUSgVUivmPVYqfX7hXrLqHGkZn92Ph6CPYuPU+7lw+4+kzDMPA1p2rGByfq3mrcEIARx75PEr5NK6+86Knz2UYFoXsjm+TXCnsKsvFDpwQQC61aWu2aJcEeOu9n+HSmz/y7fgsJ0DXdKTjayjl07tm0GmhXdS5X35V9eAEEcWse6N1VSmD0p1NTj4ddzSJOQVlWPBiCIX0tit5TjGXxls//HOs3TjfECPdDYTaF+1Mrwuzk9Ouc51NbiA8MAyG5TC97wR0TXXNdnGKUj4NTZURHfTbrwoNHXzKsDV2Cy+GAEIapEyFTAIhl0mAuq41GO42g1Bq+ptUPakMtHbENEUBpbRu8d2+2BDuG8TCkYewtXwV2yvOIqjNv2fnmOWq+b5bZhVQlQJur3qWeMdXb4BSpu3GnRCC/fc/DblSxO333flJUIZBemsFxVwKQiDUdUzLxNdAGRbRapG0b3gCwWgM6z3K8+yKVaos1zZRpXyqVlDyIn/phN2S/dnBqMpLDUNHMZtwzF65c/lM7Xm5fvYlz8evZ1hZz46uqQ1JgJqqdPRXsfyr5HIRb3z/z2wTQntFcuM2xGDE0eaOEILJvUeRS231ZLReLmRbzNVNBnXG9WeFojGc/syvIRDux7sv/G2LjCmbWAfL8V0ZqUqljEj/cNe1FsNyGByfc+zDQygDVKWwQNUbsa7QpRvw1fSfELJTrKpuvE1W9s4YLvrkWQWYc8jI1F4k1m41NDKziQ2TjeywwabrOpRKedeKsl4RisYQiPQj7nIsrLSRzVvXgxcDDfJrluNx/yd/Gbqu4cyP/ndPz3q66lcVdSmLjA6OIRgZ8EUKaOg6CpmEYwmghYHhSXBCAFseC2aFTAKhaMzVXBMbm8Gxx55FLrWJ8y9/25PiplzIolzI9uxXVY/Zg6dACcVtB+yqciEDTVUcmdk7BceLWDzxBDLxNVs2rarIqJTytmMrIQThvqFq2Il/pv0fB9wrVt1DAxaOPozRmX24/u5Lngz9sskNVEr5qkRkB7GxGcwdegBrNy546vKzvIhyIQNVkcxObKXsW6yxUzAMC13TapKQetglAW7evoz1m+/5ym7hxQAUqQzC7A6rygJlWv1NLPjpV1U7ngejdV3XTAPmuuv+3qvfw9nnv+kr040ypsm4U/ZONrGBt3/051AVGUMT89heue7472L5AEr5TEvRrlzIoFLMtD0HwzCQS27W/CmisVH0D09i5dq7u9LFyadMP6yoj8wqq4hUz3gyKc7Vf1MKoZqQCZh/czGbRNilBFBTlI5MFkIoCMyFsqrIIIC9DLAaec4Jga5j0dyhBxDuH8aVt3/Stgjcch4MU6ORF10mAdajFymgYRjYXr2B2NhsR+PkvqFxjM8dwp3LZ1xJQzghACEQghAIORrPMvE1RAfHas88IQSTC0eQia95jjg3YC/jVhuYVWnExmYQ6htEogej2w8aHM+jXMhCrpSrY2f3ObRcyGJr+SqmFo9j7tAD2Fq+ilTVh8QLzAZAAKmtFUjlYsu1txgUnTZ0fUPjOP2ZXwWlDM78+C+w9P6bjsY5RZZw+/LbiHdghOi6jtTmsmkk7XCOndxzFLwYwo3zr3oab3VNQ6VcQCDS1/RzFQwneJrPxGAYpz79K+gfmcTF15/D7Utv1c4tm9hAdHC849+naxoIJY7HHKZp7O4EShnAMMCwHBiWhxjuazgXYhi+ru8IpWAZKzRDBkDMYjSlkMoFc97xMX0TMNkwmqrUWHqGriOX2nIlAVQqJXOjTciHjo0xPLGA9NaKKwuMSjEPlhcb7xPDqI3nHC+0+FZFY6M4/ZlfAycE8M5P/9pxw6cZqa1lDIxMuW4OEEIwPn8I6a0Vz6xSC6VqyqnTom7tHCjFyPRiS/HTKQoOkgDtMDK9iEMPPYPU5jLee+3vXTeT09uWX9WM62O3gxAIY2LPUawvvd9W6WLB8j70Yq7eCRN7jiAaG8W1d19qYZ0Vc5aPauO6VNd1UIZBdHAU/cMTkMulXbWP+XnDvWLVPTSAEILDD38Okdgo3nv172upPE6xdecqCGUwPLW35Xd7jj2KaGwUl978kWvDX7P7wpjsG02FvguR4k7AiUHkM/GWAUqVKw0MH01VUMyb/kN++pwApqacF9zLntyA4QRIpVa6qt9+VfVwa7SuqWqDbZmmKijmUigXsp6Zge3gdNOyvXoDZ37yl2A5Aac/82tYPPkUDF3H+s3uCSKAWZAxdK0h8U5VZGST9mbTFoq5FFRFblgIT++7D+VC1vf7DwByqU0QyiDkMoWvEzRFbpHTUcqAEFqTQQjBcE0GKJULUBXJtbm6rqkdC4+EVotVLL/jo1b3HJiGwxoIoZBKOUeR55RhcOihZyBVirj+7suOzpOvkzeWLGaVh6SwUN8QgtGYp1TAQiaOSjGH4enW8bwZe+97HCDE8d9nwek4rqky8qltDFQlgBbGFw6DEOJZhkUphdLkl2cYRk3qqakypFIewWgMw5MLSG+vevLX+zCAYTkoUtk0nXXIXDHNzAlm9p/E3KHTEENRXD3zfE8JXZRhwVUl1uVirsF90jLP7cY+iA6O4cHP/brpiXnuFbz74t+2ZaAoUhk3L7yGV7/zn3H97Es49+Lf4tZ7P7MtAOSSm1AVyZXfD8NyWDjyEDLbq7XihBtUSjnAMFqYVYaugxeDUD365XC8gJNPfw2js/tx/d2Xce3si1AVGflMvKsEUJHKiMZGHZtRuwFlmBo7WwiGEbSRP/op76+XAaqq6XeqqXLNd1AI7vjFWZLrXhEbmwHD8rXiSiGbhKYqXa+7BVWRwPIiwn1DCIb7e/YO8htDkwvQNdVVElmllG+YL63UR6uAxLCcrRNtMNKP05/5VYT7h3D+le9g9fp5V+cqV4ooZpOeTb7H5w8CADaXevOlq41tHoonteLnhrvxRZElVEp5T8UqAJhYOIL99z+N7ZXruPzmD10VTVNbK+CEgOdjt8PcodOAAdzuss7Pp7eBKpupGZqqeGabE0Kw//QnIZeLWLr4RsPvilUFUDOzStfUGnM8GBnA0MQ8VEXxzQvt5x33ilX30AKG5XDiyV8Aw3E499K3HFOQDcPA1vI1DE3M2cYhU4bBkUefhaFruPj6c568GEr5dHWAsV9knn/luz3pq7vB8omyDAsBc9AzmopnhUyitsGNr3nrBH2QoJRC17TWotxu+FVVwXICpHLR8fena/YdeV4MYuniG127Ln5j5do5nH/5Owj3D+GBZ34VoegAwn2D6B+ewurNC44necqyNSmjYejIJtZBKe24acglTQ+S+pShkelF8GLIUYy5W+RT24j0D/kqYdI0zVZOx3JCjTItBMK1QnctHthtwYyQmkTZ/tfmc8zyAjQbGaCuazXZkrnRceZ10jc4htkD92PtxgWkNt1FDZdypgytnZdTJxBCMDqzD6ntFVfMRcAsvgLA8OSerq8Vg5Ea86YXOVQ7ZBObMAwdfU3FKiEQwtDkHqzfet8TtZ4yLNSmjaApTTOvneVRFYoOYGhyDwxdR9LlhmE34NXHxiAEilSyNcxuhiJXsHbjAkZn90MMRcGwHPadfBKFTBxrHs3WLTAMC5YXUMjEG1jJhYyZpGRXwGgGxws4+tgXceD0p5DeXMYbz/3PhntPrpRw/d2X8cq3/xS33vsZYqMzOP2ZX8P4/CHcvPAa3nv1ey0+mpbHU2zMHRtgcu9RiMEIbpx7xTULxmIjijZ/sxiM9MSqoQyLo48+i5kD92P5yjs485O/BAyjYxKgpipgOK6nBK2O50QZACZb6NCDn8HifU/UfmcYhinF9plZRSkFpQy0aqHZDK8wfQfrzdWt8Awv/qr1oAyLockFxFdvmKyqqtm9ExmaYRjQFBl9Q+OglCIY6b9rvlW6rqGUz3S95wZGpsCwnCvfKqm5WFVLfTTXkwzLgbZhkfFiEKc+9csYGp/D5bd+7IrFmN7y5ldlIRDuR//wJDaW3u/pWcyn4wAh7gNhAMRGZ8BygmvvrGKVcOC2qVePmQP3Y+How1i/9T6unX3RxXX3z6+qHoFwH8bnD2LtxoWOa5pCJo5QZMC2ua4qshm04PH77B+awPjCYdy58k6Dj2UxmwShFIG6wAjA3K/Ukwx4MYjhSTOc4sMm8/0w4l6x6h5sIQYjOPHEL0AqFXD+le862gRkE+uQbCSA9QhFB7D/1CeQ3lpxHT9NCAEIMTfyNoPf+q2L2F6+5sojyAs4IYBSLl3rdNnRcvNpUyYVG51Bcn3JjEn+CKK5m7cbflX1IJSiXHQmI2o22bcm5SOPfB4AcO1d794qbmAYBm6cewVX3v4JhsbncepTv9zAgppaPIZyPuO4A8lyAirFfJUploZULnX18skmNsGwPELRnUUQZRhMLR5Dcn3JVx8vwzCQS28hEvM3EtuU3rVuoOuLVWIds6rgYRFmGAZgoGPRx5J+sZwAVZZACIFW9/wadWOhufh27nWy59ijCIT7cenNH7migHtJAqzH6Mw+wDBcSyjiqzfRNzTR4CfTCXOHTkMIRnD1nRd8l63UzNVtNtkTe45ArpS6sgiXr7yDsy/8TcN8Rhmmpbtp+nOY52/JvoORGPqGJsDy4gcuBVy59i5e+tv/tybHdQOeF8A4KFQBwNqNC9BUBbMHT9V+NjK9DwOj07h5/tWe2R4My0EMRhokWIVMHOH+IceMO0IIpvedwAPPfB0My+Gdn/wlbr73Oq6+8wJe+fZ/xu1Lb2Foch4Pff43cPyJL6N/eAKHH/4cFu97AlvL1/D2j/6iQd6T3LiN6OCYa09IyrBYOPaIGRaw6u7+sIpVrQbrBEIgXJXJey9WEEKw7+RTWLzvSeSrKVadGD6KVEFkYNTXpNdmmEmvGgZGphpYdLqmguUEXze4hFAYAJiqtBuEmLKcqgywvuFgwGQ+KFLvjIfR6UUoUhnp+BqyyQ2wvOhIVimXSwj3DYOv3oOcEADHiz0X0JxAkSrghEBX9ihlWMTGZpFYu+V4rK+U8jZJgDuFBEIoWF5s64/EsDyOP/kVTOw5gqWLb+DSmz9y9FyktlbAsByiMe+2BePzh1DMpWrPjxcUMgmzeOKhEEsZBsNTe7C9etNVU8ZNEmAnLBx9BNP778PylXcceaGa1hU5zwXCbpg7/CB0TcWdK+33kfnUNsLtzNUNw2xI9vBMLZ54HJQyuHb2hdrPCtkkQpFYy9hp+vA1zrssJ1T9nQOolIsfOqnvhwn3ilX30BZ9Q+M49NBnkdledWRmt3XnKig1B9ROmFg4gsHxOdy+9JZr0z5eCLT1TLJ8NJavnHUtX3QD06yTQy65WZWLtG468+ltsJyA6f0noSoy0nH/mQa7DYbjTHlCHXbDr6oebozWFbkx7jyfiYNSBrHRGcwdOo2tO715qziBoet4/2ffx9L7b2Jy7zEcf/IXWgohIzP7wPEi1q47YyJYi/RiLoVcagt8oLvkM5vcQN/gWMsCf3LvcRBCsXLtnLM/yAHKhSxUWUI05k/CCmDvV2WB5flagUgIRqDKEjRV9pQEqKkKOEHsuAmzmFXmxsYsVtUXqKzCs6YqUOSKIxmgBYblcOjBz6BcyODmhdccv6+UT3vyq7IQ7h9GINLvyi+wXMwhn9rCiI2kux0YlsPiiceRT21hY8mZ9NUpMvE1hPuGbFlxQxML4MVQWymgYRi4dvYlXH3nBSTXl2pUfaDql1eVlluob0BYXljBSD8opRgan0NifekDW1jKUhk3zpmFondf+pZryVK756wZuqZh+cpZxEZnGjZ5pqH+J6Aokqt7uB1IU6qtGTXufmMViY3gwc/9OkZn9uPWhdexcvUsRmf24ZFnfwvHHvtig28JIQRzhx7Aiae+inIhg7d+8L+Qia9BkSvIJTdcSQDrMT5/GMHIAG5ecOddVS5kQShtYPiYEinzmQqEojVGkFeYf/NpHHv8S9hz/LFaIaQZqiKDFwKuxjUvYDjOdp7XNa1lU9crCCGglNZ8CGEYVS9CA5VSoaHhQGA2a4VguGe/0cGJeVDKIL5yve0c3QxNlUFZtoUxHOobhCrvbrHKMAwYhoFw32CD0Xk7DE0uoFLKo5jtvt7WVAWKVG64r3RdA9u0XuKEQMd9AaUUhx58BvNHHsL6zfdw7Z3uKbvprWX0e/CrqsfozH4QyvRktF7IxG0lgLquo1LqPo6PTC9ClSs1ppjTYzIsDzEUdXWuzbDG/b7Bcdx672ddC2bW2jvmo19VPULRGEZn9mPl6lm8+8Lf4PzL38F7r/093n/jh7jy9k9w9Z0XUCnl2/tVESAUHYTq4D5vByEQxsLRh5FYu1XzQWyXBEgA270Tw7AYGJlGMNR3j2HVAfeKVffQEePzBzE6ewC3Lv6sYwGoJgGcXOgqLyCEYPbgaciVEjbvXHF1PoRSiKFIy2Lb0qTPHjwFhuNx5e2f7OpmguNFSJUiKqUCFLnS0gXOp7cRGRjG4PgsKMO67rR+GMCwPORysbag3E2/KgtmB1l1JFdSpEpDh6qWDEcp5g49UPVW+WlPHeluiK/dxMbSJcwfeQgHH/i0bRGEYViMLxzG9qobo3WhWvDkuna3NU1FIR23lReIwTBGZhaxfvOib11Zq7PYS5eyGZoit03UY1kehm4+y5YxeqVUQDHr3DTUMAzzXtbUrl44hBIYqDKrFLm1WFX9d8Vj5HlsbAaTe4/hzpV3kK3KNztBkcpQpHJPzCpCCEan9yG9tQzZIRsmbkkAHfhV1WNs7iD6Bsdx/dwrvkmyDd2UwzZLAC1QSjGxcAiJtVstPhS6ruPSGz/Anctv1yLXLe+QhtfVyYq1aqw9YEowLQkcAAxN7oFcKdVkPXcbSxffgKrKOPLIF6DKFbz74rd2hXGxeecKpHKhgVVlITIwjOnF41i5fr5mYusHpHIRilR2nZZlgeV4HHn0C7jv6a/hkS/+Do488vmOkpvhyQWcfubrYDgeZ37yV7j6thlH7rVYRSnFwrFHUMgkXK1tyoUsxFC0YR1hbeQJIRBD0QZ2Zy8YndmHhSMPtf29psiIxEZ3NcAFMNcXhs2GV9e1jjJtr6AMA4bloalyzURCkcowdA1CoG4MNwwzNS42Cl1TelpHshyP2PgstpavoZhJdJUAGoYBWaqgf2iipbBi+mrRXV3PqIoEMRhBINwHWucV2Q5DE+Z42imwwMJOcm6jDLDZ2J7jxa6FEEII9h5/DNP778PKtXPIJtrPo1K5iGIuhdhIbwwfThAxPLmAjduXkd5edS05VxUJ5ULW1lxdU2QYutb1ux0cnwNlWFdSQMtc3Y/nmRCC+SMPoVLM2Sbh1SNd9avyInl0ij3HH0V0cAxSpYRiLoVsYh3J9SVs3L6C1evnq+y/1mKZpirgOBFiMAzS4z5xZv9JBCMDuPbOC1BkCeVCps3fbLTdO1FKEe4fBIy7I/X9KOJeseoeuuLAqU+A5QRceuOHbSevTHwNUrnQUQJYDytZafnKWdeLATsvA6vTMDKzD4snHkd6e7XrYNorOCGAfHoTcrkIht05J0PXkU/HERkYAcNyiI3NmL4FHzGKJ6l6B6jV9LLd9KuqB8vxXZO9dF2HpsgNPk6FuuKF6a3yFAqZBNZcmnG6wfbKdbC8iIWjD3e8LlN7j8HQdazd7E6fBszz5wMhR74y+dS26eXTRtYxve8+qIqEjdvuCsPtkEttgVDqq2mmputtO/n1z7v1GqlUcJwEqCoSpFIBgXA/hqf2dpXtEUJNOUKVWYWmDYKuaTBgSgDrz8kNFu97AoIYwqU3fth10btjru69WAUAo7P7YRgG4g6lgPHVGwhFYwhFY66OQwjBvlNPQy4XcftSd0auExSyCaiKjIER+2IVAEzsOQrDMLBxa4fRpakKzr/8Hazfeh8LRx/B8Se+DEqZmky7HvVMAlWRa5vFYj7dcA2GJuYAQjyl5faKUj6DlWvvYnLhCMbnD+LoY88in97Gxde/7+v8YhgG7lw+g1DfIAYn5m1fs+fYo+A4AVffed63Y1sNMbdpWfUghGBoYt5xGEG4bxAPPvN1DIxMYeP2JTAs59gE2w5jswcQ7h/CrQuvOy4slIvZFnN1XdPACub4zwkiCMFdW0NwPifj2YHlePvrYxgtbBs/QCkLhuNqMkAAtWTZ5kYJZVhwvIhgJAa50pvUdWR6EVK5AMMwupvaV0oIRwdtZdeUMgj1DfqaLt0MTVUQisZAKYNAuK8leKIZYjCMyMAIEmvdQ1wqxep8GaovDKJh7QyY94Wty7oN9h5/DEIgjMtv/bjts5auMnwGxnqXo81UlRJnfvwXeOmb/w/Ov2yavTtJwK3ZFtiMbbquQgiEukovGZbD0OQCtleuO/IwMwwDhWzSdq3mdSwZmlxAeGAYSxffbHsOhmEgtbWC2Oj0ru4XQtEYTn3qH+Chz/06Hnn2t/DYl/8/eOKr/xhP/9L/jU/+yj/DJ3/ln9mmb2qqAj4YBsNyVXmt91Q+yjDYf+oTKOXTuPLWj83z6mtcM+m6BkrZjsw+lhPA8YG7IvX9KOJeseoeuoIXgzhw6pPIJjfa+kxt3blaM5R0AkIIZg7cj3x62xcz3npN+uSeo4gOjuHa2Rd3NWmBYTkzzUEqNyQB1uJpq1rp4am9qBRzjqjSu4lyMedadglCakyM3farssByAqRSoSMro9lcXZbKkMvFhoXAyPQiYqMzuHHhtV2h1+q6jsTaLQxPLHSll4f6BtE/MoW1G+85XiQ49TWomau3icTuH55EeGAYK1ff9WWzk0ttIdw35K8BrmG0LczVH8faVGQTG1AVGaEOflW6pqFSLIASBkOTC+gbGnd8Tc0uPFdjVun6znOjqQoopbadYqfgeBH7738ahUyi60Lf8hsL9VisigyMIBDuw9rN7vegUpUa2KW6OkH/0ATG5g7izuUzjhby3VDzqxpubwodisbQPzyJtVsXYRgGFLmCs89/E4m1mzhw+pPYc+wRc8PXP9TCBjJAGhasilwBZSgMw0Apl0KwrljFCQH0D024Mhb2CzfOvQJCKPYcfxSAaXy//+RT2F65jhvn3KUwdkJq8w4KmThmD55qu9nghAD2HH8M6a0V16a/7bCTBOhvelQ3cEIA9z39NcwfeQgLRx/pSS5ECMGeY4+hlE87lsKWC9kWvypdU8HxplSPUgZCILzrGxldU8Fwwq4kADaDYdiGlNV6UMZ/9jalFAxrygCJYcAgpDaGWw0HK17eYjOb96HRE5tpeHJPbd1kt3G2oGkqQGnHpLhAOAoYu+N/qmsqGIYDL5r3nBiKOlovDk0sIJtY61pEsywlxGCjHK35WWMcSJQtsJyAffc/hXx6G6ttrA7MvQGPyEDvTPCB0Wk8+bXfw7HHv4TR2QPIJTdx+a0f49Xv/Cle/95/w9V3XmjLNLV+bvv9GoAY6oPhgD05Or0PcqWETGK962vlSpWparNOkiolSGX362JCCBYOP4RSPo2tNuN+uZCBVMpjYJckgL3C0HUIVfuIQKQfSo/y2qGJeQxN7qmxaZubqGYSYHe7imA0tutS348q7hWr7sERRmf3Y3hqD26cf7XFrNnQ9WoK4LwjLwwL43MHwQkBLF95p+fzS2+voH940oy6pxQHTn8KcqXki6dGJ/BiAHo1vcaCZXpbK1ZVC3gfpBQwuXEbr333v+DcS992VbBgOb6WqieV8rsqAawHoRSFTKIt66S5E2K3ySGEYP+pT0DzyVulGZn4KhS54lgmNbX3OMqFjOskuG7IJjYgBMJtGUOmAfF9KGTitU2/VxiGYUpcfZQAmn5VTHuKNMOYgn/syACTm7cBtC4KrHOUyiUosoT+4XEMTsy19WdpB4ZhwXA8dE2FYeiNfkaqAkJpHbPKucF6PYanF8GLwa4b2mIuBRDSki7jFoQQzB1+ENnEegP7yA6JtSUYhu65WAWY5qMAcP3cK54/w0Jme828x7ukk03sOYJSLoXtlWs48+O/QDa5gaOPPYvpfffVXhPpH26RAVKG1hikAKApEghlIZULVbZBY6FwaHIB+fR2bbN7N5BNbGBr+appYl/nbTS9/ySmFk/g9qW3sXbD3rPLLe5cPgNeDGF87mDH103tPYZw/zCuvfNiT91pC4VMHLwYdOVD5xcopdh7/DEzFr1HDE/tQXRwzGRXddnwq4oMRSq3FKtMKfLOekoM9fXkr+IEmqo4DlPoFZ2aHV4MqJ0cj2W5GiPbMlcHdpoghq41hA8wLIfIwIhj6bQdeDGI2Mg0ApH+jve1Uimjb7BzQ4XlBPCBcFcGjhcokoTwwFDNs5EXA6CU7VqoG5pcgGEYtRTNdqjYzpek5T5gGBaUcR4oMDqzH4Pjc7hx/lVb36f0tplI51dYAMeLGJ3Zh0MPfgaP/cLv4uFnfwv7Tj4FMRTF6rVzeOO5/4G3f/wX2LpztWH9WsjEwXKCPRObAIFQFGiThFiPockFEMpge+V613PdYXO1FquIYXgufI5MLyIUjZnsKpvz3fGr2h1z9d5Bas1RXgyBOKXydcD++58CoQwIIS0seE1Va0XgTrDG3o+aCudu4F6x6h4cgRCCA6c/DUoZUw5Y9zCl42uQK0WMzjqTAFpgWA5Te48jvnqjJnXxAsuvqj51om9wDFOLx7Fy7V1PiUlOQSmDQKhx8smnt0EoremWhUAY0cGxD6xYlU1u4PzL3wHHi0hu3HZklm+BYTkoUhmqIkMql+5asYoXgygXskisL9kuFOup/ED7STncP4Tpffdh9fp55HpIcbFDfOUGKGUc+5uMzCyCEwJYu+GvLDGb3OwqLxifOwiWF7By9d2ejlUp5qBIZZ/9qhQIwUhbBgeljJnmpOtgOR4sJ9SKbiGbRZhcKUEIhDEytQfByEBt8e0GlFKw1e6+pioNHU9VlWvMKo4XPT8TlFKMzR5AfO1Wx650KZ9GIBT1he0wueco+ocnce3dlzqyDeOr18GLwZ7kUGIoWg06uNLRU8QJMvE19A9PdJUUjM7sB8NyuPDK91AuZHHfU1/D2OyBhtdEBoYhV0oN3laUMrUNoK7rVdo+3UkCbJJCDk+aISLd0gf9gmkQ/yJ4MYjZg43FFKsoP1iNdO+1GJ5Px5HcuI2Z/Se7sicJpdh/6hOolPK4fentno4LAPlMwrNf1YcJlqdOpZTH6o3OwRrtkgCJYTQULgQx2JaJ5Be0OsbBboPYsNdqzKZdYHZRusOW5YSAGdZTygOE1NJ7dU1rabgGI/1gKNNTMfbwI5/DfU99te3v5YpZrAw4MMEO9w1CU3ovDNfDXM8bEOu8uwihCEb6G4r4duirJmd2Y5pKxTx4MdgwphgwbL/rbibr9TD3Jp+EoWsNqWyA6StZyqV2LZGOEIJw3yBmD57CyU/8Ip746j/G4sknIZXyuPDq9/Dqt/8Ut977GaRyseodNdwyh2maCoYVasmo3QqRLMdjcHzWlAJ2GQ/arYvN9xGwHmVnhFLMHX4QhUzc9ntPb62AF0Mt8+aHAc3NUZbjQRm258T2YGQAiycex9jswdZ50zDAOQiNYFjODBHyyevz5wn3ilUfI1hMAa8Qg2HsO/kU0turWK3zAbIkgMMOJYD1mNp3oppW5n0TbflVNadO7D3+ODhexOVdNltvRj69jVDfYMMkPDy5B9nkRov5726jmE3i3Rf+FpwQwIOf+4cYnT2AGxdedSW9NIAqu2r3/aosEEIgKi4FWgABAABJREFUBM0FZHL9FvLpeEOnTZHKjX5VmQRYXmxgHFhYOPYIOCGAq2f881YxDAPbqzcQG591zCZkGBbj84ewvXLDt/tAlsooFzJdjVsZlsPknqPYXrnWkyGy5fXja7FK1xpSsOzAckKtSykEwzB03WRg2DGmDAPhvlhPhVVaZVYB1WIV6j2rFBDCoFIqeJIA1mNs/hAMXcPW8tW2rynlMz37VVkghODgA5+CKku4/u5Ltq/RNRWJ9SUMT+3t+XmfPXgaDMv3VCStFHOolPLoH57q+lqW4zG59xh4MYj7P/UPMDg+2/IaS4ZR71tFGRZKdVOma2rNM8Xyzmv27Qr1DUIMRZG4S75V8dUbyMTXsOfYo7bjDaUUxx7/IkLRGM6/8h0Us0nPx7pz5YzZSFo85uj1sdFpjEwv4s7lMz356Ri6bvrQ3WUJ4G4hNjaL/pEpLF18s2Oho12xCmhkHzEsB75Hf5VuINU497sBuyKFoasNzCZ/j8dWi1U7xQCpVIAghmqsG13XWuTolDKIDo71dG+LwUhH779624husAo+vW6u66HIFQQjAy1zphiKdmU4EUoxND6PxMZSRx+lSinfmgTIcbbNJF4Itlg9dEIwMoC5ww9i687VBoZXevvuMnw4IYC5g6fx6Bd/Byee+grC/UO4eeE1vPLtP0E2sYHIQOvYptexGQPhPugO2JOj0/tQqab1dkIhk7BlqprXnkcoGoPisfA5NncAgXAfbl38WcO62vSrWsbALvtVeYXJHq1L/6wyofxgK84ePIUjj37e9ndOpc3BSP+ujvEfVdwrVn2MEIrGep7gJvYcQWxsFtfffRmVYg6GrmN75RqGJxfAeDDFFINhjM7ux9qN9zwPFpZfVSTWONlzgoh99z2JbGId67ecGVv7gXx6G9GmhcfwVLUTfxd9TiqlPM4+/00QQnDyE78EMRjGoQc/jWC4H++9+neOfZwopSgXc3fFr6oZLMeDD4SRzyaQ3Lht+mYBkG2SAMN99oknHC9i74nHkYmvYdMnk/FCJo5KMYeRqUVX75taPA7D0H27H3NVxooTBszswdPgxRDOvfQtzx5eueSW2U30cUNJDL0lEagZDcWq6kLDzofBghvfCztYXXjATOqxxk3DMKCpak0G2Gu8ezQ2ilA01jYOe8czyZ9iFWAavM4eOo31W+8jtdXKwkltrUBTldqY1QtYjsf4/EFsLV/1LKXJxE1vjk5+VfXYd9+TePwr/wh9bQq4kX5zbC7UFW0ppdB1zfyvrqFTyqXMbmdTMZUQguHJBSQ37uz6wlLXNVx/92WEojFM7Dna9nUsJ+DEU18BpQzeffFbnubTSimPzduXMbHnKDgX0tmFow9DU+Wemk47Xo8ffWYVsMOukivFjtelXKwWq+okroZhAKRVIiWG+3et624YZjPqbrGnKWVa1hSapoHfJXN3UmVT6JpaK6pI5UKjubph2BaDxWAEvBjcFfmdrqlged5x04sQk7WvdGE8uToHVUXAJpCA40UwDgpjQ5MLUKQysh0SUivFHMQ65piuaW2N9FleqCUAO8Xc4QcQiPTj8ts/Mf2/YDJ8WE5wXAj0C4RSDE/uwclP/CIe+eLvYHrffeDEAAbHW8MqdE2vFZOsMberFHBqDwgh2OoiBSxk4rZrNV1VwYkBM2HSwfHsQCmDuUMPIJfcRGrzTu3npXwacrn4oZUA6qoKvknqLARCjgzre4HTcZUXg46SOD9uuFes+hiBFwI9T7iEEBx68NMwDB2X3vox0turkCsljDZJLdxg5sD90FQZ6zedmZE2o96vqhnjC4fRNzSB6+++XCt07CakchFypdQyOYb7hyEGI4ivOUvi6hWKVMbZ578JRZZw39Nfq3musJyAY499EYpUxsXXn3M0SbGcALlcuGuL2GYQQiAGQjAMDfG1W8hn4tAUuSYjMAyjFs/bDpMLRxCJjeLqO8/7Yvi8XU1UcxooYCEUjWFgZAprNy74wvKyFofRWGdmFWBOyMef/DLkchEXXv2e6+hlAMiltxDqG/TtXjBlH2zXz2P5nZhzy/Mi1N/qV2VSvNmePU/MczI/Q1OV2sLB0HWguqmrlPI9M6sIIRifP4RMfA3lQqbl93KlBE1VfGNWWVg48hAC4T5cfusnLWzb7ZUb1RTTVlaSF0wtHoeua119stohE18Fw3IIO9xwEEo7GmRzgggxGEG+ybcKhrlx1OquRzGXqkpJW4vgQ5N7oGtqLW1qt7B24wJK+TQW73uyq+9KINyHo489i3Ih46kwb4UwzB446ep9kYERDE0sYPnqWc8m4Fbx8OdBBmhhYGQKg+NzuP3+Wyi0CVgpF7JmKlVdcdA0Vxdb7jshsHtSQE1VwItBT7JpLyCEgFKmYR7SNa1r48IrKGXAVNkNavUebWb7WK+zO9dobBSqIvvO0lcVucV0vBsCoShgGL6ci6aaski7BEhCiMm+6VIYGxyfAyGkbTPWMIyW+bLZH6webrxvLTAMi4OnP4VyPlOzukhvraB/ZKrBU/ZuIxQdwP77n8aTX/09+wYQ2fl7GYYFLwa7NkB4IYCB0RlsL19rew/sJAG2jqeapoEXgmAYFmIwCtVjENXEwmEIgTCWLr5R+1ktfdGluXovIQZu0SzJY3mxZjXhN2qhFQ7vwVoSp4/F6J8H3CtWfcwQ7h+G1mPaQCDcj8UTTyC5voTLb/3YjFNtE2/tBH2DY+gfnsTy1bOuBws7v6p6WLIXRa7g+rlXPZ+jU1jSkuaNFSEEw1N770onXlMVvPvit1DKZ3DiyV9okWxFYiPYf+oTjv2rKMOAspxtQUGRJWyv3MDW8rW6/65i6475n58bOZYTIARCKKTj0HWttpCvFHPQVLljsYpQiqOPfgGGruPcy9/uOVUpvnoD/cOTnsxoJxePo1zINnSjvCKb3ECob9Dx4q5vcByHHnoG6a0VXD3zQvc31MEwDORTWz77VckQAu39qiywLF/rtApVXw07ZpWmKi1dMy+oL6BZTAbLywgwfSYUqezZXL0eY1UT642lyy2/K1VlaH4XqxiWw4HTn0Ipl8LSpZ0xwDAMxNduYHB8zjeT48jACPqGxrHqsUCbia+jb2jcN4NcwJQC1ssAAVP5p6lqtRBuHquUT7f13RgYnQZlWMR3kS2rKhJuXngdAyNTjgvjAyPTCPUNtmXrtYOmyli9fh6j0/s8mfnPH34QilT2bPKez8SB6ub45wmL9z0Bw9Dxs7//H7j4s++3FKXNJMD+hjHQTo4GmHMgZVhPjYZuMMfO3sczN2BYvmHNR+CcgeAWlNIdaXd1TJdKTcwqtDd+58UgAqF+35ueuq7b2hd0AsNypuG+D2nXqiwj1DfYdg4WgpGu4zYniOgbmsTWyjVkk5str1cVCZqqNMkA9bbrFlMy1d1svBmD43MYnT2A2++/idTWCkr59IeW4QNUGU2G0aBKCYT7HXmSjUwvopRPt5V8l6tMVbt1EsEOgzAY6YfmQnJZD8qwmDt0Gunt1Zq1SGprGUIgjKANU68dFFmCXC7sSmp3PSz2aPN9RymFENodryhN08AJ7qTNgXDfPWZVE+4Vqz5m4MUgWMGbqV49pvffh76hCZTyaQxN7ul5gTFz4CTKhQzi6+4W/jupE+2r+JGBEczsuw9rN87j5oXXGzrnfmMnCbC1mzE8ZXbi/U6Dq4eua7jwyneRTazj6KNfQGzM/rpM7j2G0dn9jv2rhEDIdjFz88JrOP/yt3Hhle/W/fc9XHjV/O/MT/4St+q6Lr2CUAohGDYjnKuwTCQjXTryoWgMRx/9AgrpON7/2Q88dyXLhSzy6W3PSWmj06bRejfj3W4wDAM5B+bqzRifP4TZg6exev1cg/dcN0jVxYSfSYCapjoq+NRvIKzNRcgmCVBTNQiiD8UqSsEw5oKmxkQ1DHOTSAikaupQrzJAwFyYDIxMYWPpUss9aQVPNKfRaaqCcjHfU2d9aGIeo7MHsHTxzZo3Uy65CblcxMi0O3lrN0ztPY5SLuXKKw8wr30+E0f/8KSv5xPpH0Epl2qaCwg0VYGiVEAoA01TUS5kW669BYZhMTg+h8T6rV3zRLz9/ttQpDIWTz7l2P+jnq3nJrhk885VqIqE6f33dX+xDfpHJtE/MoXbl972ZDdQyCQQsvHN+agjMjCCR7/0f2L2wP3Yun0Fr33vv+HK2z+pJdGVC5kWvypd08AJ9kyXQNifIkULDMOWXbObYDm+pfC2W98/IbShAWH+JzUWioi9l5aFyMCwKQX3cQ1JAE8+YaHoQE8etIDJFCaEdpyDOV4Aywldm6xTi8dQyqXw1g/+F17+2/8XF19/DhtLlyFXSqgUq0mAdWFEBtp/15RS23vDCfbf/xQow+D8y98BgF0zV/cDFoOyvhFjSgK7zycj1RTqrZVrtXtSkSuQykWUi7naPsOuiVt/7XkxAIZ6L4BP7j0GTghg6eIbMAwD6a0VV35ViiwBho6hCTPlcDfNxTuxRwOhKLRdSFvVNRW84C60ghMCvvvSfdThfz7sPXyoYfnNpLdXPHlM1X/O4YeewTs//WtM7m3vo+EUw1OLEIMRLF95ByMuigDpNn5Vzdhz/DFIlSJuvfc6Nm5fwsHTn3Kc4uYG+fQ2xFDUdtE3MDIFhuURX7vpix9MMwzDwKU3fojE+hIOPvBpjM7sa/taU875GeRSW3jv1b/DQ5//h57iwpMbtzEwOo399z9tfXL1881/3770Fm6efxUMw2L24Cn3f5QDWPIKO1lYM4YmF7B43xO4/u7LCF98AwtHH3Z9PCvV0WuxijIsJhYOY/nKWUjloueo8HIhC0Uy467dYvHE4yhkE7jy9k9NaaKDBZ2VpuiFWaXrOgxdg2Ho1X9X5XRwtlCvL1YNT+1BMZu09SSq7xj2AlJdLAMWs4rAMMy/AVVJA4CeZYAWxucP49KbP2wpPpbyKRDKtMhEVEWGGAhBqkorvBqZ7r//aSTXl3DlrZ/g5Cd/CdurN0AI6Ykpa4fR2f24+s4LWLt+3lWnO5vYAAzD/2JVddNZzCZr9zPDUChyBaokgTIMynn7JMB6DE0uIL56A8Ws/yl2lVIed66cwdjsgbb+W+0wPn8IN869go2lS9hz7BFH71m7cQGhaKynaz1/+EG8+8LfYGPpkut1QSET95W1uRtQpApYjnctK+LFIPadfAozB+7HrffewOr1C1i7eREz+0+iXMi2rkUMo+1GXgxG2koKe8XdMle3wLBcC4OgWwKlV9QzKlRVrhULrYaDVbjpJCFmOR4DI9NIbd4GCYR7ZntqqgJOCHhisXJCAAzHm2lyHq+ZLFUQig50/JsBszCWS212LCSOzx/C4PgsEuu3kdy4jcT6Uo3daRVj6+cxYhgdv2tODEAqFVz/bUIgjD3HH8PVM8+D5YWuTcwPEpqmIhhqLFSzHA+mWhzsdL2FQBj9w5O4deF13Lrwuu1rLH+zehi6Dkpp7doTQhGMxlDIJk2ZsUswLIfZg6dq841cKXUkD9TDKlQNjs+B5QTERqeRWLvVcH5+opOlAicEQMgO+8ovGIZhy5LtBEt+m8/EPe8Pft5wj1n1MYQYDINh+Z67Q6G+QTzx1X+MQR+8TSilmN5/EumtlRZ5Riekt9r7VdWD5Xgce+yLOPmJXwQBwdnnv4kLr3y3tun0C/n0dlszR8qwGJqYQ3zt5q504hNrt7CxdAkLRx/G1OLxrq/34l9Vj0oxh1IuheHJPYgMjFT/G0ZkYBjh/mGE+4dw6KHPYmRmH66dfREr1855/Ms6o5BJQAxGHHeFZw+exvjcIdy88FrNe8oNtlevI9Q32JZx4QSTe4+ZRus3vRutZ5NVc3UPxSpLFhmI9OP8K9915OOVT20BhLgyQJalMiqlPDRFAiEULBdAMNSHaGzU9HOZmHc0kVOGseqgEIMRHDj9ybaLGbcLAzsQsiMZMZlVpj+IrmkwAEil1k5xLxiZ2QfKsNhYavR1KuUzCIb7WjfHhoFQ3yAiA6OQSt4ZVkIghMX7nkBqaxkbS5dMeevIlCtzbSdgWA7jC4ewtXLNFdU/vb0KEIK+IWfm6k5hnwjImMUqVQalDIo5s1jVSZY2NGFK8+ykgGYq0gouvvacrcSzG26cfxWGYWDvicddv1cMRhAbm7Fl69khn44jm9jA5OLxnhbqg+NziMRGcfvSW65kDKoio1zIfqj9qnRdg6YpPcnAxGAEhx78NB754m9hZHoRty+9BV1TG8zVAQAdjM5ZXgQljK9rCF3TwHCcb9JfpzDZM0bDOfgp960HobTmWaUpco0dazF120kvmyEGw4gOTkAuF3r+Dky/Km9zCCEE4b7BnlIKYWiOJL9CIOzI8JwXQ5hYOIyjj34BT3719/DAM1/HwtFHwAtBCDaJiJ3W7bwQhOaRWTK9eAJ9QxNmou0H6FfVDbqu2zaJgxFnQQr77n8ac4cewMLRh7H3xOPYd/IpHDj9KRx66BkceeTzOP2ZX21p3mk2fnhiKALD8C47m953Aiwv4MrbPwHgjM2mKo2FKsA09O8fmYJUKe3KHskwdPsEaTj3C/MCL2xRIRi5JwWsw4f3Kb6HXQMhFJH+Yai9THK7gMk9R8GwHJavnHX0eqlcRDGXclzFB8zF9MNf+A3sOfYo4mu38Pr3/hvuXD7jiweEqsgo5dMdWV5Dk3sgl4vIpdqnpniBYRi4eeE1BML9mD/ykOP3RWOj2Hf/00hu3MadK2dcHTNZ9VzqZMRMKcXRR76AockFXHn7J7uSytgu8aQdCCE4+OCnEY2N4uLrf49Cs9FyByhSGZntVVfsPzuEojHERmeweuO85wkpl9wEZVhHjDI7cLyIE0/+gunj9VJ3H69cahuhaMwRI9MwDEilAjhOwMjUIkZn9mNoYh6x0SlEB8cQisYghqJtFw7NoJTpaoBZ2+x0kHE4hWXSTSg1F43EZFZpqgJK6Q6zyiePF44XMDy5B5t3rjZQv4sdkgAZlke4fwiRgVFUeihYTe49hr6hCVw981MUs0nXCZdOMbX3OAzdXRJmNr6OSP+wL2y5egTD/aAM25QIyEKVKzUDfSd+YWIwjEhstMFY2PJ+euPv/wfe+clfYuP2JVx+60euGiPZxAY2br2P2QP3t0jEnGJ8/hDKhQyyifWur127cQGUMhifP+TpWBYIIZg//ABK+TS2Vq45fp/lu/JhLlYpUgWhSAyGD8bWwcgAjj76BTz0+d/AzIH7MTrbxILuwDox/VXCvibTaaoM3gf5tFtQhgGpSp7MYtHuyRDNBoS5KVYVuW4Mj9Qd31mjIxQdQCg6CKlXjx3D8MRotyCG+sAwrKfGs6pI4MVQi9m0HViOr27knUu0CKXoGxrHnmOP4IHPfh1PfOUftUhbO7FnzDHf29qIUIrTn/4VHH7os57ef7dADMPWZF4IhBwFKfQNjmHxview59ijmD/8IGYPnsL0vhOY3HMU4/OHbC0idE1tedY5XgTPi54LNSwnYGb/yZovWbc5S1Uk6LqO2NhcyzMXCEURHRiFVCp6OpdOICAdn3GnfmFOYRgGCEgtrMcNOF4ALwR23eP4o4J7xaqPKcRQFIQyHypNLCeIGJ8/jI3blyFXug9U6W0rdcKdJp0yLBaOPoyHv/CbGBiZwrWzL+LN7/9ZrZPuFTXvpA6pVUOTCwAhNSmZX4iv3kA+vY2Fow93ZZk1Y2rxOAZGp7F67byrRXhqcxm8GOxaKKIMg2OPfwmxsVm8/8YPsXnHfUpVO+i6hmIu5apYBZidjuNP/gIYlse5l74N2WG3PL5m+tMMT/dWrAKAqX0nUCnmkFhf8vT+bGID0dio6++7HqFoDEcfexaFbAIXX/9+x+8/n9pCdKC7TEfTVEilAsL9w4iNzfhWaGA5oWNR2fQj8GfDRQitykYE0x+mukFVVdN8WyrlwfKCr0WU8flDUKQyEhvm/WAYBsr5TNtiCcNyIFWmWzRWLVh5KHyaIRSfrvk17IZEGTC9M/qHJx0breu6hkxi3XcJIGBuZiL9ww2JgIRWi6HVjnMxl4IQCHf9jocnF5BJrCOb2MDVd17Ay3/7J7j81o9BKMWhh57Bw1/4DRi6jmtnX3J0boZh4MqZn4IPhFw1HpoxMm2y9dZvdTZa11QFG0uXMDKzz3HxuONxpxYRjMaw9P6bjucT63twO47fVRg6Qn0xBCMDvplsRwaGsf/+pxuK3oauV1lA7Tc4gVAfdB/9VXRN863w7gaUMrXnzfLv2S0QSncSXuuYVZZfk6FrjsdzQggisVEIQgByxdu9YBiGmQTXg/SSUopobNTT/agqsq3vYzsEIwNQfdrImynATEcWHcNyIPDO8iSU+irn8hvm2EjAcq2sm1qQwi7sz3TDsPXDC0ZjPXnhzew/CYblERuf7XjdrULV4Nhc20JpuH8QYijqaB/oFJqVytehmenUL8wp9OqY4jVhNRgd2B1/wo8g7hWrPqaglCLcP+x7skmvmDlwEoauYeVad+PnHb8qbz4XwUg/Tjz1VRx/4suQykWce/Fve4oLtSQlnYpVvBBA//Ckr8Uqi1UVjAzUksXcgBCC0Zn9KBcybZNF7I6Z2ryD2FjnickCw7A48eSX0T80gYuvPefb31/KpWHouqeOvBiM4PiTX0alVMB7r37PUXRufPUGhEAY0Zg7Dxk7DE/tAR8IYeX6Odfv1XXNLB659LKxw9DEPBbvewLbK9fx7gt/U/PyqIdULkIqFxAZ7PysyVIZmiKbcqCBYV9j0LsVq3TdvZFlO1j3NMvxteQoQ9eh15hVBYgBfySAFgYn5sAJgZrPR6WYg65rLcUqMwqZb1joR/qrBatywVPBKjIwjL3HH8PY7AHPTB4nmFo8jnI+g9RW95CJfDoOXVN3pVgFWImA8daCSvX/l3JpR8l0Q5MLgGHgrR9+AytX38XgxDxOf/pX8eDnfh2Te44i3D+MucMPYOvOFUfhGhtL7yOX3MTiiSd6KoayHI+R6UVsLV/paMS8tWwaq0/tPeb5WPUglGL+0AMopOOOC/GFTBwMy+3qvdcLVEUGJwTBcgJCfTHTd2+XTPWdMHwsma6f5+CHfNotCGVqz5uh645YPp6PRWiNFWwxq1herEl0DN2d3yGlFP3DkzvsW5fQVAW8EOyp2QSYEi6WE12xnnRNBUNZV80di+3jxz1n6FpXhjbDcjsNhLsETVNrhvC9mtd3g66p4ATRdo1ECEEg0u8re7L22bCXpVneSF6/X04I4KHP/zr23fdU29eoigxd0zoWqgDzWe0fGgdlONPXygdoitw1zKfmF+bTd29+x94bQFYDYbfmmo8S7hWrPsYIhvsAQhxt0u8WQtEYhiYXsHzlHVRKrZvmeqS3VtA/MtWTxwEhBCPTizj+xJdRLmTx3qt/5/l65NPbYHmxqwfB8OQeFDJxRz5BTrC9fA2FTAILRx/xfC0sNkV81ZmHUyGTgFwpufIrY1ge9z39VURiIzj/yneR3Ljt5VRbzgPw3pHvH5rAoQc+jdTmMq6980LHSUFTFSTWlzA8tceXjh2lDKb2HkNyfclVahcAFNJx6Lrmya/KDrMHTuHA6U8hvb2Kn/39/2jx8qqZq7cpxBqGgUqpAI7lMTSxsCumkCzHmwbn7WDAt80OoaZHFssJUFVrsWRAVVUQwqBSyrdEnvcKShmMzR1AYvUmFLlSuyeaZYBam6SwSP8w+mJjkDwWrOYOP4Cjjz3r6dydYmRmHzhexJqDFMpMfA2AmTK3G4gMDEOVKzX/sRqqJqudJJj1iMbGMLn3GBaOPozHv/K7OPbYs+gfmWwYI+YOPQAxFMWVMz/tWHBVFQnX330FfYPjPUvyAGBi4TBUWbL11LKwev0CgtEY+kemej6ehbH5gxCDkVpCVDcUMgmE+4daxlVdUz8U7G9NkWuFS5YTEAj19dTY6gQnGxyGYcH55K+yE+d+91MYKcOinjyzW+bqgLnWsyLkLYP15s2r2+MzLIfY6DQ0RXZd3FAVBWI42v2FXUAIRd/gGBTJ2abeMAzIlTKig2Ou1osMy0EIhntOEgecSy55IbCr6d26rkGWypBKBUilAgzdQCg6iMjAcG9eYA6gqQr4DuskMRDepUKdfXgDw3IQQ5GeCmTByIDt2gQwi9GqImFwfN7ROo0yDGKj09A11Zd7wGjjD9aMYLjfNzaTrmngRO/FKvOZi+xqQuJHBfeKVR9jUIZBuH/oQ8eu2n//09B1DVfP/LTta2p+VSP+xNIOjEzhwAOfQnLjNq6/60yu0QzTXH24ayGjVhha651dZOg6br73OkJ9gxib3e/5c8RgBNHYKLYdFqtSll/VuDtzfZYTcPLpryHUF8O5l77tyi/KDoVMopac4RUTe45g5sD9WLn2Lm6ce6Xt5iq1uQxdUzEy7Z+nz+TeYyCEYO1G9817PbJJ0/Osb6h3ZhVgLuSn953Ag5/7dYjBCM6//G1cevNHtYVpvlqssmMxGrqOSimPSN8QYuOzvvsLWTCLVR1eQFAzRe8VlFLAMD/PXLgQGLoOrU4GKIZ632g0Y3z+EHRdw9byNZTy9p5JnaKQw/1DiFYLVh9GMAyL8YXD2F65AancmeKfia9BDEU9GxB3Q6TfLLzm63yrWEEEJwQgV0pQFcnRuGIlq+459mhbKRXDcth/6hMoZpNYvtrek/HWe29ArhSx//QnfCmIx0ZnwAdCNbZeM0xj9XVMVcchv0Apg9lDp5FNrCOzvdrxtYZhoJCO27JjFakCeZfMdp3CSomrL06H+2K+yvDqoeuaI2lYMNznS+FAUxWwQsBXFqxTUEpNL8KqJMqLEbEbsBwPShloimQmqQaai1XuWU4cL2JgdBpypeyquEAIwPP+BFnwYhBCIOSIhSJXSghGBzyxGIORAV88fQyH9zgnBHeN4VQp5qApCgKhPgyMTmNkehEjU3sQGRiuzbm7Oe4YenuzbwA11pWfBStd08CwXFs2XzAysGvjmqrKCIT7XDUUWU7AwMgUFJfPVqfP6wYhEHTkF+YIhgHWgcdrJwQj/vpofVRxr1j1MUcw3O8btdcvBCMD2HP0EWyvXMfWsr1Ja3rLm19VJ0ztPYbp/fdh+co7rlPadF1HIZPoKAG0EIrGEIzGsHn7CgrZRE/Mts07V1HMJrHn6CM9p54MT+1FLrnpaKOb3LhtmmR72EhyQgAnn/5FUIZ17OPSDoVsHMHIQM8d2X0nn8LU4nHcvvQWrp190fZ52F69UYuu9gtiMILhqb1Yu3nRVfcom9wAJwQgNqdI9Yhw3yAeeObrmDt0Gms3LuCN5/4M2eQmcqktBCMDtoUoVZERjAwgEhvZ1Q2P+R3bj1OapoJhhZ4lFY3HY8ByPFRFhgHD/H4MA4auQa6UfGdWASZLJxiNYePWJZTyGVCGbS2AGJ3lKuH+IXDC7qTa+IGpxeMdkzANw8Dq9fNIrN3CgI9sn2bUEgHrCuYM8/9n78/DZL3rAu///b3X2qt67z5bTvbEBEjgIEQ0AWU1CQwojsCDOjriOOqDOuIg8BNxBmScjOZiELl0GOcZdB5ExMQHT4IMmjAsShJJQkwIWU9y9u7Ta233+v39cVf16T69VXXd1d2nz+d1XblyTnV11911qu66v5/vZ7EwDPNsc/UeguDnGtl7KcN7LuHph7++atZwbX6a5x5/gD2XXJtaxqQyDCYOXs3UsadXncJ47KmHUSk0Vl/N3ktfgO1meeaf/3Hd+3mNGoHfXDM7Nlcc6L2RdQ8Cv0m2WFl2brHdLG6u0JfsKh3T0QLHyeRA0/MiLgoDMtvQr6rNNO0kIKH6m1kFyRAFs3VOb9arK65fDGNzj5/JFSkNjdPcIADfpuMYRW/9qpZKeheOEoX+utfyYeBjWlZHvSdX47i5xczTXuhYY3UQmLTdTF8qP6IwwHKyjB24gvLQOJlccVmg1LTsvk2GW2q9z3GlDDL5UrqDFDbI2rTdXNLLuB/PeRSRzXW/wdfeSPd66F/V7pHWSTDccjIYhpnK0K21sti64WRyKENd8JMBJVh1gTMtm1xpcNNNIvvlwNWHKA6M8p37v7zqBeHM6d76Va3lihe/isHxAzz6zS8tlqF0or4wTRyFHQWrAMYOXMHc1HG+8YX/wd9/9mP8491/yqP/8EWef/xbzJw+2lHaZxzHPP3tr1OoDDN64IoN77+RkdaEu436ScVRyMzpo+tOAdyIm81zybUv58yJZzfdYBza5SO9T5BSSnHVS1/N/iuSYOXj55QE6jhm8uiTDO+5JJVpc0vtu+I6Aq/BqSOPd/w981MnKA9N9KWBqGGaXH79Tbzkh36MKAq574v/izMnnqW0xnstjsK+Zb8sP661FxJxGKReemgYFpblEAYeSqnFC9d2MLcfv7NSiomLv4fZyaNMnzhCvjS46r/xRhdA+fLQjm3MmS8NMjC2n2NPrWy07jdrPHjvHTz2zS9RGdnL5dff1LfjsGyHbKFMtdVrcKnawkzrWDcuA+yUUoorD/0gOo554p/uWfH17z5wD4Zhcdl1P5DaYwJMXHwNWscrzi/txupj+y/vaSLZWkzL5qKrDnHmxLOLZcSrqS42V19+Hm+Xp5UGx3Bst29ldxvRcZy0TDhHsTLSlx1v1WHQxrJdigOjmy77XaR1T31VemXabhI8sJy+N8Q2DAPTslsZe7XFDQetdTIBtofP9nxpkEwm11FwIQwD3Fwx1c0dJ5NbtzxVxzGh71EZ2bfp39MwTTL5cjI1tUedvMZNy+mhxfrakg22yrr3yZcGF/tVpq19btvoczxbKBGlWAa9XlY2JO+PXLFC6Ke/HlQ6CQRtRr48RDZfxu8wGHyuKPRxsvmOzi9KKTKFcs/XT8m/8dmhDptlGCa5QmXbPv92CglWCfKlQbTuX8PQzTBak5SCZp0nvvWVFV9Po1/VWo/7wu+/lUy+yENfuZNmbb6j71uYTi64Ow1WXfrCV/DyH/4JrrnhDey7/EVYlsPpo0/ynfu/zP1f+gz3/uUn1izdaDv57GPUF2a49IWvSOUir1AZJlsob9i3anbqBHEU9hSsAth/xXVkC2We+Na9m7rYDgOfRnUutQlS7cXkgatewvOP/xPfue/Li++J2anjBF5jMaCXpsGxA+RKgxztoI8PQOB71OanVx1LnOpxjR/ghh/+SUb3X04chZSH96x5361ozmuYJmtducZRlPqCW7V24sLAT4JVgQ9KLWbF9CtAN9EaklCdm1rjglphmOtf5GZyhdRLCNK077IX0ajOLetbN3n0Kb7xN/8P0yee5cqXvIoX/+CPrhuATKOPRXFgdFkZYFt9fhrDMMlsYid4PblihYPXfC8nj3xnWZP5qWNPM3X8aS55wQ2pB12LAyMUBkY4/sw/L7v91HPfJfQ99l6eTmP11ey74jos2+Gph7+25m59O1hVPOc8HkdhssttmlRG9xKHW9+/KgoDTNtdNZhju1kcN9uXfiKdLnCSst+JngNW/Srd7uixLavVwL7/ATPDtDAth3orGO22zuFxFPb8GaaUojAwSuh3sNEYhn2ZvliojBCH4arX8l6jTmlovOeJn7lCJZVzbycBs36VhWqtcTe4XnAy+VSyyFYTR52V3tpuFpXiMWitN3ydZ/MldJzu75wMhbE3fZ5RSlEemsCw7E1lmsVRiJvp/P2WyRWJo9XfR908puWs3kC/W7nSIEoZeI3ajlqnbyUJVonFHead1ruqNDjGgasOcezJh5dd2C/2q0qxBHAp281y3U1vJgpDHrz3jo76QizMnEIZJvlyZ2Uj7bTtPZdcw5UveRUvefWPcdOP/Ft+4M0/x3WvfDPloXEe+fphHn/g71dNR43jiKe//Q2KA6OpBVCUUozsu4zpk8+tewE+feIISqmeSzAN0+Ly626kOju1YiHVifbkwjTHnSuluOLFr+Siq1/K0Sce5LFvfgmtNZNHn0QZBsN7L07tsZY+5v7LX8Tc1PF1MxDa5qeTflVpTALciO1meMH338LL3vBO9l3xohVf38rmvIZhrh2AUSr1BdfSkhGlFFEUgNY0Ww25l5YBevUqXqOWSvp8tlBebHadKy4/n6w2CXD1YzfJlQYI+rBDmobR/Zdhu1mOPfkwUejz2De/xIP3/hVOJs/L3vB/ceCql6wbgI/jiGZ1vueePYXKCPWFmRU/pzY/Ta44sKy0WqdULr/YbP2+pNl6HEU8/sDfkysOcODKF/f881czcfH3MH/mJLVWeSPAsScfJlccSLWs+Vy243Lwmpcxdexp7v/b/3fZ47dVZ6dws4UVwYooChcX1pbtUh6ewG9u7cV6EPgUykOrfk0pRXFwNNUMxna5SjflzIXKEKWhiU2df+IoagVwtr65epvpOEShn1pJ3HoMw8Sy7cXXYbv8MY5jzBQ+w5xMDqeD7CqNxumh8fJabMclv0qlhN9s4OYKPfX2bHMyWQzD6rlMqpPMKsMwMG031b5VcRxjGuaGWT5pZpGdK+owE9wwTNxseg2215oEuJTlZBazHdMSBh7ZHltWGKbJwOh+oiDYxOtBrdn4fTW2myVfGsJv1Frn1e5f671OAlx2PI7LyN5LyRUqePXqjm3x0E8SrBIAFMrDxFGU+oVgrzuhl77w+8gWKq1mz8kbtB/9qs5VKA/xgu+/hYWZ0/zzN+7e8HlZmJmkUBnuqWeOUirpYbT3Ul78Q2/lwJUv5rnvPMA/ffkv8M+p1z7x9KM0qrOpZVW1jey7lDiO1p3UN33yCKWhiVQmr40euILy8ARPPvTVrj+QF9YoH+mVUorLr7+Ri695GceefJhH//GLnD76JINjB/qWQTRxyTUYptVRdtX8VKu5+hYEq4DFUpzVXttRGCQ19VvUnNey3RUXDlpr0HrDUdjdMsykZETHEVEcoXXSMas9Pa6ddaO1RpMETUOvSbNW7TmI0u4hlCtVlt2+dAG/kWyhQhztzMwqw7TYe+m1TB59kn84/GmOPvEQF119iJe9/h0dvZ+jwG9tsPT2PBdbfauqs2eW3V6fn1kxCTDw6hs2he/E0mbrzz/+LZ57/J+oL8xw5UtelXqJcdvEwatBKU48nWTrVmenmJ08xt7L022svpqLr3kZL3jFLdQWZviHw/+T577zT8s+TxdmJ1fdcNDnZEtmCxWyhQECb2v6V2mtUeh1e9M5mRyWk97CTsch5iY+YwrldsCq2lXAKlk0b1+/Kkh6VillbEl2Vzsw117stjOrdBxhWb1/trc3IdfLrorjGNM0U/+8asuXh0DHi5s6SRaUpjKcTtsApQzypcFNB3EWSy47vFZOeyJgGHhk8qWOnou0ssjOpWPd+ed4vpTq1M+NglVKKQrlQQKvkdp6MO5wEt9GbMelMrovGWbQ4bHp1oVbN+83wzAoD08wuv9yipURQt+nWVvo6t8himLsTZY9rnpMpkl5eIKhiYPEUYh/gWVZSbBKAMlJIFuspJpdFXgNvPpCTzswpmXzPS97LY2FWZ7+9jeAdr8qh+Imm0R2amTvJVx+/Y2ceu67PPvoN9e8n9Z6cRJgWgzD5MpDP8i13/fDzJ05yT/c9afMnTkBJAHApx/5BqWhcYb3XpLaYwJURvZhOZk1SwEDv8nc9EkGxw+k8njtTCa/UePIY/d39b212SkM09rUVJtOjuvSF30/l7zgBo4/9QiNhdlUpwCey3YyjB+8mhPPPLruRJ/q7BTPffefyJeH1ty12coPsGT88tYtdlYLVrV3sFIvCW6VjACtEqQQw1A06wtYtrO4uNJxjGXbFCsjjB64nIHRvSgMvHoVf5MXfBMHr+bg97yUkb2XLrs9jqKOdwhtx8XJ5lPblY3jONXGq3svexGaZDH1kh/6Ma548Ss7brAcxTH50iCmZfW0694+Zy8s6VsVRxGN6uyKLAQd69T6pyTN1i/mqYe/xtPf/gbDey5J/Vy+lJstMDR+ESeefRStNceeTBqr77n4mo5/ho7jTQfrxg9exQ03/xQDY/t5/IG/45++/Bc0avPEcURtbnrNAOXShZVSitLQGEqZqUzB20jgN8nmK5jrvCaVMihURgi8dLKroijC2eQCp1AepDKyp6uAVRyFOCmXnXbLMExM21n3eU6LOidIlFnsWRWnltnlZHLrlodGgdfqV9WfILFlOxQqI/heMkXTb9apjOxNNXsukytsulSs25JLO5MlCtPs2xSRyXdWwn82iyztTZ/ON9ecTA5F79d1Z8vSNn7dZQtl8qUhvHq192b6rSBZN5lN6x5bvkSxMtJx/6o4CrAzm7s+NC076Qm8/3IGRvehNTTr1Y76RynWH4SzWW42z/DeS8kUyq0sq/5Mb9xpJFglFhUr6WZXRVFErjyE3+htJ3Rw/AB7Lr2WI4/dx8L0aWZOPc/A6N7UF6eruejqlzJ24Aqeeuhri8Gic3mNKoHX6LhfVTcmLv4eXvrat6GU4v6//QzHnvo2x59+hGZtPvWsKkh2FEb2XMLUsadX/YCeOfU8aM3QxMHUHrMyspfRA1fw7KPf7GgSYVvSXH24bxd9SikufeEruOxF3784ta+f9l9xHXEUcmKNksi5Mye4/0ufAeCF33/Lmj+nWZvfupJe3fkOYRos20GfE6zqJtuoG+aS8pgo9InjCKVMvHp1cUceWqPmWxeehmGSLZQZ2nMxQ3suxs0W8Bu1rgNGpmVz+fU3rQhIdtJzYqlCeaijHiqdSH4Pb7Hksf3/wG9uavc5V6zw8je8kxtu/qmug99Kx9hulsLAMIG3+TKNTL6MZTvL+lY1qrNorVedBGhadiqBkqQ/3g+h45g4DrniJa/q+WduZOLia2jW5jlz4lmOP/Moo102Vve9JoZhbLrRayZX4PpXvoWrX/Za5s6c4B/+5n/w9Le/gY6j1Td6FJjnXOybpsXA6D5C3+t7P7Y4ijZswgy0JomZqZQqxVG86SbEAPniIAMje/E7LV1RKpUM6V4YpollORhbUIpoGGcnghmmdfa51qQ2STYpDx1bszw0jqK+DyTJlQZQyqBZX6BQGUn98ZJSMWdT5/1uSy5tJwM6nY2SJHACttPZ9YJS6Tcc13GMMjqbTAfJZ46bK/S86dTNdZJSBqWhcfLlIZr1hZ7WhFEY4GbyqU5qLgwM42QLHQ0GC4Og59e/YRhkC2VG9l7C8MRBlDI6+PfYOItts0zTojK8h8HxA631T3+zo3cCCVaJRZbtJn1OUljotj8USoNj2G625/GrV1z/Smw3y7e/9gVq89N9LQFcSinF1d/7Wtxsnm9/7W9WPUG1d+X7EayC5Dl82ev/Lyqje3n0H77I4w/8PeXhPakGjJYa2X8pgd9cdRrimRNHMC07tdHqbZdfdyNaxzz10Nc6/p61ykfSdvG1L+f7/8W7Um98fK7S4BjloQmOfvfBFRcH06ee44H//Vksx+Wlr3nbmpkIOo4xTJtojSar/XDugrKfkmDV8tviOO5LdsDShU0YBkmwykgWAEsvfnQcrQggKaVw3CwDI3sZ3nMxUeCn1nejm+kyTiaPYfY+hjnZDXcY238FYweuZHjPxQyOH6A4MIabKWw666Y4MNr1Yjnp65MEErO5Mii16YWMUopCZWSxyTdAbb49CfBssCp5LylypUECP52Sr1yxwrWvuJlrb/jhVKcOrmV0/2WYls2j//BFQr/Jvss6b6ye9OuKKQ2OEwXBps8tSin2XfZCbrj5JykMjPLMI/8ArOw7GEchpuWsusBxMjmKA2OplGSuJYpCLNvuqOeIYRgUBkbwU+hdpVIYdZ4rDlAZ2YPfqK/7vthMeUw/GIaF5bhbklllGMbixoKbLSzb6Oo0q7MT62VXaUi1PGg1pmlRqIwm75WU2yRA8j7ebClgtyWXjpulNDSRlD31GLBql712U26ddsPxdtCom03WfGmw500SHUXYXWxOtNs/lCqjeD0ErKLQJ9Njv6qVx2YslrVuGDTSOrX3m1IKJ5OjMryHMPDWfE7a6980zymraW+iF8r9XwdtNwlWiWUK5SHiuPfJgGHg42aLmKZFeXiCKPB7+pm2m+Gql/7QYmPMrQpWtR/72u/7YRrVOR6//+9WfL29K59mGeC5nEyO61/1o1x09UvROuayF31/3zKKhiYuRhnmqqWA0yePMDC6+dHHa8kVK+y/4nqOPf3IqtO5zuU3awReY8VJWmtNozaXeqCm331d2vZd8SJq89OLfdkgmZL2rb/7SzL5Eode8+Pr7vaHoU8mX1i1yWraoijpr7IVi4y25MN/+b+t6kO/KgDVau4KJE09wxCjFaxa2scmjiPMdQIutpulMro/6bPQw8V20kOnu906wzDIlwd7yj6CZAJlrjiAUgrDNLGdDG62sFh6NLzn4sXJif0WtT5b2sdSKA/3tMFSHBhhYWZy8ZxRb33GLO1ZFccRlu3gZvMo0ju3jB24gvGDV6X289ZjWjajB67Aa1TJFitdfYaGfpNsvky2UE5lQytbqHDo1f+SK178Skb3X5702Vki2mDEer48iJvN9zwFby2h1yRfHur4vJ/NlTHYfNB0qV5HncPSgNXafU16KY9Jk2GaVNaZNJumZJR8cv7MnNOLLM3PsbPZVcvPu3ErCLoVDe3zpQGGxi7q27+vmy2wmcusOI67Lo8qlAcpDY33/H6PAr/rCa9JFpmdWu+qzbROsN1c703tO+hXtfJbFIWBEYqDY0mG1Waee01fJn2als3A2H7CwN+wl1TawxucTI5sfu22Od2UXPbKNK1tz47dChKsEstYtku+2PvFaBwG5Fq9hBw3S648jN/srRxwdP8VjOxLpkj1u1/VuQbG9nPxNS/j+NOPcPLId5Z9bWH6FNlCZdXynGattxTapQzD4IoX38Srfuz/Tq1n1Gos22Fw/ACTR59cduyN2jz1hRkGxy/qy+Necu3LsWyHJ75174b3XZidAlY2V4+jANO0e36tbZexA1diOxmef+JBAE48+xgPfeVOCpVhDr36X26YzpyMxC6uaLLaD1EYkNnififn7lS1M176MY1QKQP7nDJATVIOt+zfQYO1wUVgNl+kNDhGs4dskDiOMG2n62b22Xy590l2Wq+bWWgYyYIz9NfebUxLHIXLgoXZQhl6+P0KA6NEoU+jOgdAbWEaJ5NbthsbhyF2JotluxiG2YceJluj3aNq32XdNVaPo2hx0m2hPIyOez+3KKW46OpDvOjGN63IoIrCaN0SRaUMKiN7yRUG8L0GzVo1tUBp+3WUyXZeOmKYJoXKMEEKGwSGmc65LFccoDg4umYZT3L+3t7m6m1bNY1QKbWYCbzYXF1rUEbqG3BJdlVu2esy3ESwZLPawfx+sWwHN5Pb1PtuMxknS4cI9HLu6bbRt1KKXHEotamfehOZPoaRNLXvadNJby5rUylFsTJCebD7YGEcR0mZb5+y7x03y8DoXtDQrC8stiYIW8kRcR83VEuDo8ljrPJ89Ks1xYVMglVihXx5sKfsqvb3LY2mF8vDGIbR0+6EUooXfv8t3HDzT27LbuAlL7iB8tAEj/3jl2jU5hdvX5iZXDWrKo4jtI57LoE811Zksozuu4xGdY7a3NTibdMnjwAwNNGfYJXtZrnk2hs4c+JZpo4/s+59q4vBquWZVVEYks1XUEqlOu54s9qjbztlWjZ7Lr2Wyeef4Olvf4NHvvY3VEb28JJX/1hHF1kacNxM0mR1IGmy2i9xFG15c17DNJeV5yfN1TN9mUaoDGMxY6o99bDd1NM9J2jYST+GfHmIXKHcVV+2peJNXgBZtkMmt/nx1+3x9hv10nEyOQqV4Z57FG4kKaM5uzFg2U5Pw0HaZTLtUsD6/Ay54vJ+VVEU4bi5ZGJrvpT6OX2rDIzt5/pX/QgHrnxJx98TBj62m1187S2eW/qYudlJc1rTsikPTzB24AoGx/djmhbN1mKll3N/Mi2s2PXCLlccQBlq09kPycLOSvXaplAeptAawb7y8XRfMh52MmWszKxKeg72Y7NDURwcXZZdFcfxtk9fTFOuOEDU5eeKYvPlUYXyEKXBcZqN7ht/J5ngzqYCJ0lD+XQ2KLrNjm7LFkqs6IHQoaR03uxp7VCoDFMa2pOcXzt8LtrB2X5mGGXzZUb2Xcr4gasYmjhIcWAMy7IJmnW8Rr1v7TtMy6Y4MLbqxriOogvu3NpvEqwSK/SaXRWFAXYmt+yEbJgmpaE9Pe88Gqa1bR/2hmFy7StuRuuYR752GB0ngahGdXbVflVRGGK7ufNyWsNwawrZ6aNPLd42feIITiZHvo/10fuvuI5socwT37p33YuD6uwUtptd8UEUa42byyc7cH0ug1uP1ppmvYqTzWMoo6sFzL7Lr0NrzVMPf43hPZdw/at+pKOm2nEcYxpnpx0lZVsGcZTeJJ2lFHTV7DsNhmGilHF2LHcY9C1gZhgGVuviLgy8pOyongSalme4qY4uvpVSlIcnsOzMps6tcRRiZzbXe6GXnhdh0FwsAdxIoTKMaVt9m9Z27mu8LV8a3PTrvFAZBqUWew/W5qdX9JBaGjzJ5It9e0/1m1KK4T0Xd5VxEfreis2YfHEQZRp93RDodEFnGCaZXJGhiYOM7ruM4sAoURjSrHc3arwtCoMVwcqOjsM0KQ6O4m8y+6GbSZ+dak9QdHOlVTdN+pXxsFMptbRnVSuzKo4Wy73T5mTy2EuyqxTplyRtJzdbANX9pLpeMr4KleEkS7nLPkqh75ErVDb1mJbt4Gwyi2yppLn65oJVlu1iZzY33bc9MblXhfIg5ZGJzifxhdGyLOh+Mkwz2TArDzI4fhFjF13J6P7LKZxTYp6mXLGCZTurXu9sVbbohaKrYJXWmmr17K7wXXfdxX//7/+dp556ap3vEuejfA+9q6LAX/VDIZMrkMmXztsSLUhOTle99NXMTh7lmUe/uaRf1cpgVRyF5Aol1CY+zLdbJlegNDS+2LdKa82Zk0cYHL+or7skhmlx2XU/QHV2iicf+j9rPm/VNZqrt/sXZfMl3EyOIKXU7W60A1W5YoWB0X3ky0OEXSxgcsUK+6+8nn2Xv4gX3fSmjj/0osBfNhLbNC2Kg6N9mQyYXHQZ2/KBbNnuYvBPx3Hf0q2VMhZLRtoXiM36ArB05LkG1fnFt2GYrRHIuuuFtNZ01Zh2KSeTxTTtTQUX4lh3fMGZlAPuJfD6Uw4YhT5OLr/iHGQ7GdxcYVPvd9OyyRUHWJiZJPAaBF5jlUmAZxcYtpNNZZR4r7wOR2j3IgoDLMdZkdVpmCalgVH8ZvqPv5gFsKkFnUOhPNQaNX6AOIrw6p01Zg4Dj2YtGZ7gZDZ3Tsnmy5jG5oJ47T4naUtKJidwnMzitVccR5ibfI7PZ0s/s9rntDiKsJz+BO2SJtWjhIGXbOK62S3t8dhvhmmSyZc7brSefF6qnifDFSsjlAbGumv8rXVPG1u50iDhJoLfS0VRgJNZ+fnVqc1O900yw9PZ1MsXB3FzxY5KEpXqT7+qTihlYDtuX89xhmFQHpog8FZed1xo59Z+6zhY9fjjj/ODP/iD/PEf/zEA//W//ld+5Vd+hd/7vd/jzW9+M9/4xjf6dpBi61m201N21WolS+3pEmvV+Z4vJi7+HsYvuoqnH/4ax554GIDi4CqTALXGdnNkcudn2cjovsuYP3OSZr1KdTZZyPWrBHCpsQNXsveyF/Lso/fx2De/tGKhobWmNndmRb+q9kWLadlJFsvQeM+N/bsVxzFefYHSwCjloQmUMsjkS133DLrq0A9x9fe+pquLuiiOVjSNzeYrGKa1qQyDdR8rCnAyhb4GLteyLFhF/7IDlDIwDDN5/lrv32YjCVYt9juJY0zL6qoM0bIdBscOEHjNrjLuFJu/AFLKIF8e7jq40V7UdtNjI8m+HOrLpkQcRosZEecqlIeJN7nzXWxNBFxrEqAyzmbPGaaJncml/p7qht9MyhviKOprllfoexTKI6u+vrOFMpbjpp5Fl0YWgFKKbL7IyL5LKQwk/TL9Na5lwsCnWVvAMKxkyuXYgU2XFRuG2SoN2cSUNB33bUqcYZhUxvZjmBaB12xNRettnPv5SCmDfGWIysheyq2m7nGssfuYIexk8lh2Bu/cXoe7RK5Q6bi9h44jTMtJ5bqhUBmmWBmlWd+4rD7ZXDN7akTtZvOoHns/RmHYU1mak8lhGEb36yetU23CXRocJY7Wnwq7G4Ozq3GzeTL58uL1znZu5O5mHX8i/+f//J8ZHBzk1ltvpV6v86lPfYof+ZEf4eGHH+YNb3gDt99+ex8PU2yHfHkoaaTaxck5CgNM211zAWnZTnIx16ex077X7EsmyVJKKa763tfg5oqcePbRVjnaapkHKumnUigTBedfKeDIvssAmDr2FGda/ar61Vx9KaUUV3/vazh4zcs49uTDPPy1LyzbqW5U54jCYOW48zhqNUBOTmu2m02aUm5RJl8cRfiNGuXhPRQHRhYvyCzbIZMv9j1gqXS8YmfeMAxKg2M9T4M7VxiEuLnuGpWmxbIddByhtcZQqm+j15VhLAbDgtZuplevYlr2Yvlj3OUY7jYnk9twWtdSyShk1dOksGy+CLq7jKDQ98gWKl0vLoqVEQzD7ENAZ+3mtE4mh+lkNhU8KQ6M0KjOMX/mJHDOJMAoWDHZJ1so9a3UcSPt57Q8vIfK8B78ZmevoW7FcdQKtq++wFbKoDw0vuquci/SzAIwDJNiZYSRfZfiuFmatbOlgVEY0KwtoJTB0MRBhiYOdt18eTXZQgnLsbt/7ev+9qM0TYvBsQOAJvAaqfyu5xulFJlckUOv+fElGzu6ryPm29lV7bH3u42TyXY8qS6ZBJjOIr49qS7pA7n+eiIMPDK5Yk+9LU3T6r1fodY9tU4wDJNcaYDQ736Nk2bwxHYy5IrrT5wOA59MfmuGCWy30uDo4tCROO5PhuyFruN37re+9S3e/e53c9lll/HVr34Vz/N461vfimEYvPnNb+bxxx/v6OdUq1VuueUWjh49CsDXv/51br31Vl772tfy+7//+4v3e+yxx3jLW97C6173Ot7//vcTtvr+HD9+nHe84x28/vWv5+d//uep1ZKT1Pz8PO9617t4wxvewDve8Q4mJ5PyLN/3ec973sMb3vAG3vzmN0vJYhcs2yHXZXZVGPjkipV175MvVbDdbF8W7zoKsZwsjdp8X3e+bcflBd93MyhFcWB0xWKuXZtumFbSmNfY/rKRbuXLQ2QLZU4ffZLpE0fIlwa3bGdQKcXl1/0AV7z4lZx+7rt86+8/v1iKtVZz9fbErqUKAyOgVN97zERhgO81GBjbvywroy1XHCTuY++ydnPe1YLEmXyp9X5Lb3Gt0NjO9qR3J8EqnQQR3GzfsruUUknfKts9m1lVm29d9CaPqeNo05ldueIA+Q6npMaLO9I9XGxbdlclG5CcxzbznjdMk8rIXnyvkdp5r71judbznUwtGibwun+dF1o9mU49912UMpIJgy1RGK5YZDpuPknr22JaawKvSWVkL6Zlky2UyZUG+5LFFnhNCpXhdbM73Wy+45KQjqWcBQBJNubA6H4Gx5PSwPaU3oGxAwzvuTjJmkjpPKKUQXFgcxsE/QyaQHvS70U4bu6CGHe+GsM00UsaVfd7ah4kvZ1Kg2O7chGrVDKprpPPlTiOUn0Okp5s462NkbXP+1EYrRl070auWFl3XdFJBn2vmeDZQpk47vzDpz0xOe1Mn+T6e+0qGa31rgzOriZJwhjFb9ZXvV4Qvev4ytcwDKzWru69995LuVzmuuuuA2Bubo5cB7vsDz30EG9729t49tlnAWg2m7zvfe/jE5/4BIcPH+aRRx7h3nuTsfXvec97+M3f/E2++MUvorXms5/9LAAf+tCHePvb387dd9/Ntddeyyc+8QkAbr/9dg4dOsRdd93FW9/6Vj784Q8D8OlPf5psNstdd93F+973Pn7jN36j019ZsInsqg1GnENrR3Z4gtBPt0QrDHzsTI7Bsf0Mjl3U6lfR25jb9VRG9/KiH3gTl133Ayu+1h5d2r4QcrObn8a1XZRSjOy7jOmTzzFz+iiDW1ACeK6Lrj7ENTe8gZnTz/PA//5z/GZ9cWpXoXxuZlWI4y4/D5mmRWlwrK+Tq6LQJwx8hicOkl1jJ8lpDRzoZRrmusewzkjsdvltmqOXUdvXnLe9oNuK0euGaWLa9mJg3atXl00CjONocWLgZuSKAx2dn1YLxG5GvjRA1GHgNo5jDMPcdNNnN5unUBpKLbMxDAPc7Pqlp26uiGlZq/YM0lonJV/12orgdbvn4OzkUbLFyrIAjY5jnHMWWJbtYJjmpie/bZbfrK/YNCgNjGFaVqqfL1pr0HpZ0G4tpcFRojDdz/J+ZEu2s2pG9l3K0MRBRvZeQjZf7EuwO5MrbmKDoLfMyU7ZToahiYMX7LQqw7CWn3N1fzOroBVIHxjdlinWWyGZlrfx+z+O4sUG92kxTYuB0X1Jn8RVPkuTrGRWXBtuhu3mMFRy3o/CgMBr0qzX8OpVvHoVv1HHb9Rp1qs0a8lk0sD3knLtONp0L75lx+BkcLrIII5bG2ppT0xOpuGNrPr5ruMYQ6kLKiCeKw1gmMnn8LnXC6J3Hb96r7vuOj71qU9x+PBhDh8+zKtf/WogyYD6+Mc/zktesvEo5M9+9rN88IMfZHQ0uTB8+OGHueiii9i/fz+WZXHrrbdy9913c+zYMZrN5mIw7C1veQt33303QRBw33338brXvW7Z7QD33HMPt956KwC33HILX/nKVwiCgHvuuYc3vvGNALz0pS9lenqa48ePd/prX/Da2VUd7f63R5x3kObquFmyhc2PG19NFATkWiUrZ/tVjKzbr6JXo/svozw0vuL2OFpeypArVoi3scfJZo3suwwdR8RRuCUlgKvZc8k1vOjGf0F17gz3fekzTJ88kvRLOTdYolcPoGQLZRw307cyvMD3GBzbv+5uilKKfGWIMOWSmbY4Wn/qSpoZEHEUYjvZnpukblZ7F1zHOvXpWSsey7CwLGdZg/VlfcE0PY09tx0Xx81umAUax+mMQrbdLI6b7agReeg3yRTKPV3kFgZGUIaRSpZr3ApWrccwDAoDw4uv8ygK8Zs1mvUF/GYNy7LJFcorene52cJieeG5kwBhZQmFUqqVpbZ1vQjDwE8WCOf0RzRMk4GRfYSBn1ovyMBrkCsOdLSwsp0M+dJQKhsCaZS7bsQwzFYmVf8CB91uEMRRhGl31/uuFxdyPxXDMBYDq2k1/L7QWU4G03Y23IxT6L68t51MjtLg2KrlgElZcS6V7DnDMMiVBgi85mI/0srwBIPjFzGy7zLGD17J+MErGd13KUMTF1EaHMPJZInjkKDZwElpcy3XRaP1tDa6Vj2O4gCGaa74dw/D9rCf3RmcXY1hmJSGJlCGgXEBn1/7peNX0vve9z6OHz/Or/7qrzI2NsYv/dIvAfCzP/uzBEHAr//6r2/4Mz784Q9z6NChxb+fPn2akZGzTZJHR0c5derUittHRkY4deoUMzMzFAqFxQyv9u3n/izLsigUCkxPT6/6s06ePNnpry1IFhxGBwuOMPDIFjvvb1KoDBNHUXplIixPO13eryKX9Kvo46jtZccS62Ujih03t6kRv2kKAz+ZjNTFMVRG9mK3+rUMjO7v49Gtb2Tfpbz4B38Uv1Fj5vRR8uWVkwCBxeltSyllUOpDJh+0Fhmm3VHabyZb7ONrQG0YJC4NjBCF6zfF7ETUQdCgn87uguu+9atafCzDxLSdxUCA16wty6xq36cXSQ+KDRa1WqeyI62Uojw8kbwONghs6DheM1OwU6ZpURqaSK1MrJPgZDZXRhkmzVZWbb40zPDExYwduJLB8YuSMvVz3gPt/ieQlOyu+D1Wee4zuWLfsnbPpeOY0PeojOxd9fVmu1lKg+P4zd57QWqt0XG0ykTEtW1UEtKp9kS83bDIcTK51rj7jQNWcRxi2RdmptNWM0zrbLAqxYbfFzKlVMelgP0KDObLg7jZ/IqN6Sjwya4ynXyzigOjjF90FcN7LqY8NE6uWMHN5hezl5RKWge42Tz50iADI/sY3Xc5YxdduerG9mZksgVQqqPPnyiKUskqW41hmJQGx1ckHURR1PO1w/kokytQHhrftqqD3azjK4KLL76Yu+66i69//evcddddjI2NAfCpT32Kv/mbv2H//u4XsnEcL/uQaO+qrXV7+/9LrfUho7Ve3EE592ft1lTcfjFNi8rIvg37j+g47qosx3ZcssV0squiMMBxMqueJCzbTUoDxw8QNBtbVrqx9Fi2uxQw8BroOMm+6WZBYxgG+y6/jrGLrtr2lN6B0X0ces2PkysOMLL3kmVfW0yxXiOd32k1W0+7t0vgN8mXhzpaXJmWTa5QSX3cfBxFmNbq/aqWst0sudJAzxkQcRRverR7GgzDRBkGyuj/6HXDtDAthzDwkveN1uf0cFI9l5C0A3/rBxF1ar+r7WQoDozgrXPejdvTk1LIXMvkCpiWvWppXqd065qgk4tAwzQZmriIsf2XM7rvMooDI60pSskiyXLcVYPG7VLApT3n2r3gVtuVt53Mlm1AeI1asku/TnZdvjRAJlfs+f0d+h5urtTV+X69kpBuRGHQ03j5neRsdtXGn/lxFG375+uFwjBMaPWsSrPh94XOzRbO3QNYRe+fl2v+ZGVQHt7T6me59LNGp3q9opTaVHDTMMzUAnWGaXZ8LanQfQ2eZPJFHGd5ybPSelf2Z9uIUopCef0+j2Jzuo7aNJtN7rjjDv7oj/6IyclJPM9bbH7erfHx8cVG6ACTk5OMjo6uuH1qaorR0VEGBwdZWFhY7LnRvj8kWVlTU0nj5TAMqdVqVCoVxsbGOH369IqfJbrT7j+yVqAjWUwYXS9uCuV0sqvCwCNbqqx7n0yu2NUErs06W8qw/CJou0oBvUYNw7QZmriYysgeLDvTVabDZdd9Py94xc2beuy0n+fiwAiveOPPsO/yFy27PRl3vv4ip1AZToLhKWXXtZtpdtOAOlusoFNu9t5Oue5E0jdD9VaWpehpok0aLNtd7AnXT0mDdXtxvD2w+Fy3e3f1evFtWjZurrBmIDt5HCPV8ol8aWhZeeO5wsAjmy+lkuGi1PLSvM2IogAnW+j4eGwns2ZwL+nDlSOOlr8Hiq3MqmXBqijEXmNX2jBNHDfX10EekGw0uJkc+fL6mU5KKcpDE6Do6ZiiMKBQHur6+5KSEKun7OXV+oOdz5xMrqPyax3HEqzaIkszq9Ju+H0hs2yHTK6Q9Ild5bpPa41G97WZvWU7yWCPZrKxHkchpu1s+/VKP2SLlY4yqzT9LftVyqA0NL6YHZ4857ZkF4lUdXwlGscx/+E//Ade85rX8Bu/8Rv8/u//PqdPn+b222/njW9842I5Xjde9KIX8cwzz3DkyBGiKOILX/gCN954I3v37sV1XR544AEA7rzzTm688UZs2+bQoUMcPnwYgDvuuIMbb7wRgJtuuok77rgDgMOHD3Po0CFs2+amm27izjvvBOD+++/HdV327NnT9bGK1kLXtFdt7BcGHplC94sb23FbNeA9ZldpjZvZOKsrVxwgXxnBq1d7e7x1rFXK0O45s1WlgFprmo0aTibP4PiBpCmwYTIwug+t474usrTWSa+wVuPJfksmcKy/e2ZaNuXhPYsXMr0KA59MrtDVh7LtZLCcTKrPvY6iDYcatLWzJAOvuannII4jTNPa9p4nlu2m1v9hPYaV/K5R4NGszwMsBid1HGNaVioBs1xxgChY/TURRyG27aZaGmUYBpXhCULfW/V1EEdhqmOnM7lSkoW0yTKxKAxSnUSayZUIz3m+xy66iu95+esoj5y9PtjovJItVDpudLsZSWPemPLI3o6zNwd6eH9HoY/jZjfVHy0pCelxmIVSq5Zyn886Lb/ud5NvkVBLpgH2o+H3hawyvJdssYJXX1gxxEK3stj6XeKbzReTLPpGvbXpUunr420X28lg2u760wnjGMMw+n5ucTI5MvkSvtcgDPxd+5yL7dPxWePjH/84n//85/md3/kdvv71ry9+8P76r/86URTxX/7Lf+n6wV3X5aMf/Si/9Eu/xA//8A9zySWX8PrXvx6A2267jd/5nd/h9a9/PfV6nZ/4iZ8A4IMf/CCf/exn+eEf/mHuv/9+fvmXfxmAd7/73Tz44IPcfPPN/K//9b/4zd/8TQDe+c534vs+N998Mx/+8If53d/93a6PUySSRq57k6kb51x4JTXKG08OWk2hPETczcTBc0RhgGmvXgK4mtLACJl8MZX+HqseT2sS4LlM08LNFfq6uGnTWtOsV8kVygyM7ltWHmfZDoNjBwi8ZmoNeZcKAw+vUcXNFhnedym2m+1bg/s2rfVig+T1ZPMl8uUh/FUacXYrCv1lWRidUEqRLw+l3pi5k9+9zc3mKQ6MrtqMdCNRsL39qtrcXLHjAF0vDCMpA9RaU5+fAVhssB7HEZaVzo6tk8mhjNV7UMRRhNWHRvJOJke+MryiNDaZ5GOmOi3MNC1ypaEeSmDTnSzkZLIr+laZpsXeS1+wPPio9bqP62SyHZS+bJ7v1SkP7+kqIO5m8xQrI5sqeQ48v1XWvLkAbCZfwnWzPQyzSK/cdaewW8NkvEZ1nc/b9EfLi9UlZYDJn/vV8PtCZZgmleE9DIzuJ/CbyzIKk8/LrQkMFgdHk4bvYbgl1wnbISk5G1x3WMrSqeT9VhocXZx62EkPVyG60fFZ+i//8i/51V/9Vd74xjcuG3191VVX8e53v5uPfvSjHT/o3/3d3y3++YYbbuCv//qvV9znqquu4nOf+9yK2/fu3cunP/3pFbdXKhU++clPrrjddV3+03/6Tx0fm1ifk8lRrIxQnT+z+CHQHg272f4mlu2SLw7QqM1vqrY8DHyKA2Md318pg8rwXqZOPEPgN7ta6HdCR2ufrHOFCtOnj/Y1LTmOI/xGndLA6GLp27mcTI7KyB5mJo+RyaUzvjuKWhNPMjmGJ/YuPgcDo/uYPP40Uej3rSG26mKRUxwYxW/We/q3j+MIw7DWLBFaTyZXYF4ZSelsj/3z2mnu3S508uUhvEaVwGt29b6No3BH9JTJ5tPLslmPYRiLr9na3Jlk2mnrNaNbI6HTeZykB0WjPr8i0N3PBqnFyjDN6lwS8G+9hsLAI5Mvpd7bMV+sUJ+bWrX35Hq01ihYNrCiV8n5d/U+mOda771lWg6mabUm4aZb3hKFPraT3VSj2lxpgGqXz3Xc2oXvtKR4NUopSkPjTJ14puvG1XEUYlruruz3UR4ax3ZcqrNTaB1ju9mzU01TKicWnTn3vLYbX2/bLVsoY7sZZieP06xXcbP5pJm9vTUbXUkFwV7mpk70fWLwdkom7p3E9xqYlp3081xyzo2jEHuTSQTdsmyXfHmI+tyZXf2ci+3R8dXo7OwsF1988apfGxwcpFrtf6mP2BnyleHFpsOQBIvcbLGnD/18eZA43lzvKq1117snhmkyOLYfHfehHG6dUgY7k0PRv1LAOAoJmnUqI3soDoysu1jIFQcolIc3lWGz7DHjmGajRhyGDIzuY2ji4LJgnWnZDI7uJ/C8vjS3TxZkRscBG8MwGBjdSxyGK1LVOxV4TfKlwU0t6A3DTEpfU2i0npQidr+4NAyDyshe4jjq+jm4kHqrKMPEar2uqnNnlgV24zjCTPG5yBbKq/Yz6yYQ2y3DMJMeH0uGZ8RRRLaQ/gWuZbu4uVLXWTftpttpl0G62fX7TSXPx/oZL0opsoVyD5lEaws8f83Nho2Ylk2u2F15feA1yJeHeg5SOpkc2Xy569L+Tkq5z1eGaVKoDDO6/3JKw+NEoY9Xr7amciYZJzKRbmssP4/0r+H3hc6yXQbHL6JYHsZrVAkDf0v7GNlOhqGJg7tisuhaTNNicOxAUtUSa/xmDa9Rw6vXCLwGURRtaeCoUB6iNDwhAWCRuo7fxVdeeSV/9Vd/terXvvSlL3HFFVekdlBiZzMMg4GRPYS+j45j4jAg1+Pipp1d1e0FbhyFWLa9qQW0ZbtJurKX9oTAtReX/S4F9JtNysN7yRUHOrp/cWAUN5Prqc+I36hRqowysu9SsoXyuplcXh+a25/tEdb5xb5lu61GnJs8Hh331NMnW6igU3jNxXG86TR3y3ZaPbzqHT0H7SyNC6lx5tLftzY/vTwwqFkMZKUhybawVg0e9rNEqD1iO/BarwOlUi0BXCpfGiReozfXWsIgwM2lvyPv5osr+lYtFbcy5zZa7LjZwpq9uHQc4zVqNGsLXZ1nkgmfZk8lt7lipePPtfawiLSClMWBEXSXpf39zCDcKQzTJF8cZGTf5ZRH9qJ1TLNexXIvnA2A7aaUgtZ0cclo6y/DMCgOjjI0fnBTGeC9uhACwG42T3lonJF9lzJ24EqGJw5SGd1LJl/GzeS2tLm8aVrkO1x7CNGNjs/S7373u3nXu97FqVOnuOmmm1BK8eUvf5k/+ZM/4fDhw3ziE5/o53GKHcZ2s5QGx5ifPoVKaXGTLw9RX5jpqnQh8D2KlZFNP6abzVMZ2cvs5HHcXKHnD7dOShky+TKzU8dT/xCJwgDLsckWOg+itDNspo4/s6mdryRQ5FCobDw9KluoEHhN6gszqS4+ozAg12XvqOR4yvjNOvXqbFcBnzDwsd1cTxlGtuPiZPI97zYqepvMlyuU8Rs1mrW5Dcv7ojDAdrO7eqfyXMowMFvPr46jFa/bNHcQlVJJ+dbs1Dkl1v3vZ1McGKVZX8Bv1sjky6mXALY5mRym4y4rO9yIQmM76QfPHCfLYvOaVcRh2NF5ynYzSfP4JZ9bOo6TPn1aJz3qggC/We24l0fgNSkOjvX072C7WRw319E5Jgw8MrliaoFoy3YplIeXtQvYSL9HrO8khmGQK5TJ5ot4jdoFdU7dbsowQOtUB2SI9bnZPKN7L0MZ8lz3k2GYGK0BGZspHxdip+r4E/IVr3gF/+2//TeCIOD3f//30VrziU98gieffJKPf/zjvPKVr+zjYYqdKF8exMnksDO5VBZTlu10XbqA1j0HPpIJgcMpNd3euJTBzeRQrZ3sNAV+k+LAWNcXvqZlMzi2nzDwuz6mbqatKKUoDo6l3nA91nrT486Lg6OYlrNuk8pzRUH3jdVXkyxiN18+FEUhpu32/N4rDY5hWBZhsH62XxQGPfWzOR8pZSzLnlpecpl+CUkmV1qWpbOZrMHNME2L8tAEcRj2nCW7nqQp7HDH77d2KV4/doctx8VoZ1isotNMH8NIMqCi0CduZVL5XoNCuVX2NThGabDzTCMdx6B0V5sOaylUhjsa5hCFQSrntKVy5UGUUl2VGV9oTcaVMshs0bAIkUiuj9SWNvwWSVahBGWFEJvR1ZX2DTfcwA033ECz2WRubo5CoUA+Lx+yFyqlkqycNMqZ2rrJrkqa2lqpLGRKAyOEzTq+11h1kl+nkukb6y9wTMvGyST9UtLaSU5+lrs4qaxbtpslkysQBl5Xz6eOu+sXtpjJdeKZrrIr1qNg0+POk0ac+5g69hSxZW2YKaPjGKWMVDLD3Gwey3Y33Xg+CZptnNG2EcM0qYwkz4FpWms3fe9w4uJukmRWnf23aQfr+lVCYjsujptdfG/EUUhmixqkZvMlKmP7NzU0oBuZfBHjjLHY0Hs9URjgZLJ9yfRSysDJ5tc853WT6ZPJlZg+eQTTdilUhskVKsvObZbtkisPUZ+f3vB86XtNcqWhZRNcN8vN5hdfR2u9VqMoxDTt1PtFmaZFaXCMuakTG54v4zjGMM0LLlgltl7y+aZbAzK2f7KtEEKI9a17BTg7O7vqf81mE9d1CYJg2e3iwmPZTqr9TdrZVZ30UAqDJrniQCpZB0oZlEf2gtZEUbj5nwMdLXCyxQHCFBu7B16T4sBoTztXuUKFqIt+Msk0O7PrBo6W7bQarjfXGeXdjd4aUNuOS3l4oqN+WoHfJFuspFL+pZRBeWiCwNtcdpWO49RGBDtultLQBH6zTrNWxfcaq2ZEpDmR7XyQNO4/+35uZ1b1s4QkVxpYzIaJonhLA4T54kDfSgDbDMMkXx7qKIM2CoOeesNtJJMrrdNkvfPySzebZ2BsP6P7L6NYGVn1+wqtzKX1znlaJ4vofLHS0eNuRCmDwsDwshHy5wo9j8LAcF+yHjL5cmuE/PqfK3EU9D1IKgQk7wlN+gMyhBBC9Me6W3cvf/nLu7oYf+yxx3o+ICHa2VXr7QYDxHHvJYBLWbbDwOg+zpw8gpHdfP+qTrJ8lpYC9rrgjUIfy8lsaircUnYr8NHpMbX7nGxmkeNkcpRHJpibPEEmv/njTmvcebufVm3+DE4mt+brTsdxqmVSbjZPJl/C9+qbyuhLM3hUKA+RzSfT2pr1Ks3aPIHXQCuFoVRScniBNaM1DAPLWRmsSkpI+rPQaTfV1lrv2j4+2UKZhdnJjs41/Wr2nvzszKptq7TWKKPzMk/TsjcsozMtm+LAKAvTp9b83Ap9j2yhlGrZYyZXYl6dbG0uLD9XtzMEM7n+BAQNw6A8NM6ZE0fWDfxFYUiuKMEq0X9KKQzDSIYYXGCfZ0IIcT5a90z9kY98RJoPii1n2Q6V0X3Mnj6K5TirlkjFcYRpmKlnHbjZAsXyCAtzU12X1MVxlJQydHABZFo2bq5EszaH7bqbKgNrC3yPwbEDPb9X25MKOy0FjKKop74qucIAXr3eVePhlccQ4mZ6D1gqpSgPT+Bk88xOHkepYEVZTBQGmLab+uK5NDjK5NGnVl1MriUKA2wnk/rFtmnZyWszW6A8NE4Y+IR+k0Z94YIrAWwzzeQ5SXp2tQJJrUlxfXk8y8bNFVp9nXbnaHXLdsjmi/jNxpqZmUmWo+7rNCPLdlCGseK9F0dBX3qF5YoVanNTa27EJL2j9qX6mKZpkSsN0ViYWXGeDbxGUrLYx9eYk8mTyZdp1udxs/lVn1N9AZYYi+1jmCZRGEqwSgghzgPrnqnf8pa3bNVxCLFMNl/C3HMx06eeI46aKxY0oe+lVgJ4rsLAMH6z1nX/qigMsd3O+zcNjO7Ba5SZnz5Fs7awqaBVGPjYTranEedL5QoVZk4f3XCBmGRE0NOULqUU5aExJo/XNt2/Kgqj1ErhIHndOW6W2akTNGoLuNncYtZWEPhUhiZSe6w2y3YpVEaSKXC5zl4/UeiTLw+nfiznsmwHy3b6Woq10xmGiWU76DheDFT2u4QkVxxg+uRzSc+sXdrHJ18aolF9Ztm5XWtNFPpJObKCfHm4r2WJShm42QK+11g23TMKQ3Kl9F/zhmFSHBhldvIEmfzyc3YU+jitSU5pyxcr1OemVmSy6Tgml1LJ4VqUUlRG9rAwa1ObncTJ5ldkwiouvObqYvsYhgV4u3IjQAghdpuuztTf/e53ue+++wiCYLG3i9aaRqPBgw8+yB//8R/35SDFhclxswxPXMzM6aP4zRpO5uxCXsdxz2Vva2n3r5o6/nSr+Wxnb5M4CnGznQdOzk4CKuA1qsxPn+46aBX6TYYmDqYWtOu0FDAKfdxsAcPsrfzOtGwGRvZx5uSzGOZmegDFqWe4tKcj1qszzE+dxLCSJv6KdMtOl8qXBqkvTHf8etOx7mhSmeidMk1My8Ew7bOvT82yKYFpczI5UAp7CyYBbhe7FZiJwmQKZegn/3dzBUqD4zhurufzSyfcbIFmbR6WBKt0HG96wuhGsoUy1bkzKwYrBL7P4Nj+vvx7W7aLmysR+I3FDKYo9LGdTF/LLNsMw6A8OIbtuMxNHsdsBcHh7GeNBKvEVjEMA6WMLTm/CCGE6E3Hwao///M/57d+67cWLyyWNiI2DIPv+77v68sBigubZTsMjV/E7NQxmvUqbjbf6ifSfWPvbh+3MrKX6VPPdd6/Sm+uZEUptSxotTAzSbNVdrXeBXwY+DhublkQr1dJKWCRwG8uyzQ4VxQEFCqjqTymm82TLw9TnzvTdTBIddEEuaufqxT54iCOm2du8hiN6hyF8nDfygYM06Q0OM706aNkN+jhFXgNDNPq6+tfnGWaFrabXfE6S6PJ/loMwyRfHIBdGqiC5D1WKA8xc+r5pIfd8J7F6XVbaa1gTb+OIxmsMM6ZE88uBqviVpC6m8mq3cqXBpk+8Sy0glWB5zEwmm7J4UZyhQqW7TJz6nn8ZgMnk01KLt3srg3Kip3HMK3WgIz+DpMQQgjRu47P1H/yJ3/CK1/5Sv7xH/+Rn/mZn+Gtb30rDz74IB/72MfIZrPccsst/TxOcQEzTJOB0X3kiwN49QUCr0E2X+r7hUYmV6RYHsFr1Dr8jt4CJ+2g1fCeixkavwitNV69ShyvnMoGSSlkcXCsL31V4g2mN2nYVEPwtRQrw1hOptWnpzNxHGMY/R13bjsugxMHqYzsJV9ev4FyrzL5Em4mt+ZzoLXGa9QwTJuhiYN9DZaIswzT4ooXv4qrv/fVS27tfy+pfHmo7yVa2y2TLzF64AqG915CrljZluway3YwDHPFlL5e+ghuxMnkcTP5xfd64DX7NpHv7GPmMB2XKAwWz539yhRd9zjcLMN7LsZ2XJr1KlEYpFrKLcRGDMO84CbbCiHE+arjK6OjR4/y9re/nXK5zAte8ALuu+8+MpkMr33ta/m3//bf8j//5//s53GKC5xSBqWhcUpDE0kJ4Bb10CkMDOO6WfwNxqwnDXrTyfJRSuFmCwzvuYTS8Dih7+E3asuyGcPAw8nk+nKRb7tZOCd7cqkoDHCcTKrld4ZhUhnZQ9xaSHUijkLszNaUsBTKQ31vAKyUojQ0ThT4K557Hcc061Wy+TJDExftyglxO5VhmOSKZXLFAeDsBLV+B6ss29n1TaeVUtv+WlZK4eQKi+WIyaAMq68lQkopioNjRKGfnO/6OJFv6WMWysOEvkfgNciXh7Yt4G1aNgNjB8iXBgl9P9WNDyE2YphWXwc3CCGESE/HwapsNotlJRfnF110Ec8//zzNZhOAF77whRw5cqQ/RyhES7tsZGTvJVu2E9vuX6VjTRyFa94vikKclEsZDMMgXxxkZN9lZEuDeI0aQStoFvo+xYHRvpROJOUoBcLAX/XrYeCTKZRTf1zbyVAaGu84ky0KA5wuGtqfDxw3S640gN88GxyNohCvUaM8NE55eEIyqraYYZnLgoc6jlslJFK2tFtkckXiMDm/x1GIvQX94JxMjmy+TGNhlnxpaEsmk2XyRZRKph9m+3AO74ZhJOWQI/su3ZK+WUK0KdPc9iC5EEKIznQcrLr++uv5i7/4C+I45pJLLsGyLL7yla8ASeN115VdCrE17C3ub5H0r9qD36yvmW0UR0GqvaOWMk2L8uAYI3svxXZzNKrzuH3KqmpbtxRQ6771VskVBxZH2m9Ia+xdeN4pVkYATRxHBL5H6HsMjh+gUB6SAMk2MAxr2fs+jiMsa/e97i5k504CdLYgYxOgUBnByeQWs/b6zTBM8uUhMvnSjlmsu9nClgTqhGjL5kpk89sbrBVCCNGZjoNVv/iLv8jf//3f87M/+7M4jsOP/diP8e///b/nne98Jx/96Ed59atfvfEPEeI8lc2XyJUG8Zv1Vb+uY933Hgi24zI4tp/hPRdTHtnT18CF4+ZAsSI4l5TImH1LoVdKUR6aADTROplskPTN2o0TpEzLpjgwRrO6gFKK4T2X9G3ypdiYUoql77Q4jnbMQl+kI5n2aCb9AbVed7hEmmzHZXjPxVv6esqXhygPjW/Z4wmx0ximKZMAhRDiPNHxdtYLX/hCDh8+zBNPPAHAb/zGb1CpVHjwwQf52Z/9Wd71rnf17SCF2AlKA2P4zRph4K+6uNiqBUc/J0a1GaaJm105FTD0PXLFgb4GykzLTiYxnnwOlcmu2htIa42xi8edJ421Y7KFimQdbLNzyy51HGFKc95dJekTWMRrVIGtDYJv9TnMMAwwZAqaEEIIIXa+Da9YtNZ85Stf4bvf/S4TExPceOONHDt2jPe///3ce++9jI6O8uY3v5lMZnc3ghXCME0qw3sJ/SZ6SRNwrTVqFwZOVisFjONoS7J8MrkiA2MH8L0m0SrliHEUYjmZXTt6OmnqPiyBqh1AKQVLg7MarF32XheQyRVa2Zy771wuhBBCCHE+WnelV6vVeNvb3sbP/dzPcc899wAwPz/P2972Nr7whS8wOjrKI488wlvf+laOHTu2FccrxLZyMjlKg+PLygF3a+Dk3FLAJJvJwNqiCWXZfJGh8YsIfW9xUldbu6G9EP2mDAPOKYeVJve7j+Vk0K0Sz912LhdCCCGEOB+te0X2R3/0Rzz77LN88pOf5Kd/+qcB+JM/+RMmJyf57d/+bT7+8Y/z+c9/niuvvJKPf/zjW3LAQmy3fHkQx80uTubbrYGTdilgeypgGHi4+VJSRrJF3GyeoT0XE4UhYeAt3q6jCHuLJkKKC1sSuFha9qpWLU0V5zfLdrBsF3uLmqsLIYQQQoj1rbvq/Nu//Vv+zb/5N9x0001YVnJx/sUvfpFSqcSb3vQmAEzT5F/+y3/JV7/61f4frRA7gFIG5ZG9xHFMHEXoKOrrZL7ttLQUMA5DsvnSlh+D42YZmrgYHccEXnPxdinFEltBGQZJO/9WlqFCglW7VCZfSjJKhRBCCCHEtls3WHXs2DGuvvrqxb9PTU3x9NNP87KXvWxZdsXo6CgzMzP9O0ohdhjLdigP78Fr1gAwd+l0sHNLAe1tyiCzHZehiYtRhoHfbKDRmNbufM7FzqKUsdizSscxpmX1dcCA2D6FyjCZvEzeFEIIIYTYCdYNVmUyGZrNs5kM3/zmNwH4vu/7vmX3O3XqFKXS1mdcCLGdsvkSucIAWm/9RKetYpgmmVwJr1HFzuS2teG3ZTsMjV+EadlYtiujp8WWUEqhlELHMXEcYVkyCXC3Mk1L+pEJIYQQQuwQ6warXvCCF/DlL3958e9//dd/jWmavOpVr1p2v89//vNcc801/TlCIXYopRSloTFKQ2O7eoGTLZQJfZ9cobLdh4Jp2QyOH6AyvGe7D0VcQAzTQmudBKt2aRalEEIIIYQQO8m6aRL/+l//a37mZ36GkydPEscxX/3qV/mRH/kRxsbGAHj44Yf59Kc/zde//nU++clPbskBC7GTmKZFoTy03YfRV46bS3q57JC+XKZpbWuGl7jwGIaJ1jE6jjAdyawSQgghhBCi35TW58zkPse9997Lpz71Kaanp/mBH/gBfuVXfgXHSXaWX/GKV1Cr1fjlX/5lfuqnfmorjndbnDlTJY7XfZqE2NXCwJeMEnHBmj71HGHgEwU+g+MHcLOF7T4kIYQQQgghzmuGoRgaWvu6esNg1XoeeughDh48SLlc3uyPOC9IsEoIIS5cs5PH8ZpV4jBkeM/F2zZoQAghhBBCiN1io2BVT7U0L3rRi3r5diGEEGLHM0yzNRFTYUgJqhBCCCGEEH23boN1IYQQ4kJnmBY6jkEhwSohhBBCCCG2gASrhBBCiHWYpkUchZiWhVJquw9HCCGEEEKIXU+CVUIIIcQ6lGEQxzGWJZMAhRBCCCGE2AoSrBJCCCHWoZSBjiOZiCmEEEIIIcQWkWCVEEIIsQ6lFEopTEcyq4QQQgghhNgKEqwSQggh1qEME8O0sCx7uw9FCCGEEEKIC4IEq4QQQoh1KKUwTQvDMLf7UIQQQgghhLggSLBKCCGEWIcyDAzLxjCt7T4UIYQQQgghLggSrBJCCCHWYRgGpinBKiGEEEIIIbaKBKuEEEKIdShlUB6eQCm13YcihBBCCCHEBUGCVUIIIcQGLNvZ7kMQQgghhBDigiHBKiGEEEIIIUTqgjhkujmz3YchhBDiPCTBKiGEEEIIIUTqwjikHjS2+zCEEEKchyRYJYQQQgghhEid1powjrb7MIQQQpyHJFglhBBCCCGESJ1GE2kJVgkhhOjejpjD/Rd/8Rf86Z/+6eLfjx49ypve9CYajQYPPPAA2WwWgF/8xV/kNa95DY899hjvf//7qdVqHDp0iA996ENYlsXx48d5z3vew5kzZ7j44ou57bbbyOfzzM/P82u/9ms8//zzDA4OcvvttzMyMrJdv64QQgghhBC7ntaaUIfbfRhCCCHOQ0prrbf7IJZ64okn+IVf+AU+85nP8JM/+ZN86lOfYnR0dNl9brnlFv7jf/yPXHfddbzvfe/j2muv5e1vfzs/93M/xxvf+EZuvvlm/uAP/oB6vc573vMefvu3f5vx8XHe9a53cccdd3DPPfdw++23d3xMZ85UieMd9TQJIYQQQgixo837CxyrnuCqgctRSm334QghhNhBDEMxNFRY++tbeCwd+a3f+i1+5Vd+hWw2y/Hjx3nf+97Hrbfeysc+9jHiOObYsWM0m02uu+46AN7ylrdw9913EwQB9913H6973euW3Q5wzz33cOuttwJJoOsrX/kKQRBsy+8nhBBCCCHEhUBrTRRHaGTTVwghRHd2VLDq61//Os1mkze84Q1MTU3x8pe/nI985CN89rOf5f777+dzn/scp0+fXlbCNzIywqlTp5iZmaFQKGBZ1rLbgWXfY1kWhUKB6enprf8FhRBCCCGEuEDEOkZrTazj7T4UIYQQ55kdFaz6zGc+w7/6V/8KgP379/MHf/AHjI6Oks1meec738m9995LHMfL0oi11iilFv+/1FrpxlprDGNH/epCCCGEEELsKu2sqh3WdUQIIcR5YMdEbHzf57777uMHf/AHAXj88cf54he/uPh1rTWWZTE+Ps7k5OTi7VNTU4yOjjI4OMjCwgJRlEwcmZycXOx1NTo6ytTUFABhGFKr1ahUKlv0mwkhhBBCCHHhiXRMrDWxlAEKIYTo0o4JVj3++OMcPHiQXC4HJMGpj3zkI8zNzREEAX/+53/Oa17zGvbu3YvrujzwwAMA3Hnnndx4443Yts2hQ4c4fPgwAHfccQc33ngjADfddBN33HEHAIcPH+bQoUPYtr31v6QQQgghhBAXiFjHaGIpAxRCCNG1HTMN8PDhw3zpS1/i93//9xdv+7M/+zP+7M/+jDAMee1rX8uv/dqvAfCd73yHD3zgA1SrVa655hp+53d+B8dxOHbsGO9973s5c+YMExMT/N7v/R7lcpnZ2Vne+9738vzzz1MsFrntttvYt29fx8cm0wCFEEIIIYTozrHqCU7XJ7ly4HJydna7D0cIIcQOstE0wB0TrNrJJFglhBBCCCFEd56fP8pUc4bLBy6hYOe3+3CEEELsIBsFq3ZMGaAQQgghhBBi94iIMVqDkIQQQohuSLBKCCGEEEIIkbo4jlEoYglWCSGE6JIEq4QQQgghhBCpi0iCVRppsC6EEKI7EqwSQgghhBBCpC6OYwxlEMXRdh+KEEKI84wEq4QQQgghhBCpu+Opwzw99yyxlswqIYQQ3bG2+wCEEEIIIYQQu0sYhTy3cJQBt0IomVVCCCG6JJlVQgghhBBCiFQ1Iw+AIA6IpWeVEEKILkmwSgghhBBCCJGqZpgEq/w4kJ5VQgghuibBKiGEEEIIIUSqGlETgCCSzCohhBDdk2CVEEIIIYQQIlVemASr/NiXzCohhBBdk2CVEEIIIYQQIlWNdhlgFBBrvc1HI4QQ4nwjwSohhBBCCCFEqry4HazyiXS4zUcjhBDifCPBKiGEEEIIIUSqljZYl8wqIYQQ3ZJglRBCCCGEECJVzVaDdT/yieOYWEuTdSGEEJ2TYJUQQgghhBAiVV4rs0qjCXWMluwqIYQQXZBglRBCCCGEECJVzchb/HMQ+zsis0r7dbRf3+7DEEII0QEJVgkhhBBCCCFS5Uf+2T/HAZrtz6yKvTpxs7rdhyGEEKID1nYfgBBCCCGEEGJ3aYRnM6v8KNgRmVXEEUTBdh+FEEKIDkhmlRBCCCGEECJV3pIywDD2d0RmFXEEoQSrhBDifCDBKiGEEEIIIUSqvCVlgF4YEO+EBus6Qi8JogkhhNi5JFglhBBCCCGESJUXeeSsLACBDnbGNMAoRIc75FiEEEKsS4JVQgghhBBCiFT5kU/Bzrf+HBCzE3pWxaCj5D8hhBA7mgSrhBBCCCGEEKnyI598K1gVxP6OyGbScQSxTnpXCSGE2NEkWCWEEEIIIYRIlR8H5KwMCoUfBYQ7IECk4wiUgijc7kMRQgixAQlWCSGEEEIIIVLlRz6WYWMbFmEcEuudUAYYgjKSoJUQQogdTYJVQgghhBBCiNRorfHjANuwsE0bPw6ItrlPVFKGmJQiasmsEkKIHU+CVUIIIYQQQojU+HEAgGPaOIZDEAXE293UvJXZpQwTQn97j0UIIcSGJFglhBBCCCGESE0z9ACwDAunnVkVb3MZoNYoAAlWCSHEeUGCVUIIIYQQQojUeGETAMdIMqv8yCdmJ2RWKVAGRBKsEkKInU6CVUIIIYQQQojUNKIkWGWZFo7p7JDMqtbjGyZxGGzvsQghhNiQBKuEEEIIIYQQqWksZlY5OKZNEAVE2z0NUMdodNKzKg7Q2308Qggh1iXBKiGEEEIIIURqvFbPKtuwcE0HL/KJtzs4pDVoBZD0roq3uSxRCCHEuiRYJYQQQgghhEhNM2oFq0wHx3QI4oAwDrf1mLSOW1GqFglWCSHEjibBKiGEEEIIIURq2tMAHcMia2bQaII42N7sqjhOsqsArZUEq4QQYoeTYJUQQgghhBAiNc1Wg3XbcMhaGQCCOEC3gkXbQcch4fMPo+MI0OhoezO9hBBCrE+CVUIIIYQQQojUeNHZnlVZOwtAEAXEbF+wKjrxXcJ//t/Ep59CKYWOZCKgEELsZBKsEkIIIYQQQqSmGXmYysQ0THJWEqzyonB7M6u8KgBxbQYMEyJ/246lbb7uE8UylVAIIVYjwSohhBBCCCFEarzQxzYsNHoxWBXobZ4I6NUA0PVZUCYE3vYdS8vsgocfSLBKCCFWY233AQghhBBCCCF2Dy/ysA0bUxmYrZ5VfhSgt7EMUPuN5P/1WTAMdLj9ZYB+GBPF2/ecCCHETiaZVUIIIYQQQojUNCMP27AwlUW2lVnlxwF6GzOrtF8HzpYB7oSeVUEQSbBKCCHWIMEqIYQQQgghRGq8yMc2k8yqrOUCEET+tjZYZ0lmlVIG6Ai9jf2itNYEkSaMpAxQCCFWI8EqIYQQQgghRGoWywAN82xmVRRsb4P1VrCKoIn2GyiAONy244m1TgJWYbRtxyCEEDuZBKuEEEIIIYQQqfEiv1UGaOKaLgpFEAfE2xmsCppn/1yfTf4Qb1+gKI41sdYEoZQBCiHEanZMg/V3vvOdTE9PY1nJIf32b/82tVqN3/md38HzPN7whjfwK7/yKwA89thjvP/976dWq3Ho0CE+9KEPYVkWx48f5z3veQ9nzpzh4osv5rbbbiOfzzM/P8+v/dqv8fzzzzM4OMjtt9/OyMjIdv66QgghhBBC7Ep+5GO7FQxlYioD27Dxo4BYb19wSAcNsDMQNInrsxiZwjYHq0BrCEIpAxRCiNXsiMwqrTXPPvssd9555+J/V155Je973/v4xCc+weHDh3nkkUe49957AXjPe97Db/7mb/LFL34RrTWf/exnAfjQhz7E29/+du6++26uvfZaPvGJTwBw++23c+jQIe666y7e+ta38uEPf3jbflchhBBCCCF2M7+VWWUZBoYycEybIA6Itik4pLWGwMMojyd/r80AGr3NZYCGQnpWCSHEGnZEsOrpp58G4Kd/+qd54xvfyJ/+6Z/y8MMPc9FFF7F//34sy+LWW2/l7rvv5tixYzSbTa677joA3vKWt3D33XcTBAH33Xcfr3vd65bdDnDPPfdw6623AnDLLbfwla98hSDY/gkgQgghhBBC7DZ+HCQ9q5SFUgrHtPHjgGi7pgHqGB14qFwFLHexyboO/e05HiCKNYahCCRYJYQQq9oRwar5+XluuOEG/uAP/oD/8T/+B5/5zGc4fvz4slK90dFRTp06xenTp5fdPjIywqlTp5iZmaFQKCyWEbZvB5Z9j2VZFAoFpqent/A3FEIIIYQQYvcL4pBYx1iGhWkkSw3HcAmi7Q1WEXooJ4vKV4hrM6BM2MZgVaw1SiniKN7WXl5CCLFT7YieVddffz3XX3/94t9/9Ed/lI997GO85CUvWbxNt0/ocYxSasXt7f8vde7fl36PYeyIOJ0QQgghhBC7hhd5ADimg6GS623XtGlG3rb1rNJRAFGAsjMYuQHi6hkwTAi3r9IiCmPCMMYyFVGkMazV1y1CCHGh2hERm/vvv59vfOMbi3/XWrN3714mJycXb5ucnGR0dJTx8fFlt09NTTE6Osrg4CALCwtEUbTs/pBkZU1NTQEQhiG1Wo1KpbIFv5kQQgghhBAXDi9sB6tsjNZSw7W2ObPKqyf/t11UroKuz6KVQrcCa9vhngeP8yd3fQdNMhlQCCHEcjsiWLWwsMDv/u7v4nke1WqVv/qrv+JXf/VXeeaZZzhy5AhRFPGFL3yBG2+8kb179+K6Lg888AAAd955JzfeeCO2bXPo0CEOHz4MwB133MGNN94IwE033cQdd9wBwOHDhzl06BC2bW/L7yqEEEIIIcRu1WxnVhk2RqvKwTVd/Dgg3q4G614NAGVnUPkKRAEEHjoMkubr2+DUdJ1qI8DzYyIJVgkhxAo7ogzwVa96FQ899BD/4l/8C+I45u1vfzvXX389H/3oR/mlX/olPM/jpptu4vWvfz0At912Gx/4wAeoVqtcc801/MRP/AQAH/zgB3nve9/LH/7hHzIxMcHv/d7vAfDud7+b9773vdx8880Ui0Vuu+22bftdhRBCCCGE2K28KOkD5ZgOqlUGmDFd/CggZHuDVdgZlJ1NbqvPonJl0BGorV8S1ZpJCWK9GRDF0mRdCCHOtSOCVQC//Mu/zC//8i8vu+2GG27gr//6r1fc96qrruJzn/vcitv37t3Lpz/96RW3VyoVPvnJT6Z2rEIIIYQQQoiVmmETANuwFntWZSyXIA4W23VsNe0nZYDKzqCcdrBqBiNXgjgCYzuCVeHi/6UMUAghVtoRZYBCCCGEEEKI8187WJX0rErKADNmFo1ezLraasvKAHOV5LbaLBoFUbgtx1T3wtb/A4JIMquEEOJcEqwSQgghhBBCpKLds8pSZ6cBZq0MAF7sbUuPKL3YYD2Dslxwcuj6LGjQ29RHq7EYrAoJAglWCSHEuSRYJYQQQgghhEhFszUN0DYtVKvBejtYFcYhmu0IVrV6VsUa7dcw8hXi+gxKgd6mzKp2sKrRDAkls0oIIVaQYJUQQgghhBAiFc0oKQN0TWdZzyoAL/SJ9dYHZpKeVQptGOgoQuUG0LVZUAaEW1+a6PkhYZQE7WpeKGWAQgixCglWCSGEEEIIIVLRDD0UCsdwFm/LmklmVaCDbSkDxG+A7aIMhVIKlaug67NopbYlWLXQCBb/XKt5+KEEq4QQ4lwSrBJCCCGEEEKkwos8bMPCNM3F2zKtMkA/Coi3owzQr6PsJLtLo5Mm6zpG+w3YhqbvC/UkWKVIpgGGEqwSQogVJFglhBBCCCGESEUSrLKxliwz2j2rgshHb0MZIH4DrAwKUIaFypYA0PU54jBY/3v7YKGeBMgGsgbVZogG4ngbMs6EEGIHk2CVEEIIIYQQIhXNyMcyLQzDWrytHazy44B4O6YBBg2UnQFUMhEwU2gd7DzEwZYH0KqtMsCRrKLuRUSxJpJglRBCLCPBKiGEEEIIIUQq2plVpnG2DDBnZQEI4mB7pgH6TbAzSQlgpoBycsnttVkUQBxt6fGcDVYlf294IVEspYBCCLGUBKuEEEIIIYQQqfBCP+lZtWSZ4ZgOCpX0rNqOaYBBczGzSjlZME1UpkhcnwHU1gerWj2rhpOEM2qNQMoAhRDiHBKsEkIIIYQQQqTCiz0sZWEtyawyDRPHtPEjf1vKAAk8sF0wLJRpJ72r8gPo2ixas+XBqlozwDIVTivLrNYMCSVYJYQQy0iwSgghhBBCCJGKdmaVocxlt9uGjR8FaLY2syqOAoh8lO2iTAtMB62TiYC6PgNodBRu6TFVGyEZ2yTvJkuxesOXzCohhDiHtfFdhBBCCCGEEGJjfuxjm/ayzCoA13Tw44Boi7OY8OoAKCsJVinDSAJXuTK6MQ86RkdbOxGw2gjIOgZ5J/l7vRkQhFv8vAghxA4nmVVCCCGEEEKIVHiRj23YGGr5MsMxHfzY3/KeVdqrJX+wHDCTfXplZ1GZ4tmvR/6WHlO9GZCxDVwTXDPJrApCabAuhBBLSbBKCCGEEEII0bNYx4RxiG1YKKWWfS1jugRRQLjFmVXaT4JVynLAsJMbnSwqU0i+3lhIelptoXozJGsrlGGQt5OeVUEkwSohhFhKglVCCCGEEEKInnlREvRxTBvjnGWGa7oEcUC8xT2rdLOVWWUuzazKoDKl1tfn0eHWlgHWvZAcIUazRs5S1JuhZFYJIcQ5JFglhBBCCCGE6FkzTIJVSRngOZlVlrs9Pav8pGcV7QbrkEwEzBRBGejG3Jb2rNJa0/BCrjj2EMbffI68ralKsEoIIVaQYJUQQgghhBCiZ16r95NjOqhzela1ywC3PLOq3bPKdKHd9N2ywTCSJuv1OdAROt6a42r6EbGGgjcPvscgTWpeRBTJNEAhhFhKglVCCCGEEEKInrXLAG3DweDczKoMfhwQRuGWHpNuTwN0zgbQlGGBYaKyFXRtNjnSeGuOq9pIsrhcvwHAUNwgiDSeHxFtUcBMCCHOBxKsEkIIIYQQQvTsbM8qa8U0wIyVad1na/tD6VYZoDIzsOSYDCeLypaI6zPJDVtUnrhQT35/pxWsqkRJ5lfNC4ljya4SQog2CVYJIYQQQgghetbuWeWa7oppgFkzCVY1o8aWHpP262C5SZyqXQYI4ORQ2SJ4NeIo3MJgVVIqabeCVaWgFayq+4RSCiiEEIskWCWEEEIIIYToWbOdWWU4q2RWucl9WgGtraK9Osp2AQXG2WNKJgIWk/vU59BbVQZYD0BrTL8JQNZbAKBe94i1BKuEEKJNglVCCCGEEEKInrUDUe3A1FLtMkA/Coj1FvZmamVWaTSos5lVynJQuXLyl+Y8OvS35HAWGgFuHKBamVxOfR6AWsMnkjJAIYRYJMEqIYQQQgghRM+aYZIt1A5MLZVt3RbEAXoLM4i030TZGVDm8tJE08bIJsEq3ViALQpW1Ro+uajZOgYTtTCHAmrNgDCUButCCNEmwSohhBBCCCFEz9oN1rPGysyqds8qP97azCodNMB2Uaa17HZlWuhMEQyrFazamsbvC42AMq1yyfEJ4oUFCmZEvRkQRBKsEkKINglWCSGEEEIIIXrWjDwsw8I6JzAEkLWyAASRn5TkbRW/gbJWBqsATDeLypWJG3PoaGt6adWaIZVWsMrdtw+AcerUm6FkVgkhxBISrBJCCCGEEEL0rBl52IaFuXTqXkvW3q7MqiZYLhj2yi86eVS2hK7PosOtKU+sNQKK7cyqPUmwaiiuUW9GBBKsEkKIRRKsEkIIIYQQQvTMCz1sw8ZUK4NVuVZmlb+FmVVaxxB6KNuBVQJoysksBqsUgI76fky1ZkCx1bPK3bMXSIJVVT+SMkAhhFhCglVCCCGEEEKIni1mVq0SrLING4XCiwLirWqw7jcAUFYGrJWZVcq0UdkyBM2kt1W8FcGqkHzUANfFLJfBMCiHNeq+xvP7//hCCHG+kGCVEEIIIYQQomde5Cc9q1bLYlIKx7TxY3/LpgFqv57833JQ5iplgJaDkS0BEDcWIAr7fkyNZkgubKCyeXQYYJUrlPwFNFCte1s6KVEIIXYyCVYJIYQQQggheuZFSRmgsUpmFYBruvhRQMzWlLvFXg0AZWdWLQPEsCBfAUDX59B9zqyKY03Dj8gEDYxcjqhaxSyVyDYXAKjXm0SxBKuEEAIkWCWEEEIIIYRIgR/52IaFodSqX3cMZ2szq5rV5A+2g1Irlz1KKczSWHLfxhy6z5lVtWYAgBs0MHJ5lGViFkvY9fnk63WfWIJVQggBSLBKCCGEEEIIkQIv8pPeVGsEq1zLIYgCwi3oDZUcUFIGqKwMGGsse3IDYDnoxjyEfl8Pp9ZMgmGO38TM51GGiVUqYXhNnDigVg8ks0oIIVokWCWEEEIIIYTomRd52KaNscYSwzVdgjgg1ltTBtjuWaVsF9YoTVSZPCpbToJVrYbs/VJtBBg6wgo9jHweZZpJk3WgHFSpNSVYJXafuVp/g8Bi95JglRBCCCGEEKInWutWGaC9Zhlg1nQJ4pBIb01mlV7sWeWumVllWA4qV0I35on9Wl9LFBfqPrnIA8DM5VCug1lKglXD0QJ1KQMUu0wYxZyarhGEWxOgFruLBKuEEEIIIYQQPfHjAA04ho2xSn8oANdqNVjfoswqWsEqba2dWYVpJ5lV9VmII4iCvh1OtR6Qj5LsLTOTxchksQYHARiOa9SbAWEki3qxe4RRTN0Lafr9n7Qpdh8JVgkhhBBCCCF64rUyhhxz9WbmABkrQxAHRFvUs0r7DWgdj1qrZ5Vpo7IliAK01+hr36qFRkAubCYPm82gXBdrYBBl2wxFVWpeLBkoYlcJwhjfjxeHCwjRDQlWCSGEEEIIIXrSDNvBKhuD1csAM62eVVtWBujXwXbBsNa8j1IKoziS/KU5Txw0+3Y81YZPPmoFq/JZDMvGymUxyxXKYY2aHxNIZpXYRYIwxrYN5msSrBLdk2CVEEIIIYQQoidelGQkOebaZYBZKwOcDWz1m/brKMtBmWsHqwCM8jgAcbO6WDrYD7VGSJnkdzeyBZRpJqWApRJFv0ot0PieLOrF7tH0QzKOiedHUuIquibBKiGEEEIIIURPFssADRe1RoN110yCVY2of9lLS2mvDpa7YbBKDe4FZaCrZ4j7GKyqNgKKcRNME8O2UZaJsm3MUolscx4/0jRqW/PcCLEVmn6MaSg04AVbk1Epdg8JVgkhhBBCCCF60mz1YnJMe837tDOrvC3LrGqgLAfWOSYA0y2gisPEcydQcYjuU5P1WiOgEHuQySYBPdNKglXlMmYUko095hYkWCV2j6YfYpkGhgGNpjRZF92RYJUQQgghhBCiJ+0yQNd01rxP1nSBs5lVUb/LgoIGWOv3rALAsjFKY8Qzx4m17luT9ZoXko8aqGwOjUaZJsqysEplACpBlYWalxyDEOe5KI55+KkzPPLMNI5lMFfr3/ACsTtJsEoIIYQQQgjRk3YZYM7KrnmfrJ18zY98gjBk6lQV3cfAjPYbKNuBDcoAMW1UZRyCJro+Sxz0J/Or1gjIhg2MXA5lWSgjmVJojyQN3svBArWGRxxLsEqc/8JQ883HTnHPt45hWwZ1L5TXtujKjglWffzjH+fmm2/m5ptv5nd/93cB+I3f+A1e+9rX8qY3vYk3velNfOlLXwLgscce4y1veQuve93reP/7308YJimFx48f5x3veAevf/3r+fmf/3lqtaTmfH5+nne961284Q1v4B3veAeTk5Pb80sKIYQQQgixC7UzqzLrBataZYB+HBAGEV4zIPD708dG6xgCr7OeVcrAHNyffN/CFPj96VtVb4a4QRMzl8Nwzmag2WNJg/dKWKVe94lkQS92gboXMlf1ma36zNcD0Jpmn97vYnfaEcGqr3/963z1q1/lr/7qr7jjjjv453/+Z770pS/xyCOP8Kd/+qfceeed3HnnnbzmNa8B4D3veQ+/+Zu/yRe/+EW01nz2s58F4EMf+hBvf/vbufvuu7n22mv5xCc+AcDtt9/OoUOHuOuuu3jrW9/Khz/84W37XYUQQgghhNht2hP+8usGq5KvBVFAEMV4XoTv9amPTeABGmW7YJgb3t0YOgCGhZ4/je5Dk/UgjPGDCDdoYGRzqCXBKqtSQWWyVIIqtUZAFEmwSpz/Tpyp0n4lP3dqAaUUDV/6VonO7Yhg1cjICO9973txHAfbtrn00ks5fvw4x48f533vex+33norH/vYx4jjmGPHjtFsNrnuuusAeMtb3sLdd99NEATcd999vO51r1t2O8A999zDrbfeCsAtt9zCV77yFYJAxsIKIYQQQgiRhmbUxFAG9jo9qzJW0rPKi3zCIMQ0FfU+9bHRfj35g5VBqY2XPCpTQJVGiGdPosMAHae7qK41A9zYx9AxRi6LYZ99nkzHxSqXGYyq1Jqh9KwSu8LR02eDvs+drGLbBgvSt0p0YUcEqy6//PLF4NOzzz7LXXfdxQ/8wA/w8pe/nI985CN89rOf5f777+dzn/scp0+fZqRV1w1JoOvUqVPMzMxQKBSwLGvZ7cCy77Esi0KhwPT09Nb+kkIIIYQQQuxSzdDDMWysdQJDGbNVBhj5NOoBtm3SbIR96VulvSRYZdgZ6CRYZbsY5THi2eNoHaXeZL3aCMi3GsubueWZVcq2sEolykGVmhcR9rvxvBBb4MR08h68aLzIkVMLOJZBtRlIMFZ0bEcEq9qeeOIJfvqnf5pf//Vf55JLLuEP/uAPGB0dJZvN8s53vpN7772XOI6TUa8tWmuUUov/X+rcvy/9HsPYUb+6EEIIIYQQ561m5GEZFuY6k/dsw0Kh8COfr37xKb59/zG01n3pW7WYWeVkOioDVJaLUR6HKEAvTKNTDlbVlgWr8ij77POkLBuzVKYY1Kj7MYEn2Sfi/Hdquk654HDZ3hJTc03qXojW4AfSt0p0ZsdEbB544AF+6qd+in/37/4db37zm3n88cf54he/uPh1rTWWZTE+Pr6sQfrU1BSjo6MMDg6ysLBAFCUv/snJSUZHRwEYHR1lamoKgDAMqdVqVCqVrfvlhBBCCCGE2MW8KMmsMtbJYlJK4ZoOfhQwO9XgxNE50OA1+9DHppVZhZ2FTjapTRtV2QOArk6hm+n2rao2QnKtYJWVz6PMswE0ZVlYAwMYOkY1a4S+BKvE+S2ONWfmmoyUMxwYKwLw/KkqaGj0q0+d2HV2RLDqxIkT/MIv/AK33XYbN998M5AEpz7ykY8wNzdHEAT8+Z//Oa95zWvYu3cvruvywAMPAHDnnXdy4403Yts2hw4d4vDhwwDccccd3HjjjQDcdNNN3HHHHQAcPnyYQ4cOYdv21v+iQgghhBBC7EJe6GGbNsYalQ1tjungVzVxrPG9iFrVo9GHPjaxV03+YDmgOsisUgpz6ACYDvHcqdSbrFcbPvmwAbTKAM+ZUGiPJJvsbqOK15DeuuL85oUR01WP4UqWPUM5LNPgyKkFbEtRrcvrW3Rm/TmuW+RTn/oUnufx0Y9+dPG2H//xH+dd73oXb3vb2wjDkNe+9rXccsstANx222184AMfoFqtcs011/ATP/ETAHzwgx/kve99L3/4h3/IxMQEv/d7vwfAu9/9bt773vdy8803UywWue2227b+lxRCCCGEEGKX8iIPe4PMKgDXdIlnzwaPpk5VKZQyxLHGMNYPdHWjHWxSTm7N1iDnUrkyqjyKnjuJDproOEal1Dqk2gjIRU00YOayyzKrAJyxcQBKQZWFqpfKYwqxXU7PNIgizXA5g2ka7BvJ89ypKo5tstAIVm3hI8S5dkSw6gMf+AAf+MAHVv3aO97xjhW3XXXVVXzuc59bcfvevXv59Kc/veL2SqXCJz/5yd4PVAghhBBCCLFCM/LJWdkNM6tc0yGuJkuQbN7m9IkFDl4+TOBHuJkUlyatMkDl5jv+FsPOYJbGCJ97EOIYQg+cbCqHs1APyMdNlJtBGSacG6yaGEcD5aDK/EI9lcdcTRjFWOaOKK4Ru9jxySSzcaiUYWq2yYGxAv/n4RP4YUQUxfhhjGtvnPG4GWEUo7XGtvrz88XWkTOVEEIIIYQQoide5GGbFmqD5UXWyqBqDpZtsO/gAFOna0RhjNdMtzRI+zUwbQzb2fjObZaLqoxDHBEvnE61yXq1EVCKm6hMFmXbK7JKjGwWnStQCavMzTdSe9xzj+HZk/N9mb4oxFLHppLMxkrBwbEM9gzn0RqeP11DA14fhiq0zVY9jk/1L+Arto4Eq4QQQgghhBA98SN/wwbrkJQBmvUMuaLN8GgBHWvmpuvUa2kHqxpguWB03qdWGQbmyMHk+xemzk4UTEEyDdBDZTKoVXrnKtvGKJYoB1WqdY+4DwGl6fkm87WAZh8DBUIAnDhTJ+da2JZBLmMzXEqyLp87tYBtGVQb/RsiUK0HzFSbBGHct8cQW0OCVUIIIYQQQoienO1ZtX4ZYMZysRpZMgWLXMHGMBSTp6v4XkAcpxeg0V4dZTlgdVdaqAYPgJ0hnj8NKTZZrzYDclEDlc1iuO7Kx7VsnEqZclCl1gyJonSDVUEYM1f1cSyDuZr0xLpQNeo+jXrQ9+y60zMNhssZwkhTyttYtsGe4RxHTi3gWAbzfRiqAMmQtlozwFCKhbpM1TzfSbBKCCGEEEIIsWlhHBLpuLMG63EGK3DJFCzyBZfBkTynjy+gNQR+iiPt/XoyCdDoLlhlunmM0hjx3Eliv4HW6WRn1BohmbCBmc2hnJWliUop3OEhilGdet0nCtPNfkoW7ppsxmR63pNSwAtQ4EdMnqxy+sQ8p47N0+zT1MkojpmabzJcyaCUophzMBXsHy1wfKpOrMEPY4KUX+MAfpA8dsYxmZprpv7zxdaSYJUQQgghhBBi05pRkqnjmDaK9TOrzFomuW/OwM1YDI3mmZ9t4nshzWZ6wSrtJ5lVyuy8DBAA28Uoj6HnT0HkQ5jOgr5Zb+BEAUY2u2YfLXtkNHn2agtEQXqBBK01k7NNMq6FaRiEUUzDSzEwKHa8KIqZPLmAZRnk8g6x1pw6Ps+p4/N4Kb7vAGbmPTw/YricAa1xbZNizmHPUI441hybrKJQfSlHfer4HP/PXY/z+POzNP1QXufnOQlWCSGEEEIIITbNazUid0xn43H0taQEzsxqcgWXkbECADNTdRrV9MrTzvas6m4imDJtjMF9oDXx3BQ67P2YtNZQS0oKzXwetUZpojM+DoBRrxIG6S2yG15E3fP51N88xtcfOYlpqr6VYYmdR2vNzFSdMIywneT9YNsmubxDGEScPDbH5MkF/JQCO0dbkwAHixlcx8IwFKWczehADoAjp6oYJtRSHqoA8MjTZwD4p+9OYRpKSl7PcxKsEkIIIYQQQqwpCON1mxV7i5lVG0/e0wsWWsWoTIDjmAyPF3Fci8mTVXwvGWufBu03ULaL2qAscTXG6KWtYz2VBL165AURmSBp1m7mC2CuHkBzx5Jgld1YIE4xs2q26vHk0TlOzzT45qOncC2T6flmX5q4i52nOu9RW/DIZFdmGTquRTZn43shJ47OcfLYPLPTdeo1H98LN9VH7viZ5LVeLjgUsklgNuvaZFyT8cEsz51awLVM5lMeqgDwxNE5AI6cXKDpR0zPNVPthSe2lgSrhBBCCCGEEGuanm9ycnrtZuPtMkC3g8l7YVXhu3UCw8e0DAoll+HRPKdPzLf6VvVeGqS1hmBzmVUAxsBecHOtJuu9TwSsNgJyUdI/x8znUWsEq6yhYWJlkPWqBF46C/kwijkz1+CfvjuFZSrm6wFHTi0QxkiJ1AXAa4ZMT9XI5Ow1sx6VUotBK6011XmPqZNVTh6b4+iz0xx/fpbpyWrHPa6OT9WwLYOsY5F1k2CVYxuYhsH+0QLPn66hFHh+RJhScBrADyKOTla5bG8JpeDhp88Qxpq6vM7PWxKsEkIIIYQQQqypUZ1n5swMfrB6IKmbzCp/XuFlqgRGkDQVdy2Gxgo0GyG1qpdO0+egCVqj7AxsJrPKyWKUx1tN1ms9NyOvNULyrWCVVVi7DNBwXfxskYJfpb7Qe0YXQLXu89zpKqdmGrzm0H4yjslDT57BMhVzKZZdni+8ILpgmstHYdKnynFMDGOD8lySoJVlJb3ksnmbbM4hm3MwDEW9FnDmdGfvhVPTdYZKLspQuLZFVK+jlKKcd5gYzhNGMSfO1EGRat+qZ07M4wUx114yxCV7Ssnr3FBMz0uj9fOVBKuEEEIIIYQQa2rOT2MHNWbXCG54YTuzyl3358Sxxq/GeJkaoZkEpWzHZGyiCMCZ0zXqKfRS0n4rG8rJgLGJ5Y7lYJTH0QtTSeAr6i2AVm2ezayyikXUGsekTJO4UKISVJlb6D2jC+DMfJNvPTFFPmNx3f4c145YfOe5GUAzs+BdUCVSsdY8fXyeM7tgStxGQSOtNWcma4DGsrvPLlzKNJMAVhhG+N7GwaXTsw2Gy1m01lhxgPfcEeIgoJhzGB9M+lY9d7qKUlBPKYMQ4NFnZwDYM5TjmoODzNd8TkzXmav665Yxi51LglVCCCGEEEKIVQVhjOHVyKkGk7MNonjlos+LkgBTxs6u+7MW5proGLxslcjw0VqjlGJorECh5DJ5skrgx0Q9Lizbwaoks6r7hbpSCnP4IADR3CkIewug1RoB+ahJbFqY+fy69zUqA5SDKrPzvQermn7Ic6erPH18npdePYoZ+LyoFBJGmkefnSG+wEqkPD/CDyKOT9WYP48bb2utOXVsnhPPzzI7XadRDwjPec/MzTRo1H3cTJfTMNdhmor6Btl49WbAQj1guJzBtgyoVQnn54mbDTKOST5jM1TKcOTkAo5lsJBio/8njs5Szju4tsWB8SJZ1+TBJ88AmmpDBgqcjyRYJYQQQgghhFiVHwSo0MfSPlEUr7q4bPesyluZdX/W9GTS98rP1AgJ0STZIdmcw9BogalTC0RRhN9jadBiU3Q7u2YW00aM8SuSnzV3itjvLROn1gjIhQ1wMxjO+sGDzMgIudhjYXZhzft4foTXwXM0W/X41nensEyDQ1eOoqvzDOcNRos2Dz55BssymFk4/7OMOlVrBpiGIpexeO5U9bzt2eV7EZ4XopSiOu8xeWKe48/NcOzIDNOTVeZnG8xNN8jm0gtUAdiORXWDbLxjrfd4peiQdy2CM1OYuRzh3DyObWJbBvtH8zx3qoppKOpetGoAvFtRHPPsyQUuGi+i0ZRyDldfNMB3jsyg0Uztgmy6C5EEq4QQQgghhBCr8ptNQKM15MyQ07PNFSVI7TLAnJ1b92dNTyULWS9TJdQBsU4WqY5rMjKeJ4o08zNNmvUeS4O8JZlVm2SWRiBTQs+fBr/a0+EstDKrjEwG5axfKpnfk0wEDGbn0Ocs4rXWnJlv8t2jMzx5bI56c+1gSxxrnj+1wGNHZrjusiGytqI5W6Xp5HjhkOL4VI2Fus9c1U8lWHA+eODxSR54/DSmqbAtgyOnFs7L8rB61cM0DczF/lJJbynLNmnUA2bO1HGz1poN1TfLMBRxrPHWed0da73Hy3mHrIogCDByOaL5WbTWVPIOe4bzeEHE5FwTrdPpW3XkVJWmH7F/NE8uYzE6kOWqAwNEsebx5+do+CFN//wMTl7IJFglhBBCCCGEWFWtWuOZmZgYja0imn64onTMizwUiuwGmVWzZxrYjklkB/j4i0Ev0zSY2F9BKThzukq93lvJzmIZoLt+8GxdtotRGSOeO0Xc40TAaj0gHzcxMlmUs34T+uK+CQB0dYEoOPs8B2HEkZMLHJ2skstY2JbiqeOzLKzxXFWbAf/03SmiWPOya8aIm000MZVihstLYCh46MkzxFpTWyf4sFuEUczf/dNR7n3oBH//rWO4jkkca547tXBe9e2K42Ran+OsLG81jGSqXy7vYJr9WeZblkF1nYblx6ZqGArKeRerUQXDRBkmOorRXpN81mZiKCmFfe7UAqbBmq/hbnyn1a9qbCBHJe9SyNjsGcoxNpDloSemMJXBXFVKAc83EqwSQgghhBBCrOrbT07xmQdDHjymUX4VxzKYnF0+qa4ZediGjWWsPuWubXamTr7gYGAQRAExZ4ME5YEsA0M5Jk9WCYNoRQ+ebuhWcMnIFDf9M5RhYQzsQ9dnoLmA7qHJerWdWZXLYljrl2Zl9yTBKqO2QOQni+v5msd3j85R90LKeQfTMHBsk6xj8czx+VUb35+cqvHw02e4cn+FoVKG+myVSjHDQNEl41pcNpLh4afOYBqK2YXzt39Tp05O15mcbVLKO3z14ZPc953T5DIWtWbAiTO9T3zcKl4zJNagOpju1w+2Y9KoJSXBqzl5pkal6GIqMBZmmf/HrzP3f+4FBWGtRta1KOZsynmHIyeruI7JbApBpMefm6GYtSnlbHIZG8NQDJYzfM/BQY6fqTNf9zgz3yQ+T/6dRUKCVUIIIYQQQogVYq05ciopgfvaMwH4dVzHZL7mL+uZ5EUetmljbtDMfG66Qb7oYhs2fuyj9dkFbyZjMzxWYOZMncAP8XvoJ7Q4DTC7+WAVgDl6KdB7k/VqwycbNjGzOZS1fkDPLA8QGBZ2fYHm/ALHJqs8c2IB1zLIZZZ/r2UZ5LMWR04uLJtw5wcR3/zOaRpexMuvHSOKY4xGlXKlgGNZ5Io5rinH1JohRyerzNV8wjWCD7vFg09MAvDjP3gZV+wvc9c/PMd3jsxQzNlMzTU4s0620E5SnW9i29u3hE9KCxWNNbKhTk43GCplMLwGurrAwj98g/lvfA2lTKLZOSzTIOta7BsttDKrFH4Y4wWbLwXUWvP0iXn2jxVQhkGmlXVWKbhcub+MYSgefmqaMNLrls6KnUeCVUIIIYQQQogVfD/ixKzHsFllciHiyRN1lI4xjeWNuZuhh2PYGOv0yPGaAV4zJF9wcE2XIA6XZTlYtsHoRBJcmp6s02xsPpNJezUwLZS1/nTCjZjjlyU/b+4UcbD57KNgoYqBxsjlUOb6AT3DMKhlirhelWOPPc30mSqlvI1lGcSx5vHnZrnrH57jxJmkN5BpGhRzNkcnq5yeqaO1ThqrPzHFnuEcB0YL1GoeFTNk6n/+d+a/8TUGyjn2FzR51+Shp86gNbt+Ef/IM0lgamwwy4/cdAl7h/N8/itPc3SyRjHncHxy508IjMKYRs3H2sZgFYDtGFTnVwarwihmeqHJYMkl49VofvdxiGO079N87ghRvY4Ok+zAPUM5as2Q6XkPpTWN5ubf78fP1Kg1Q/aN5inlkqwqgIxjMVTOctneMt9++gyG0hfUQIHdQIJVQgghhBBCiBWajQbZ2gn+f+XP84L8JP/n6RAV+WRdk6m55mI2jhd52IaFUmsvLWbOJKWDxUqGjOngRf7iNEBIMjb2HKhg2QZTp2s0av6mS7O0VwPLhQ0CQxsx8oOo3ADx/GnwNt9kXVeTyX5modDRMfm5MnmvimWb5OvTNLyIr337BP/1L7/Nn//dk9z3ndP8ty88xpfue54gjDAMRSlvc+JMnRNn6vzjo6eYWfC44ZpxokhjRyGZuUmC06epPnA/Gccgk3H5njGH7z4/RxTF501m0WY0vYBnT8xz+b4y1XoyRe9tr76MUt7hM19+gun55uKEwE6mLG6XRsMHVOqN07tl2SZeMyA457k6NdNAaxjMO7jeAvVHHsbZtx8jl6PxnUcBTdxs9a0aTvpWHTm1gG0bzK0yZbRTjz4zDcDEYJ5SfnlPuKFyhu+5aIB6M+T501Xmqrs/i3A3kWCVEEIIIYQQYoVnjs1whXUcgFcNneLITMzRU3PJVDCtmW8tMJuRh2M6GOsFq1pTwvLFDBkrQxCfnQbYli+6DI0WmDyxQBBE+N7mAgfar6MsF2WuX3K3IdNGVSaI504S1+fR8SYDGYvBquKGmVUAcWmAol9lMrT5/741ye1/8RBffuAYlaLLW195Kb/24y/i+suH+cY/n+IP7/hnnjo+h1JJwGpqrsk3HztNOe9w9UUD1L2QkYzGe+ZpAMLZGYITJxgYKnFVPkiytZ6foVoPzsvJeJ345yMz+GHMxeMlLFNRb4Y4tsk7XnMFhlL82ZeeoOGHGIbi+A7uX1Wda2K7vQVg06KUWjEI4ejpJKA74GjUqROEMzMUX/JSsldeReO7j0OsCefnyTgmg0WXfCtA6NomC/Vg043uv/PcLLmMxUDRIecu7wlXzNkcHC9SyNo89NSZZectsfNJsEoIIYQQQgixwpNHZ7jMOgXAAY6RseHrj04BkHMtTs3UibWmGbYyq1g742N6qoZSikLJJWMlZYBLM6sAHNdiZKxAvebTrIfrTh1bl1cH2wWjt4W9Ugpz+EDSYL05T9xY6PpnxFpjNpNAnVVIeupsxBgaxtEhn//a8zx6JuKFozbvuuUqfvL1V3L1wQFyrsktNxzgJ15/Jaah+LO/fYI7/s8zNLyIasPn2FSNl33PKGEUk3EsMmGDxlNP4ezbB6ZJ/dFHKOQcRnMGExWXh548g0ZTa+zORfxDT5zBMBQTQ3mGKhkOjhepN0JKOZu3vfpy6l7I//u/n8A0FHM1P5XpdGkL/AjPi7CsnbF8d1yT6lxzWWDv2FQSrBqKa4TffRQjkyF39dXkr74GHQR4x44Szs1iKEU+Y7NvtMAzJ+bRGmINDb/7UlStNU8dm2PfSB7bMnHOKZE0DYPRgSxXX1ThiaNzxLHm+ckqTx+fY77mE8W7M0C7W+yMV7sQQgghhBBiRzl2coYD1hTatLGqp/i+AwbfOd5ker6JZRkEYUytEeBFfiuzau1g1eyZBrm8TTZrJcGqaGVmlWEo9l5UAWDmTI1a1d/UVEDt11G2u25ZYqeMscuTn7kwja5Odf39DS8kFyYlkPZApaPv2ft934tv2Lx94R/5v79/kDdcbDOqzgbujIVTmLNHOTia4+feeA3f/8IJHnl6mk/81SMc/sYRXNvk+stHaPgR4xWX4OhRotkZ8i+4juyll1H/53/GUFCuFLh6yOTUTIPZqsf0LpwKqLXmO8/NsH80j2UbFLMOpbzLwYkitUbI2ECWt77yUk7PNPmLe54i65gcm6ztuCBGve6v+/7aaqZpEIbxsuzHE2fqlHI29twZvCefIP/C61CWjXvwYKsU8DF0GKJ9n3Le4Yq9FRbqAU8dn8c0oFrvvm/V5GyD+XrAvpEC5by7aolkueBy9cEBtIZHj8xQzjsEUcyRkws89uwMJ8/UaPQw0EH0jwSrhBBCCCGEEMuEUYw5dwxTaerjL0YBrxiawlDwjUdOAODaJpOzjVbPKnvdMsC5mTq5goPjWmRMlyAOVg0IjE4UyeZtTh1fADS1avcBFO03wMr0nFkFYI1eCkoRzx4Hr44Ousv2qjYCclETjcIeGOjoew5+zyVY///27jvOrru+8//r1NvL9F7Ui1Vd5W7jjrFNDdUmlIQku9k8sqTubgKb3y8JIWza4iW7hF+ShQQIBDC2sTE22LirW12akTS9z9xeT/n+/rijsWRJtoxlNMDnCdczmrnlnPM9V77n7c/38738KmKpcQL7d0AoBLNTqGoFqkW83Ax+OYueHcM04C0Xd/Ard68hGQswNltk88pGAKJBi7DuU+7vAyC8ahXhtevwclkqw8PEklFWRR0MXePAQIpc0SH/Bhrbv16u57/p/YMm5orMZMos70hg6trCSnHxSICe1hj5ssuSthhvvbKbY2NZth2awvUV0+nSm7pdr4dSily6jL1IpgCeYBg6xZPenxOzRZIhHXu4H3yf6OaLUcrHy+dqUwH7DqM8B69YIBy0WNIeJRw02XVkmoBtkM6//oq2AwMpADoaI8TC1hnvEwqYdDZG6WiMsLtvBqUUAcsgFrEIB01ms2X6RtL0jaSZy5YpVdxFF1b+opKwSgghhBBCCHGK6bk8bWoCH41s82Z83SKWH2ZTh8FLR+colBwCtkH+RGXVq4RVvq/IZSpEooFaWGUG51cDPL0HVCBo0daZYGIkQ7XqkUuVX3cvG1UtoVkBOA+VVVoojt60FHdoF0q5+MX063p8vuQQ8cp4dhAjeG6rE2qGgbF6HSxZgb/tWbypSUoOFIaGqU6PYJgWnhmjkknjzo2A8mmpC/PRt67m/Tev4MbNHZQdj7aGMH6pRPlYP3ZnJ0Y0RmjlSjTTpHhgHwHLpD5is7wlzN5jcwQsjeHJ3JseIFWqHuOzBQ4OphicyP3EvYrOxa6+aQA6m6PUx06tvElEA/S01AKrDUvrWdtbx5O7x8gVqkylSpR/gmlpb4ZqxcXzfHSjdj73HZjihSePUb3A1UC2bZDPVvB9ha8UU6kS9YaLdvQwga5urKZm/GIJ3Q4QXLoc5ThUh0fxMhmCtoFhGGxc1sCR4QzlikfF9ag6r68v3KHhVK0HVjxAKHD2HnWNiSBreuuYyZTZfniadL6CUgpd14iELOIRG6UUo9MF+kfSHBhIcWQ4zdhMnky+IgHWBSJhlRBCCCGEEOIU/cNzLDcnKQWbwQ7i13VjpAa5eomN6ym2HpoCQNMVju9gG2euagDIpkv4viKaCGCaOkGj1mDd8U6/2DYtnRVrm9F1nUMvTeD5PqXX0UNIKQXVYm01wHPoD/VaNF3HWnkNVEt44334uRnU67hoLZRcwl4ZPxBEs89+jF4pEI1QuvhaVDAEP3qE+voILeToKPZRt+1/05bZTWtbE3Y1R2lymHLZQdc1VnQmcD2fZCRAOGhRGRrEmZoivGpNbX9Mi9CKlRQPHkD5Hsm6GGsTilLF5fh4Hs+vhQ7nm1KKfMlhYCLL4eEUqWyFSNCkUHaYmCu+rufKFioMTGTxz6ER+r5jc8TDFnUR+7SV4gCS84FVoexx+xVdRIIm33nmOADji6TZeiFfxZgPqtJzRfZsG2FkIM2TjxyheAGbhWu6hq+gUnaYy5RxPJ+ewhgqmya6+RKUUijPw2ppxW5vq00F7DuCm8+jKZ9oyOKipfX4SvHS0Rk0pSiWX19lX/9who7GCJGQhWmc/f0eDdus6kqSiNo88sIQf/fNvfzV11/iq4/38eOXxugfzeD5iljEIhaxiYUtdA0yhSpDk3n6R9IcHEgxlysvinPiF4WEVUIIIYQQQohTHB+eocecQSU7iQYtAm3LMCtpGq0yq1oDbD80RdXxMM1acGPqZw9i0rO1MCIaD2KYOiEzCEDZP32Kn6Zp1DVGWLKygeHjKUqFKrl06dwvEN0qKH++sur8TJvSO9aiJVpxj76I8hxUJX/Ojy3MTwPUgiE089TKD6fqnbWqqK61gc7mKI33vAPSc6gXniLop/COPAWahnvgCcy+J2hrb6Er6hB2ZsnmKxTLtVX9mutCKM+jsH8fAKFVq/HLJdx0itDadfiFApWBAcKxEMujHrGQydN7xrBMjZl0icLrDA3OxvN9UrkyR4YzHBvLUK64xMIWCsXEXJFoyGQ6XSKVO7fplYWyw+BEjnS+Qvo1pohWXY+jY1mWdSQwDZ3gWSpvktEA3S1RfA/edlUPM5kyz+2bIFt0zmnluKrjkStWKZYdylUXxz19XH1fUal65EsOc9kyYzN5jo6mOTKcZiZTOmtFke8r8tkKtm2gfMWO54awAyZbblhCsVDlRw8fJnMO4aLn+Rx4aZwfPHCQ/bvGKJ1jfyilFBOjWbY/O8jc/IqeJ7MsnXy2wtj8e7xz6ghaIEhozVpUpYwZj2MmkxihMKEVK2tTAZ0qfrlMImITC9p0t0TZdWQG09TIvI5gei5bZi5Xob0xQjISeNX7moZOW0OEj9yxio+/bQ13bOlmeUeCVK7Ck7vG+Ncf9PGXX93N3z+wnyd2jDA0mUPXNUIBcyHACgUNhqfyDEzkXncFmPjJvMH1XIUQQgghhBA/b5zJY5iaTznWSX1Ax2xaggeo9AjXLlnBP0xU2N0/w5rltaltujr7ZcXcTO1CNpEMYhg6wfmwquSc+SI7FLZYurKRwf45Du+bZNMVXVQrHoHga1+6qOp8lY4ZPGOz5Z+EEYhg9l6K89JDqNlhVCgBofg5PTZfcoi7JYxQAs14efudqsfESAbTNmhsjmLZpwZr0eYmKqUCXjhA7Iot5F58AcsbIBioota9Gy07iHv0RbxiHm3j3TS6RZLBICktgWkahAImXrFA+Wg/VlMTVn0Dbi6DGYuh2zaabVM4sI/g0mXUxYPcuNriwd0zPPDMAHdf3cvwVJ4VnQmMN1Cd5vuKgfFasJQrOUzOFRmdLjAynV/oT7RpRSNv3dLF8FSegGUSfpUxLlVcjo9lCQYMNE1jYrZIPGyftaJm//E5HNenpzVGMhZ41QbldbEgvgIfuHxNM1sPTrGsPY5l6Get2vGVYi5bZnzmpMow7dRvT6ze5zgezL++BhiGhq98LMNgfKbIOAWiIZuGRJBIyFw47uWSg1IKTdfo2z9FaqbIFdf10tlbRzQe4JnHj/Kj7x3mqrcso7ktdsZ9mxzLsuuFYfLZCtFEgIMvTXBo7yRdvXWsWNtMXWP4tMeUSw4D/bMcPzJDIVcbq8nRLDffveaU96Fp6ZQKVYYns4S8MtHJQSKXXIpuWXilIlZXN5qmYTW3EFy6jMJLu6kMDhJo6yBU14jS4OKVTXzn6eNMzJZoTNbOG11/7ffuoaFav6qu5gjh4MthuV+poHwfI3TqtNu6WICZTJn2xgjtjRFYXft5peoxNltgdLrA0bEsz+2b4Nm9E4QCJss74qzoTLKsI04oYJKI2BTLLkeG07Q3RaiLnrmpuzg/JKwSQgghhBBCLHBcj0R5BD+oUY22E1AVsMMQiBLIjdDVvJzOpjAv7J9kSW8bAJ539lAjNVvAtg2i8Vr1w0JllXfmyhg7YGIFTFZc1MyB3eMsX91ELhogEIy+5rarSi040Oxz6w91TuwgettKtCMJ3OPbMRp7UW4FzXz1ag6oVQK1emWsaAjNqAVSvq+YmcqjGxrKV4yPZKhvDBM5qaeSpuvYnZ2U+vqIXXE5pYMvkdk/g7phI7PTFoHmKwl3BomMPEUlnye3/B58bxIt4mA1NuP7iur0DNXREeJXXYNyXTTLxmpuoTw0SGjVaoqHDlJ/x51EElFWlLLccmkXj20bJhkb58q1LUynSrQ2RH6iQ6aUYvvhKR545jhTqRLefKVRPGzR0RTlstXNZIsOLx6YRNfglks7GZzIsrwziWWefi5Vqh7HxrPYlo5l1o5jqewxkynRWn/mbXypfwZD1+hoDBN/jcobgPpYgFLF5Yo1LRwfz/LQ84N86JaVzKRPPw7FssPoTIFSxSMaMhfCFaUUnq+oOj4VxyVXqpItVMkWHdK5Cul8daEqrFTxiIdrU+HWLanHMnUGJ3JoGtTHgySjNulUCdPUKeQr7Ns1RmtnnM4ltUb9yfowb7lzFc/8oJ+nf9DPZdf00L20fmEbS0WHPdtGGD6eIhoLsPmaHryAjlv2mBrKMDqUZujYHA3NEVasbaa9O8nsVJ5jh2cYGUyjfEVjS5SLNrcTido89Wgf258Z4Kqblr18nmoaoDE0lmFz4Ria7xPdfAl+tYoWDKKHa0GYGYsR6O5BD4UpH+0nvGYtwZYWDA1WdSUJ2ga7+me4+ZIuylX3lPDpbA4OpLAtnaZkmOB883nlupQHjoOmEVq+Au2ksDVoGwRtA8f1Fs4hgIBtsKQtTm9LjEuXN1IsORyfyHFsPEvfcIa9x+bQNFjVHufOK3sIR2x8XzEylSeTr9LRGMG2frIqznKpiq7r2K/Sb+sXmRwVIYQQQgghxILjYxmWGpMU7EasYBDDNEADo3kpwYl+MhWPq9c08/Ufj3BkdBYAr1qrNDlT9Up6rkQ4ahMI1S5Ag/MhT8k9c68iXdeIJ4N09tbRf3CKw/smiSZCJOs9zNe4KDxRWXU+wypNNzHq2jF6NuEeegovM4GWbMOIN73mY4u5IgHlYkYiC2FVZq6IU/EIRWrHwzB1ZqcKlIoO9Y0RjPmwRrdsAl1dFF74Pokeh9l9kN6fwr7cQU9PoLqvoBKOYR95mOSRr1O+6JdQbprCrFHrLb9jGyhFePUavHIRu60dIxoFTSe85iKKe/dQPnaU0IpVhHWfJVGTS1c18cL+SepjARS1VfNerdrpbI6MpPnnRw9hGjqXr22urcbWFDmlb5RSCsvUeGbPBJqmccOmdoancvS2xU85j6qOx/GJLIbOKaFANGwynSpRFw0SsE8/Lw4MpOhsjhKwTELnsJKepmm0NYQpVzzuuKKbr/ygjyd3j3HrZZ0korUG3q7nM5UqMZ0pYegaBwfneKl/hmLZper6VB3/rL20DF0jGQ2QjNq0N0aIhy1Gpgu8uH+K5/dN0pQMsn5pA2t760jny0zNFclM5bECBgN7JlFKsXxDK8WKi2UY2JZOOGJzwx0ref5Hx9j64wGKhSorL2rh2OFp9u0cw/cUaze10b6sjqPjWfqOp+lqiLBkXTNty+qYHcsxN5rlhSePY5g6nutj2QbLVjWydFUj8eTL76P1l3bw0tYR+g9Ms+Ki5oWfWwGDsckcd2eOoLV2YDe34OayBLq7Xw61DAO7qZng8uWUDh3EKxbAcWhKhphMlVi/tIGdR6a5bkMbuaJzTmHVkZEMbfURklEbXdNQSlEZHUV5LsrzcHNZrETylPFtSgYZnMhhGj66Xvu7Rtc0dA0KmTKVooOm6/TUheitC+OvVUxlKvRPZHlpMEXuh/3cdXk39Q1h4q+oskpE7NdViVituEyN5dAMjdaOBNZPGHj9PJOwSgghhBBCCLGgf2CKK8wZ8vH1xCwfPdIAmo5e14E2vAerPMeKtjYa4gF2H5uATjA0m1LFJXKGi8zMXImG5gj2fKAQNOanAbpn7zkUT4Yo5KusWNvM/l3jpGYKJBtCJJKvEUJVa311NOs8VlYBeqQOo3sjbv8LeIO70Ou70GMNaK+x4mA1nQHAiETQTJNCvkI2XWJmqsDxvlla2mK0dyeIJYKUSw7jIxkaW6IE54O9armIO7ETMwzmho24L72ENt6NWrISd3YaGtegrDCBg98m+NKXya16D0EtTSEVxNt3ACMex2xpwS8UMeMJNMPAqk+C8tFDIQr792P0rKBUMSjlc1y5vJFMocojLw4RCVkEbZPlHYlzmpZ1wsRcgf/9wH4A7rttFQ2J2nj7vqLqeDiuj+fXZsVduqpWBfbcvkk0Da5e18rkXJHW+hD4Pq7SOT6eQyl12mpvmqZhGDoTc0V6Wk+dAjc5V2QmU2bd0noS0XMPEQxdp6slSsXxuG5DG0/uHmNJW4xY2KYhHmR0pkCx7LB/IMW2g1MUKy6dTRGWdiSwTR3b0rFN45SvsbBNMmoTDVmnTBlzHY9CtoKzsZ3+iSwHhtL8cOcoP9w5SldzlI76EJqnsMoepekisa44g7MFAtkyIdugIR6kPh7EDphcc8tytj8zyL4dYxw9OE2p6NDSHmfzlk502+TgUIpHdo6SK7vsOjaHbeosa42xrDXG8o4OCqky5VSZto4Y3UsbFqYvnmz5miamx3Ps2TFKQ0uE+sZatZmhQXBmhEQlS2D9tSjPRTNNzNipU2XNujpCy1dQ3LuHyuAAwSXLqI/HmcmU2bi8nm2HpjgykiEWDtBSf/rUxJNlClWm0yW2XNSyEIA6M9NUpyYpHTpIeP1GnIkJzFj8lOqqRCTA0nYd1/Opuh6Oo6i6HunZAvlMBd3UcMoOnuvhVz2qZY9KyaGp7HJ1Y5QXZ/J867lB3rqpnfr6EOH5UHd0qsCYViAWtkhEbCIh65TqrVdyXZ+BvlkGj82yfHXtuLZ0xBca6YsaCauEEEIIIYQQC3IjR7A1D1XXRchU6OEk6DpGfScOkHBnGEql2dCV5KnRYQKApVlk8tXTwqpyyaFSdonFgwsXYicqq4pOiapXxTZOX6VN1zUamiJUSnUcPTRN34Ep6pvCxOLBVw1OTkwDJPj6pq95no/r+Gfti6XpBkZjD0bXerzjOzCWXwmVLniNqYluLguAGYnhVD1mp/K4js+O54bQdY3p8Rz7do4RiQVo60rQ0l67X7IhjOdUqW7/HtHiOKmGa8np3RSnPSqHZ/ACqyi7GtW+OcpOnEr5g5QrCjXusqRtjovWaVRGBwms24yqVDCTCXSrNjZmsg53do7Q6jUU9+2jdHGeUDREa6nMRKrIbRe3ky1UeeCZ4/zSjctIxmyak68eHpyQK1b5n9/cS77kcO9tqwgHTXLFWt8lw9AJB0ySsQBB26RSrJLOVrh0dTO+Dy8cmETXNLasbSHo5gi7KYa9FjyfhequXLHK4aE0Pa0xmpIhwkGTTKFCvhQkGnr53NvVNwNAT3OMRPS1pwCeLGAZ9LTGFhq0P7FjlJb6MBNzRfYenWVX3wxV12dFZ4Kr17fS3XLmXlEnKKXwPEW56uF5an6qoM/QvikMUydaF6Q9EmDJhnZyZYdjU3n6JnK8eCiPDqxHpwJsG07BcK1PUzRo8pb1rXRXYrQ0hLFNncuv6yUctRkdSLPlhiV09CSpOD4HBlN8b+cIrqd479W9lKoefeNZjk3mODiSwTZ1lrRE6W6MYMRr4cuZaJrGpdf08IPvHuTFp45z811rsGyDzMwca1JHcAwbv2U55VyBSFfHKSERgB4IEF6zltSj36PU10/04ssIJpO0N4RxPZ/2xjB7+mdZt6SequO96tS6w/P9qnqao4QDFl4+T2VkhNT3H6EycBxnapLkLbfhZrNYyeTL26Brp1X3peeKOOgc2j9FNn16o38raGIHDKqZCpdYFv25Cg/sGOZtF3cSKzpEEkGi4dq5V656ZAq1BRiCtkl9LEAkZJ0StPq+YujYLM/98CilokNqpsjl1/YyM5GnqS32uoLhn3cSVgkhhBBCCCEWBFMDKAuq0TbsgA2BMKChwnUQaUDNDJErriRaNLko18hEugk7GiCdK9PaED5lCteJlQBjieDCFL6AUQsPqn6VdDlLc6TxzNsRskjUh1m2uon9u8aZnsjT0Bwl8irhw4lpgHrw1QOEk3mez/R4jnLZIZEMEa8LnbHCQQ8nMZdchjewE2/oJfzGHozXCKv8fK722EiUmakcmqaxfT6ouuWeNQCMD2cYH8lw7NA0/QemsGyDZH0It1igmm+h5H8YPzW/PeHLIAyM+VgmBAM6oZBGPGoTsj3c8T6Oji+jlB5jjaeoti0jny3T2NPz8n6EwmBZGEtXonbtxBw/hrViDbqr0Rn0GU9XuefqHr76w6N895kBQrZJLGSfVtn0SlXX5fPf2sv4XJFfunEZDfEgpqHT1RwhYOmYho42P10rPVeikK5gKUU8YHDZmmZ8pdh6cAqUItRZImI4eLqLirex/dAU+4/PMThZCwLCAZNfvmMVjckQQdtgdLrAiq7Ewrm399gM8YhNXTxA+CfoBxQNWXQ1Rbn50k7+5QdH+NZTx8iXHHyluKi3nqvXt55S/XMikHJ9H89T86sBagsN1wOWQTxcO4aWqbPzmQFGD9em0NY3Rehd0wSGTihosb6njs1L6kEpju+fZnY8x7LNbayxDSqOR6nqsf3oDA9tH+HqNS2sqrq0NYSJhm3WX9LB+ks6AHBcn0NDKR7eMYzrKd6xpZvGWABfKXpbovg+DM/k6RvPcXQiy+HRLMen8txwURtdTdGFPlAnswMmV1y3hKcePcKO54a47OpOJo6NsLowSKpzLc22xUyqSmTlmd9/dnMLwWXLKR0+hDM3Q6Czk3g0QChTZv2yBr7/4jDjswW6m6OvGlYdHJjDNHRa68NobpXCwHEyP/ohlYHjBHqXUDx4gPD6DWi2jRmPnxacnZBNl5kYybL16QGqFZf1l3YQidqEwjZ20ABTp1B2yRcdCtkyo4dmWJr1yRQ9Hto2zJ2Xd6P8EuV8lWhdiIBtLExJdVyfybkSnl+gvSlCYyKEUoqxwTTPPNaP43hctLmN/bvG2fXiMJu3dDM3Xfs77rWatvuqdo6dbXGBnxcSVgkhhBBCCCEAyOQrdDBG1qgnGrIwovX4jku14jFXiFLSl3J83OZY1cP30wR0g47jG0gHFaWoe9pUwNR8WBVPvlwRdaLBuuv5TORniNsJLMNA17TTLtKS9SF6ljdw7MgMffunaOuKE47YZ72YU9XaCoPaOa7W5/uKmck8o8Np6puj5DJlioUqDc0vT8U7QdMNjNbl6G2r8Ib34C27Aj3ZhmaeXhl2gl6ohVUlK4pW9Rnom2FuulCrgpmv8Fi2uollq5twHY/JsRzjwxlS0zmClWmSdg6rfSUBWycYDmI6Vez8DNrj/469eh3W5usxkgkM00OVc5iNIRL7trKzdDmVztu4tLmdTAWinsGJWjNN03BCcTJmA1oogjp2CFasQQ9FsAo52pJB5hzFPVf38vUfHeXB5wZIRAP0tsYJBowz9iXzfZ8vPXSQvpEMd1zRTXdzDMvU6W2Nn9Iw3fcVqdki+UwZ29YxTINy0aExYrNlbTNKKbYemkYr1qa5HRmf5ejcNEpBYyLI9Zva6WyO8J0fH+crjx3hI29dTSIaIFtwSOUqNMSDOK5P/2iWtb11xF5ltcDX0pAI0t0S46aLO3h8+yjreuq48qIWGuvD6LqG7ytKFRdPgU6tn1YkYBEIGAQsE8vQsczaVMWTj9lLLw5zYOc4nb1JmlpjHNg9zs4fD9DRk2TF+haUqZMrVMnMFJkdy9Hcm6S+PgwomO+v1FEX4qmDkzx9YJKZbJnLlzfSnAxRP1956Ho+h4dTPLh9GMfzeeeWHuoiNuWqT9DWKZU9AJrjITrqw9y4vpWdR2d5/vA05apXq9pqihGLnH5un2i6vm/nGA0xhX/0IKbycZevI4CLqkswOVmgpd04rXG4Hg4TWrOW4r69VI4dI7xyNUY4TFtDhKW5Cpapc2AgxZqeepKx4BnHpVpxOXA8RWPUxstWGJycQG3/MRzYh37JtXgbL0f71j+Seuz7NH/gQ7jpNFZ9/WnPk8uUGR2cY9vTgziOz3W3rViY2niyWNjGjXlkogGCEZvMeI7hI7NEy4ofPTvINVu6aDINUpN5wvEA4VgAXdewTB3L1PF9xdhMgXDAIjdX5EePHKZcdrn21uXUN0awbZNdLw5zYNcYaze1YZg6da+xsMHEbBFf+XQ2nXso/7NIwiohhBBCCCEEAEeGZlhqTjMXXUuTqaGHE0wfGeT4UIHRGY/JsXXouHQ3V4n0dnK4ehR2R5npc6k0lkllK6eFVZquUXfSReCJyqqZbIFhL0cxM0rEiC0UohiGhm3qNNWFiYUsmlqiLFvdxL4dY4wMpGloip11up6qFEE3z6nBetVxGRnJsPv5YSaHMhimTs+qRlatbWZyLEssHiRRf2qVlR6uw1y2herYQbzhPRjNSzFiZ64MAzDKtbCuYsdRhSoHdo/TtaSO7qX1uE5tWhgoTvTkrm8Kk4x6BK0fE5ncSmnVPXh1ETQrgJ5sw51L48yZeJsvx935PHp7F0otRe/sRDMDOJ7HyrodlId+zMHGa9i6J8uWa7qYmSpgmAbBkEU+WyZdNLBtHW/ZGoaHcww9PUU0YnHxuhhWdpaG+lbCusUdV3Tz4HMDfOWxI6zprWNlR5yulhjxSIBQwFjoBfXNp46y7dA0V65rYW1vPbZl0NsWOyUoOhEMFgsVjh+e4dDeSVZvaGHNxjYqJZfmeJCrLmrFLM1x8dwjvDCxnFlzOdcuNVmzupfmxsRCSPnBW1fyz48c5iuPHeGX71hNJGQwMVskHrY5ODiH4/r0tMSoi549SHwtmqbRHA/SkwjzoWt6CVomftFlNJtCMwxCIYOmhgh1yRDRsPWa1TAA/QeneP6p4zQ2R9h4eSe+r2jrSnD8yAxH9k8xNpxh2apGlq9t5tDzw4RjNhsv68DQa6GH5/uUCg5myOaaFU30JYJs659lJlfhLetaKVU8mupCHB3P8O0XhxaCqmTExvWhszlK0Dbw/Foz+ErVI192KVdc1nUlCVoGT+2f4Hs7R7llQzudTREa4sHT9m3V+hamxjLs3Zdm/cQQY8FG4i3NKN8jWJ/E13QmRjO0tCdOea9quk5s8yWkHvoupf4+4oU8RjhMNGTRXBdmdXeSQ0NpptIlOpuip02JK+Qr7N07hpmt0NocJeTkMQ7txN23DXPtJszLrkJ5Hv4VN+F9/xtMPr+dBDb1sTiG9fJ2FHIVho7OsfXpQXzf5/rbVpBsCC+8Jz3Pp7bLtdc3TJ1E1MJzXLT2GHWtUfpfmsBIldn77BDNKxowQyaFoRRVz8fXNaquT6nqEQ6Y3HxpJwePTHHw2WGKhSrX3LycZH2YcsmhtSvB2orLgd3j2EGT5WuaMUyDeOLMYV0qV2Z8tkDza/Xv+zkgYZUQQgghhBACgJn+g6zWPPT6TgKhAOlUhcd+OEGu6GMHDFYts1k3+zWM5vXM1veyN11ktnWKpollTI3nCQQt2psiC5Ukqdki4YhNMPTyZYeBDkrjyGCe4VQJ0xomZocJWMZCNUJTMsiyjiSxkEVrfYiVF7Vw/HCtumrJikaaWs9SUVAtghUA48yXOY7rky9WOD6eZ8+RSeaOpQmVPGbwCaNxbP8UQ32zLLuomSVL6ygWqqc0PNd0HbN7A25DN+7QbozlW9CjDWcMKlzPx64UcXWTSDzK008PEAxZbN7StXBRHI0HahfFmgaeg8pOwtxu9KnteM1rKceW4ZY8jFAdRsXHiMcxyiXYcDn++AjOU99Hu/MDVJWB3daOCrVS8ZfRlnmRSFeCHYWNPPvcBFffFGFqPEssESKTKmFHgxw9pOh311Fu0oi6VSZnfHbug0vWhLDyc+jJZjYuqadUddl+cIof7RzlRztHaU6GWNIWY2lHghUdcQ4PZ3j0xWEu6q3jyjWtBO1az6eTgyrP9ZmezNXChu1jjA9nSNQFObRnknLRZeMVnTh5h/aEzZ2hXcSsCVZYkxTW1OPW9aBpM7gqBpqB63gkAibvvnYJX3/qKF957AgfumUFvg/T6RK7+mYwdI3u5iiRV1THudksRjiMZr76ZbBSily2Qnq2SGM8wGRa4SiFpmskE0EiAQtDB8oeqck8pZBFoi501hAVYGw4zY++d5hozOaya3vRdZ2m1ijpuSJLVjayZEUjB/dM0H9omv5D06DguttWkIjUwl3X9alWXFp664jFgwwOpzB1jcZYgCf2TvDA1mFu2tDGdLbMwzterqhKhG2Ugq6mKKbv4lc9DNsmFNAJzfcQO9H83rYMgpbJ43tGeXjHCLdtasd1FU11wVOa1DueYmWvRWq8Sl/dZcxpBW7XFUY0hm7b6NTO6cmxLM1ttXD5xHvEqq8nuHwFpUMHqU5PYzfVVhZsrQ9zUW89e4/NcXgozdqeuoVVAZVSzEzl+fGTx5g8nqYTHaaKPDlVIF6OUL/kJlou2kC946F7Vey2Npzla/Fe2kqqfSl5I0ZdVzORWACn6nK8b4atPx4A4PrbVxJPBikWqgSCFtGIiW2bGPNVcYb58vTVWDyIMZJmKlNm7RWdTAxlGDgwTaFvjgyKSXyy1KZ9Bm2DcNBkYLx23neWfSr5KlfdtIy6hjCO49HaEadSdkH5VEoOffunCATMhdD+lVOeSxWXvUdneeTFIW6/vJuu1+iX9rNOwiohhBBCCCEEANp0HwBGvAU70cgTDx6lUPJZvypKZ4uN2ZjA3JqA9BCRXhczBDMdR4lNLGW0b5Z4MkQ2X1mYwpOeKxGJ2lj2y5cdT+0eQ3kmhu0RChiUHZdMsYLrqlq1x/yKcc3Jaa7f1E6+7BALWCxZ3cS+7aMcPThNIGgSjtgLfbBOUJUimhVE00+9zPF9xePbh3np6Cwj03lyRYcuNFrRqYRNWjpj7BtKg+uxXOkc3jXO8UPTrFzXguN4xJMhEnUhTFNHDyUwll6Bv+0b+MN7oWkJBE6ftjOXKhH2Sjh2iEOHU+SyFa69dTmmVZv61tr5ctWJX87hjh7EPfBDvPHDaPEWQpfeSdRzUY3LcbXaaoGlYhU3Vkc1X0G7+nZ4+F/Qnn6YxLveSyRUJbS8i9EflnF0jeXB3Zjdy9l+XOfH3+/jqrcsxXF8xocz9O2folxyqIsZrB78MY0xxeSGO9l7MMuuw7BphYVezGIG67lxYztrupPkii6Dk1n6RrJsPTTFiweniARNShWXnpYoN13SSShonhZUOY7H9HiOXKbE9meHyGXKbLqik2Wrmzj40gQHdo9TLjlcdm0PhdFh6mf2U65bhu4UiRx6mMK6d+JFGvHmxslTR7XsooC4rnHbhjYe2T3Gvzx2hDs3dzA3mWNP3wytySC641PIVrAsA93QcKfGKR8+TLC7k3BPL0b4zE3jTzTCr1RcgiGLkK5hmjoeELKNM64sWK24TIxmCEds4snTQ6v0bJHHvn0Aw9DZcsNSDEunpT2OZRsEgnFymTLp2SIbLutgxdomDuweJxoP0txWCyPKJQdN02jtiBOYD3B6u+sIWCbG8TnecXk3j+8d53s7RgjaBr5SvHNLD/Ggja5ptDdGMFGUx0bBczDrGzETSbT5cdJ1jWDApL2xFjQHrC6+v3uUB7ePcOumdqquR0MiSKniki85FNJ5yi++yLqx4+xqvw1bT/LSoSINbTZ1+VkS9SHiyRC2bTAxmkXXNAxTw7INTMvAXLsRtXcPuX37sdo6CNQlCdgG65fW8/iOIPuOzXLLpZ2Egxae5/PSrlGe//EAetUniyLZHWN1fpTSsUHS0U4GzW4GdqXRNKhvDNFQHyS+7Aoiw0PYu5+BpgayqSiZVIlMqsS2pwfQdZ3rbltBNB6gVKgSrwuTrA+dtUJO0zSi8SDLVjQRHMkwOJqluTNOY1uMwf5ZzPE8iapHIGzR2pOkriWCZRscmy1wfMc4JTR61jdhhiyUUrR1JObH30IBK9ZpVCou+3aOYQcM0EDXdULzzdsd12fn4Sm++dRRfB/qYq9v4YCfRRJWCSGEEEIIIXA9n4byMCk7SSQWYWzcZXi0yJLCIVpVD5ViI1rZw2jsQR/aSjRSIAiYRQPVGECfqTI5mGK0OUJida1aI5cp09jUgDnftyiTr/DvPz6GvtaktQWu39BAxasQNIO0BFuBWhXFoaE0T+wY5RtPHmVZe5xrN7YRbA4Ritgc2DNOoVChtTNBU3OUaCJIMGSh61qtwboZgJMCBV8p/v6BfWw/PE04YNLVGCZpW/jpCq1LknSubKBSclnVEuPQeJZdx1OE8Fnm6uzbVgvHVl7UTEd3gmRDhFg8iLniKtyDP8Qd2Im54mrMk8Iqx/FIzxUZHM0S8crMRrs41p9m+dpmWtrjFApV6hvDBIImyvfw0pO4B3+Ic+QZ8BystW/BXHE1qpJHq2vDjMSwgFDYoq4hjOf5eB1xnMGjVO66h5l/+yqVF54meMNb8BJxKv3HsNtb0Y0pOio7CF73Hp57dpanf9APaFQrLk1tMS67uptoaQrfr8fdu42emzQ8P8aBwzk0XWPj0hRV0yYRqmd5Zx3ZQpWGRJCNy5ooV12Gp/McG8tSdTxuvaybWNg+JahSSlGtuExP5JmZzLH92SE0Da69dQVNrVHKJYelKxsJhkx2vjDMMz84yrX1L4LvYq+9hQIm2s6vEd7/HQbb76ZAGS0GnhFGo9bse1l7gts1ne/tHOHxfZNsWdlIqlBlRWsDAV0nny3j+wpVdaj8n7+BbApWb0LbdAXR7i4iLQ3zVTQ6hlG7f2q2hGlqhMIW2XSZydEsqdkiStWaptcq4eYniGkauq7R1BKltTNRC61GMoSjNom6EHbApFR0+N4391Gtelx7y3LsgEFLWy2oglpQlKgLEQxZzE7lsWyTK65fgqbN98UqOUQiNvWNEYyT+n9pmkZbWwzb1Dk6MMedl3Ty4pFphmYKvHNLD9GAhWXqtDWEMU2d4vYXqT73BOaq9SjXw8tmsZqbTwntTEOnrTGMoeu87dIuHts9yvd2jHDLxnZmsmWGZwoMzRRwxkb40MiLjIeaKcY1mjUNX2kc60/hH55b2K94Mkg0HiQUtgiGTALB2k1PLEUPRsgdOkK2bgmR1gZiHa3EQxbrltTz5O4xDg+lsQ341jf3U5oq4qEo1wW5ckUUc2iAxpe+hx4IErzhalzNZnauRNoLMTNdou9Iqja1tuvdRCsp6nZO0Lw2RDAZY+uPBzBNnetuX0EobFMuOTS0RImepUfWK1mWQU9vHZGoxaG+WUxTZ/X6VvyLFHMTOcYH0gwenGb4yAwNbTEqhSpxNI7i42bLJPNlunrrFsYfIJEMgYJ1l7RTrXjsemGYK66rRTWxeJBYXZCXjs7w9R8dxVfwvpuWS1glhBBCCCGE+MUwPJGh15xiOrSCZDDAE98fIuAV6ZnYhvrhSzTf9xEsI4/VtZrq0Iuo2SG8QAXLsNiwvpnnfjSEGsszOpiipzOBU/VRviKaCCxcZH/5scNUqj6doTomy+OkyjmCepi5apaQn8DQalUEXc0xPnTrSg4Npnh6zzj//OhhNi1vYMmKOmaOpTmyb4oj+6aIJYK0dMRo70zS1hXHLufBCoL2cmDy/z18kO2Hp7lmQyubl9Zz6PlR0ukKTT0JWpbU4Tk+Tc0RDNsiFAuysjXOrsEUu4fT1OsavRWXl14c4cj+KZataaJ7aR0NDWGMpZfj7nkEd3AXmmFArJl8ziWTKtWCMx1s5dMf30QsEWD9xe2U54OHWCKIqpZwhl7C2f0Q/twIekMP9ua70KL1qEoePZRAjzWdNk6GoWNEQhi9S8H3iV99LdlnnybQ0YU7N4eXzxG/5mrQhwnO7CecOcJ1N1/K1mdHCIUtVm9spbG5tophZaKE17sc96UXqfYfYtm6zfi+4lBfHkMLsE6fJmPatISStDdGaGsIU3E8CmWX+niQFR1JfBTxsEV3SwwNrVYBVqhSyFdxXY/h4yn27xwjlghy1U3LCIctigWHWCKIBrR2JrjyBoutPz7Gj1I9XNurQTlMPOxRWP1eIvv/hYaRJ5mK3slo3zTF0svHQtPACphsCQWYmS6yfW6YTjTiZY+xY3MYRq1pf/XwPnyjG2vpRqzhAYLTj1PeuJlc71ICjY1opolSUCk7ZFIlpsdzTI7lKJccAMJRG8PQFnqL1b4qULVwcqBvFjRobI7S1hWnqTVGsVAlGLZ49gf9ZNMltty4lHDUpqU9flrjcYBA0KS1M0EmVSSbKmOYOp7n09AYmZ8uenrFj6ZpNDRF0A2NwaE0V69u5uaAQdXxCQUNWurCmIZOdXiAyve+AZ6H8/RjaDuew9xwGd7SVZgNjVgN9ehm7b1n6DotDSEMA+68tJPHXxrnkV2jC6/ZEvD5pemn0AJB6m9/G28JRqhkc/SsW4YejtR6os2VyMyVSM+VSM8VGR9x8Fz/1I3v/CUsr0x42ziRhiLhxCzRljp6gxampvHU84Ps/H4ftg8lS2PV+hbqnDwMHaNx9xO1aq3b3kPJN9H9Kh3ruukJ1YI31/GYncwx2TfGTP8MY3mb4e1TwBThqM31t63AsmtTSk+uVjtXmqbR1BQjELI5cHiKXK6MbRtEG8Isqw9TzJaZGckyM5ZD+YqO1Q3ks2V2D6ZpaIzQOFtkecg8pUovUVdbLXDT5Z1se2aQrc8MsP6SDtq7Euztn+GbLwyiNLjvtlXEwq9ve39WSVglhBBCCCGEYKLvIOs0FyPRyuCYQSrjsnZ6G6EbbsF57odkHvwWje/+JfxYGxgW3swglZYoIStAY0MEuzWKM1Fg+Mgc47316PPNiePJELqu8VL/DDuPzHDVulZ66m/g4el/Y1fmKd6/9B7KukFTxKQp3ACA5/tMp0uYusaq7iTbDk6x7dA0+w2NjV1Jlq1uQC97pCYL9B+Ypv/ANJGYTZfqJhH2sXZPEk+G+P6eMV44PM3Fy+pZ2x7n6LYx0pN5VlzUzKp1LXieT2NzlGi8VlVRbI4wPlsgXh9m45I6nj80zfapPI2aRnfJYd+2UfoPTLFkVSO9HZfRYD+Fs+8HVAol0pHVEGkmFI+i6RqFistU3XpczeLya3pQSqHrGnX1Nt7cMM7e7+P2vwCGib3pLvSezWhOGco59FgjerzlVZt2G+Ewge5efNejMjJM+vHvE+jtBU0j2LMUs3E97tND1E39mLnmVVx/+4qFkMTzfFzHxzXDVEJJtGQD3jM/oDg6xNINl+AtTdB3rICGYq01w5RpEApXMEwdy9IJWgYd9WF8pah6PqYGc9MFcqkylaqL7ymUUgwfTzHQN0t7d4LLru1F+YpK2aWpJUokFkApVZvyBFzfeYhnhpbwxMg6LmssU3YjTI6WGSu9k1RGwRw0JGDFsghmop7ZdIVCoYpf9XCrHr6vcCouBjrZsRyZsRyoE0erARpq5xZtS2pfh4ChKQLWDKFoAIVGJlVLwuyAQUt7nJb2OM3tsYWVG89EqdoKh+PDGcaGMuzdPgZALBEkEDCYmSqweUsXdQ1hmlqjrxqM6LpGXUOEUNgmlykvVGe9Gk3TqG+IYOg6IyMZMuUqsXCApmQQ31fkZ+eofvX/q01j++CvUE2lqG5/DueFH8HuF/Av2oy7eiOB9g6MWAxNr61e2DT/vr11QzsHhlMELIMlDSHaf/SvGJU8uRveiaMHoVgiGg3VeoHpGvFkbQogS2vb5/u1RQQ8V1EqVikVHUpFh0IqT7bvGIVMidlpi7EUMFBbkGAzOipdwUUjsiTJhhYbf2SQ+sHdmAOH0CyL5g/ci9nUQLlQwWvoouzqOAUHO1CbatjSmaSpKUQpNEv5oX+htPoKKuuvoX1FO9r8cWvtjGO9Yirx6xGPBti0ro3Dx2dxKh4mYBkaTbE4y3vrQEEpV8IzDBpKDo4GT+wYJRywiISM01bzOxFYXXx1N3u2jfDS1hEO7Z2kv+rgaYp3X91LxDbwfag/SwP2nyeaUkq99t1+sc3O5uffZEIIIYQQQvx8evJfvsQlhadJbbiPJ57VsXPTXBaboOPtb6Ny9Agz//ZVwus3kLjhRrT+B6Cc4YsrllDG4xOrP8GOwzM88kQ/KzDoWt5AfX2Ql7aOcvf7N9DYFue/fPEFAD5wXTeJR75CcXqEo3UewcZmVrSswWmpo7drHVY0hh6w0YMhKlWPsdkC2UKVctXhqd3jHBpK0xANcMWyBpY0R4kFa9OnxoYyTI9nULxcrVBGYQZNWhsjaJ7P9HietZvaWLG2GdfzaW6NLTRPP1mh7DA5VyRbqDA1U2T/8Tn6xrKEXUUnOgHADJqsbMmxqvo0fjFLMdRFvuFiKqFWHBXg+HCa/FSRLm2Cy+69g3KxQlO4hNb/BN7ATlQ5h9G+BnvjW8GwwK2gRZK1kMo69wtRZ26W4uFDTH/tq/iFPIGeXhre8W7CK1dS3fs9nB3fwVh9E5meO6i6tTlslqUTitgEAgbu8SNoTpXc1hfJ79kN1So0tnKs6zqO5yIsabdYt6kVo76Batkhky6RTZXJZcpkMxVKhSqO4+E6/hm3b83GVtZsbKVS8rACOo3NMSzbQHkeKIVmmpTGj+E8+P8wlbyKZ8ZWUanWpm+iIBHT6WxWrEg/QNh2ySx/F36kBTPZhOsr5vIVylUPy9Q5MpbF0DQuWd5IMhZAOVXSf/dnqGoV+54P4gciFPMVysUqxf6jlKZnqYTrqTZ0ooWjNHcmaemIU9cQfs3V/ZRS+J5auE7UjdqUwGK+ythwhvHhDNMTOVatb2XJykYaWyLnPNXsrK/pujgzM3ilIoH2DvTAqVPBMukS05M5TNNAB+yATumf78cZOErT+z+I1diIpmlUXI38yATlHS/AyDGwAxhrNmCtuwSrsxs9GMaZXxWvUHHIVX3CYQvviYcJ73iS3EVXwbrLCRsuoaBJqKMLPWDXpqi6Pq7rU5syqTAMA9/zUfPJoVK1OZSa71MZG0bLpVEv/BBnYpxy52oqKy9jVo8zmnVYubIOY3aS+iMvYh8/AEDskkuJX30tmmXhOw6hJUsxwmE816dUrJLNlHGqPppWez03l8V59N/R+vej3fE+7PWbCUVDNDRHTlnp8w2Ni1ILTdidUoVqvkhxapbczh242SyJ664n2NvFsfE833r6GFOpEu+4dilbLmqh7hXnhFKK9GyRTKrE8eEMu7eNEFQQiFq0Lakn2RRm1bIG6upf+xxd7HRdo6EhetbfS1h1DiSsEkIIIYQQP+92/P0f0ahnOVb3Hg4d9bhk7kmWfeg9BAwPFOR3bCf79FMkbryJSGMZNfgs969dhRmM858v+XVGpgr88/cOYU4VqEMjWR+mkK/ySx+9hO9uHeKJHSP80nU9LPvhV1ED/fidrbgzM9hlFwClaRh1SQLNrQR7lxK/9lrs5hYA8iWHkek8juszNlPgkReHyJccNi5t4OrVLTRFbfB9Yk/8IbPJLTzjXkz/UJrmkEVM16mUXJSvWHdxO70rGjAMnabW2Cl9Y86kUHaYmC2SLzm4FZfjoxkOD6fJzhRpVRpBXv1isSk/wMo2j/iVl5GcfApjfC+4FfTGHqyV16A3dKOcMnowhp5sRbPP3PT7tVSnJslt38rst79F8i03k7zhLdhtbfiVIqXv/il+fo7A7f8ZP9mLZRmn9D6qTozjzM5iRKL4lQqZXbvJbd+KSs9ypOUqRmKrSIYVFWVSKnkLjzNMnUQySCQWwAoY2LaJPf/VsnUs2yQUsQhHbMoll0QySKI+jDs1wcx3vk1hz27szi7iV16Nld+Omuojv/GjpCsRjo1BOBKge2kdEdulMjOOVpol0fdNCMZQG9+FE2nHsZK4VZ9S1SWVK1N1fTRdo7MpimVolB/5Nv6Op+Hmd0JbN3ZbrarGzaRxszm0yWF44XEoFdDWXoy58Qqsji604MsBwokpf76vUGhozPeuAkzbWKjMqVbdlwM7BWi1AMPzFPWN4Vq10U/AmZ2lsH8vxQMHKB8/hjs7g2aaxG94C/V33ImVSJxy/2K+gqZr2AGTma9+mcyTPyJ52x2EV60m0NGJEY/hZrM409NUi1VyY1OUd26FoT7QNFTHErQV60hcejHx9maC0RCZQpXpXS+h/u/fYy9bTvId76GSyVPRAviJRnSzdgxMyyAYNAkErYVm6rpee4/4vsL3/NpXvxb0VQtFSuOTlDM5vP6D+Nt+XNuGjVeS6b6I0KFtBPp2g+sS2bCRxLU3YCQSqEoZ3/MILV2GETr1uJ4cIvq+wvM8Cn39pL90P0RiJO79VRpWdGLY56fnk+84qEoFL5/HzWaojo5Q2L+P4sGDqEoZAKulleZ7P4zqXsqBgTRf/1E/5YrLL71lOeuW1GMY+kIPNE0DlOL4YJovPnoIz1fcvLSB1FAWp+zS1BZlxUUt9CytJ1n/k/19sVhIWHUeSFglhBBCCCF+nqWzJar/+p8YMFeya+ZSmnPHueSqLup7WjFjMTAMnNlZUo9+j3J/H/W3XU9g7kn+x4ou6hOd/KeLP4Hj+jy5e5RvPN7HZt0EX1HXEObiW5bxF1/fzbruOG8dfAKt/yDxW29jtiOOrdt8N/Uc5kyGG0pthGZz6FNz+Pk8waXLaHjXewivWImm63i+z2y2zORcCafq89yBcXYemSERsbn9im6uWlUHX/9NjsS2cP/gSpY2RbhmZTPtTWFCAQvl12o7QmH7dVVVKKUoVz1ypSqpbJVCsUI+XeboeIaxkSz5goMLJO0q10T6WO4fwrZ0DlRX0rZzO4HVTdQlZtGUwuhYi7n8SvRoA8pz0KwARl0HBCJvqEpCKUVlbIzqyBBaKExk5Ur0YO0i3hnYRfmxv8Po2UTopl9DM0+9SPdKJUp9fZjx+MLPHNdn9kA/lT07OJqLMRvuIBrWSXS1Ut/dTLQuvLDCYyBggKbjuR6uV6uG0jQFan5/dGhsimBkZ5h94Nvkd+0ETSO0YiWV4SH8QgHdhvCSFmLX34LbewnZrI9h6viej6ZphAKKQGUcKzuCs/2baKEY1sa3YXatQ4s14zperbF9pkw6U6a5PowaGyD9v/4HgbXrid94C5EVyzDDYZRfqxhyiiUq4xOUp6Ypv/gMbt8BMEz0ZauxN28htGoVRjiMrtcCBMPQMS0Dw9DRDe2M549SCtc9UV3kUa34WJZO7BynbPmOQ3V0hPLgAKW+Psr9fTgz0wBoloXd2UWwu4fywHEqgwMElyyl6f0fJNi7BO0VqxRmfvwUk//3H4lsupj4NdcS6OrCbmg8ZVv9YhFndpbyXJrs+Axu/yG8vn2oYhEjFiN80TpiV16N3dTM8Gf+X9A0Wj/2CZRbxWxoINDWga/Ac/2FJvWvl1IKL5+jMjqKMzNN5kc/pDI4AIYBnkdo9RqS19+IWV+PXyqBUhixKHZr28I5/pqv4brMPvgAcw8/iN3ZRXjtWqIXX1oL70LnHiIq30dVq/iVMl4+j5fLoZwqXtWl3H+E4v69VMfGwDAIr1pDZOMmvFyO1PdrzeCb7r0Pc+1GdvXP8tXH+9A0aEgEUap2HBa+AqlcBYC7L+siqGk0xAJkpwsc2jtJteJx7a3LWXdxx+s+3ouJhFXngYRVQgghhBDi59m+7bvo2fm3PJq/h7lynCvtI/TcejWBWJRAdw/oOs70FOXBAWa+8W/45RINazw+uyJJd+MKfn3Tx4Haan9/+bVdkK7Q4ULnkjq25kqkcyU+4e7EPryHxA03Ety4idGYS8SKkMnN8H/HHyWiBXiHsZGuSCvO3v1kn3sG3Q5Qf9ddJG+8Gd2qTderOh5z2TIzmTLDU3ke3zFCKlfhsp4AH8p9ka8XtjDZcCl3XdlLd3MU29Aplx0qJYdg2CL5BqfPVKoe+bLDbKpIKlVkbq7E8GyBgakcEzmHLmOG98W20pSfYe4Q1K3RiWy4FHPJJWh2qLaCXCiBHq2HQBhNO09TkXyfyvAwynMJLV12ys9LP/ifeEO7Cd7wq5hLL0UzXp76qJSi1HcETdfRzFN/ns25ZMZn0Xc9jd+/HyIx/IuvJbLlKuraGgmGLMyTev6cqGrxTqqgUTMTpB9+gMKunaDrRDdtJrrpYoxEHBQUHv9HikNzVDOq1m9r6TKCl1+FtnIDscYEdsCsNax3q3gzA3hTx6juegjcCta6W7DWvgUj9nIIA+BXKgx++r/hl8s0feA+QqtWYsVPrUA6sb1uLkt1fAxnfJzC3j0U9u0FzyPQ00v8muuIb9mCETpzBYtSCr9cxi8W8Qr52tdSEa9YRBWLeMUSaBpGKIgeDKGFQxjBEHowhB4M4KZSlAcHqAwNUR0bxZmeQrm1SkPNtLA7Owl092C3t2M3NoFh1EIpyyL3/LNkn3sWPRCg4a57SNxwI7pV661VOtrP8Gf/HLutnYa7306gqxu76fRm/QvHy3Hwslmc2Rm8YpHK8WMUD+ynfPxY7XyNRPBLJVru/WWMeBy7rQ2rsem8TkNTvo8zN0dlbIzSgX1UpyaJXnwZdmMDftVBMw2spibMeOK06Y/nwi0UmPn6Vykc2IeXToNhElyyhMjGTcS3bMFM1J0S+CnXrVVNVav4pVJtXLNpnHQGL53Gy+XwslncTJrK8BCqWsVsbCS6+RJCq9eg6zroOlZjI4WDh5j7zr/jV8o0vPuXCF19PS8cmOLJ3WP4SqFpoGu1aj1N19A1DcvU2bK2hcZEiPaGMDgeuUwFp+oxPpKmZ1kDXUvqz9vxvxAkrDoPJKwSQgghhBA/z7Z+6yvUje7l8cJbWZI7wMV3XUaspY5gd29tpbt5TiZNYfcupr/+VYygxhdui7G65SI+tukjC/f54Y4RvvKDI2xpiBKqC/Kjvmk+rvbQeOwlYluuJHHt9djd3QxVpyk6RSJmmKHcCP/W9wCrE8u4p+1GWrUYxcMHmHv0UdyZaSIbNtJy30cwk8mXt8X1SeXLjE4VeG7/BMOD+/hQ/RPsKV/FupvuZkVnktBrNKd+oxzXI1+sMpupkCtUyWSKHB2eoX8iy6XTL7J+9DCxt91K08XrwA6hxRrRg9FTwqLzSfk+ynMXQosT/Ow0hX//I3DK6E1LsNbcgLnsyoX7ObOzVMbHMKMxlOvO3xxQimLFI5X1MWdHUdufxpudJtDdTeM73k34onWnVfQopXBmZigdOUR+5w4Ke15aCKkimy7GTNZhtzRjJpJ4k0coPfQXaO2bcaxeSseGKR48gF8sotk2gZ5ewhddRHTDZgKdnYCPPzeKNzeCs+cR/LkRzN5LsK58H+ZJKydOfe1fST/+GPV33U38yqsXppO+2nFzUymc2RmcVIrivr0U9uzGLxQwGxqIXnIZmmHgZtJ4mUwtqMjn8AoFVKXyhsdNCwSwW1qxmpoxGxuxGhqwGhpqlV6BIGYsih6OoAcCaLZdm16Yy5HbtYu5hx/AnZ0lsmkzzR+8D4ChP/lj0DQa3/sBQkuWvOb+n8wvl2t9nmZncWdmKB7YT6n/CLErriS8ahV2V89pUw/PJ79apTo5iZuaq1W0xRNYDY3o4fBp59rr5czOUh4ZxpmcoNTfR+nQwdq5FggQWrkKu7VtPngs4FfKqGoFvzofWBUKePncKc+nBQKYdfXYra1ENmzCamwC10ELBrGaWzBjMTTDQLkuxb4jTH35n3GmJkneehuxu9/F0FSRquPWlrVcUJtmChCyTbpaogTmA2HP8ynkq2RTJUIRm4amyBs6HheahFXzHnzwQb7whS/gui4f/vCH+eAHP3jOj5WwSgghhBBC/Dzb/cX/zr6p9VT9ANes9Oi4ZA3h3iVo5ulhj1cskHriceYe+DYHlgQoXL2U927+MEakHs20qToef/SlrZTKDuWKy12F3awa20Nk08XUv/VOAl3d6JaFr3wylSwTxSmUUuye2suz41u5oeMa3r78DgzXpzIxRup7D5PfsR0jkaDlwx8lumEjvvKZKEzRnz7O4VQ/x9KDZJ0sAEFlsK5lI9d1XsHSRC+apuE7VSrDw3iZNG46jZvJ1IKHbBY3m8UvFGoVI+0dBDs7sbt7aqujhc+9J4zr+RQrLpl8lWy+ROXJ7xN97nFa/+OvE7to4+tqmv5mcCb6cfb/AG9kH1QKEIpjrbwGa90taHaE0pEjKN9HDwTQQyH0cBjDroUjStPw8zkqExPkt28l98ILKNchdvkWGu55B+7MNKW+I5SO9lMZHsLL1sYCw5gPqTZj1TdgtbRixuNouo5SiuID/y9+ZpLADR/DbF+LX67gTE+R37OHysBxKoODeLnacxnJJKGVq4is30Cwpx3NzeIe+CHe0Evo9V0E3vJrmPUdFI8cZuQvP0NozVqa3vNeAp1d51wBpJRCVcq4mSzVqSmKB/ZR2L0TZ3p+Kp5to4cjGJHaTQ9H0EOh2s8DNpplo9s2mh1Asy00ywLfR1UdlOvgV6vg1IJA5Tjo4QhmUzNGPIquG+jBYO24h8NodqD2XMbZ+6op16UyPsbsA9+hsHsnZl09ejCIMzNN47veS2TdOuzW1p/ofFFK1SqKshmcuVnQDIK9va9r2twb4ZVKaKZxWvD6RvnlEl6hWOtbls9RGRykdOQw5f5+lFMFXUe3A2gBez4cDKAHAhjhCGZ9PWZdHUayDjOeQAvUeuUpz0VTYCROCtbOcM5VZqaY/NKXKPcdJrL5Ypo++qt4eu3vWE2b74RW+//C1FP9DM/j+7XVNs9Xg/gLRcIqYHJykve///1861vfwrZt3ve+9/FXf/VXLF++/JweL2GVEEIIIYT4eeU4Ltv/+i/Z7V/FWr+Pi991PdFltaDKVz5lt4xt2Jj6y8GVX6kw9n+/SPHF7VRDGomIwm6IEuzpJrBqA7vyTfzD02muS73ElbN7CK3bQOM730Wwo/O0i2/Xd5kpzTFdnOF7A48zmh/nvSvfQUukiZJbIl/MUNm3n8bHtmMVyoysbqa/3mUqokjFDfRwmOZQEz2+ScfR3bzY2cNoJUPzdIVlszrLZ3UiEylwvVNeV5sPZYxgCC0YrDVITs2Bd1IT8UQCu6UNzbbwy2VUpYJfKeOXK/iVCqpaQY9ECHR1E1q2nNCKlQSXLkMLBJn45jfI/+ARev7sLwg0Nb+5g3gOlPLxixlUbgZ36CW8wd34qRHQdIzujRhdm9CjdejhBFowhhaKnVYBpnwfL5+ndPQomR/+gOLBA6f83ognsFvbsFpbsE5UCkWjtZAqFjulMsYd3E3p+3+DueZGgpe9Cy348kWr7zi1fkqZDJXhQcrHjlEZHKA6MlKr+ALMujrs9lbssItRPIpdF8G+/mOM/Z9/xa+UafnljxG5aN2rhj2vfrwUfqmIk0pTHRkC28awbDBNCobLlJ9j0ssw5+aI2zEag/U02nU0BpMEjBMBy4mgodbLC2ohA6o2Hpqmz4dbNpplnTVUU74LbhXlVMCt1Lq+m3at/5gVwKs4ZJ97hrkHH8AvFKi7/Q4S11yH1dJ6XqbqKd+vrdz4Ex7LxUq5Ln651n/KmZtFVcu1lTnRYL6dPpqqrWBYe8R8EZT2ckBpB9DtAEY0ek7TE71ymemv/SvZZ35cC8eXLZvv8zbfun/++WG+eXu1gl+t1qq75r8q36PpvR8gum79m3FYfmokrAK+/e1vs23bNv7sz/4MgPvvvx+lFP/xP/7Hc3r8z0NYlcukef6hR/gFGG4hhBBCCPE6uOUS45PtBN0C5nU5Kk1BUtUMc+UU6UoWT9XCG1u3CJkhwlaIsBnC1kysrXu4ZMQnOVvBd2r30wywIoClUZ1VhNqCJDe2YcSSaHYIzQ7XqoxMG3SzdgGsm7jAWDXNF9O7yKvqadtpOT437Cyw+lgJ/aSPtFrAwkxGMcMGemmGqtGCMzENno/SYKrOZKTZotiSRMWiVMMWTshCM000Tav1jNJqfWJwfULZMtG5ItFUiUi6RDhTRgM808AzdTxTx7cMPMvAtwyChSrR6TyhbG3lLwWU66Pono/muOz++I24Ri2Uc3wX13dxlYuvFKZuYukmlm7N3wxM3Zr/mYk5f7Pmf1b7s3HWPlfaSasTLnynneFnvo9yK6jUOO7YAfyZIfDdhd8v3M+wamNm2qDp88eqdrxQCn2qhDFTxkvY+HVBVMgCw0TTzVqDbMNEs+xaAGBaoFtgmmiGhXN0K8opY198N3q8eeHYcdJ3tXxH4bsOfqWKn8+hD4xijM9gTs5iTs9hFGvT8JQGvq1hVBTT13VR7m3CM3RcTcMFPE3ho6Freq0/l6aja7VjqekGuqaho9XOifn/6fNH1FEeU9UsE06WSSdL0X/5/DTQ8Dj1GiuqB2gwIzRaUUJKw/Q9TM/DdB0M18F0KhhOBU35qJP29sT3CtB8H8130TwX3ffRAB3Qlap9r0BDoav5fke6ie4a6CWfSp2Na5q4GjiahqOBp2m4moah65ha7TwzDXP+q4WpW/N7O78vp1w31r7X5gO32h/9U863hXPtpHNz4TzVtIXzUEOvPXy+R1PtfKr9phas1e6rABeFh8I95ebjzYc7+omxmv9qaPp86KOhUPiw8L0C/PneUAYGhqZj6Hrte13H0AzwPXzfA6VQvlebVqtqXzWoVb/pBrphoGt67VxaeF9o82tFaihNW9gnddL7T80fO4VC332EwAsH0Vz/pGM6/3V+jJWh4xs6ytBQpo5vaLWbpdN52ztp3nIDP8teK6x6cydxLxJTU1M0ndRQrrm5mT179lzALfrpe+SLX2fWXX2hN0MIIYQQQixCmu4z2rOVYVUkmooQs6M0BBvojXcTMoM4vkvFq1DxqlTcCmW3QsbL4qxrZd3N19AVW051dITS4YNUBo/jTE3jzpUItoZIrE2i+WX82aFadYhXBafKydHECS3AfzJ0BoIWId8n5CtCniLo+wR9hdEAqg68CrjlEzcHt5CiMgu+B1aTT+ziy7C7urCXLycY1RlLvcR0YRRP+bULV+Wh8ACF8pn/WS0mUDEgZqC6IygVPul3nPY9gFIWijBW2aNptkLzdIWm2Sotsw7jzTZ70ocwdBNDM2o33agFTmiU3BKe7+Eq75SvnnJxfW/hNd5UJtB69gvGGvfMP+4Fek9Uk1Tmb6/gzN9eKQ5gweAj57KVL4sAy+dvJIgUPVpnXVpmHVpmHUZabLZ1VsAdOWWzdVULdpT2ciCkXkfVUdjzaa66rK96NFfd+ZtH3PMp6xqzlsGcZTBrGcyaJeasHEctg6qu4Wgarjb/ega1WxA4Jex55bbonJ/LdfWKrx61ASm/fBdv/iZ+epqBu+Ovebcz0ZTig/owF75e8831CxFW+b5/SvmjUuq8rlzws+DOT3yAx//1X3Gcs/yLRgghhBBC/MLSQjqXX3Mnne1LCFtBbN3GWKgcOPVztELhKx9//ntzPoAJtHQSu3hL7X6ui5vPo2kKIxI+qWpAgfLxPRc856Sbh/IdcB2Cvkuz8mtVV7o5X6lTq9LBMGulW6+oLFKeh3JdvEoVM9mEEY4sTDmLAT3tK2vTupRfu//JMZBaiJ3mixoUnPT7E/v8eq4elOfhOw5LXZfrorGXq3UWqnZenvbD/PMrwFcevjpxfH0c38XxHRzPpepXcXwH13MX9sM/uRbppP0AFmpkFsZP1Ro3n7RnteHg1P1FvfwsJ44F8yHfK3//8j/mq2a0l1/nxDZoStWKZTwXXAfdraJ5LpryoL6jNpVtYatP/ob559RO+f6VdWInTbQDx6XZqXCFHcDWTUzNxNI1bF/DRKH5bu1c8zzwXXzPwfc8fK+Kp9xaJc7CeMxX5yiFrmtEjRBBw8acf1+cvBkhBXWnbFftcZ7y8UwbwlF8K4Sr61SpjWtVefgnqqJOnBtarZ7rxLN4+Pgn3m9+7U+e7+Phz5/PJ86XWh2RX0tea5V5hoU9X7EXMGxso/a9pzwc16HqVfCUS9VzcD0H13fwff/0437i9HnF0CycGwtnwMIZh37iu5POhVfmcifO/fknw/f9Wi2UUrVph4CJhqUbWOhYmoGp1b5a6PPj5NUep/xaEK282vRKFJoCHa1WgaYpdFXbPuUrXBw8z6+FwspfCIgVCjRzvtLOAL1WdadpBmi1XMFTXu24+/788fcWtldfeL/UXn9+Mt/p5zFnoE75Uns+3cQwLEzTRjdsTDOIaQYw7RCNdT1nepafK78QYVVrayvbt29f+PP09DTNzT/vOeSpIrEY93ziExd6M4QQQgghxM+wE2GLfpZpaAv3M02sk1bue6U3q/PNq62xp2labarPT4PFfOWMEEKIn8TPdvv4c3TVVVfx/PPPMzc3R6lU4rHHHuO666670JslhBBCCCGEEEIIIV7hF6KyqqWlhd/+7d/mvvvuw3Ec3v3ud7Nhw4YLvVlCCCGEEEIIIYQQ4hV+IVYDfKN+HlYDFEIIIYQQQgghhFgMXms1wF+IaYBCCCGEEEIIIYQQ4meDhFVCCCGEEEIIIYQQYtGQsEoIIYQQQgghhBBCLBoSVgkhhBBCCCGEEEKIRUPCKiGEEEIIIYQQQgixaEhYJYQQQgghhBBCCCEWDQmrhBBCCCGEEEIIIcSiIWGVEEIIIYQQQgghhFg0JKwSQgghhBBCCCGEEIuGhFVCCCGEEEIIIYQQYtGQsEoIIYQQQgghhBBCLBoSVgkhhBBCCCGEEEKIRUPCKiGEEEIIIYQQQgixaJgXegN+Fui6dqE3QQghhBBCCCGEEOLnwmvlLJpSSv2UtkUIIYQQQgghhBBCiFcl0wCFEEIIIYQQQgghxKIhYZUQQgghhBBCCCGEWDQkrBJCCCGEEEIIIYQQi4aEVUIIIYQQQgghhBBi0ZCwSgghhBBCCCGEEEIsGhJWCSGEEEIIIYQQQohFQ8IqIYQQQgghhBBCCLFoSFglhBBCCCGEEEIIIRYNCauEEEIIIYQQQgghxKIhYZUQQgghhBBCCCGEWDQkrDqDz3/+89x5553ceeedfPaznwXgueee46677uLWW2/lr//6r097zO/93u/xrW99a+HPY2NjfPCDH+T222/n13/91ykUCmd8rYMHD/LOd76T2267jf/6X/8rruue8vu/+Zu/4X/+z/95HvdOnLAYxvnb3/4211xzDffccw/33HPPGV9TnF+LYdz37NnDu971Lu666y4+8YlPMD09/SbsqYDzM94A3/jGN/iDP/iDs77Oa50Tr/V48cZd6LHeunUrV1xxxcLf53/4h394HvdOnM2FHveBgQE+9KEPcdddd3Hvvfdy/Pjx87h34pXOx3jv2LGDd7/73dxzzz18+MMfZnR09IyvJZ/RL6zFMNbyOf2nbzGMu3xOX0SUOMWzzz6r3vve96pKpaKq1aq677771IMPPqiuv/56NTQ0pBzHUR/96EfVk08+qZRSamJiQn3iE59QGzZsUP/+7/++8Dy/+qu/qh566CGllFKf//zn1Wc/+9kzvt6dd96pdu3apZRS6g//8A/Vv/zLvyillMpms+oP//AP1YYNG9Tf/d3fvYl7/ItpsYzzn/zJn6gHH3zwTdxTcbLFMO6+76vrr79ePf/880oppR5++GH1iU984k3c619c52O8y+Wy+su//Eu1adMm9fu///tnfa2znRPn+njxxiyGsf7Sl76k/v7v//5N3lNxssUw7u973/sWnmvXrl3q7rvvfjN3+Rfa+fp3+I033qgOHjyolFLqG9/4hvq1X/u1M76efEa/cBbLWMvn9J+uxTDu8jl9cZHKqldoamriD/7gD7BtG8uyWLZsGQMDA/T09NDV1YVpmtx11108+uijADz44IPcdNNN3HHHHQvP4TgO27Zt47bbbgPgne9858L9TzY6Okq5XGbTpk2n3e+JJ56gt7eXj3zkI2/yHv9iWizjvHfvXr797W9z11138Tu/8ztkMpk3ec9/sS2GcU+lUpTLZbZs2QLAjTfeyDPPPEO1Wn2T9/4Xz/kY723btuH7Pr/7u7971td5tXPiXB4v3rjFMNZ79+7lmWee4a677uLXfu3XGB8ffxP3WMDiGPeDBw9y++23A7Bp0yampqYYHh5+s3b5F9r5GO9qtcpv/dZvsXr1agBWrVp1xveqfEa/sBbLWMvn9J+uxTDu8jl9cZGw6hVWrFixcNIODAzwyCOPoGkaTU1NC/dpbm5mcnISgI9//OO85z3vOeU5UqkU0WgU0zSB2hvvxP1PNjU1dcrznny/t7/97fzqr/4qhmGc1/0TNYtlnJuamviN3/gNvvvd79LW1saf/MmfnNf9FKdaDONeV1dHOBzmmWeeAeDhhx/GcRxSqdR53Vdxfsb7mmuu4fd+7/cIBoNnfZ1XOyfO5fHijVsMYx2Lxbj33nt58MEHuf766/nt3/7t87mL4gwWw7ivXbuWhx9+GIDnn3+edDotU0beJOdjvG3b5p577gHA930+//nPc/PNN5/2WvIZ/cJaLGMtn9N/uhbDuMvn9MVFwqqz6Ovr46Mf/Si/93u/R1dXF5qmLfxOKXXKn1/pTL8/0/19339dzyvOvws9zvfffz+XXHIJmqbx8Y9/nKeffvqN7pI4Bxdy3DVN4+/+7u/43//7f/P2t7+dXC5HMpnEsqzzsGfiTN7IeJ+Lcz0nxJvvQo71n/zJn3DrrbcC8P73v5/+/n5yudwbej1xbi7kuH/mM5/hscce4+677+bZZ59l9erV8vf5m+x8jHe1WuV3fud3cF2XT3ziE6f9Xj6jLw4Xeqzlc/qFcSHHXT6nLy4SVp3Bjh07+OVf/mU++clP8o53vIPW1tZT/ivZ9PQ0zc3NZ318fX09uVwOz/NOuf/k5ORCg75f+ZVfOe15Z2ZmXvV5xfl1occ5l8vxT//0Tws/V0rJf6X7KbjQ4w5gmiZf/vKX+c53vsPdd9+N7/skk8k3Z4d/wb3R8T6bE2N9zz33nPWcED9dF3Ksfd/nC1/4wsLPT5C/0998F/o97rou999/P9/97nf5rd/6LUZGRujs7Dw/OydOcz7Gu1Ao8PGPfxzXdfnCF76AZVnyGX0RutBjLZ/TL4wLPe4gn7qUR+gAAAcgSURBVNMXE/NCb8BiMz4+zn/4D/+Bv/7rv+bKK68EYOPGjRw/fpzBwUE6Ozt56KGHeNe73nXW57Asi0svvZTvfe973HXXXXznO9/huuuuo6WlhQceeOCU+wYCAXbs2MEll1zCAw88wHXXXfem7p+oWQzjHA6H+Yd/+Ac2b97Mxo0b+cpXvsItt9zypu73L7rFMO4A/+W//Bc+/elPs2HDBv7xH/+R22+/HV2X/3Zwvp2P8T6bV471mc4J8dNzocda13V+8IMf0NPTw1vf+la+853vsHHjRsLh8HnZP3FmF3rcAf76r/+at771rdxxxx1885vfZP369dTV1b3xnROnOV/j/bu/+7v09PTw3//7f1/4d698Rl9cFsNYy+f0n77FMO4gn9MXEwmrXuFLX/oSlUqFz3zmMws/e9/73sdnPvMZfvM3f5NKpcL111+/0EzzbD71qU/xB3/wB3zhC1+gra2Nv/qrvzrj/T73uc/x3/7bfyOfz3PRRRdx3333ndf9EWe2GMbZMAz+5m/+hk9/+tOUy2V6e3sXlmgVb47FMO4An/70p/nUpz5FqVRi1apV/Omf/un520mx4HyN97k413NCvDkWw1j/xV/8BX/0R3/E/fffT319vfx9/lOwGMb9d37nd/j93/99Pv/5z9PS0sKf//mfv+HXEmd2Psb7wIEDPPHEEyxfvpx3vOMdQK0Hzhe/+MXT7iuf0S+cxTDW8jn9p28xjDvI5/TFRFNKqQu9EUIIIYQQQgghhBBCgPSsEkIIIYQQQgghhBCLiIRVQgghhBBCCCGEEGLRkLBKCCGEEEIIIYQQQiwaElYJIYQQQgghhBBCiEVDwiohhBBCiJ9zsp6OEEIIIX6WmBd6A4QQQgghxMvuvfdetm7duvBnwzCIxWKsX7+ej33sY1x55ZXn/FzVapXPfvazbNmyhZtvvvnN2FwhhBBCiPNOwiohhBBCiEXm4osv5vd///cBcF2Xqakpvva1r/GRj3yEz33uc7ztbW87p+eZmpriy1/+MpdeeumbublCCCGEEOeVhFVCCCGEEItMPB5n06ZNp/zs9ttv58Mf/jCf/vSnufbaa0kkEhdm44QQQggh3mTSs0oIIYQQ4meAruv8xm/8BrlcjkcffRSAPXv28Cu/8itceumlrFu3jttuu42vfe1rAIyMjHDTTTcB8Fu/9Vvce++9C8/10EMPcdddd7F+/XpuvvlmvvzlL//0d0gIIYQQ4iwkrBJCCCGE+Blx+eWXYxgGu3btYmxsjPvuu49wOMzf/u3fcv/997NkyRI+9alPcejQIZqbm/n85z8PwH/+z/+ZT33qUwB8+9vf5pOf/CSXXXYZX/jCF3j729/On//5n/MP//APF3LXhBBCCCEWyDRAIYQQQoifEYZhkEwmmZmZoa+vj02bNvG5z30Oy7IA2LhxI1dccQXbt29n9erVrFmzBoCenh6WL1+O7/v81V/9FXfddRd//Md/DMA111yDpmn8r//1v/jABz5AOBy+YPsnhBBCCAFSWSWEEEII8TPp+uuv55/+6Z/wfZ9Dhw7x6KOP8sUvfhGorQJ4JsePH2dqaoobbrgB13UXbtdddx2FQoE9e/b8NHdBCCGEEOKMpLJKCCGEEOJnRKVSIZPJ0NLSgud5fOYzn+HrX/86juPQ3d29sOqfUuqMj0+n0wB88pOf5JOf/ORpv5+enn7Ttl0IIYQQ4lxJWCWEEEII8TNi+/btuK7LJZdcwhe+8AX+7d/+jb/4i7/g+uuvJxwOUyqV+OY3v3nWx8diMQD++I//mA0bNpz2+87Ozjdt24UQQgghzpVMAxRCCCGE+BmglOL//J//QzKZ5NZbb2X37t2sW7eOO+64Y6HP1NNPP71wX6j1uDrZ0qVLSSaTTE5Osn79+oVbOp3mb//2b8nn8z/dnRJCCCGEOAOprBJCCCGEWGSy2Sy7d+8GwHVdJicn+cY3vsG2bdv43Oc+RzQaZf369Xzxi1/kK1/5CitXrmTv3r3cf//9aJpGuVwGXq6keu655+jt7WX16tX85m/+Jp/5zGcAuPLKKxkZGeF//I//QW9vr1RWCSGEEGJR0NTZmhoIIYQQQoifunvvvZetW7cu/NmyLJqamli/fj0f+9jH2LhxIwClUok//dM/5fHHH6dSqdDb28t9993HQw89BMCXvvQlAD73uc/xla98ha6uLh588EEAvvnNb/JP//RPDAwMkEwmufnmm/nt3/5tEonET3lvhRBCCCFOJ2GVEEIIIYQQQgghhFg0pGeVEEIIIYQQQgghhFg0JKwSQgghhBBCCCGEEIuGhFVCCCGEEEIIIYQQYtGQsEoIIYQQQgghhBBCLBoSVgkhhBBCCCGEEEKIRUPCKiGEEEIIIYQQQgixaEhYJYQQQgghhBBCCCEWDQmrhBBCCCGEEEIIIcSi8f8DBklA8DmUzyEAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 1440x576 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.figure(figsize=(20,8))\n",
-                "sns.lineplot(x=\"Date\", y=\"MarkDown1\", data=clean_data2)\n",
-                "sns.lineplot(x=\"Date\", y=\"MarkDown2\", data=clean_data2)\n",
-                "sns.lineplot(x=\"Date\", y=\"MarkDown3\", data=clean_data2)\n",
-                "sns.lineplot(x=\"Date\", y=\"MarkDown4\", data=clean_data2)\n",
-                "sns.lineplot(x=\"Date\", y=\"MarkDown5\", data=clean_data2)\n",
-                "\n",
-                "sns.lineplot(x=\"Date\", y=\"Weekly_Sales\", data=clean_data2)\n",
-                "plt.grid()\n",
-                "plt.legend(['MarkDown1', 'MarkDown2', 'MarkDown3' 'MarkDown4', 'MarkDown5', 'Weekly_Sales'], loc='best', fontsize=16)\n",
-                "plt.title('Weekly Sales - MarkDowns', fontsize=18)\n",
-                "plt.ylabel('Sales', fontsize=16)\n",
-                "plt.xlabel('Date', fontsize=16)\n",
-                "plt.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 50,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<seaborn.axisgrid.FacetGrid at 0x2156dc92c70>"
-                        ]
-                    },
-                    "execution_count": 50,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAFqCAYAAADIoyd5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACIPUlEQVR4nO29eZxcVZn//75bbb2m00sWCEsjhIEJiMGgYgIqIdAEJYJiAozifFG/jjKOEiEwQVQEM1FQBxjmpfidYflJJkKCkDQgEhhAMwTUTDQRaAxNtk5X71XVtdx7z++PW7e6qru2XqrX8369NPTtW1XnVN97n3Oe5fMoQgiBRCKRSCQlQJ3oAUgkEolk+iKNjEQikUhKhjQyEolEIikZ0shIJBKJpGRIIyORSCSSkiGNjEQikUhKhj7RA5hsdHSEsO3JmdU9a1aArq7IRA+j5MyEeco5Tg/Geo51dRVj9l6TBbmTmULoujbRQxgXZsI85RynBzNhjqNFGhmJRCKRlAxpZCQSiURSMkpqZH70ox9x8cUX09TUxM9//nMAXnnlFVauXMny5cu56667Uufu3buXVatWceGFF3LzzTdjmiYAhw4dYs2aNaxYsYIvfelLhMNhAHp7e7nuuuu46KKLWLNmDe3t7QDE43FuuOEGLrroIi677DJaWlpKOUWJRCKR5KFkRuZ//ud/+N3vfscTTzzBL3/5Sx588EH27dvHunXruPfee9m2bRt79uzhhRdeAOCGG25g/fr1PP300wgh2LRpEwC33XYbq1evprm5mdNPP517770XgLvvvpvFixezfft2rrjiCm6//XYAHnzwQfx+P9u3b2fdunXcdNNNpZqiRCKRSApQMiPz/ve/n//8z/9E13U6OjqwLIve3l6OO+44jj32WHRdZ+XKlTQ3N3Pw4EGi0ShnnnkmAKtWraK5uZlEIsGrr77KhRdemHEcYMeOHaxcuRKASy65hBdffJFEIsGOHTu49NJLATj77LPp7Ozk0KFDpZqmRCKRSPJQ0hRmwzD48Y9/zAMPPMCKFSs4evQodXV1qd/X19fT1tY25HhdXR1tbW10dXVRXl6OrusZx4GM1+i6Tnl5OZ2dnVnf68iRI8ybN6+oMc+eXT7qeZeS6ZjimI2ZME85x+nBTJjjaCh5ncxXv/pV/s//+T988YtfZP/+/SiKkvqdEAJFUbBtO+tx9990Bv+c/hpVVYe8xj1eLJO5TqauroL29r6JHkbJmQnzlHOcHoz1HKejwSqZu6ylpYW9e/cC4Pf7Wb58OTt37kwF6AHa29upr69nzpw5GceDwSD19fXU1NTQ19eHZVkZ54OzCwoGgwCYpkk4HKa6upqGhgaOHj065L0kEolEMv6UzMgcOHCAW265hXg8Tjwe57nnnuPKK6/kr3/9K++88w6WZfHkk0+ydOlS5s+fj9fr5bXXXgNg69atLF26FMMwWLx4Mdu2bQNgy5YtLF26FIBly5axZcsWALZt28bixYsxDINly5axdetWAHbt2oXX6y3aVSaRSCSSsUUpZWfMn/zkJ2zfvh1N01i+fDlf+cpX+O1vf8sdd9xBLBZj2bJl3HTTTSiKwr59+7jlllsIhUKcdtpp3HHHHXg8Hg4ePMiNN95IR0cHc+fO5Yc//CFVVVV0d3dz44038u6771JRUcHGjRs55phjiMVirF+/nj179uDxePjud7/LaaedVvSYpbts4pkJ80yf4+6WIM07Wwn2RKmt8rFiyQIWNdZO8AhHz0z7O47V+003SmpkpiLSyEw8M2Ge7hx3twR5+Nk30DQVj64SN20sy2bNBSdPeUMzk/6OY/l+0w1Z8S+RTCDNO1vRNBWvoaEoCl5DQ9NUmne2TvTQJJIxQRoZiWQCCfZE8eiZt6FHVwn2RCdoRBLJ2CKNjEQygdRW+YibdsaxuGlTW+WboBFJJGOLNDISyQSyYskCLMsmlrAQQhBLWFiWzYolCyZ6aBLJmCCblkkkE4gb3J+O2WUSCUgjI5FMOIsaa6VRkUxbpLtMIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAx9ogcgkUgkU4HdLUGad7YS7IlSW+VjxZIFfLSuYqKHNemRRkYikUgKsLslyMPPvoGmqQR8Ot3hOA8/+wZVVQGOqw1M9PAmNdJdJpFIJAVo3tmKpql4DQ1FUfAaGpqm8tiOtyZ6aJMeaWQkEomkAMGeKB4983Hp0VWOdkYmaERTB2lkJBKJpAC1VT7ipp1xLG7a1NdIV1khpJGRSCSSAqxYsgDLsoklLIQQxBIWlmWz6ryTJnpokx4Z+JdIJJICLGqsBRiSXbb41Aba2/smeHSTG2lkJBKJpAgWNdamjI2keErqLvvXf/1XmpqaaGpqYsOGDQDcdNNNLF++nI9//ON8/OMf59lnnwVg7969rFq1igsvvJCbb74Z0zQBOHToEGvWrGHFihV86UtfIhwOA9Db28t1113HRRddxJo1a2hvbwcgHo9zww03cNFFF3HZZZfR0tJSyilKJBKJJA8lMzKvvPIKL730Eo8//jhbtmzhT3/6E88++yx79uzhoYceYuvWrWzdupULLrgAgBtuuIH169fz9NNPI4Rg06ZNANx2222sXr2a5uZmTj/9dO69914A7r77bhYvXsz27du54ooruP322wF48MEH8fv9bN++nXXr1nHTTTeVaooSiUQiKUDJjExdXR033ngjHo8HwzBobGzk0KFDHDp0iHXr1rFy5Up+/OMfY9s2Bw8eJBqNcuaZZwKwatUqmpubSSQSvPrqq1x44YUZxwF27NjBypUrAbjkkkt48cUXSSQS7Nixg0svvRSAs88+m87OTg4dOlSqaUokEokkDyUzMu95z3tSRmP//v1s376dD3/4w5xzzjl873vfY9OmTezatYvNmzdz9OhR6urqUq+tq6ujra2Nrq4uysvL0XU94ziQ8Rpd1ykvL6ezszPrex05cqRU05RIJBJJHkoe+H/zzTf5whe+wNq1aznxxBO55557Ur+7+uqr2bJlC42NjSiKkjouhEBRlNS/6Qz+Of01qqoOeY17vFhmzy4v+tyJoG6GaCXNhHnKOU4PZsIcR0NJjcxrr73GV7/6VdatW0dTUxN/+ctf2L9/f8r9JYRA13XmzJmTCtwDBINB6uvrqampoa+vD8uy0DSN9vZ26uvrAaivrycYDDJnzhxM0yQcDlNdXU1DQwNHjx5lwYIFGe9VLB0dIWxbjOG3MHbU1VXMiHTJmTBPOcfpwVjPcToarJK5yw4fPsyXv/xlNm7cSFNTE+AYle9973v09PSQSCR49NFHueCCC5g/fz5er5fXXnsNgK1bt7J06VIMw2Dx4sVs27YNgC1btrB06VIAli1bxpYtWwDYtm0bixcvxjAMli1bxtatWwHYtWsXXq+XefPmlWqaEolEIsmDIoQoybL9u9/9Lr/85S9TOwqAK6+8Etu2efjhhzFNk+XLl/ONb3wDgH379nHLLbcQCoU47bTTuOOOO/B4PBw8eJAbb7yRjo4O5s6dyw9/+EOqqqro7u7mxhtv5N1336WiooKNGzdyzDHHEIvFWL9+PXv27MHj8fDd736X0047rehxy53MxDMT5pltjtmk5KdyXcZM/TuO9v2mGyUzMlMVaWQmnpkwz8FzTJeS9+gqcdPGsmzWXHDylDU0M/HvOBbvN92Q2mUSySQgl5R8887WiR6aRDIqpJGRSCYBuaTkgz3RCRqRRDI2SO0yiWQSUFvlozscx2toqWNx06a2ypfzNbliONMttiOZ2kgjMwLkTSwZa1YsWcDDz75BDDJiMiuWLMh6fq52wPsP9/LyniNDjgPyGpVMCNJdNkzcm7s7HM+4iXe3BCd6aJIpzKLGWtZccDLVZR4iUZPqMk/eoH+uGM4zrx6QsR3JpELuZIZJ+s0N4DU0YsnjcqUoGQ3DkZIP9kQJ+DJvX4+uEo2b1Oq+IcdlbGfkSM/F6JA7mWEiA7SSyUCudsA+j571eL7YjiQ30nMxeqSRGSa5bm55E0vGk1ztgJeffUzW47liO9OR3S1BNjzyOmvve4UNj7w+KoMgU8tHjzQywyTXzT2TbmLJxJMrhnPpuScOK7Yz3RjrnYf0XIweGZMZJosaa9l/uJdnXj1ANG7i8+gsP/uYGXMTSyYPuWI4M7lN8FjHTEeSWi7JRO5khsnuliAv7zlCZbmHY+rLqSz38PKeI9JHK5FMAsZ65yE9F6NHGplhIn20EsnkZaxjpsNNLZcMRbrLhkmu1FHpo5VIJp7hFrUWw0x2P44F0sgME59H40hHBFsIdE2lssyDqirSRyuRTAJcYyDrWiYP0sgMg90tQXrDcSxboCiQMG06evop83u48iMnTfTwJBIJcucx2ZAxmWHQvLOVgN+gptKLpjlfnaaqVPp1eVFLJBJJFuROZhi48RjF0Aj4DMBpKR2JmhM8MolEIpmcyJ3MMJDV/hKJRDI85E5mGJQic0UiGWukoKNkMiGNzDCQmSuSyU6uPjMg+8lIJgZpZIaJzFyRTGZyyapsfv4tuTiSTAjSyEgk04hsxcKmaXG0N0a9QO5uJOOODPxLJNOIbMkpveEEupRCkkwQ0shIJNOIbIKOpmVTVe7JOE9KIUnGC+kuk0imOIOzyT50+hz2tXanftZVBdMWGa+RqfeS8UIaGYlkkrC7JcjmHS20dUYAhYZZPi4//6S8cZNs2WQv7zmSoRTsniNT7yUTgTQyEskkYHdLkAe27SPcHwcUFEVwuLOfB57ay7VNp+Y0NMU06ZqJqffu7u5gMIxlCXRNYV5t2bSf92REGhmJZBLQvLOVaMxEUVRUxTlmI4jGrbxdHYttPTGTUu/dnVvCtInETBAQSwjauvplVt0EIAP/EskkINgTxbLtlIEBUADLFnkD9IOzySLRBEc6IvSEYmx45PUZ2bHV3d31xy0UQFMVFEWlP2bKrLoJQBoZiWQSUFvlQ1NV0uPzAucBmS9An55NFu6P09kbw7Jtqiu8qXqYmWZo3BbMpmnj2mxVAdOyZVbdBCCNjEQyCVixZAE+r44QNpYtsIVACKdJXr4AfXp74J5QAk1VmF3lJ+AzZmw9jLu703UV12bbAnRNlVl1E4A0MhLJJGBRYy3XXryQubPLUBVQUJhb488b9E9/7drVZ1FV7mHO7AB+70CMZiau3N3dnd+jIXBcjkLY+L26zKqbAGTgf5hIhVtJqRhucH7wtejzaMRNO5VpBjOzHiY9m85Kyy5rmOWX9+sEII3MMJAKt5JSMdzFS7ZrMdKfAMWJQrj1MJH+BImExRf+ZQcgaKgJcPl5jdP+ep1J2XSTHekuGwbpNQlSA0oyVrgGozscz1i85AvYZ7sWA36DSr9OdZmHSNREVyBh2XSH4ggEtoDDHWEe2LZvxiUDSCYOaWSGgZu1ks5M9HlLxpaRLF5yXYvRhM3a1Wex4UsfpDzgwbIEigKqoqRSeaMxUy6MJOOGNDLDQLZflpSCkSxeirkWndobQVrpDaoClm3LhZFk3JBGZhhkU7iV2SqS0ZJuMCLRBEc6IxxoDxOJmjndWsVci07tjUK6NKYtQFPVGbMw2t0SZMMjr7P2vldmbHHqRCMD/8NgJmpASUrPiiULePjZN+iJmfT1J0CAgsDr0XImluS7FtN1u0wrudtRQQgAgc/nmRELo3yJOiDv4/FCGplhIrNWJGONez39+xN/BiEwdI3KMg9+r04skVu7bPC1uLslyPqf/o5DHRF0TaWq3IOmKvRG4gjhuMoaaspmRHYZ5G9FHTNtmSU6TkgjI5FMAhY11hLw6dRW+1AUJeU2M02bju4ou1uCRaU094TiqKqCLaCrL0ZNpY/6WQGqyzysXX3WOM5o4sklHno4GGF2tS+vcrVk7JBGRiKZJNRW+TjSGSHUn8C0nEiKqoCiKgVX2u6q3bIFqgK2sLFtONrVj9fQCPcnxm0ek4XaKh/d4fiQ4lQQMkt0HJFGRiKZYNwYSsvBbhJW5u9sAQGfjqapbH7+rZxxBOcB6WieWZlJZ5iWjW0Lnnjp7YyOmdM5DrG7JUgoEudoZ5rrUFOxLJuGmoBURhhHpJGRSCYQ180ViZpDDAw4O5lo3ELXFI72xqhPGp3BcQSfoXK4sx8FEIPeQ1HAY6g89dtWZlf7pn0cIj3gX1PppTecoKMnyqwKL36vTk84TjRmUR4wqAgYRXcKzabK8NG6inGa1dRFGplhIrXLJGNJ885WTEsQjppZfy+EsxPpDSfQ83XAVBzzoqoqdtpWRlGgptJHTyiOLewZEYdID/h7DY0yv4eeUIzecALD0JhV4aVXjRPqT2BZdt6OmemZeumGyTXSVVUBjqsNTMAspw6yTmYYjET+QyLJR7AnSl8knvP3Aqda37Rsqso9Gb9LjyNE4xY1lT50TUkVX+qaU+Xv9+okLBtdmxlxiGzFrf0xK2VkFUWhqtzL7Cof82rLWLv6rJwGxr3f4wkbWwj6InGicSulyvDYjrfGa1pTFmlkhoHULpOMNT6Plgry56J+lp95tWVog4xEehyhtsqHpqk01ASorfahaQpCOE3PYgkLTVUI+Iycr59OZFNDGImRTb/fTcvtWqrQG46nXn+0MzLWw592SHfZIPa1drHlxbdzBlcVBdr6YpjJi7YiYEzL1aBknBD5DQzAtz+/JLWqjjGgsJweR3ALOmOA36tTYdqEoyZeQ6O6zMM5p9bz8p4jxBJW1tdPJxYuqOap37Vi2QJDU/F7tREZ2fQUaF13kgbcDpvu6+trpKusENLIDGLLf789xB0GyeCqR+NwRxhFUZMuDEFnb5S5s8smeNSSqUo0YVMZMOiNZE8xPibp7y+kNjH493NqAlnjDM+8eoBo3MTn0Vl+9jHTLh6zuyXIy3uOUO43iEQTmJZFuF+w+JRa3jrUOywjm54CXRkw6OyLYdlObxpXxmfVeSeN4+ymJiU1Mv/6r//K9u3bAVi2bBlr167llVde4Y477iAWi3HRRRfxta99DYC9e/dy8803Ew6HWbx4Mbfddhu6rnPo0CFuuOEGOjo6OOGEE9i4cSNlZWX09vbyjW98g3fffZeamhruvvtu6urqiMfj3HzzzezZswefz8fGjRtpbGwseszZKoRTwVEhIJm/M7AAVYpajUok2XAfZIoCPeFMQ6OpCsfWl7PhkdeLSjTJp0bhPnwryz3U6o476eU9Rzh+buWkMDRjlVDjurgCPkc1ASCWsOgKxVlzwcnD+oxCu8MVSxaw+NQG2tv7RjrtGUHJYjKvvPIKL730Eo8//jhbtmzhT3/6E08++STr1q3j3nvvZdu2bezZs4cXXngBgBtuuIH169fz9NNPI4Rg06ZNANx2222sXr2a5uZmTj/9dO69914A7r77bhYvXsz27du54ooruP322wF48MEH8fv9bN++nXXr1nHTTTcNa9xGHr9tNGEzq8LJt7eFY5BmVXiIJuxsbyWRFCTVKthn4PMMXHsKTuB+576jtHX1jzrRZDLHE8cyoeZgMExXb4wDR0Mc6YwQiSZS97DbpnrDlz6YM9ifzqLGWtZccHKqP8+cmgBfvux07v7qh4t6vcShKCMTCoUA+POf/8yWLVtIJApXD9fV1XHjjTfi8XgwDIPGxkb279/Pcccdx7HHHouu66xcuZLm5mYOHjxINBrlzDPPBGDVqlU0NzeTSCR49dVXufDCCzOOA+zYsYOVK1cCcMkll/Diiy+SSCTYsWMHl156KQBnn302nZ2dHDp0qOgvJGHllk+vrfINCdKalpiWwVPJ+OA+yBJxk2h84NoTQCxhg4D+mDkiw5CuQNxysAdr0LU9WbLLxsoA7m4JEo1ZqSB9ImHR3h3l3aOhvIrW+RiuYZIMpaC77Ec/+hGtra18/etf5+///u856aSTePXVV1M7h1y85z3vSf33/v372b59O1dddRV1dXWp4/X19bS1tXH06NGM43V1dbS1tdHV1UV5eTm6rmccBzJeo+s65eXldHZ2Zn2vI0eOMG/evGK+DxBOvw2voRFLWCDg08sXUldXwVmnNvDos2+AAprqBAD7IjYXf6iBunEqyhqvz5loZsI83TlWBSN0hbMv3GzhLGSMZEquril0heK8E4zw2I63aOuM0FATYNV5J7H41IbU63btbeMXz72FritUlXvoi8Tp7I2h6xplyWB2NG4yt668pN91Me/dGYqjKo4ETsK0MXSnQr8rFB/W2J7bvJvKcg89oTiWsLGT60EhQNUU7n18DwGfwbFzKoZ8X6NhJlyro6GgkXnhhRd4+OGHefTRR2lqauLmm2/mk5/8ZNEf8Oabb/KFL3yBtWvXomka+/fvT/1OCIGiKNi2jaIoQ467/6Yz+Of016iqOuQ17vFiMU2Lg0fDCMBrqFy0ZAHH1QZob+/j9b1tVJZ56I+ZmJadzFzReX1vGx977/yiP2Ok1NVVzAj/70yYZ/ocf7b1f7Ht3HE9RYFEMiU3lrAwEybf+/n/YAsnwzGRsLh38x9Yc8HJqZX2o8/sSy6GVExLUFnmobM3Rkd3P8bsQCrw/dH3zivZd13s39GjKWkJNc5c27sizJ1dNqyxHW4PUebTMU2LnnDmrq0/ZiZ3hQnauyJDvq+RMtbX6nQ0WEU9ff1+P6+88grnnHMOAPF47uKxdF577TU++9nP8vWvf53LLruMOXPm0N7envp9e3s79fX1Q44Hg0Hq6+upqamhr68Py7IyzgdnFxQMOttf0zQJh8NUV1fT0NDA0aNHh7xXsfRGEmjJIjbTsvnN7w+lttnBnii2bRNPWJiWIJ6wsGWXQckoaStQa2ELkWpMFulP0B1OYAuBpqpYNvRF4piWyHAvDS5IDPgMZlV4EAIiUZPqMs+YPGTHhIyEGoHjLBx+Qk1tlY/ecJxQFvUEyxJYtnCKKm0xbHecbH42cgoamVmzZvGtb32LPXv28MEPfpCNGzcW9dA+fPgwX/7yl9m4cSNNTU0AnHHGGfz1r3/lnXfewbIsnnzySZYuXcr8+fPxer289tprAGzdupWlS5diGAaLFy9m27ZtAGzZsoWlS5cCTrbali1bANi2bRuLFy/GMAyWLVvG1q1bAdi1axder7d4VxlAgX7oPeFEahtui6EZQRLJ8Mm+O3dRUVKGobLMk1QBSP4uWSAYiSYyFjvZChJ1XaNxfuWkiy/0RhIoCCxLkLAcT8RIEmpWLFngyPOIpMpODoLd/XT0RHnj3e6iDEZ6YoKiwNuHevnx5t2s/+nv2LW3bVhjnIkUdJd9//vfZ9OmTdx///34/X4UReH73/9+wTf+2c9+RiwW484770wdu/LKK7nzzjv5yle+QiwWY9myZaxYsQKAjRs3cssttxAKhTjttNO45pprALj11lu58cYbue+++5g7dy4//OEPAbj++uu58cYbaWpqoqKigo0bNwJw9dVXs379epqamvB4PGzYsGFYX0i+fuidOXYsuY5LJMXQMMvHgWD23Uy5X+eYuvJUL5i1972CoalYtp26Vt0CwfQElPT0W7cuJNKfQFcV1t73yqTR3dvdEqQ/biFQMHSnD45IKkk3zBpeQs2ixlr8HieWmjDFEKFQcIyPLcA2bXR1wGDMq83dzM1NTLBtQVdfDFBQVYWj3VHuf2w3V370pAn/HiczihCF96RHjhzhL3/5C+eeey5tbW3D2xlMMa6741k6uh2jYSe7CZ44r5K1q8/i2jt/k/N1D9z4kZKPbSbEKmBmzDN9jrtbgvz4l7uxBy3cnTRmlS+vOj31ENvwyOsc6YzQ159ASZ7jXKcKTR9YkCHlv3BBdepnn6HS228S8OkZxYildJkV83fMN5/0eRfLhkdeTxVQRqIJgt3RlLHRVLDtAZVqVXU+x5XfqSrP7kJce98rBHw6R7v6MS2nX48QAlvA3NoA5T5jSEO4kdb9zMiYzI4dO7jyyiu57bbb6OjooKmpiV//+tfjMbaJQZDsySEQwsbn1ael9IZk8rCosRZdHZTgAngMDZ9Xy3g4LVxQTbjfxE7GGCxboKoKi0+p5eU9RzJqTV7ec4QVSxaw4UsfpDzgIeDTJ12dTLAnSmWZh5oKb6r+TNfUIfMuFrfuKJaw8Ht1DF1FUxUqAwa6rqUMjKI437H7HSZMe0hcy8V1PQ7olzmGStedtOvBMVnXvXakM0JfJMEbB3q45/E9PPHS28Oez3SgoLvsnnvuYdOmTVx33XXU19fzyCOP8M1vfpOPfexj4zG+caeu2kewO4qiiCH90HVNySpmqGv5feoSST6eeOlt4mbmdSVwrqv5tWVD5OY9hoqqKiQsG01VaDrH2cHkU6vI1Yp4opNWXMWDgM9IaYvFEhbVZZ4Cr8zOYHmd+ll+esNxAn6Dal3lSEcEy3bSmwc3d+vui9Ebjme4E4FU8zMhwFYcoy6AyoBBLGENqZNr3tlKwrRTuzNNAdsWPPXb1kmjsDCeFDQylmVlBPpPPfXUnGnE04Eyn0FVuSfrFveSDxzHlpf2D3nNJR84bhxHKJluPPPqgazNxiJRk4ULqlMNuOIJZzVtWjaKqmDoKn6PlnKJ5TIiu1uCRKImXX1RDF3Da6hEEzYJ08ZnaOxuCU7Yg8+NHfXETEKRBGYyq8Y07RGPa7C8Trrrqr7aR2+/OaS9QipWY4vUTvCBbftACAJ+g5pKL90hJ4tPBWYlO22aphji6Qj2ROmPWSg47jhwDI1l29Oyf08hChoZv9/PoUOHUobFzdiarvT2J3J2Drz03BOBoSKD7nGJZCT0x82sQWoBGTuUeMJKnSdsgWXZ9PXbWMEw82vLsvaz9xkqDz/7Bh5DJWYqxOIW0biFqjgPVq9Hm9AOmYsaa9l/uJcnXt5PeqlQsCfKjzbvZn6egPxwPmOw0fnx5t1DYjUAiqqk3IluQs+sSl+q+VlvOE4sbgEK1WUePr184ZCmZbVVPjr7YqQ7OFw34ETvHCeCgkbm61//Otdeey3t7e18+tOfZv/+/fzkJz8Zj7FNCB59wGedrXPgpeeeKI2KZExRUBCIjMxG9wH4xrvdyQp4L4O3O67rNha3smaTWZaNnoy9BHwGhuseS77H7Co/fq9OLGFN6Ap7X2s3uqam6oFcN5YQjgrAcI3g7pYgm59/i7auKCBoqAlkGKpFjbWcfGw17x4N0R8zU5+nQEZtkWXbDE4vrwgYaKrChi99EMie3LBiyQJaDu1x6nGSOyQQBHyeGSlBVdDInHXWWWzatInf//732LbNGWecQU1NzXiMbcIZD5/1cLJQdu1t49Fn9snWz9MMr6HQH8+ecmvoTsOszt7c12HCstl/uBevrmY8WK/8yMk89MwbKTdawGeg9sZQVcfO+L3O8YmOzQR7ok4CgwJuyNO1p7YYKJws5lrf3RLkgaf2Eo6aKMl6zsMdYR7Yto9rL16Yeo+FC6p540A3iqJgqJCwnO/f5xnYCWpZlEKKafS2qLGWpnMW8NRvW7FsR5Uh4POga8qMTCLKaWSeeeaZrMd37doFwPLly0szoklErguq0EqpWNwsFGelmd1Fl37uL557CxQKniuZWsyu8nOgPZz1dz6PSihqZy1+VxTX5+8ElWdX+5hb60jGxBKOSkZ6TxRwMqLMpD6Yy0R3yHQr9Z2djHPM1QDQNbUoI+gu1loO9mAmDZaqqKCALZRUUbV7r+xr7aYy4KE/bhGPW6n36Q7F6QnHMTQVXVNTvWMG96BxP68zFKem3DNkwXfpuSdy/NzKMWlfMNXJaWQefPDBnC9SFGXaGpm4aSGEyNnU6ImX3h7iPz7QHh6R/zhdfRay9K8ZdK6uK6nVVb5zJVOMNAsyOAEglrCpqfDSG06kDIeqkHQvAQgURcVOirpC5rWxcEE1T/22NaVzpmsqCQR+r573Oh9PVixZMLD7YGD+iqpQWeYpaATTF2tmckdiCbBtG01TUBUlo6gaBlKnDd2k07IRtsgQ1LSF05zsI2fNZ19rN4eCYUxLoGkKm59/K1VzVOHPveDL199nJjEiIzOdqfQbtHVEsq48drcEeep3rRkGxkUIx9gM3pbnYzhppcGeKFXlnowU6ol2c0jGhmjCqb+wxdAMM9OyCfgMNE2lusxDqD/B0a7+5ENQpbLMS7AnmrUP0v4jvbQc7HXaBSeFJ20BSxbW0xWKT5oV9qLGWq5tOpXNz7/FoQ4nVVjTFGoqvKiqUtAIuos1y7Izvj+BE7fSVMf15TPUVAO4SNTEsgWRmGPY3GxmJSkqqmsKAb/BvtbuVLwrkNxVuWnQPo8Tv7Usm55QnHse+18a51dN+Pc52SgYk9m/fz8PPfQQkUjEqXK1bd555x1+8YtfjMf4xp0vfPz0nIq4zTudvuH56A3H2byjpaiLbLArA3K7LmqrfISiiQw/8US7OSRjQ7q7yF11u8FoTR1o9es+aN1Vu+vCyda/3smCGohou5slj67SFYoPqVCfaNJX/elxSrcDZb77yV2stfXF0NSh9S+WLfAkFQ9M4bibTcumOxQb4obUVCUl0+Mu4gZ7HJxCbUcDLdjd7zQwTN6W0o09lKKyy04//XR+//vf09TUxPPPP89pp502HmObdLgrxpht5T0vl399MLkygrKt2lYsWcAvnnsLUym+R7lkajCr3JMmZilS8iqqqmS0+k1/aKX7+s85tZ7fvH6Qw8Ewli3QVMV5EJJ6y9Q/4ajJwWBx1+dEMVw3k7tYM00bVVFQNIYUTUdjFv0xi96w07vG59GGbhuTuOnG7iJusMdBVRUSyeJZt2TQssFIKgBIN3YmBY1MOBzmtttu4/bbb2fp0qVcc801XHXVVeMxtgnh/q17ePNAT1Y3Qm2Vb0gR12gYXJ1cyHXh9WocOhomPXtIXshTmydeepud+45mxCLcavJrm07N+vfNVveBcijt1Qq2EKnsqsGp0VYW1YqpjLtYUxQnSwycOQd8OtG4maFXBo4RicSyLxQd95rA7/WmFnHNO1szPA7pco/ZEjKkGzuTgkamuroagOOOO44333yTRYsWTeuK/3zFmK7g4FhSzKrNDWx6PdqQ7CHJ1Map9lfQ9Uw3WW8kweYdLUBht0vzzlYCPp1ZFQNF0oeD4dTuaKBbi8N0k0FKL+h0cXdtxaAmjbH7/ZT5DBpm+TMWfOkeh2wuc11zmixGogl6QnGEEGx45HUZn6EII3Pcccdx++23c9lll3HzzTcTiUQwzeL+eFORfMWYu/Ydzf/iEuH6hH0enYRpyy35NCIad+o5BmuXgeN2vf+JP/GFS0/LKZNSW+XjUDCM16PR1hfDtJwsMp9HI246CQWCgR1NmV9nXm3Z+E1wmIxUvXhfazdV5d6kFH/xuKrPigKKcGqH7v7qh4ec5zU02jojyVYEAxl+pm1j2wPuufakgntVmSHjM0kKGplvfetbvPjii/zN3/wNV1xxBS+//DLf/va3x2NsE87gba9TFzP+TFZxQ8noMXSVWJ7mXP0xi/u27KEi4EnJ97+850hGbVU4atLX7ySFqIoj4powE5T7dWJx20lf1p305VjC5lAwPClX2cOpGxuMkzGWyKoBl4+UizKVvpz5t0gf09zaMo50OAlQbqGorqrEB/Vo0FSFcNTE69GHVUg6XSlKu+zCCy9ECMEZZ5zBypUrqaiYfj0PXPpjCY50RjCTWTv11enZW2LYF/FY4AY2PUVkoUmmFuU+nVgif5wvlrCpQPD2od6klpnC7EpfasfttC0m7V9wtbUuv+Qkmne2sv9IL5GoCQrEEtA2ArmWUjOcurHB1Fb56OqLDvveTMWtktL/ipKZCj54TLZwVJgVRUmlV7vRA3dX5LrTjnb14zU0wv0zu3tuzn4ybW1tfOYzn+GFF17AsizWrFnDZz/7WZYvX86ePXvGc4zjSk8ojpV0jFu2TW+/mWrPWlXuHXcDAwM9MqJxM9XrXWaWTQ8UVaUiUHCtR1fISXEGJ3Df2RulP2YSiSZScRzbFlgCNE1lVoWHnkgi1SIgFncehk5XTeiLxHP2T5kogj1RLMumrTPCwfYQbZ0RLMsuasfu3AvFxZpSBgUGMu+EYyBiCSujHXOwJ4ppWhzpjHDgaMj5ji2BbQvm1AQ4fm4liqKkaZRlkjAtojGrYIvn6UzOq/vOO+9k2bJlvP/97+fpp5/m8OHDvPDCC7S2tnLnnXfy//7f/xvHYY4farIrkaGrVJZ5UFUltZIqooloQUbic3Z//9zvD3G4PTQpCugkY0NtlY93j4bynuM+FFVFQVHc3YqSqtEYOE9BUaCqzEM84TzcusNx4gk7FZdxa3FsoTidI3uKezCPNFYyHHwejcMdYRRlwO3X2Rtl7uzsMaTBY/J7VELR3Akxhq4yr7YMIQQHkt/5EMOgkLHD8xkqhzv7kxI+jpKAwNmtHOkIYxgaQgiyhNQA5zsvDxgz2mWW08i89dZb3HXXXQD89re/5WMf+xiBQICFCxfS3t4+bgMcb+qq/ehp1dNCiNRKqjc8uvTl0ficFzXW8tFzTpj2bYlnGsVkLCqKklqjp4Qjk4230nFFJrv7Ygich5vXcAQ23ddZtkDVBgoOi3G5jua6HRZCJCX3bUzS9iVCDDEo2WJTkZhFRUB3OocO+m5UhVT2XW84njK6g3GN278/8WcCPp2+iLOD1BQVgch431jCJpawc+6fFBxpnIqAMaPjpzndZZo24P///e9/z/vf//7Uz9M5uywxqFw4PfZRqNq/EOn+3ZG0wN21t40Nj7zO2vteYcMjr8/oLfh0YddfCi/Y3Awx0xowLOmXoqYqaOpATEAI8Hs0KgKOCoCuq6m4gRAk5fQFqqIW5XId7XVbLD2RhBMjSf4scHZxwd4oDz/7RkZr6ad+14ppiYwx6ZpKLG4zu8qX2v2R9l5CCHpCMXojcadjZdrTzxHjdIpYe8MxogmLgE8fqLtRHDelAhkxmFzomrOrRAgOtIeJRM0Ze7/m3Mn4fD6OHDlCKBRi//79KSPT0tIyrQP/bn/wbFX1hTKBCuFmiUWiCXojCUzTSTctJjAoVZinJ4c7IgXPydbyOx23yt9I1to0zq8ESBUQVgYMOvtsFMvJY7YEqbbNY62xNxosS6AoCh5NSbVItgVE4zZ+ryDg01L3TsK06eqLEepPYNsCXXfStkP9Tp2KprpRF0GZT6c/ZtHdF8PQNarKvERiZjJon3Q/Kjj/J2xQnK6jSvJfNwlIJMU246adkQCU7a9jJYU6VQUUxIQ3h5tIcu5kvvjFL/KJT3yCK6+8kquvvpqqqioee+wx/u7v/o7rrrtuPMc4rnziwydSXeYhEjWpLvOw5oKBqnpNHV0RW22Vj2B3P+3dUWJxC8sWRQcGXRXmUq8mJeNLLp28dDS1cAGlZQtMy07tTtxkkVjCwu/VqfAb6LpKhd/g5GOq+PJlpxfdfK+2ypcme+NQiuxGZ47OPCw7053VG47R3Relsy+GaQ7EXRKm7czdtAhHTWZVeJ0U46SKck2lj+oKH3NmB6gq9zrKyQGDyoCRKlIFd4eXFNhUHMWFSDSBZTnvH022AzCtgQLXvCQ7j3oMjdlVfirLPDP2fs25kznvvPN44okn6Orq4pRTTgGc6v8f/OAHLFmyBIBIJEIgEMj1FlOShQtm5REPVFJquSN77wH/+0BTJgh4CufSSxXm6YmbQlvgrCLOcd6n6QPZNc7m1ARGHKwfjsbeaPAYGr2RzF29pirJhBuFvkgiZyzFskFRnBYGddX+nMKzof4ERzoiTgKE8wHYSc2zMp+OaTlimgCdfbGBLDRlYHeSD9edJgTUVvsyhEtn6v2aN3eyvr6e+vr61M8f+chHMn6/Zs0aHn/88dKMbILY19rFlhffzppFI8TQYGs2yv3Zv9Z9rd0Zku7JflOEoyZvvNudt0BOqjBPT+bNDnAwGMn78HJl/QvGBBVHlWLXX9qJxq0xywIbrsbeSHjipbezPoCFEFQEDEJRE7uAp1oBonGLy89rzGoUFy6o5jevH8SyHV03WwDCprLMk2rP4SY59ITiyV2OgqZBTaWP7r4Ylm2jJJMDsqGqTvJAIpkZpyhKqgPpTL1fCyfo52EsUnonG1v+++1UgPFIZ4R7Ht+D3+P4taNFxmOqyzxZjwd7ohi6hmXbA5LuAhDgMdS8cRapwjw9ufz8k3jgqb2pVXo2hBhw0+RCTabYHu7sB4TzUEy7nmB0RqLUDbieefVA0h0tMqT6hYDqCh+KEqM7lD+70xbOYiyXUWze2UrAb+D1aKmYqKaqVCYXhet/+jvauqLYycQIBfB6nJ49fq9OR08/oDC/rjwVG4rHLQSklK8tG2wEzlpQobsvlpL4man366iMzHQUyuwJxTjS0Z/6WQFiChzpMotyWQA5jVFtlQ/Tsunrt7FT6ZrOZ1SVe/NWOC9qrKWqKsCjz+ybNM2mJKPHbdjVvLM1byqzqihYeS5AgVPY6VykKn2RBA01AWLA5uffImbapU9BHgXRuImmKsmK+wGhUIFTIGnoKn6PSn88v7FduKA61ZjM59HwGQM9YQ4Fw1RXeFGSbjTX0BzqiHD/E38inhio3gfH0+Bm6LV1RlIuuf6YScBnEPAZhPrjdPXGMnaZyQ0SHt35c0Si5oy+X0dlZKYjgxeMgoGOgsWSa0vs+rYr/Ab9MQvTSgYwFegJO8qtfq+e02+7+NQGjqudXjEwycCD/p0jvVkfom56bblfpyecPRNRJOVMtGTA2d35eHSVw8EIs6t9TjV9XyyVLfVg8z7qZgUmxaJlIHNTpAof7aSop9tPp3lnK61tfTll+sv9eqp2RlHgcEcYUJhV4aE7HKc/bqFFEuiaQrAnmrFo7I9ZqMmumG42gGULuvpiqZiQq9bc3tWPnlRj1lWFcr8xJJYEruipID7DFdOlkcnCaPXJZpVnd5elb+MPBsOpi08IiMUt2uMWZT6dY+vLs75+1942uZOZpjTvbMXnNYglYqkFjQLUVHiomxVIBbJ7w7ndagiBUJwkAbeg2MkKc7KvupJxBrcQs6Mvjo1TLDiRu5vdLUHstIBLuuz+x889PiML7uFn33BkldJssYKz4zA0hZ5QPKOeSEHQHYozv66cMp9OKJLAFnZWr4SdpojgjsCNvejJuEwsbqVSqL2GSnnAQ0eBYH5ff2JSasWNFzlTmGcyQ64/xVnFFMvOvblbAixqrGXt6rOYX1tGmV8f8lnhqMnCBdVDXre7Jcj9j+3OKEh7+Nk3ZmyB13Rid0uQNw/00NWXaWBINuFKT0fOl0YvxEAqbkXASGncNdQE6A0nIBlrSFgDlev9MXPCU+I3P/8WZpbFvgIcP7cy9fOixlpOmleZ1dswb3aArlA8VV+T/jvTcvq8OGnEQ70V6ThxFTvjHF1TUvdpzLTRNQVdU5gzuyyjh09OhPM9z9QU5oJGJl91/3RLX86FoQ3PFhfjWgv2RFO594PJVgUu62SmJ2420+DMMTdVN5awWNRYy5oLTqa6zJMSycyGrinMrfEzd3aZEzBP1nldfl4jiSy1J0BG87uJSrFNb6GRShnG+Q4GX99/bOl0Chzdqvuka+2NA73ompozA62rL0ZvOI5VwHPluB2d/1ZVpxgTHFkfN4aTvlMsppDaVWuQKcw5OP/881m1ahWf+tSnmD9/fsbvHn744ZINbLKgKk7mVzxhjanMv9s7HDJvKnCCjIMJ9kTRNYX2UNRRCtBVKvy54zeSqYEr2ZKLRLII0nWxvPFu95Bz3M3Nl1f9bU5XjCeHWoVIrrL9Xn0CU2xz158Mvr774wMJOEnVluRrRWoO2TAtQV8kgd+rYfbbOT/PvcfdQk53DLYtMC0rZdwqyzxEoomimqQ5MTV1xqYwF1yib9q0CU3TuOqqq/jCF77Ajh07pmXqci6EgPm1ZaiqUrSBKcazlp7KmMxiBtwHxtB38Bkq7d2OFLqqOPI3XX1xfIb0eE5lgj1RPHr2v6GjrzVwLTTvbEXXVAbbJFs47qJ8vv70XkSD6QnFJrR9REPNgEdk8L0w+KHsSoWmC4a6hPLsKhyDJAhHzaz3saI4huP6KxaxcEE1tdX+VH1LOq5L8mhXPx29RfavUZyOmzM1hbngE2ru3Ll89atf5bnnnuOKK67gO9/5Dh/96Ef56U9/Sjw+OlXiyYihqxkSHgJHA2o44pinHFuV9/euomw2FEWhYVaW1Y4ycFs5qePJNdc0TCOfSbiSLcYgQ6PgFPalP4DdtNxsMYXFC+uHHkwjlyEDR024NxTnQ6fPmZCg9LF12aX8beHMOV0Q1ms417sg0yCB8/DPtilUVYXaal9KPDQbHl1FCKe/zsIF1USiJoeDYY529eeU/rFtRwUgH4bmSPk0zPJnSFTNJIrKLmtpaeG//uu/ePLJJznzzDNZtWoV//3f/83111/PfffdV+oxjisJ086o5lVwOvQNR07mYB7RQ9cHn0j2Xx/8nh5d4fLzTxryut5wHFUF07SxcJR1Z1X4csZ1JFMDN629zKfTG46nrgdVUyjzGVx+XmPq3NoqH28f6k2pMgsxYIz2tXZz6aD3dhczB4Nh+rKk2LooClSWe3h5zxGOn1s55EFY6l4yr7+ZO3mlKxRjVrmHtw/18uPNuzF0Fa+R6fpzXVxOovFQp7YQoqDIqN/riGi+caCHNw50pxStBzPYtV2IL686vWSG5bvf/S6vvvoq4Dyj58+fj8/nLFAfffTR1H9PNAWNzGc+8xneffddPvnJT7J582bmzJkDONpm55xzTskHONEIoPVI37BiMfluaNcH3xtJoKoKKgOrIUNXmV3lz3qT98ctzDTtpIRp0xdJcPyc6auIPRNIT2u3kl0XdU1hXm3ZkIf5iiUL+NHm3RmrcUV1+qQMjl2k94CJF6FUkasQeDx6yeRTNrcskUq9duRc7FTMxMExKm6dULaCVSGcHjtuVX42eiNx1GSHSzcXQlMdxeoh7zeMuZWyWdktt9yS+u+PfOQjbNy4kb/9278tyWeNhoJGZvXq1axYsQLDMDKOq6rK888/X7KBTSbGMgLlyqabyZ2MAEdhPOn5ytYYrXlnK0pG/3aHaNzKWZMjmToMlmxxdw4PPfMGtVWtGcYmfZ3uBr5NSzCnxp/xnuk9YApJ0riP62zZT4N73OdTpRgJxaTgO7U9ToMYW0CF30hJzCgIVFXJm3UHA8kBubCTcjDprnJbOMYsfRc0+B0KCZyOd2JOJBJh2bJlbNq0iRNOOAGAz372s1x11VX8+te/xuv1sm/fPjo6OvjQhz7ELbfcgmEYtLS0cPvtt9Pd3Y1lWVx99dVcfvnlYzKmnEbm5z//eeq/H3rooSG//9znPkdZWXZfqiQ3tVWOppSuq5jmQFGZU6UtsIUj+59+Awd7oqnmSYP5Y0vneAxbMk7k2zk072ylqtxLXySOW4Fu2U4we3BAOb0HjK6rWEW4VbNlP5W6l0wxKfgKOPUvtvOQ70nTMNM0JaN3Sz6XtigiPzTDoAjHuOla5nFNHUhzri730h2K5TQ0brOy8YrFBAIBPvGJT/Bf//VfrF27ltbWVvbv38/555/Pr3/9a3bv3s1DDz2EYRhce+21PProo1x55ZV89atfZcOGDZx22mn09fXx6U9/mpNOOokzzzxz1GPKaWTeeOONXL+SjALXB+/3aHSn3fhuj6Uynz5klZgv3Tkan75dSmci+XYOwZ6oU9muq/SGncp2XXNqpgY/xNzFjNu0rD2PkXEkXbJnl6W/j8tYpuK6qfn5YiaWLYYUWLqkv65QzNS2BYauptLCi8FRXVbRVEHAZ2BZgv64mdrBRKImPiO7ppqSLH8Y70r/1atXc9VVV/G1r32NRx99lMsvvzzV6fiyyy5LbQ4+/vGP89xzz3HOOefQ2trKunXrUu8RjUb585//XFojc8cddwDQ39+P35+5Ff/DH/4w6g+ezgS8udNF033w3aG40yZWUdB1lcqAkVW7bMWSBfzl3e7Uaik9xVPX1JQgoJSamfrk2zm4D3y/V0cIkZI30VQxZLWc3gPG79XzruG9hpbSB8um/l3KXjK1VT66+nLvinQVXJuQbQ5D3IcFPq+63EN7d/G7MCspdOnzOe0AgNRO0zQt+iIJYgl7SDICOLsg16137+N7+L+XlS4JIJ0TTjiBU045heeee44nn3ySTZs2pX7nGhtwEiJUVcWyLCoqKti6dWvqd8FgcMw6IBdMYf6///f/pqr+Lcvirrvu4gtf+MKYfPh0ZUFD/j+OKy2zcEE1DTUBjq0vZ05NgIDPyLpKXNRYyzmnOimq6QbGTlYeS6mZ6UO+LpSuvExPKJbsEGlntPZN/7unqwREoiaqqqSq49Oz3v0elbu/+mHWrj4r6wNw8PsM7hY7Gna3BAn1J/LKvFSVe6kMGHgNNcOYuOiagqoqWVOXsxHwGUVJRCnKQHKBEILKpBqzu9O0bUFPOEE84cjYxBI2syq8aOpAcWx6kkHctHngqb3jdm+uXr2aDRs2sGjRIhoaGlLHt2/fTjweJxaL8fjjj3P++edzwgkn4PP5Ukbm8OHDXHLJJezZs2dMxlIw8P+e97yHf/qnf+IrX/kK3/zmN6mqqpp2jcrGmmJXecNZJf6fS0/nhGMPsmVHC9G4ia6pSdkRk+4+QWWZB79XH9OgrGT8yXdNuH/Tf3/izyAEhq4N/N0T1pC/e3pCwYZHXqetq5/+mJl0s6n4vToNs/zZhpFBKXrJ7G4J8sC2fURjZs4diKo4cjDzasswk4rIVtIimdZAhEVXFXxeI2vSzOD3E8kGcLmUAVzcbDWPrjJndoC4aTt/l7iF16PR0RvDTvaccclW/Z8+t2h86N+oVJx//vnccsstXHnllRnHfT4fq1evpre3lwsvvJBPfvKTqKrKvffey+23385Pf/pTTNPk+uuv533ve9+YjKWgkVm3bh3f+c53+MQnPsG6detYs2bNmHzwdCbfRTS45uBDp89h176jHA5GAJFRfDeYzyxfyMfeO58nXnqbp37bSsJdApo2nb1Raip9+DyalJqZwhTqQrmosZaAT6e22pfRz6lQMN41Xj6PRn/MWVnHTSetd+19r4y7q3XzjhbC/XEURcXQhz70VcXJYFWTKXSWZeP3aPT126kaZFVVsG3BnNl+Fi+sZ8tL+/N+pqI4TcQq/DodfYULyYWAqnJPSiswBpiWSTQUR6QrmeZNNhggbtocDIYLfu5I+M1vfpPx8+7du5k9ezYf/OAHM45/4AMf4POf//yQ1y9cuJAHH3ywJGMrKrts3rx5zJo1i9dffz1V5f+5z32uJAOazqQXYvbHLDr7YrxxoBufoTO72pdaueYLFO5uCfLU71qxhUgFH91t+dGufjy6Sn315CjCkoyMQjuHkQTjFzXWsv9wL0/9thVb2Kg47tauvuiQLprjYWgcfT4nQy5bIN4WICybWdU+ogmbq5af7NQSBcNDaomAjA6guRDCaThm6ho+j1ZUIXNHT9SR8lcUDE1FUUSqVsd5z+HMGqKxodmjY803v/lN/ud//oe77rprUjSWLDq77MMf/nDW45JM8v1Jm3e2OkWU/QlHlypZ+BWJmURiTtyrzKdTUebJua12i/bcdP7BSTmWbdPbP75pk5LxZaTB+H2t3cyu9uE1NI50RpJ5uEpGF83xc7UqKEr+6hVHvVjQMMuftZZo844W7nnsfzEtt91xfmwBihBEE5ZTXwMUyjOz06xJzHaMkqbmGXQeVAXKA0bJv+Pvf//7WY/feeedJfvMfBTMLnPp7e2lsrIyx9kSFwE5H/DBnij9MStVXJbNLxyOmo4MRg6f8aFgGCEECTu7bJlAIRoz2byjRRqZaYq7K3nm1QNE4yY+j87ys48p+PdOz1xzi4EHd9EcL1drwywfhzv7ya2H7BCKJPi7FadkHHPjOeF+p15IkL9HTDqGriGAeNwacZF1sZ+V8bmawqwZ6s4uaP//+te/cvHFF9PU1ERbWxsXXXQRLS0t4zG2KYlHz93jpbbKR8KyC6o0R2JWVnXlXXvb6I9bqVXU4K26piroSemMQ8GwzDKbpuxuCfLyniNUlns4pr48pTtW6O+dnrmm6062lpuhCGNb/1KIy88/iTKfnuxCmRufd2gNUPPOVidhQBn+lqKyzINXVwu+SlXIm4U2nCaGPo/GvLryCW6nMHEUNDLf+c53uPnmm5k9ezYNDQ1cddVVrF+/fjzGNiXxenKvBlcsWYCmKtjCcWvl43BnP0+89HbGsf946s/Ydva1n9OfPCmDnqyfkQ3Npga7W4JseOT1DLXhfKQXbA6ngV16h80Kv45lOfGFeMLicDBMpD8xblL0ixprubbpVE6cV4nPM/AYSn92l/t15tcOVRUJ9kSxbBsh7GHtKsp8upOJV2QxpmFoWVOj3ftr8Hhz4dY1TWQ7hYmkoJHp7u7mQx/6UOrnNWvWEAqFSjqoqYiiOL7aWDz3SmVRYy1N5yzAtkVRN8dTv21NPXB2twR550hvztepqoIQAls4EhuVZcaM25ZPRdxkkOHUOmXrQVOMqyu95iWWsJ36Ek1J6yIxvkHiRY21rFiygOPnVKZ2Bu4CyufR8Hv1rA/k2iofmjrQBbPYUffHTI50RIgVEfC3BQg7uxFTFSWla1YMDbP8Y15jNJUoSuo/FoulshTa29uxC6zCXUKhEFdeeSX/9m//xjHHHMNNN93Ea6+9llIQ+Id/+AcuuOAC9u7dy80330w4HGbx4sXcdttt6LrOoUOHuOGGG+jo6OCEE05g48aNlJWV0dvbyze+8Q3effddampquPvuu6mrqyMej3PzzTezZ88efD4fGzdupLGxscAoxw5HrDD/SiW9Z3k+LFtgIXiweR91swK8kVbxnw0n+Om0i60MGGiaSnWZFM+c7IxEgHI0Ui9uAH3DI68PeY9stTZQOqn/9GzLwSRMO2d/m4ULqnnzQM9AhleRn2cLiJvFdbhVgLgphsg4gXNvqipUlXkI9SfyytQYmsLa1WcVOcLpScGdzOrVq/n85z9PR0cHP/jBD/j0pz/NZz7zmYJv/Mc//pHPfOYz7N+/P3Vsz549PPTQQ2zdupWtW7dywQUXAHDDDTewfv16nn76aYQQKRmE2267jdWrV9Pc3Mzpp5/OvffeC8Ddd9/N4sWL2b59O1dccQW33347AA8++CB+v5/t27ezbt06brrppmF/ISNFCOcirqn05b0Bm3e2DsuL3NEX582DPUX1snErkzVNnZHb8qnISHYl6ZX/RzoivHs0REdPlIULqgt+nuuae+Pdbrp6o/THBrTvsn3uSHZaxeIa2HDUHHJ9W7Zg+87WIZ/j1ojlaiRWCCGcXj2FcLPVZld5qc1SEmDbgu5QrKAOmi0o2g062XnjjTc45ZRTePrpp4f1uoJG5vLLL+f6669n5cqVmKbJd77zHVavXl3wjTdt2sStt95Kfb0jh9Lf38+hQ4dYt24dK1eu5Mc//jG2bXPw4EGi0WhKiG3VqlU0NzeTSCR49dVXufDCCzOOA+zYsYOVK1cCcMkll/Diiy+SSCTYsWMHl17qtG46++yz6ezs5NChQ8P6QkaLKLDLG4kLyy7QcCn12cLJ65+p2/KpSD4ZmVwsaqzlQ6fPIdxvYloWhqZQ7jcygv/Z4jzpBkNTFWIJm6Nd/RwKhumPmVk/d6Txn2JwDWyuB3Us4UixrP/ZTtbe9wrrf/o7fvXKO9jCEbocTvA9nULdLGEgg6yrL0ZvJIGuDZWuKaZGxrIFXX1R2rr6p7zk0y9/+UtWrFjBo48+OqzXFeUuO/bYY3n/+9/Phz70IY4ePVrUG7u7C5dgMMg555zDrbfeSkVFBV/4whfYvHkz73nPe6irq0udV1dXR1tbG11dXZSXl6PresZxgKNHj6Zeo+s65eXldHZ2Zhx3X3PkyBHmzZtX1JhHg9NUCbpC8bw1KrVVPjp7o0V32YTh5c/YAimSOYVIr3kxTYvecMKRfVGVvNdRes2Li+vuArK2C7BtQV/Eef/06y9h2nT09FPm93DlRzK7spZS6t91++Uj1J8gGreYMzvAkY6IUyOmJmMmox5BfpxWCmAnLHRVcTrEFaysGYplQ18kTkUgd/3baNm1t43HdrxFW2eEhpoAq847icWnNhR+YZEkEgl+9atf8fDDD3PllVfS2trKggXFeUoKGpkdO3bwrW99C1VV+cUvfkFTUxP/8i//wsc+9rFhDfLYY4/lnnvuSf189dVXs2XLFhobGzOqUoUQKIqS+jedXNWrrpro4Ne4x8eFpFS/oWk89/tDfPScE7Ke9unlC/nOz35X0qHk+/ypQl3d9O/4WVdXwUfrKqiqCvD/nvoT7V396JpKfU0AFPjFc29RVRXI+rDoDMWp8OsZ17uuKXSF4jz3+0N4PRo+j3N7ewyNrr4oHb0xDE3JusDRNZVZld4h183cunK6evvxpRmzaNxkbl15UX+jfOd8evlC7n9sd97X20k3tMfQHJUL3F2GKDrgPxI01RHeVIVIG4NasAFcLhRFoT9m0hWKj/m1vWtvG/c/thtdV6jw63T19jvf66pFY2ZoXnjhBebNm8cJJ5zAxz72MR599FFuuOGGol5b0Mjcc889bNq0ieuuu476+noeeeQRvvnNbw7byPzlL39h//79KfeXEAJd15kzZw7t7e2p84LBIPX19dTU1NDX14dlWWiaRnt7e8r1Vl9fTzAYZM6cOZimSTgcprq6moaGBo4ePZqysO57jQdCOP/z+lQOt4dob+/Let5xtQHnwTBcPYoi0VTyfv5UoK6uYkqPvxjS53hcbQC/oVE3y5+xMzEVi0ef2cdxtUP17GrKPVkD97PKPRxuDxHw6RluqFDEib3k6ltfWeYhHEkM+d4/+t55PPzsG5iWyFAX+Oh752Wcmy054KPnnJD373hcbYBz/qaw5piuKU5LA03Ftq0hLS9KgWU7sk0Br06oP+EUfI7QwICzW0wAtZqS9zsZiQF6bMdb6LqSWlT4PDpRTB7b8daYGZlf/vKXXHLJJQBcfPHFfOMb3+D666/H4ymcXFRwmW9ZVsaD+tRTTx2RHo4Qgu9973v09PSQSCR49NFHueCCC5g/fz5er5fXXnsNgK1bt7J06VIMw2Dx4sVs27YNgC1btrB06VIAli1bxpYtWwDYtm0bixcvxjAMli1blpKr3rVrF16vd1xcZTCQwhyNWwjb5h/uepG///5v+Ie7XhxS7yJKZGDcgcy0Yq/pwHATANJrXgbXYGSL8ySSDc6y9bhXVYWeUDzrdeOmPesKHA5G6OjuzzBskDs5YNfetoLz3vWX9oLnVCazJCsDxrhqcXl0ld5IAlu4rTVGf9/2huNjHpdp64wM+Zt4DY2jnZExef+Ojg7++7//mwceeICPfOQj3HLLLfT29vLss88W9fqCRsbv93Po0KHUH9d9eA+XhQsXct111/GZz3yGpqYmTj311JRl3LhxI3fccQcrVqwgEolwzTXXAHDrrbeyadMmLr74Ynbt2sU//uM/AnD99dfzhz/8gaamJh555JFUcejVV19NPB6nqamJ22+/nQ0bNgx7nCNBAQxNBZwVV2coTixhJYOrFk+8sj/D0GgldOFZlpBZZVOQYhMA3ID+Q8+8gVdX0VVlSA1GNgOkqQo+T65meqJg6n3MtJld7WNuUnY/PYidKzngsR1v5Z3z7pYghwqoEnsNNVUDpmkqZT4dfQxun2JsVSTm1NPomhuPcQpER2LmFKCqzCDgN8a8SLqhJkAskVn7E0tYjtt1DNi6dSvnnHMOL774Ir/5zW94/vnn+eIXv8gvfvGLol6f010WCoUoLy/nG9/4Btdeey3t7e18+tOfZv/+/fzkJz8peoDpEtRr1qzJ2ipg4cKFbN68ecjx+fPnZ5Wfrq6u5t/+7d+GHPd6vTnF4UqFnuwxbguRrOYXqIqSqr7XksHDZ149wKXnnggUrvYfDSPNuJFMLMWIXro7BjegHzdtLNPiquWZmYTZ2gWcc2o9T/02+8PNFjB/diBnQHrzjhZ6QnHsZC+WyjJPKsNsUWNtzuSAQivp5p2t6Jo6JBHBxefRqK30Uh7wpOZx5UdOYvOOFg62h0flLiumVsY9z7KFE+8FojGTioBBNG4RNx2JKF134sGWJbK+p88z0PdHCDHmRdKrzjuJ+x/bTRTTqbNKWJimYNV5JxV+cRE8/vjjfO1rX8s4tmbNGn7605/S0tJSsBYxp5H5wAc+wPve9z7OO+88vv/979Pd3Y1t25xxxhnU1NSMyeCnA26+vhACgeJI7wuR8ulqqiNnHo07PvHdLcFhZZYNFwFSHHMKUqiPjPu7Ygs3s7ULeO71gxATJJINv9J7slx+fvYHUvpuw1FFtojF+6ksM1IirrmKQwutpIM9USrLDDp6hzb7cuanEk3YfHtQMeNDz7yBnpb6PJwQpwJoyTqZYkoDROr/kvO3oTeSyPj94BRsNdlS3bIF5X6d2VUDjeFKoV22+NQGWLWIx3a8xdHOCPVjnF32q1/9asixmpoa/vjHPxb1+pxG5oUXXuB3v/sdv/3tb3nooYdQVZVly5bh8Xh4//vfj2EYIx/1NMI1GJYNQh24aJO9lpxKfIVUUK55Z2uqdXIpEAIOtIel1P8UpFAfmdGmE8+vLaM7HMeybHojiaQSs8Kc2f6cn9u8sxVVVTCTD2R3B9ATTnBMnRMrWbFkAQ9s20dnUlNMU1V8Xr3gSto1TrqWvVYm/TPScZSMBwyMpio5dxGD0ZPZdZqqoGuk5jWYwYar2J0PJO/t5ItD/SaRWAhDU/F7NQxdLYk7e/GpDWOasjyW5PRu1tTUcPHFF/Od73yHX//61/z85z/n5JNP5l/+5V94//vfP55jnPRoqiMfkV6FnH5B2gKWn30MAAeDo9vmF8sD2/ZN6cIvyVBGUriZzoolC4hETXpCcUwzGafx6jl3MZAsHk67YDOu3fSncOq/laG/KzCefFXz3X1DFQjS2yy7C7li8wHKAx7KfDr1s/wEvHpO93KGgVFGl8mmKs4OMNxv5pTKmc4UDKG9++67/Md//Ae33XYbP/rRj2hoaCg6P3o6UMy1a9lDL0L34lUU8HvUgXiMJQrKm48F0ZgpVZinGfkyyoom+fS0bSfjrC8SZ/OOlpwLktoqHzakes+Ac0/oKkQTjnFo3tlKwG8wt7aMY+rLmVtbRsBvFAz8u+PJdzuEolZG0oz7WZWBkXlSynw61zadyuXnNTKvtqwoN5ui5EuaKIyuqRxTX8Hsah/7WrtH/D5TlZzusrvuuovf/OY3hMNhPvzhD7N69Wo+8IEPjCizbCpT7ArGjcG4F+2xDU6+eyxhZQhV6ppCLFHavYxTqWxLFeZpRjFxm3y4D2ivR6OzL5Zy6R5NSp6kf4bLiiULeOPA7pR7143lVJR5Uzuo0QT+3fG0d+e+Vt2kmd0tQVoO9qSSa1SVlBJzMe5nBSfdd/OOFnrDcTStuL4yCoKKgEFshI3OYnGL/pg5IxuWQR4jc//99/ORj3yE6667LqUrJsmNSPp5LeGoIR/pCGNaNqqics6pA3VG82rLONAeItRv5nm30WELJ6tN1stMPwrFbfLhGoPDPdGUfpeigLDJyBYbjM/QU+3BBcmMq7Qd1GgC/wGfjmJo+D1x+uND3WZO7ZmZyqxTFAVhCxJJq6KpxXeqFEDCEhxoz582nfGapHxNZ2+M2VW+ERuJzt4oFQEPDbP8hU+eZuR0lzU3N3P22Wfzgx/8gA9/+MPceOONNDc3y14yeXAL3WxbkDBtdE2jzK9nCBcuXFCdumFLOxZkvYwkg9oqHx090YwYiBAgbIFlZd/5Nu9spbLcQ/0sPz6Phq4pqTRm1yDlcuMVE/iPmzaRaIJ4lgC8UwbgVLK7mXVV5Z6MXcsoivCLwo3hW7bA59FYeGzViN7DtgWhyPg1hZtM5DQyxx9/PJ/73Od48MEHeeqppzj33HN59tlnaWpq4nOf+9x4jnFSkx44dFJCnf+2heMqC0dNTEuk4iP7WrupDIxPn5eZFmCU5GfhgmrC0aELHEUhZ8W/q0Tg9+o01ASYX1fOnNkBommNv9KboaUXhhbKdhpoWRDPGvu0bIFAsPzsY1LjCPiMkmqW5eNwZ4SOvhizKzxD1BkKYQvQtJl5Txalwnzo0CE6OzuJx+MYhjF+opNTAI+hYVo2piVS+mXpJEyb7lAspXvk1AZ46A7lV58dLQFvUX9ayQxiX2t31lRcO0+zvVyuMJ+hsuGR1zkYDGNZAl1TmFdbNqQwNB/uefc89r8IITA0hcSgHc2lHzyeS889kX2t3an06/HIzsyGbYlUnZKqqXT0xgr2tVEAQ1edRmfKzHxu5nwSPfjgg+zcuZNXX32Vqqoqli5dyuWXX86SJUvw+aSv38WyRc5cexc3zRKKkzcfC9yUaYnE5VCe9Pl5OSr+sykRRPoToCiEoqbj+hUQS4hUzxQY3ord0DX6YyYWjoy/295YVZRUJ1l3HD0FFmclrUHD+Q4iUZOrlp/Mvz/x54Kub4HrRhdFt2uebuQ0rS+88ALvf//7efTRR3nmmWe45ZZbWLZsmTQwgyjUGc/FFs55roug1Lgp0xKJSySayPm7fLUytmXT1hGhtS1EV28Uj6ER8On0x51WxpqqoCgq/TFzWA3N3GC+xxjI8rJsJzgvgPLAgM6X65JLF5dVBv27cEH1kCy3saYvkqC2yul+e92lf1OUjJNlC/xenXm1ZSUd22Qlp5H56U9/yjXXXMPxxx8/jsOZnIzF+sNNtXRvltGiFbi6ZSGmJJ3dLUFyrYdUJfvOY3dLkAee2kt3OIGmOXp8pmXT0RvFsmzMpHaX+x7xhEVXb4w33u1mwyOvF1Rhbt7ZSsK0CfVnN366pmQkIyxqrKVxfhWzKrxOp0pNxaM7AppuJX2hrM1j6kb3oO8Nx1mxZEGqtUGxu6ZYfOa2Q5+ZTsJhMha774Rlpx78ow3+aUlV2nzIQkxJOvmuh1wLluadrUTjlpPQkhR9VZJxhZ5Q3BGGTJ7rilyalo2hq3SH49z/2O68i52DwTB9/Yms7ZCFLejsjQ5JRlixZAG6plAR8CTTlx1pnKZzinuALz6lruACLRdOXZEzVre1QbEkLJvmna0zcvEno8NF4AZLnZvNOVasxyv9cr7nsf+lcX4VCxdUj3gsuuYYmEIrqJlY9CXJzcE8kvoNOepZgj3RZMB64JiqgJU0JpU+D90hi/RlmJMRBl19Mcr9et52w5blFKFku5SdWAZD7pXMglQlVZAKpOJB+Xjm1QO48ZFCsVQgI4vM/S7cdOr+PO7HwSgKqT476fOYCUgjU4D6ZPFUTyhGwrSpLvPQHU5Q7P7GPUtLNj060hnhjQPdoxpTMZ0CZCGmJJ1suwWXy8/LLtVeW+WjNxxPtT0Gx7i4P+QKwrt1Nz2hOPFE7otV1xT647nHpWkK+1q7uXTQ8WwFqRseeR1NK+yY6Y+byQzQ4u7fuGmndnIgaKgpSy7gBD3h4o2MEPlVs6cz0l1WAL9Xx+/VmVXpY97sAGqyEG24G27LBlVV6Y9bo/K/mUWqzc5U/68kOwkze6xCIfeqesWSBfg8GrYtiJs2cTPZ90VAud/IeR0KnIey07I499U6r7YMNY/rqtynF70jD/ZEi0qoGUlzS7cY02voXH5eo5MhOswSBHeWw1HNni5II1OASDSRqmBGcYKNlWUeaquHv1OwLJuEmb1BUyEMXU3qKBXGo6szaqUkKYxlZ79yBPmTRAxdHXK9CiBUwFXkGqN8absrlixA2CLnNd0fs4rekfsK6J+NFDd7zqOr1FR4Up1Hi3G1peN+D6XoJzPZkUamAN19sVQFczRupXy0Ad/wlWDT+0wMh+pyD/Nqy5hXV8YpC6qpKPC5o1GMlUxP8iWKZEsK2N0SdHrEDGoo5hqEQi5bRYHqCm/etN1FjbXMmx3IuSMq1BI6neHER4aD16NxTL2jctAbSaRaXw+X6grvyFSzpwHSyBSgqtzL2tVnsaixdkg/j1mVw1+RjGQX0xeJ0xuOY5qCFUsWML+2LOcKUUtWXksk6Sh59PSzJQVs3tFCuD+eEsR0KfbyVQBDK9yg6/LzT8LQVTRVQVMHPkvXlJwFotnojZRGD9BdsHX0ROnrT/DGgR76IsMzaIamIgSpxepM8zJII5MHhcwAejYhQCWtz0YxjKSXjGVDdyhGNG7RvLPVKTrz6kPcDIoCZT5jxq2UJIXxGrmvu2jMGuIya+uMAEqqYddwr1oh4AurFhV8oC5qrKXpnAWp+8JjqMyq8DKrwpu3QDTLJw5zhIVRFeiPmfSEYoSjpuM6SzYgGw5+r8ZVy09OLVZnGtLI5EMZGkD36iod3VEOB8PoqsL82QGqyjxFG5pC9S25XwcgePtQL0+8vB9DV6mp9KbiNJqqML+2jGsvXjgjL2RJfo6bU4nXGHq7K2RW1qf/xm1tDMN7hGsqNM6vLLod8KXnnsiXV53Oe46pTsnhD3fFX1k29qKzmubI6PQms8hs4agRDFewI+DP9v3OHGQKcx6EGMi8eeKlt3nqt63YwkbXVAI+D73hOB5DozccL7oH+GjWW92hOLqmoCgKfZEEVeUevnp54dWiRLJiyQIe2LaPWCIzKyrg06kIGEMynhpm+Tjc2T/CRZEy7N30aPrkgJMFCrGC5w0HWwh0zRG3HM2Ne6QjQkd3lN0twRl5r8qdTBHsbgnyq1feIWHZWDbEEzZdfTFC/Ql6w3EqAkbJRPkGY1oCWwhMWwxLJ0oiSSSGxi3641ZKjyudy88/CY+ujOi6ri4zxv1hGo1bRQlQaqqCpikEvIWTYyzLqfcppLRcDIriFIvKin/JEJ546W127TuaakgGA4saW4BpCyKx4floR4PbMheRu9GURDKY5p2tTq3WIJVit5nW3604JeP8RY21zK7yc7SrP1WQWMymRgWUcWgF4mqHuW2ofYZKRcBDV1/+3YwTQ1WKvmfHavEoINVXaqbtZqSRKcBTv2vFzKO0nN4KdjxwP0lVFXpCcU6cVzluny2ZurgSMZqqoCRliVyj4fNqQx58u1uCtHVGsIUjpVKs18wGfFliP2OJq96saSoBn053OE4kahY1SCe0Of4daWxb0BuOjYsC+2RDGpkCuFpMuVBVJWOXMx5oqrMiG04dgWRmky4Ro6kqGiR7tsD8QSnv7kNcUZSBupjhPJhHkEE5HFztMLeRmvtvIlF4d2JZwtnNUIp8tDyfm9Q9G24R53RAxmQKYBTQQyrx/TQEr0cDFFRleHUEkpmNKxEjhGMwLFsghI3Pqw9ZqLgP8apyT0oYtliqyoyM1sylwG3FnI5HV1NZYIUQo4vjjxgB6PrMa1wmdzKD8Hn0jIr5qnIPoUgCM323kn6FCoGqD03zzL7wcw4OXkUNPnfIS9NOmFPjJ27aWJY9zDoCyUxmUWMtn7/kVB7b0cLR7hiWbWPoGrqq8Otd76IqCqefOBuAnnCcMp+OojhyKr39CeJxe0ixzODHpaoqBHwG9dX+lGEam0VYZmuLBQ3l9EQGWkIrKLR1hinzGxmDSjU1GzSIwWNL7dcy/8n62iHvkeUDB79CpP3HcXPKU900M+7z5Pw8oRhV5d6snzlVUcRICzemKV+/+wXauiKpnz26U22ZiNvZV3V5LrYsp2VIm+erwgaR8VlCgK6rjtS/BYoG1WVeTj9xNsfUlZN+yYoh/5H8QVGGGrS0A+m/yziecX7me7o/D/6olJNxkG0ealBF2mscyso8hEKx1HeWMR+R+dpsc033u+cau/tKkeV3zs8itRjImGOW7yv9HKd4cWAyub4Xv89Df398yOsH344Dq24xdA4iyzH35yzz7+yN8u7REJGoiWXZqJqClRRcFcKpbj9hbgWHgmFipo2WFLkESJgWiYRjaLI9MVKxQuCkY6qoLvfi9epEo2baOcnZp18fqZ/T/k07P/U9pv2iJxzjQHso6c5TiCXMgQB9jqfZ4L/D4B9yPgTHcNejAPPqyijzGRmfmD63tdcsZs7s8jH6xMmB3MkMojsUK9hHfLJwqD3Cn/d3TfQwJNOE/phZMDurGP737c4xGM30QwAH23P39ZmuSCMjSaGk/s/9Z2Arlb6rGrwBG+xuGPpe2d0VQ392zlSSnT+VLCcpDNoopitTp71xpstj8OcNGk/Ge+V3fyhK5hFl6OlDPmPo9wWarmVkGg397vOMN+MzB16U83tB4XBHGMt2dsf5eryMFgVYeNwsADwebUgwXkkbWL7xpv4ry3WnDPr979+c/LUnXsNpE23bgpPmV1FT6Rt0XUzfWI00MoPweYZ+JeV+nTKfQUdfFNsq3JWyFBzfUE5PfwKvrg7onymOyyQWt/jHT52Zcb6SfGBmXLpq6mUFXHVp75Pr4i/ynsh1WsbHDzqpprqMru5wmmEZOGFEmSoFxppzjunnZDsll7Et8NmKArPcOeZgWE7sLG7AwcbyJ7/cjc+joSgKRzoj5CSnu2moGy/bz6oC1608DYDqWQG6utLmONitN/i9xcBJ2dxbYsgvHN480JN9CllchtnGXgghBIamkLDyjG3QZw18hqC6woPP4yinxxMWsbjFReccN7xBTGGkkRlEmV8fssrQVYWqck8qjTP9Isu5iif/gzxX0HHwe7j4fQbHzq2kqzeGkZZZEzctKvwG9dWB7C/M8pkFTsu5wso2nYxjotAuwI1y5Kd2dhmaGLvV9mSMOlZXeElEx88t6zVU2joj9MesrNlf+dYceXdWg36pKc69AlBb7UekqQyMbSbmQDJARUAnHM02p6GLlAKh0xyvh1kVHjr74oN+n/lvxmel/TN3dtnAOQKiCZOaCm/qdkm/PssDY6/BNtFIIzOIUCRBOJpIXYCGroLh5ORHohY2AiEEdpZVzeCg+NBjQ1dZ6cfyPQxjcZNPXXAK927+A5qm4tHVVJbZBRecjKfEBXBFUeCuHU6OyWQ0DFOZ98yv4s/7u0r+veZL+c/32YMr+FcsWVAgPX/gzRKmoDdcvMEerHpQiOpyDwlL0BeOpXYzw6GzN4qebHaoqgrVZR48RnZZm3L/9DMyk+DJNLmIJbez0bhF3LTQVIW6Kj9f+9SZXLB4PrG4SSJhY1pOO9pE2v9MK/1/AtNy6hHS/2e7/xOk/idE4YdqqD/B4lMbWHPByVSXeYhEzRnbn0IyfHb9pX3s0qTyYI6got0t/uwOx1MV/MPR+aqt8jGrovi03+EYGFUhZRDK/EbBurlsmJYgnrDo6OknEjVnXAG13MkMQkn7V8HZybgXxa6/tCNssF2/d9L7Mx6L7kRS2ma0arWSmUlbZ2RcrtORfEa2Cv5Y8ngx1/qKJQt4+Nk38BoqsTFMalAVx2XWE4qhqgqGrrL4lFp+++ejw3ofBcew6apCpV+fcfevNDKDqKny0ROOkzAtVEVJ7RR2twQ5MCj9cDxdOqo6fbNPJKXBdUEdDIZH5OYZL4I9UQK+zEeRR1eLFn9d1FjLzj8d4XfDfPgXwhY4AX/TprrMw8IF1by858iw3G2uMoEtHDmoaAkz+yYr0l02CJ9Hp6EmQN2sAI3zq1KrjuadreMuIZOOaQl27W2buAFIphSuC+pIZ2TY7YJHyxf+5XnW/2xn0dfr4LbmAHHTHtJ+IBdPvPQ2v/3z0ZLs1BTg5GOrWbv6LPa1dqNpatGZmeDMI2HZgMC0ip/TdEIamUG4bZWtQeKTwZ7ohGey/8dTf57gEUimCq4LKtQ/vgYGnFX74Y4wP37090XFVbK1NR98/+Vj2+9K11PJtGwWLqhmwyOv88a73XT1xgp6FQb/VghXGHP4zdymA9JdNoj+mBNQH5zd4qrYDl5xjScH20MT9tmSqYXrghpv1V9NdRqD2UIhEjWLiqukewuKzy4boFT3pK4pVAUMXt5zBE1TMXQV07Lzqq6rWdKSXSaimdtkQBqZQfRF4rR3Rdn8/FvAwA2wYskCHnhq74QaGcueef5cyciorfLRPYy03rHCsp3rVAFsm2HFVcbjAVxcpZZjLGdVePEaGqYt8BoaVeXenPNxkwRmVXjo6oujMqAJpwCzq7xM56r+fEh32SBEUrzvcGc/Dzy1N7XdX9RYy7VNpw4paCym5etYYeiFW8ZKJOAsiiJj5CobyRUucNxm6YrmpWI492AxBsYtoFxzwclE41YqeO/36mhprjKvR2Pu7ABzZgc4+dhq5s4O0NUXc0oVkpIGmqrg9WjoupaKx+xuCbLhkddZe98rbHjk9WnfklnuZIbg9tqAvv4Em59/K7XCWtRYS7nfIBIzUynO4+mM8GeRvJFIsrGosTZDGWIkuC2XR3WNj0MKpt+rj1lyQ7lP4+9Xnpa652urWukOD7QVEEKgawqapjKnJoChq8QTFgeDYUzTIr1MSOA0K8O0OdoZQVcVnnjp7ZT7Lb0mCJi2rjS5kxmEZafLrsOBYCRjpTG/towKv4GmqU5a4giKs0aCqsCxcyrG5bMkU5/dLUG6+mKMJvN9NPbBXYSNR8ru/NqyMUvx9/uMjJ8HJyWoyXYZlYGB8xzlDZEzTdyN4Rzt6ueJl/fT2Rcj2N3P0a5+bFugaSrNO0uXvDDRSCNTBG58BpyLztBVZlV4mVXhQYyTWqamqaw6TzYpkxSHm3I/HpenojgxDF1zmpx5dNWRPjK0cUnZXbFkwbAki/LRE4pn3O+LGmszVDbqZ/kp8+lomkq4P867bX0c7YzQHzNTSRbZzJ0tHGNkC6cFtKoomJagszeKZdlFx66mItL/UgAFOBiMsPa+V6it8rFwQTVeQ+NwRwTLFozTRoamcxaw+NQG2tv7xucDJVOa1rY+RqDwMiKEACspkawqIiWEGvB5xyVld//h3jHzysVNmwPBCOt/+jsuP/+kVEJCuitrd0uQzc+/xdHeGIauMbvKR7B7wEgUMxTn2eFk4fWE4pw4r3JsJjAJkUYmB44c/sBKMODTOdIZ4Y0D3VSVeQeCjQqMR2Tm+LnT9yKUjD39WZSWxwNbgIpgXm0Zn//433JcbaCkn7e7JchTJaiTOdodzRkrWdRYS/POVuoFlPsNekKxYT8BrGRmgJLc0Uzn+hnpLhuEs+13cuJTPTJUaOvqpzsUx7Zx6mUSTr68NU51CA9s2ycr/iVFM5Eq1oau8u3PL2HxqQ0l/6zNz7+V0vUbKzQ1udPIEysJ9kRTWWe9kcSIMvAsG1RFYd7swLQN+oPcyWRBGaIka9sQS1sZ5ivGKhV9kTj/8dSfWf93i8f9syWS4TCWIpX52N0S5GBHngZsI8D1ULjtNNxYyeBWBD6PRty08RgapmmnMvGGg6ZCVbmHy8+f3rHWku5kQqEQl1xyCQcOHADglVdeYeXKlSxfvpy77rordd7evXtZtWoVF154ITfffDOm6TQ6OnToEGvWrGHFihV86UtfIhx2BCp7e3u57rrruOiii1izZg3t7e0AxONxbrjhBi666CIuu+wyWlpaRjDq4q6U8S6rEgLePSrjMRKJS/PO1pJ4qgVO9pirn5atFUFvOE4kahKNm+iaOqKdo22TSo2ezpTMyPzxj3/kM5/5DPv37wcgGo2ybt067r33XrZt28aePXt44YUXALjhhhtYv349Tz/9NEIINm3aBMBtt93G6tWraW5u5vTTT+fee+8F4O6772bx4sVs376dK664gttvvx2ABx98EL/fz/bt21m3bh033XTT8AeuKBja0Ea6Q/SIhv/Oo8aeiL7PEskIGI8Cw2BPtCSrPUNTCPZEOdIR4a+He3nomTfQNBXLsmnr6qe9q59o3MJQYValf8QNA2urfZi2GFbvnKlIyYzMpk2buPXWW6mvrwdg9+7dHHfccRx77LHous7KlStpbm7m4MGDRKNRzjzzTABWrVpFc3MziUSCV199lQsvvDDjOMCOHTtYuXIlAJdccgkvvvgiiUSCHTt2cOmllwJw9tln09nZyaFDh4Y1bssSmPbgjuYTY1QGM5Eq0BIJOG2ci2E86j58Hm1MY0/u/RWN26n3jSWc9OLeUJTOvhiWZSel/gVdoTirzjuJH331w1QEDIZT+2roKgGfgdfQpn2dTMliMu7uwuXo0aPU1dWlfq6vr6etrW3I8bq6Otra2ujq6qK8vBxd1zOOD34vXdcpLy+ns7Mz63sdOXKEefPmDWvsk7X174KGSurqZkZB5kyY51Sbo0dXi6q7UYCukKObVqo57trbNuYK0wNqyUOJxGwMTU0VfdpCYOgqj+14i+996UMcN6+Krt5+2jojJMzCX5Jp2hw4GsJjqFSVeegKxafc9VAs4xb4t207ow+DEE76Xq7j7r/p5OrjIIRAVdUhr3GPjwZNU7CtoTub8UZTFf6u6W9mRJ1MXV3FtJ/nVJxjwrSLkqoRwKxyp1d9qeb46DP78Hl11HB8XApOwZH9NxTX0Aoqyz0c7YzQ3t7HR987j4effYMyn0F3qLAwqSs5E09YtHdHmVvjp729b1oamnFLYZ4zZ04qQA/Q3t5OfX39kOPBYJD6+npqamro6+vDsqyM88HZBQWDjg/TNE3C4TDV1dU0NDRw9OjRIe81GubWBCbcwACU+fRxSQmVSHKiQHWFt6hTS133EexxKuXHE0f009Euq6n0oWkq9TVOHZCrDFDuG9663RFWF9PaFz5uRuaMM87gr3/9K++88w6WZfHkk0+ydOlS5s+fj9fr5bXXXgNg69atLF26FMMwWLx4Mdu2bQNgy5YtLF26FIBly5axZcsWALZt28bixYsxDINly5axdetWAHbt2oXX6x22q2ww3/78EgKD1FcngnStJIlkIvDoKn5vcQ/RUtd9+Dwanb3RcdvFuNRW+6mf5UdVFSzLzpB6WtRYS3nAM2x7UVPpIzpBxbPjwbi5y7xeL3feeSdf+cpXiMViLFu2jBUrVgCwceNGbrnlFkKhEKeddhrXXHMNALfeeis33ngj9913H3PnzuWHP/whANdffz033ngjTU1NVFRUsHHjRgCuvvpq1q9fT1NTEx6Phw0bNox63E+89DbLzz6GJ17ZP+r3Gg29/Sa79raVvIJaIslFwFfcQidQpCEaFUJMSOxUV+BwMAIIGmoG7kVXauZAcHh1O16PE/ivLvOM8UgnD4oYK2W5acLnv/sMR7v6Uz/rKvz72o/wxEtvs+13rRPWtKzMp3PiMdV87fJFE/L548lUjFcMl1LP8do7fzNm7+V2iFQ1R/jySIECyE+cezyXnntiSee49r5XJkRU0muozKr04dFV51kg4Jy/qec3rx8kHDWHXag9q8KRqFpzwcksaqydljEZWfFfANemXHruiVx67onsbgly93/tHvdxhKMmrUd6x/1zJTOXBQ3lSRl7mzUXnAw4qcmFjMyl555Y8rH5RlibMlpiCZvuvhimZaNrKmV+g2dePYBp2cNykymAqio0zPIPq9X0VEQamSJwC6VcWYmJYrz7tUtmNm2dEU6YW5nxEFzUWMv/2fB8zhW7zzNOD/8JDJSbaVL93X0x7GSfGacFc3ElEKqqUDbMJIGpysyY5Sj5yS//F1VRKA8YVAQM6JmYcYxX7xrJzKDcrxPqN3P+Pp6ws66yVQVyhanHy/kejVvJosjx+bx03Bwg93tQhIKmOpqHxc7fsgVej5bqjLn/cC/7WrvpDMX52c0XlGzsE4FUYS4Cp2e3oC8Sn9AsEGWCM9wk04t8BgaclN1slejpAe/BjNduu7bKR1V5cenUY40tBEI4zwQF8BgKQtjDNnhdfTFsW5AwbZ76rdPmucI//db90sgUjQAUesPxgV4yEsk0J5t7+PLzGrOeqyqOdP14sGLJAnRt7F1OhUavKGS0Xq8q91Bb6cMWw5u3kvz/3nCc/piFLWy8hpaz4HwqM/3MZomwbPDoTtXvrAov7d3Tt12qRALOgzBb++RFjbXMrvTS0RtLHXM6xCo0zCp9u2V3DODstPa1dmf8zunLOTIKvU4IJyMsPbsMRUHg9qEp/nNMy8ZMOkams5NC7mSKwL0A4qaNaQl6QvFxl/oHGZORjC+6puas3L/6wlOoDBh4dBVNVdBUlTKfPq69URY11rJ29Vl84tzjM467d8lwBCuLRVWgusxDJGpSXebhC6sWOYrMmpoyMCN5NtgCekKxwidOQeROpggGP9snqlZGxmQk44WmKjR9IHdq7aLGWq5tOjWjkdd4p+K6jcQOBsMZSQDuTqa6wkuwZ2wf3IauZsyzrq6C2iofpmUTSzjbkpEuBbtD8TEX/ZwMSCMzhRD2xBg3yfREUZKrbgHulaUqMK+2jMvPaxxiMAZ3h1yxZAFrV5813sNOjeXhZ50+L/GEI7Krq45Ei9+rczgYpjecwNAUEmOYjGDoKg8/+wYw4LJbsWSBM5ZhuMtyMR1L46WRmUIoo1SUlkjAeVDOSgpddvfFEAJOnl+ZdyeS/lB3u0MOftiOJ807W9E0Fa+hYSZ7vIhkIN3v1akq99DRE6Wq3EtX39jtZkL9JtG4xT2P/S+N86s469QGXt/bRjRuoWsqtnBaAjjZZ0lRzSLd3KoCJ8yrHLOxThakkSmCkfTvLsUYDE0aGUlxeA2VWCL7slpTlZTQpc+jEYmaBXck6Q915/01YsnjE2Fkgj1RAsnMMl1XU83EzORWQtNU5tWWUe43xtTIwECa9rtHQ7x5oIfKMo/zfSfLGxQFEpbAo6tUlXvpCceJx62CbrTKaapfJp9aBVBHk6oyhlSXezl2zvTTNZKUhnyq4WaaT8ftY1+IYE8Uz6BIukdXJ0wBo7bKl4qNVgaMVH8WTVWIJSwsy2bxKU4Dw1KpELhaZV19MYI9MeKm7cSDhJM0EfAZ+L06pmkX9QjpjSQIR/PXLk1FpJHJgxtMnGgb4/No6JqSISsukeQnt5EROA393IdxMb1f0h/qLsUaqFKwYskCrGSw3e/VqfAbqKqC19CoLvPwodPn8PKeI3SH45T7x69Nhi3AtAVlPp1QJEEsYRWdnmzbgraOcGkHOAFId1keJkvGsKo4Kq2LT22Y9urEkrFBy1MwbNuCA0dD+Dw6y88+pih3lxvcjkGqRqRYA1UK0utkgj1R5tQEMmJKGx55PeXe6+qLjYvLO+X0EILKMg+WLUjEzWElHkyWZ85YIo3MFEDTlGmt0ioZe+bXlvGXd7uzPlhVBebXOQrLL+85wvFzKwteX4Mf6hORspxtTLk+Pz1mY5o2uqpg2sPvQaOpSiqIX4jUKYpC3LSpChi0dUeTrksx6syzqYo0MlOA/tj089NKSsuKJQtoOdSLnYxT2AKspBy9oTvyJcMN3ud7qE82aqt8dIfjeA0NXVcxTWvYBkZVnF2fqha/DVIV0JNdM3VDc+JEEyTkOVmQMZkpgJT4lwyXRY21NJ2zAFVRsGwbTU3WxSiZWUwTGbwvJekxmwq/PuxdhEIyqxQKNiLTVKdGx02MqJ/lZ80FJ6eUAAQz28jInYxEMk259NwTOX5uZcrFFYmaeD1aKn0ZJjZ4X0oGu/eGS7GGwXGEOeK5QoiMQtbaqlZMy6avv/gWAPliaVMVaWSmAINTRyWSYkl3cbkFlbGENSmC96Umfe5f+JcdTr8XihPQLDZRQNMUAj6DgE9PfadukaqbLFHhN+gJxwu+nwIoE6KKWFqkkZkCXHzO9HwISMaXyRi8Hy8aZvk4EHTaRhezqVAVKNZLrSVTp2GgSHXzjhbK/QbRuIVlCXQVTCv/ZyuqQt0sf3EfOoWQRmaSs/DYqnHpmS6ZGUyl4P1Ycvn5J/GTX/5vwfiKS7ExHMsWRKKJVJwrEk3QHYqTMG08ukplmYGpCqIJCPj0vMWWti2IxqafQKb0w0wy3J5FXkPlE+cez9o175vYAUkk04BFjbWs/OBxRTujjFQLg/znCTGgyt7dF6W9O0oi+bNl23SF4oSjJgpKUQauOxQvcoRTB2lkJgGGpuDRVVQF/B6dyoDBCXMrOX7u9BPLk0gmikvPPZHygEExzSctW6AqoBUhSisE9Ibj9IQzdyGWDZbltFe2bFFU6/aJ1kgsBdJdNgkoD3iwLBsUPRVAnGiVW4lkOlIVMOiLFHZJOU3I7IFU5gIP/1gRBmSmIncyE4iCEzRsmOWnssxDwKen+nx7DQ1NU2ne2TrRw5RIpgW7W4IcLbJtumlZmJYYaLFcALdhmWQo0shMEGU+ndpqH1/55N+ydvVZROPWpFK5lUimGw8+/ZdhdLVVUsKWxXiwik0omIlII1MAxy879u8rBKy54OSUK2yyqdxKJNONzt7i+8rUVHoxDK2o4H8+ion/THdkTKYAtgBP0j87WhRlQHAv4NNZ1Fib0ac8GrMoDxhUBIxpXygnkYw3w9lrKIrCnJoAAEc6Ilj2yNxh0zGQP1ykkSmC4rfY+RHCyTZRVWfnkt7SdlaFl141Tqg/gWXZzKstmzGFchLJeJCvW+hguvpi+L06kWhCxltGiTQy44yribRwQfWQlrZV5V58Xp3qMk/BdrgSiWR4XLRkAVte2l/UuQnT5uDRvhELW+qaIoVtk8iYzDii4BR5VZd72dfaPela2kok05lLzz2RgFcr+nzTHpl6sqY61fsSB7mTGQd0FebXV6R+FkKktKPcnhcuMtgvkZSOBQ0VvH2otygXuKYWV6WvayogUjuXubPLADjcGcGSuxm5kykVuqZQP8uP19CGBBxdQ5Le82K4PdclEsnwWbFkAT5vcWtrvQj1c6fWzVk4GpojBfXtzy/h8vMa8erF75qmM3InUwJUBTRNpaMnCklx8Wzy6jNZFVcimSiMIpfWPkMtWMkvcJSXT5hbmXHvLmqspabCQ9y0hhWbmV3lLfrcqYI0MiXAbXXr4jFUdFUhEjWHGJKZqoorkYw3bjZnTxGyMgCh/gSGrpAwCxuJ9u5+7nlsDyCoLPPg9+oc6ohg6CplPp1owi5KesbQpt/uRxqZEmLoKpVlHlRVodxv8O3PL5noIUkkM5bmna2Ylih6Z6GpKvXVPnoiibx6Z72DftfRG0NRYuiaSjxhE0vYRRd0FiOiOdWQRmYMUZM9wT26xpzZgdRxN9AvkUgmDqcFdXG7mOpyD5VlHiJRk/m1Zfzl3e6iOlu6pwjh/J/7c7HJZuHo9JP6l0ZmjHBWKgrCFvgHpUnKjDGJZOKprfLR0VvcYq8/btEdCqEqCuH+wq2TsyFwFp62KL7yvxjX3FRDZpeNAY4+kYKuqfg8KoauyowxiWSSsXBBddEPezd+YgtBf3xkih+6pqb0z2ayhJncyYwSVVWorfLh9+rEEhbVZR5WLFkgM8YkkknGvtbuonrDjJTBb1sRMEiYNt3TMM4yHKSRGSVVZR58Hi1jxyIzxiSSyUewJ4qqwHjUR1YGDISAOTUBdE2lozc6Y8UypbtsFGgqNMzyE4maVJd5MqT7JRLJ5GI4cdGRuLcUxRHhnFXhxevRuGr5ySkNwtmV06/+pVjkTqYAqqrk1CHSNVUKWUokU4SFC6r5y7vdRZ07kk2H19BoSLYHiCUsmne2sqixFp9H42hXf1Hv4S9SjWAqIXcyBcgndCdVViWSqcO+1m7KfMU9xEeyk0nXQ3OFbne3BOkNx7Fskeq0mYu6at+0rPiXRkYikcwIDgXD9MfMogyI16MOUUgvhLAF/TETcAyOz1D59yf+TDiaSElN5SMWt5hV6R/WZ04FpJEpQL4LUiu0NJFIJJMGx/OgoGmF71vLgpoqX8HdRzqKAj2hGLGERaQ/QW+/STRhoSoKAqcjbr52zJUBg+996UPFf+AUQRqZAjTMDmQ1NIoCXs/00xmSSKYrmqYU7QfzepxmgoZR3D1eVWZg6BoJ06a6zFELCPh0DF0dKMq0Rd4Ms7au6akKIo1MASzLZn5dGdXlHrwep7DK69GoKvMwv7ZsoocnkUiKZH5tGRV+o6hzXQ0xbxEuM59Ho7rCx6xKLycfW83a1WcRjTuq65UBI9kNN7+BcZieMd4JSWW4+uqr6ezsRNedj//2t79NOBzmjjvuIBaLcdFFF/G1r30NgL1793LzzTcTDodZvHgxt912G7quc+jQIW644QY6Ojo44YQT2LhxI2VlZfT29vKNb3yDd999l5qaGu6++27q6upGNE5dU1hzwckAPPzsG/i8+hC5folEMjVYsWQBDzy1t6h6FdNy4iuxIpqbeQ11iLKH25Aw4HOMWm8kgWnlL8qsLPMUHtgUZNx3MkII9u/fz9atW1P/O+WUU1i3bh333nsv27ZtY8+ePbzwwgsA3HDDDaxfv56nn34aIQSbNm0C4LbbbmP16tU0Nzdz+umnc++99wJw9913s3jxYrZv384VV1zB7bffPuwxKgr4PSr/sOpvU4WVay44meqkYJ6siZFIph6LGmudB3mRLrPuvhhmEUYm1D/0mZDekNDv1ZlV4cXQVfQ88aDpmL4ME7CTefvttwG49tpr6e7u5lOf+hQnn3wyxx13HMceeywAK1eupLm5mZNOOoloNMqZZ54JwKpVq/jxj3/MFVdcwauvvso999yTOn7VVVdxww03sGPHDh5++GEALrnkEr797W+TSCQwjOK2ybMqvNRUeIdIwcgqfolk6hONW+iqUrAtcmXAoD/mBO2tAm4sVWFIvVy2hoTnnFrPb14/OKQ1ADgxneko8w8TYGR6e3v5wAc+wD//8z+TSCS45ppr+Pu///sMl1Z9fT1tbW0cPXo043hdXR1tbW10dXVRXl6ecre5x4GM1+i6Tnl5OZ2dnTQ0NBQ1vpuuel/e2hiJRDJ1qa3yJTvW5kYBAn6DebVlrFiygHse30Mi744m++4k28L0+LmV3LdlD7GEjYLT4nlWhRdVVaiepu6ycTcy733ve3nve9+b+vnyyy/nxz/+Me973/tSx5xUPwXbtlHScv7c4+6/6Qz+Of01qlq8V3D27PKiz50I6uoqJnoI48JMmKec4/jz6eUL+fbPfpc3xl5RZoBwzl18agN/aOlgx+sHc54/r76s6Hl+tK6CqqoA9z+2G11X8BqO7qFpCj69fOFwpzMlGHcjs2vXLhKJBB/4wAcAxwjMnz+f9vb21Dnt7e3U19czZ86cjOPBYJD6+npqamro6+vDsiw0TUudD84uKBgMMmfOHEzTJBwOU11dXfT4OjpCk3YnU1dXQXt730QPo+TMhHnKOU4Mx9UG8Hs0IrHcrql5s50dzHG1Adrb+zgSDOc8VwEuO/eEYc3zuNoAV370pCFK7cfVBgq/eAoy7oH/vr4+NmzYQCwWIxQK8fjjj/NP//RP/PWvf+Wdd97BsiyefPJJli5dyvz58/F6vbz22msAbN26laVLl2IYBosXL2bbtm0AbNmyhaVLlwKwbNkytmzZAsC2bdtYvHhx0fEYiUQyvdndEiRf5N9I6hGmu7mCPdGcr/B79RHFahc11rJ29Vls+NIHh3zedGPcdzLnn38+f/zjH/nEJz6BbdusXr2a9773vdx555185StfIRaLsWzZMlasWAHAxo0bueWWWwiFQpx22mlcc801ANx6663ceOON3HfffcydO5cf/vCHAFx//fXceOONNDU1UVFRwcaNG8d7ihKJZBKyuyXIw8++gcdQicSyn2NnyW+urfLRG45jWjbJrsoogKpC47HVpRzytEARYqZ2OciOdJdNPDNhnnKO48+GR16nOxzHa2i8cyT7uLyGyn1fPy/j2O6WIA9s20e4Pw4oqcZnZT6dr61+35i6uSZbDGsskBX/EolkRhDsiaZEL7O5v1QFPFlkZBY11nLtxQuZO7sMVQEFhbk1fq5tOpXFpxaXtTqTmZ7VPxKJRDIItwrfa2h4PBqJhIUQTqKZ16Ph92jMqcm+K5F1ciNH7mQkEsmMIL0Kv8KvoygKqur0cXEr8qVU1NgjdzISiWRGMLgKf26NHxSFaNyiuswzROVDMjZIIyORSGYM0u01/kh3mUQikUhKhjQyEolEIikZ0shIJBKJpGRIIyORSCSSkiGNjEQikUhKhjQyEolEIikZ0shIJBKJpGRIIyORSCSSkiGLMQehqrl7TUwGJvv4xoqZME85x+nBTJjjaJBS/xKJRCIpGdJdJpFIJJKSIY2MRCKRSEqGNDISiUQiKRnSyEgkEomkZEgjI5FIJJKSIY2MRCKRSEqGNDISiUQiKRnSyEgkEomkZEgjI5FIJJKSIY3MJCMUCnHJJZdw4MCBjOMPPfQQV199dernvXv3smrVKi688EJuvvlmTNMc76GOisHz/P3vf8+nPvUpmpqa+Kd/+ifi8Tgwtec5eI4vvfQSl156KZdccglr166d8nP813/9V5qammhqamLDhg0AvPLKK6xcuZLly5dz1113pc6dTnN89NFHueSSS1i5ciU33XTTlP87lhwhmTT84Q9/EJdccok47bTTxLvvvps6/uabb4oPf/jD4qqrrkoda2pqEr///e+FEELcdNNN4uGHHx7v4Y6YwfPs6+sTH/rQh8TevXuFEEJ87WtfS81nqs4z299y6dKl4q233hJCCPGVr3xFbNq0SQgxNef48ssvi09/+tMiFouJeDwurrnmGvGrX/1KLFu2TLS2topEIiGuvfZasWPHDiHE9Jnj/fffLy644ALR19cnbNsWa9euFT//+c+FEFNzjuOB3MlMIjZt2sStt95KfX196lg8Hmf9+vV89atfTR07ePAg0WiUM888E4BVq1bR3Nw83sMdMYPn+fLLL3PmmWeycOFCAG655RYuuOCCKT3PbH9Ly7IIhUJYlkUsFsPr9U7ZOdbV1XHjjTfi8XgwDIPGxkb279/Pcccdx7HHHouu66xcuZLm5uZpNcd4PM6tt95KeXk5iqJw8sknc+jQoSk7x/FAqjBPIm6//fYhx37wgx/wyU9+kmOOOSZ17OjRo9TV1aV+rquro62tbVzGOBYMnuc777xDIBDga1/7Gm+//TZnnXUWN954I3/+85+n7Dyz/S2/9a1vcfXVV1NeXs4xxxzDihUr+NOf/jQl5/ie97wn9d/79+9n+/btXHXVVRlzqa+vp62tbcper9nm+P/9f/8fxx9/PACdnZ08/PDD3HHHHVN2juOB3MlMYl5++WUOHz7MJz/5yYzjtm2jKAPy4kKIjJ+nGpZl8dJLL/FP//RPPPbYY/T39/Pv//7v02qe7e3tbNy4kSeffJKXXnqJM844gzvuuGPKz/HNN9/k2muvZe3atRx77LFZ5zKd5ugamLa2Nv7u7/6OT37ykyxZsmTKz7GUSCMziXnyySd58803+fjHP84tt9zCnj17+Md//EfmzJlDe3t76rxgMJjhlplq1NbWcsYZZ3DssceiaRoXXXQRu3fvnlbz3LVrFyeffDILFixAVVU+9alP8T//8z9Teo6vvfYan/3sZ/n617/OZZddNmQu7e3t1NfXT6s5ArS0tHDllVdy2WWX8eUvfxlgSs+x1EgjM4m544472L59O1u3buW73/0up59+OnfffTfz58/H6/Xy2muvAbB161aWLl06waMdOeeeey5/+tOfOHz4MADPP/88p5122rSa58knn8zu3bsJBoMAPPfcc/zt3/7tlJ3j4cOH+fKXv8zGjRtpamoC4IwzzuCvf/0r77zzDpZl8eSTT7J06dJpNcdQKMTnP/95rr/+eq699trUuVN1juOBjMlMUTZu3Mgtt9xCKBTitNNO45prrpnoIY2YuXPn8u1vf5svfvGLxGIxTj31VL75zW8C02eejY2NXH/99VxzzTVomsZxxx3Ht7/9bWBqzvFnP/sZsViMO++8M3Xsyiuv5M477+QrX/kKsViMZcuWsWLFCmD6zPHiiy8mGAzy85//nJ///OcAfOQjH+H666+fknMcD2RnTIlEIpGUDOkuk0gkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkCnMEskwsCyL//zP/+RXv/oVlmWRSCQ4//zzuf7667n//vt5+OGHaWhoQFEULMti9uzZ3HrrrZxwwgk89thjPP3009x///0TPQ2JZNyQRkYiGQbf+ta36Onp4T/+4z+oqKggEonwjW98g5tvvpkFCxZw8cUXs379+tT5Dz74IF//+td57LHHJnDUEsnEId1lEkmRHDhwgF/96ld873vfo6KiAoBAIMBtt93Gxz72sayv+cAHPsBf//rX8RymRDKpkEZGIimSP/3pT5x00kmUl5dnHK+rq+PCCy8ccr5pmmzevJklS5aM1xAlkkmHdJdJJEWiqiq2bec9Z9u2bSn9qkQiwWmnncZ3vvOd8RieRDIpkUZGIimSRYsW8fbbbxMKhTJ2M21tbfzzP/8z73nPe4bEZCSSmY50l0kkRdLQ0MDKlStZt24doVAIcFR5v/Wtb1FdXY3P55vgEUokkw9pZCSSYXDrrbdy0kknceWVV/Lxj3+cK664gpNOOonvfve7Ez00iWRSIlWYJRKJRFIy5E5GIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJkEZGIpFIJCVDGhmJRCKRlAxpZCQSiURSMqSRkUgkEknJ+P8BUKTrl+x1C3wAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 406.975x360 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.lmplot(x='CPI',y='Weekly_Sales',data=clean_data2,hue='Type')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 51,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<seaborn.axisgrid.FacetGrid at 0x2156dcaca60>"
-                        ]
-                    },
-                    "execution_count": 51,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAFqCAYAAADIoyd5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADa10lEQVR4nOz9e5xcVZ3vjb/XvtS17+ncIYBBBGEAnSAoSBDlZgQV8TcY0DPHmQfHM7+R4zPCcHvhZUQd5CiDAx6dkZnncHmEiZhwJAQ4SFBAI4hjzECMaQwN6Vy6+lZd931Zzx9r7127qqu6qzvdue7365VXp6urdq29q/b6rvW9fL5CSimJiIiIiIiYA7QDPYCIiIiIiMOXyMhERERERMwZkZGJiIiIiJgzIiMTERERETFnREYmIiIiImLOiIxMRERERMScYRzoARxsDA3lcN1DJ6u7uzvFyEjhQA9jv3MknveReM5wZJ33/PntB3oIs060kznEMQz9QA/hgHAknveReM5w5J734UJkZCIiIiIi5ozIyEREREREzBlzamT+8R//kQ9+8IOsWrWKf/3XfwXghRde4NJLL+XCCy/k29/+dvDcV199lcsvv5yLLrqIm2++Gdu2ARgYGOCqq67i4osv5rOf/Sz5fB6AbDbLNddcwyWXXMJVV13F4OAgAJVKheuuu45LLrmEj370o/T19c3lKUZERERETMKcGZlf/epX/PKXv+TRRx/lRz/6Effddx9bt27lpptu4p577mH9+vVs2bKFZ599FoDrrruOW2+9lSeeeAIpJQ8//DAAX/7yl1m9ejUbNmzglFNO4Z577gHgzjvvZMWKFTz++ON8/OMf57bbbgPgvvvuI5lM8vjjj3PTTTdx4403ztUpRkRERERMwZwZmXe96138r//1vzAMg6GhIRzHIZvNcswxx3D00UdjGAaXXnopGzZsYOfOnZRKJU4//XQALr/8cjZs2IBlWbz44otcdNFFNY8DbNy4kUsvvRSAD33oQ/zsZz/Dsiw2btzIZZddBsAZZ5zB8PAwAwMDc3WaERERERGTMKcpzKZpctddd3Hvvfdy8cUXs3fvXubPnx/8fcGCBezZs2fC4/Pnz2fPnj2MjIzQ1taGYRg1jwM1rzEMg7a2NoaHhxsea/fu3SxZsqSlMc+b17bP572/ORzTHlvhSDzvI/Gc4cg978OBOa+T+dznPsf/9X/9X/zVX/0VO3bsQAgR/E1KiRAC13UbPu7/DFP/e/g1mqZNeI3/eKscanUy8+e3Mzg4fqCHsd85Es/7SDxnOLLO+3A0pnPmLuvr6+PVV18FIJlMcuGFF7Jp06YgQA8wODjIggULWLRoUc3jmUyGBQsW0NPTw/j4OI7j1Dwf1C4ok8kAYNs2+Xyerq4uFi5cyN69eyccKyIiIiJi/zNnRubNN9/klltuoVKpUKlUePrpp7nyyiv54x//yOuvv47jOPzkJz/h3HPPZenSpcTjcX79618DsG7dOs4991xM02TFihWsX78egLVr13LuuecCsHLlStauXQvA+vXrWbFiBaZpsnLlStatWwfASy+9RDweb9lVFhERERExu4i57Iz5ne98h8cffxxd17nwwgv5m7/5G37xi1/w9a9/nXK5zMqVK7nxxhsRQrB161ZuueUWcrkcJ598Ml//+teJxWLs3LmTG264gaGhIRYvXsy3vvUtOjs7GR0d5YYbbuCNN96gvb2dO+64g6OOOopyucytt97Kli1biMVifPWrX+Xkk09uecyRuww292XYsKmfzFiJ3s4EF5+5jFOX987qe+wrR5ILxedIPGc4ss77cHSXzamRORQ50o3M5r4MDzy1DV3XiBkaFdvFcVyuuuCEg8rQHEkTj8+ReM5wZJ334Whkoor/iBo2bOpH1zXipo4Qgripo+saGzb1H+ihRUREHIJERiaihsxYiZhR+7WIGRqZsdIBGlFERMShTGRkImro7UxQsd2axyq2S29n4gCNKCIi4lAmMjIRNVx85jIcx6VsOUgpKVsOjuNy8ZnLDvTQIiIiDkGipmURNfjB/YM9uywiIuLQIDIyERM4dXlvZFQiIiJmhchdFhERERExZ0RGJiIiIiJizoiMTERERETEnBEZmYiIiIiIOSMyMhERERERc0ZkZCIiIiIi5ozIyEREREREzBmRkYmIiIiImDMiIxMRERERMWdERiYiIiIiYs6IjExERERExJwRGZmIiIiIiDkjMjIREREREXNGZGQiIiIiIuaMyMhERERERMwZkZGJiIiIiJgzIiMTERERETFnREYmIiIiImLOiIxMRERERMScERmZiIiIiIg5IzIyERERERFzRmRkIiIiIiLmjMjIRERERETMGZGRiYiIiIiYMyIjExERERExZ0RGJiIiIiJizoiMTERERETEnBEZmYiIiIiIOSMyMhERERERc0ZkZCIiIiIi5ozIyEREREREzBmRkYmIiIiImDMiIxMRERERMWdERiYiIiIiYs4wDvQAIiIOJJv7MmzY1E9mrERvZ4KLz1zGqct7D/SwIiIOGyIjE3HEsrkvwwNPbUPXNVIJg9F8hQee2gYQGZqIiFkicpdFHLFs2NSPrmvETR0hBHFTR9c1NmzqP9BDi4g4bIiMTMQRS2asRMyovQVihkZmrHSARhQRcfgRGZmII5bezgQV2615rGK79HYmDtCIIiIOPyIjE3HEcvGZy3Acl7LlIKWkbDk4jsvFZy470EOLiDhsiAL/EUcsfnA/yi6LiJg7IiMTcURz6vLeyKhERMwhc+ou+6d/+idWrVrFqlWruP322wG48cYbufDCC/nwhz/Mhz/8YZ566ikAXn31VS6//HIuuugibr75ZmzbBmBgYICrrrqKiy++mM9+9rPk83kAstks11xzDZdccglXXXUVg4ODAFQqFa677jouueQSPvrRj9LX1zeXpxgRERERMQlzZmReeOEFnnvuOX784x+zdu1a/vM//5OnnnqKLVu2cP/997Nu3TrWrVvHBRdcAMB1113HrbfeyhNPPIGUkocffhiAL3/5y6xevZoNGzZwyimncM899wBw5513smLFCh5//HE+/vGPc9tttwFw3333kUwmefzxx7npppu48cYb5+oUIyIiIiKmYM6MzPz587nhhhuIxWKYpsny5csZGBhgYGCAm266iUsvvZS77roL13XZuXMnpVKJ008/HYDLL7+cDRs2YFkWL774IhdddFHN4wAbN27k0ksvBeBDH/oQP/vZz7Asi40bN3LZZZcBcMYZZzA8PMzAwMBcnWZERERExCTMmZF561vfGhiNHTt28Pjjj/Pe976Xs846i6997Ws8/PDDvPTSS6xZs4a9e/cyf/784LXz589nz549jIyM0NbWhmEYNY8DNa8xDIO2tjaGh4cbHmv37t1zdZoREREREZMw54H/P/zhD3zmM5/h+uuv5y1veQt333138LdPfvKTrF27luXLlyOECB6XUiKECH6Gqf89/BpN0ya8xn+8VebNa2v5uQcL8+e3H+ghHBCOxPM+Es8ZjtzzPhyYUyPz61//ms997nPcdNNNrFq1it///vfs2LEjcH9JKTEMg0WLFgWBe4BMJsOCBQvo6elhfHwcx3HQdZ3BwUEWLFgAwIIFC8hkMixatAjbtsnn83R1dbFw4UL27t3LsmXLao7VKkNDOVxXzuJVmFvmz29ncHD8QA9jv3MknveReM5wZJ334WhM58xdtmvXLv76r/+aO+64g1WrVgHKqHzta19jbGwMy7J46KGHuOCCC1i6dCnxeJxf//rXAKxbt45zzz0X0zRZsWIF69evB2Dt2rWce+65AKxcuZK1a9cCsH79elasWIFpmqxcuZJ169YB8NJLLxGPx1myZMlcnWZERERExCQIKeWcLNu/+tWv8qMf/SjYUQBceeWVuK7LAw88gG3bXHjhhXzhC18AYOvWrdxyyy3kcjlOPvlkvv71rxOLxdi5cyc33HADQ0NDLF68mG9961t0dnYyOjrKDTfcwBtvvEF7ezt33HEHRx11FOVymVtvvZUtW7YQi8X46le/ysknn9zyuKOdTOscSJn8I2l163MknjMcWed9OO5k5szIHKpERqY1wjL5MUOjYrs4jstVF5ywXwzNkTTx+ByJ5wxH1nkfjkYm0i6LmBGRTH5EREQrREYmYkZEMvkRERGtEGmXRcyI3s4Eo/kKcVMPHjvQMvlRK+X9T3TNI6YiMjIRM+LiM5fxwFPbKENNTGY6MvmzOUFFrZT3P9E1j2iFyF0WMSNOXd7LVRecQFc6RqFk05WOTSvo709Qo/lKzQS1uS8zo/FEMaL9T3TNI1oh2slEzJh9kckPT1AAcVOn7D0+k2NmxkqkErVf54M5RnQ4uJkOtWsecWCIdjIRB4TZThw4lFopz/Yu7kBxKF3ziANHZGQiDgizPUHtj1bKm/sy3P7gy1z/3Re4/cGXj3jXXtS+OqIVIiMTcUCY7QlqX2NEUzGbu4/DJf17rq95xOFBFJM5AjkY4gH++83mOOaylfJsxpAOxvTvmRK1r46YisjIHGEcTGmnh9IENZtB7tlI/46IOFSI3GVHGIdLPGB/M5sxpMjNFHEkEe1kjjCitNOZMdu7j0NpFxcRsS9ERuYI43CKB8wFzeJVcxFDiog4EoiMzBFGFA9ozlTxqmj3ERExfaKYzBFGFA9oThSvioiYfaKdzBFItCJvTBSvioiYfaKdTESERySTEhEx+0Q7mYgjmnCgPxHTKRQtIIpXRUTMFpGRiThiqQ/0V2wXhMAQUCjZUQZZRMQsEBmZiCOWRlIxAG2pGF9Z/c6a5x4MUjwREYcikZGJOGJpNdB/MEnxREQcakSB/4gjllYD/VFqc0TEzImMTMQRS6vtBg4Xaf6IiANB5C6LOGJpVSpmtqV4ovhOxJFEZGQiZsyhPlm2Ov7ZlOKJ4jsRRxqRkYmYEQdqsvQNw3CuQk9bbMaGbTrjn01xzNlsftbonA5lox9xeBIZmYgZMZeTZTPChqE9uW+GrZXxz8WkPVfSNdEOKeJgJQr8R8yIAxEMn80sr6nG70/ao/lKzaS9uS+zT+cwV9I1UQZcxMFKZGQiZsSB0PmaTcM21fjnatJuNaNtukQZcBEHK5GRiZgRczVZTsZsGrapxj9Xk/ZctVqIxD0jDlaimEzEjDgQnSLDWV6GLvbJsE01/rnsIDoXrRaiZnQRByuRkYmYMbM9WTYKtEOtITj7lEVs7R9lJFehex+yy6Ya/6E2ae9Pox9lsUVMByGllAd6EAcTQ0M5XPfQuSTz57czODh+oIexz2zuy3DvY69Sqjg4rkTXBLouMHWNVNKsmeivuuAE3n/WcTM+71YnyYNtMj0YPutwFlv9ZzJX1+ZgOO/9xfz57Qd6CLNOtJOJOChY88x28iUbIUAT4EpJpexS0Ry6O5SLKpxm/P6zjpvR+0y3PiZaoddyIFLXIw5tosB/xEHBnpGSZ2AEQgg0IQBwamPZ+xx8j1J9940oiy1iukRGJuIgQdKK43Zfg+/RJLlvRFlsEdMlcpdFHBQs7EmxczCP60okILzHdU1lkc1W8H0us8amy8EW82mFQy0hIuLAExmZiIOCFW+bz85MPtjNSEAIeNeJ8xnJVYKJ+MRlXWzY1M+DT2+fkXbZvkySs2kUDlUZmAORuh5xaBMZmYiDgq39o3S1xSmWbWzHxdA1knGDkVyF671WyDPRLmtkGK664IRpT5KzbRQO5QB6lBARMR0iIxMxJfvDrZMZK9GeMulIx4LHpJQ1sZJGQfvJJuZmhuGqC04IDFerzLZRmCuhzIiIg43IyERMyly6dcLGq1CycVxZY2TqYyXTnZibGYY1G/umbTRn2yjsj9jQoRjziTj8iIxMxKTM5kQdpt542Y7LWL4MQHvKbBgrme7E3MgwOI7L3uESC3pSE4ymf77h+M/W/tEJRrBYtsnmK1i2Q9w02NyXmfbkPdcB9LlYHERGK2ImREYmYlKmO1HXTzr1E5M/cfftzCIEdLXHEULQ2RYHoFxx0DXRcBKbrnZZI6M0lqtgNDKaz2ynbLvBpLxnpMi2N0fpSMXoSMewHZfRXJmxXBlfEEITEDO1GU3esxVAbzbxz7Z7r16RIZuvcO9jr/LpVSdFhiZiUiIjE9EQf/Iay1XI5it0tcdJxtXXpdlEXT+B1a+mwxO3KyVIGM6W6OlIkIwbdHjKxLd/9j0NxxSemFvRLmu0W7Adl56OeM3zYobGrkyBeV2J4JyKZRuBoFhx6GwTxEwdJPgVIgKVAWcaWlDMOd3Jdl8D6JPtVmbbvddIkSFfslnzzPYZG61oV3RkEBmZiAmEJ6/ONpOR8QpDY0V6OhLoutZ0oq6fwOpX0+GJ2zA0HMcFBNl8hWTcaCkm4U/MrehZNdotGALsuqJPVVwoiRla4AorVRwApFd4mM1X0DSB48qgmNOVkmzBYmF38oAE7Cfbrcx2zCesyADKyLpI9oxM/7wP1fTtiJkRGZmICYQnLz+TayxXYXS8zPKlnU0n6voJrH41bTsumgDbVkZqeLyMQGLZ7pz1o6nfLfgTXH0sZGFPivGCxXihAgiEAClBujJIq66u4tVPgTqXA1XMOdlu5eoLT5jlmI+nyCBCj0gQYvpisody+nbE9IlkZSImUC+9kkqYLJqXorMtzvWr38kV7zu+pYZl9RIkhq7huBIpJSPj5eDLpwkxa827pqJZ07ArzltONl/BdiS249ZI3IzlymhCICUkYmoHplxvEpAHrOJ9MomX2W6OtrAnBcggHqV+Su/x6RFJ+xxZRDuZiAlM5WppNWhdHxMxdEGpohbDAjVRSSSXvedYLjvnLfvp7BrHQjb3ZXBCLR78mIthaFi2y5LeNENjRcqWRNOUcKf0nnn2KYtamrxnOw4xVYbabBZNXnHecu5dv5VS2cZxXXRNI5GIccV5y6d9rINJ2idi7plTI/NP//RPPP744wCsXLmS66+/nhdeeIGvf/3rlMtlLrnkEj7/+c8D8Oqrr3LzzTeTz+dZsWIFX/7ylzEMg4GBAa677jqGhoY47rjjuOOOO0in02SzWb7whS/wxhtv0NPTw5133sn8+fOpVCrcfPPNbNmyhUQiwR133MHy5dO/EQ53JpvwWkmvbWUCqzdGrgupuI4jlZvJMDSSMZ2t/aNcNoNx7iv1dTq6Ro0CtCuVsTnh6C6uX/1Obv3BJvaOFHG9HU1HOoamiUnHH36v2Y5D7E+Jl1OX9/LpD544K+8V6Z8dWcyZkXnhhRd47rnn+PGPf4wQgr/8y7/kJz/5CXfccQf33Xcfixcv5jOf+QzPPvssK1eu5LrrruOrX/0qp59+OjfddBMPP/wwq1ev5stf/jKrV69m1apV3H333dxzzz1cd9113HnnnaxYsYLvf//7rF27lttuu40777yT++67j2QyyeOPP86LL77IjTfeyMMPPzxXp3lIMtWEN5uTl3+8zX0Z7n5kC66UGIZGT0ecVMKcUNXf6jjfv4/NneqPPTRW8nYmEoFU8RdNYDsymPxKFYdF81IIUQ1MTDb+MHMVh9ifEi+z9V6R/tmRRUtGJpfL0dbWxiuvvMK2bdtYtWoVpmlO+pr58+dzww03EIupCu7ly5ezY8cOjjnmGI4++mgALr30UjZs2MDxxx9PqVTi9NNPB+Dyyy/nrrvu4uMf/zgvvvgid999d/D41VdfzXXXXcfGjRt54IEHAPjQhz7EV77yFSzLYuPGjVx77bUAnHHGGQwPDzMwMMCSJUumf3UOU1qZ8GZz8vIndOH5oBzHZXhcFV7qutbUTTLZODs7Uzz05FYyYyUSpgZCUKo4E4oom01g4WMXShbh8LXEC2pLyZJ5qeC1++LmiWRkqjRrs337gy9HRucwZEoj84//+I/09/fzt3/7t/zlX/4lxx9/PC+++CK33XbbpK9761vfGvx/x44dPP7441x99dXMnz8/eHzBggXs2bOHvXv31jw+f/589uzZw8jICG1tbRiGUfM4UPMawzBoa2tjeHi44bF2797dspGZN6+tpecdTLTasvWlV/fwyMbtbHtzjJih0d2RIO1NfIYuGMlV5qT969NrNhOP6czrSjI4UkQINYFn8xW62xP82YUn1rzvhHG2x0knzWCcu4eLfO+RzRiGwNAFu4aLAMzvTjI4VuIPL7xOV3uMrrY4uZLFD5/eTmdnihUnLQzeY/dwkVLFxnYkriuDrDGAuKlhuxJdCP7iI6cGY3vnSQtZ8/QfcFyJaWikkwamrk8YfyMWz29jJFskETJQpYrN4vlt07rmh3p73pde3cMPn96OYQg622LkShb/9vhWLK+GyXEl44UK//b4Vq698p3BZ3aon/eRzJRG5tlnn+WBBx7goYceYtWqVdx888187GMfa/kN/vCHP/CZz3yG66+/Hl3X2bFjR/A3KSVCCFzXneCCEEIEP8PU/x5+jaZpE17jP94qQ0M5XHf6aZkHilb7n4fdQ6augtmDIwUcrxCybDl0t8XmpJf6rsEcqYSBbgh6OuKeJIsLLlz5/uM5pjcVvG/tOAWW7bJ3tEiP45JKmJQth4rl0JYy0DWNwZyq3wDBqLc7AsjmLfJF20ubFvxg3e84pjcVvEe+ZOG6El0T2F4qmeZ9bSxHIl2JKyQ/WLuZH6xTtTzFiuprIxwXy3bI5iSr3r24ZvzNeP87lvDAU9uwHVkTh3j/O5bUvHayGNTh0Ov+oSe3ggBd07Adia5pjBcqOK5aQAjwDI3FD9Zu5pjesw6L826Vw9GYtuQuSyaTvPDCC/zZn/0ZAJVKpaWD//rXv+Zzn/scN910E6tWreJXv/oVg4ODwd8HBwdZsGABixYtqnk8k8mwYMECenp6GB8fx3EcdF0Png9qF5TJZFi0aBG2bZPP5+nq6mLhwoXs3buXZcuW1RzrSCfsHupImwyPl5HSS8/VxJwEXv0Jc2S8zNBYCaEJYkY1YN6VjgXxmnAAPh7TSSV0OtviDGdLSKmMhq6r9GFdVwrMtiOxvUJKV0psx8tcE2DZEqlraEIVUA5k8oHG2IZN/aQTBuNFC1fKIJNMStTqumghNTXhqV2Sv+iBkuXQ0x4PDF4rQX9oLQ5xJBQpNpQp8rKwZ6PQM+LgY0oj093dzZe+9CW2bNnCP/7jP3LHHXe0NGnv2rWLv/7rv+bb3/427373uwE47bTT+OMf/8jrr7/OUUcdxU9+8hM+9rGPsXTpUuLxOL/+9a/50z/9U9atW8e5556LaZqsWLGC9evXc+mll7J27VrOPfdcQGWrrV27lr/6q79i/fr1rFixAtM0WblyJevWrWPFihW89NJLxOPxKB5D7c0thEADLFfiuJKRbImYqQd97mdjQvMnTMt2caXqdildScVyGBorkk7GuPL84ydMrMPjZcqWjWmofjI9HQnGcmUs26ErrWRkNmzqJ1eyKFccdey6jWdYW0ydr1o5+zGnzFiJjnQM09DIFiwcx/GeCLmi5dW/qMlO00AIZdxMQwuq/FMJc9oxlaniXFPFyl56dU8Qh9ofcYu5yOxrFNdqxEwLPSMOPqY0Mv/wD//Aww8/zPe+9z2SySRCCP7hH/5hygP/4Ac/oFwu841vfCN47Morr+Qb3/gGf/M3f0O5XGblypVcfPHFANxxxx3ccsst5HI5Tj75ZD71qU8B8MUvfpEbbriB7373uyxevJhvfetbAFx77bXccMMNrFq1ivb2du644w4APvnJT3LrrbeyatUqYrEYt99++/SvymGIf3O7rmQ4WwIEuiZxXFWJ35GOzerK2Z8wswULXVOuT9dVBiCma3QkDU5d3svtD75cM7GahoZtu4HUTDJuBLuecA+Yf3t8K+MFa4KBCSN94wZ0pM3AIPjXIpUwSSVUrGcsV6ZYtilbalmte7Uwyo2j3sRPaba9AsjZru2YLDlgc1+GHz693au4l7w2kOWuNZtZ0pvmivOWz7qxmc1dVdhYJWI6haIVnFvFdtE1gStloKRQLfRMz+o5RRwYhJST3aaK3bt38/vf/55zzjmHPXv2HNY7g8M9JjOWq+C4KkXXdlTAW9NUoeTCnhRly5kwoc+E67/7AqmEwc7BvJJgCWpPJEt604EQpv88/++FkqUyz6Rk6fy2IHZRX63+lf/nJQYGc0HFu+/yUkkFSshS1wSGodGRMtF1LTiv8AQajo/EDY29oyVcKdGEwPIq/wWqKFN6uyZD1+juiFMoWnSkY0FW276u9G9/8OUJq3z/8wCC3ZuS41GrfV1TAfTZVksIj6W+tcE1l7295fdqdK0LJZuOpEHJcoNswJ/+ZqC20DNu8OkPntiyTt3hwhEZk9m4cSNf+tKX0DSNH/7wh6xatYpvfvObfOADH9gf44uYJfxJ4e5HtgB48Q0lq68MjpqsZ5JW28it4u8WfCFMv8Lf0LWaHUC9+ySVMLFsl4qlJqNmk3ehbLNoXoq9I8XAWEpvNdyeNskXbeZ1JZpWwsPE+Mj9T26jI20ykqvUxmqArrYYtiPJFSxipobhBX9sV9as9Hfsyk6ZPt2MyYoU739yG51tMfYMF3F8d54A6TJjFejJ8HdVxbId7Hw1IShZzrR2NI1cgABtqRhfqVvIPPnim0Hr7fPfsaSllthRrc3Bz5RG5u677+bhhx/mmmuuYcGCBTz44IP83d/9XWRkDkFOXd7L8qUdwaS+e7iA463WDV1l4E3XBdTMrXL2KYt4fstukjGd8aLrSbZIkvF4zYTfaGI1DY0/v+TESSeMhT0pBkcKdKRjDGdLuFLthHRNYBoaq969bMJkD81rMTb3ZSiUbEqWE7j3hBDoQmLoGlLCwu4k/+XitwVuPltSM3lmKw6P/bKfeZ2JGbmY6o1fIqZjCI37n9xGoWRTsR2VlQfBTgaptNNmu97GN/7ZvBIM9d1Y021t0Ep90Oa+DM9v2U1HW4xeQ+mxPb9lN8cu7mj6HkdCksThwpRGxnGcmkD/SSed1DSNOGL/srkvw9NrNrNrMNfSSm5zX4Zc0WLvcEH1g4lpFGwAl/ZUYoLQZSsrxWbB6q39o1x1wQls2NSPk8njOFK55LqTNceZafX35ecdzz1r/gNd10gnDLJ5VVAZM5SW2GXnvKUm62uySQnggae2EY/plC0bV3UgoD1lYhpaQ1dUo8mzULJwXLlPVf1hhYT6zqGjuWpWp+/Q1TSlkP2WJR0tHb9VfONv2Q6aEJ7OHHSkJk94qP/OJGI6FdvFdZUoqm27SFQtUjjbb7pqCJGS86HDlEYmmUwyMDAQGBY/YyviwOJPQirdd+qVXHjSmteZYCxXIV+06W6LkUyYlCrV7K36SW6yQPNkK9VWVQNmoi6w4qSFXHXBCazZ2Md4wcI0NDrSJoahN1wFTzYpAd5krquMMy/+ULHcpjuqRllStuNi6rVZUzOt6q8fb2dbnLFcpUaZQGmtqfedixYJAN9/9BVKlqOub8oMUrcb7XYbGfKCl61XrNg1SRoVyw06a85EDSFSUDh0mNLI/O3f/i2f/vSnGRwc5M/+7M/YsWMH3/nOd/bH2CImwZ+EEjEDy3anXMnVTFqmHkwWzYL8/vMdx2UkV/HqTwR7R4o1sYexXJlsvkJnWyzI1Npfirr+KnhBT6o2WM7E6xCelPxAdrnisGeoAEJNUJ1t8SCjTUpJoWRPq+umJjSS8VojM9Nr0WgSjcd0LNuhpyNBtmCpXYFU6gP3P7mN3s7+WY1LnLq8l2sue3tN4H6yvj/N4i/DoYnf78kjhKBQtvn+o69gedmE4e6rU123SMn50GFKI/POd76Thx9+mN/85je4rstpp51GT0/P/hhbxCRMdyU30+fv8TKZNKG6dKmiRxnEHrra42RGSwyOltBECUPXSMR0rjz/+Fk5z6lQ46+6YgxDoz1pTDiv+hRu15XVXYEEy3ZrWkFPNWE1cvOdddICnt+ym7Ll7LO6cKNJNJ00yOYkuq6xsDtJNl8hW/BTsWcn+cCnPu0Yz+g2imX5zxvLlelqj0NozDFDC5rV6XpVecNxXdUuQdp0t8cndF+d6rpFSs6HDk2NzJNPPtnw8ZdeegmACy+8cG5GFNES/iQUa3ElN92Vn/9823aDokY/Oywceyg4LkJTWU5B5rcQ7NiVbSiCONvZQAlTY9dwMVghO47LyHiFxT1JoDoJ7szkKZUdXFRwwXfdGLrAdVVWmpimAkLYzee/T7niYDs2ui5Y2pueVTl8U9dZ8bZOfts3TKliA4Jk3KDDS3FulHywe7jA3T/eQjKms6TF8dS7vfwJ/OoLa2NT9c/L5isMZ0sIIWp2JImYiin5dTBQrfI3DZ10Mjah++pU44yUnA8dmhqZ++67r+mLhBCRkTnA+JNQqWKjCTHlSm66Kz//+X6hnPQK5DrScYbGikHsIVuw0IRA01XdjWW7VOwKa5/bQVdbLCjyvHf9VpCSVNJsGEOacTqqL+2MFrRMBheEYHNfhnsfe5VSxQlqgxw/3RkV01BjF0HqbFhZYCa1IF3t8ZprO1u9YhIxnbLtsOnVvRheXG04W6JkORRKSoGgWLYZHS8jgdHxMnFTI1eyQap6m1YzsFoNqk+MG8UYzpYZHS8HAX/HcbnwjKP46W8GyBcrOFLg5w0JCAxkKmGSjBsUSnbLNVr7s81BxMyZkZGJOPD4N9fTvxloKbtsuis///E1z2xnYKiAoQs62+JomqiJPViWQ7h2NRyYzhYqmIZGKmEGfvnuDrVzqg+8zzQdtVRRMYrxghUYivZUglLFYc0z28mX7GCXE9poETd1HG857UqImTpd7fEZFaJu2NSP7UjGC+VgDMm4MWu9Ynwjls1X0DSV6TUyXkbTNFxXydwIIZTOG54qgSMpVyw0TUnq+DvPRsbCN/ADmXwQpA/HqKCxa7XeBev3BxrLWRNca8cu7mDNxj72DBcAQcwQpJNmcHyIYiqHK1PGZHbs2MH9999PoVDwpEFcXn/9dX74wx/uj/FFTMKpy3t5/1nHtVwNPd2VX3iS841TVzoWxB7GcmUmE0dwXRjNVcgWrKAy3191Q3Xi2pd0VN+tF+417wf1M2M24Kn7CiV46UvptIfqd5S2mlCp3YIgtbZV+veMUygr/TO1m3Kx7HJgxGDfCgeDJAxXBgKgfl0QqN3jWK4cKFVIVMxD/VTP9+ugGtWo+OrQ+ZIFKCHQVmJUjVywhqGzfGlygqGu/+757zsb8auIg5uWsstOOeUUfvOb37Bq1SqeeeYZTj755P0xtogDyFST4rGLO/j+o68EVfHNsGyXULw3aFaWSpjBxDWQyausJVcVPnakY0gp6ds5xrV3/TyosVnSmw4akg3nKvS0xThxWZcKtqMm0PGCxVi+TEcqRsFT/rcdiaH7Kr8CXYNFPSmcTJ6K5VCxVE8ZJOwdLQWpta0YgUefey0wMKDcdY4X8BkvWNz+4MvBGGdaOOjvGExDtWhQiRgqCaMjHadccSiU7ZrX1IpFqef5YypXHK7/7gv0dibIFSrousZ4oYwQWo1ywlQxqn0JvkcxlSOHKY1MPp/ny1/+Mrfddhvnnnsun/rUp7j66qv3x9giDhCtVFOfuryXVMKgtyvBrkwey2luavzVtBDKZxWW7T9xWRd9A9lqbxdHtTN2vVX7eEGJKQrgjb05tr05Smc6Tk9HnNF8hee37ObsUxYF2VTlikNHKkZnW5x8yQ4q5J0g6ixZPC8drLRv/ZdfBnL+jlQum4rt8p0fbaa7PTHp5Le5L8Njv+if9FqO5is89ot+0kkj2MFNt3DQ3zF0tcXZO1oMYmS6ppq2nbi8h1+8srfp69tTMRIxnWy+Ehhg/3PdO1ygpyMe9N0BdVzpyJoY1YnLutiwqZ/7n9xW04k0EdMpliyGRm2UqGWq6TjqiWIqRwZTGpmuri4AjjnmGP7whz9w6qmnRhX/hzmtuq/8ya+7IxEYhmYIIdA11YTMcR0MAVd6igD1vV3Cbh8fCeRLNromKJZthEjUqAv4RsMX3ARIxXXGPCMjJUgk6WSMK85bHuzU3swUGo7XcaFs2ZOqHW/Y1I8r3VDCQS3xmE7c1HGlS7Hs0Blqujqdqnl/JxSP6XS3xcjmLWzXpSMdx3XcSQ1MMqbSnesNMKjP1dA1snkLQ9eqGnBALKbT7cWogiQQrzDXN8o9HQlyRYtsoUJnOk57Su1OZyLvsrkvE8RsbMdTJQWSMYOPnLecD7xjacvHms57RjupuWdKI3PMMcdw22238dGPfpSbb76ZQqGAbdtTvSziEKbVmprw5DOvI87weDkQb6zH35kYuhJaLHuTf31vF19GvzkyEPOsH5evPzY8Xkb3XDya8A2Mcped/w6lIF6dNJszXrCDeM7ekSL3PvZqjeryQCbvrfbdhi5D23EplNQEbjm155XNV6hYbuC2aqS0kEoYvLE3x+/7RwG8pm+CtyzpCAzPqLfTa4QQcMyijkB5+u5HtlC2HIoVJ6je72yLMTRWojMZZ3S8TPXOdikULa48//iaRcfIeNnLDlOuSZVooAx/Rzo26S6t2aS+uS/Dveu3quwz/zJ5F7RUsXnoqW0U8mUuO+ctk35e0yHSPtt/TGlkvvSlL/Gzn/2Mt7/97Xz84x/n+eef5ytf+cr+GFvEAaLVmpp6v/pbl3aSK1Q8uXxVsxKefB1XoutKml7XNdY8sz0wCmHZktd3N09kcFxIxKrGwR/Xo8+9xmO/6Md2leCnvxvSBGi6oKc9jq5rbO0fZWv/aDBp+nGOZvhFqLbjki9JShWHRfNSjHrtmOOmRsVq/HrbkQyPl0l4uxk/yO0XUXam4xMmuPCEPjpeIl+yQ2NR5+vHpSzbDRqsNcLQNC4+c1kwofrZ3r6gppFTbbCFULGX+s/KN4zhRYdfN+XL2UjPC9nM8Pv4n48rVfad48qacy6VbYTQUE0aqvjtG5588c1ZNTKR9tn+oyXtsosuuggpJaeddhqXXnop7e2HX8+DiCrTCejW+9Uffe411j63o+mx017KamakiO0ZHSlVG+Xh8bKXKCA81ebGWI7LHwey6JogETc466QFPPbLflwpMb0JzAm53OZ57ZKllMHk50+ayZg+qZEBAnFI1zvum3tzIJQycaFkM2n2gxfnWXVWVRW6Yrl0puNBjYjrSsZyFa8Ngwyq5sPxKIkyGrbj8uSLb3oy/E7TtxYCVr17WU1juK72eFXtwMsg849ff7kFSl9szTPbaxYdfusGX7lbogyPaUw0/D6b+zL87xdeDz4T13WxnAqd6ViwQPH7yEy4fBJ0gVd8OjWtusAi7bP9R1Mjs2fPHv77f//v/NVf/RXnnHMOn/zkJ/nDH/6AYRj88z//M6eccsr+HGfEHNDshpxp5o8v2a7roqnbbLxoMV6sdrQUqOI8TRO4ruojc+l7jqmZlHx8uXldCFxU6nGuWOHR53cEk6Sf5usjoKGm2mi+guO45Mt205iKgIauMNeT2BeamuBNXcN2VYaa5p2Lf/7KPUiNzMtOK097So3J79fiv7+uiaBq3j8nfzXvX4NSxWbZwjbVvKzJ2Hva4zz3u91s7R9lZyZPd3ucUsXxjlt9gRLZFLh1n5d/jjszBdpTFsWKQzph0J40GBmv4Ct3W7ZL1nYCvbdGC5I1G/tqPkuJasU9Oq7qipb2psnmKw3T4YUAR0IiVjtVNfruQuv1VpH22f6jqZH5xje+wcqVK3nXu97FE088wa5du3j22Wfp7+/nG9/4Bv/2b/+2H4cZMZv4QdY3B/N43iCy+Qr3PvYq579zac2EWC8lMhm+C2JeR4K9I8WGzwlPiKriHlRasWDxvDYKJTtwizz2y34cV+1OknGdfFF1VOxsi1OxHPaMFJQsf/17hP7vSsgXKxiGXjP5+V1CfV02JzQwU9eIm4JcyaER/u7BdVV/lQXdScqW43UddXEcpYvmr+5LFZc/vDkauIlKZYesVqGzLU42X1Fpz55x9GNIo3UGRNf8zqJqwr34zGX0DWzBdUEXqrW1RBk4pMT0ik1fG8hSsV1yRVWwqTVI2pls1yhRagFxUyNftEnEdSXZ42WXLepJcd7pSybVSlMFmI2PXSjZDI4Ugi6kja41Ei4846jgsWbxlLjX66YVF1ikfbb/aGpktm/fzre//W0AfvGLX/CBD3yAVCrFiSeeyODg4H4bYMTs4t+gqtthNSjuuC65osujz+9gQU9qWsFQf1W57Y1RTK9SvD7WUe8CC1Kaqfr0wyvJy855C8cu7qjKqpgq0DxeUKtq23YaGph6dA3GchbLl9b2sdmxK8u653ZUVQBQRkG52ly62tOYpk2xbFOqNDY2EiWlUqo4XH3hCdy3YStD49WeL+Hzd1x1jcuWKt4Zy1WwHbfm2BIVx5GoVXXMEFRstTsSoOJNSE5b3sOGTf0YGpRslYkVM5WyQq5o0ZaMBf1b/LogJUYpEZqscbE5LVzDsuVStlwVT0vH+MpfnDnhOZc1eF0VgSZkw52KKyXjRZt5HXFGc5UgxuTbwkSD7LJm8ZQ9IyUW99amUDdzgUV1OvuPpkZGD/XF+M1vfsO1114b/B5llx26+DeoP0EHq/KQaOR0gqHhVaVp6NiOqhRPJwxyUta0CtZ1gea9l6+CHK75KBQtDE3UZFz5mVG+jprjqk6QrUyOnWmTzrb4BD0s361neitYCFXJe0b3zcE8cVOnI63cWrZTzWrzpVsMb+XclY6pXvTdKRyp5HSmMoASyBUn3kdh6ZvOtjjHL+kIBDGTCZNTj+tm+0AWXdeY350im6+QL9nETZ2F3Ukcx6U9ZXo7SeGlJAsclHFxXE8U1DvRyRQb6nEcyc5Mnlt/sCnIsGs0Mde7sjpSBqN5q6FfTxPqM00nY6STMcqWg22r1tvhOEwras+g3HWtusCiOp39Q1Mjk0gk2L17N7lcjh07dvCud70LgL6+vijwfwjjBzz92z342WSymSoYGl5VdqRNhsfLSKk0xdqTJmO5Cngy7x0pEyGEEtj0moz5NR/tqRiWI7Fd2TTjyg9cTx5prxqArvZEwwZbGzb1N4y1+IZL11QcwHZUMkJbwsB27OBdda+osy1pUijZGELV5/iTn2zBAMLE3V0NUl2zkVyFay57Oxs29TOcq/DbvmGvUV21mVkibgSaa7c/+DJ7RooNd1+a53JbOr+NQskKdlO6NjHFuhlSwt6RYpBhV7/TffS512rcnL76cswQlCy1oPA8pFU3oYCBwVyQXOF6iw5dE5QqNg8+8XtAfRc70mag01av9rywJ0XZciIX2EFG00KBv/qrv+IjH/kIV155JZ/85Cfp7OzkkUce4b/8l//CNddcsz/HGDGL9HaqHuq+j7+e+scnWwlu7svQtzPL4EiR3Z7fPR03cKWkbKkg/llvX0BvZ4JuryGVpgnSyRgLuhKAqvn43BWnMr8rSSphEDd1hBDETT3oJZ8ZKxEzlOhkT0eCBmGFGjQNutpiTRts7czkveSDZjU96jr4Kb+lijKCqleOMqjphEk6YWDZDntHS4yMl7AcyeBoaVKZnTC+gam/5ppQxZAxQ2NnJs8DT21jNF+hPWlQshyy+TLFkIxMeCFw4rIuz01Wi1/kqmsqm0/XNTrbYnzuilNZvrSDrrZYi6NWbsBi2a75jEAZmHXP7VAG3JVYtsN40UITMK8zydJ5qSClPIyUYDkykLMBTwOO2p2WKyVD2TK214tmcKRIoWQFn/MV5y3nqgtOoCsdo1Cy6UrHGrbOjti/NN3JnHfeeTz66KOMjIzwtre9DVDV///jf/wPzjxT+WQLhQKpVOsyEhEHHj/g2WgnIFB++1ZEC5vVXijFY4FhCDraYmwfyNbIvvR2Jrjy/OMn3Pj3P7mtaUppOBNISlkjPFnPvPbG7aTDOI5yFWmawPBaFISR3r/2pJLPt2yHhd3t/JeL31ZzrOvueZ5iuXG8Zjr47jf/p9AEHV71vOPIYKcohMA0NGyvk2SjLpJb+0cxdNHwnHRNsKArMUEh+f4nt9GRjrXk5vOP5WvQJeOqQZwvsRPeIUsJmisplh0MXePqC09gzTPb2ZkpBOMJ7+TCH2ujHZ70XKt+bY4rYWisxJLeNFeeXzUmYVHXuegYGjE9Jq2TWbBgAQsWLAh+P//882v+ftVVV/HjH/94bkYWMSf4N9rdj/wOF+WqwJu82pMGZculKx2bMhja0IXlrUQNXblxGsm+NGOylFLfMI6VbU9+Rv3dn2jCJBPmBPmXegxdULYkrhQNpXAMXQlplioO3R2JwBW1uS/D7Q++HCQiDGUn7himi+a3IfDSvjUNur1iVcdxMXThxRsUHSnTqydyGqYMZ8ZUOrSpCy/OJANXaDph8JW/PGvCGBKmxkAm35KBAc8gei0GdF2jtzMxQWLHN5pql+KSMLUgdqd5adOTZrU1TBKo/b8mqv1oqgYlsc+CpBGzy5TFmJPRzN0QcXBz6vJeli/tnDCpq/jFRJn2RvixHSGE6jmfr2B7i3pfHr5YthnLldk7XOD2B19u2rY3PDE08qf7r/n+o6+A9LKtNCXdX1/fsWsoz73rt/LpD57YdEJZ0ptmz0iRsXzjVgXKraTcQv4Y6hughWtNplKiboShiyAm4TqSo3pTrDhxQbDj83dhGzb1T/ic/AD+rkyBhd0Jrgy5hHo7E17NSajIxqNsORPaGGzuy5At2pMqB9TjG49ypeqOvP/JbYH+mSNlzY7G8CQCqioLunq/uvljqutYP924UrWSGM1V0DWCFPG+ndl9EiSNmF32ychEQpkHJ61UPe9rnUB455GMGyTjBrsyeYDAwPhFhqah16wmYWLR3E9/M4Cpweh4BV/Nt94FYugCx9WwHDUxN5qQHBfG8xXWbOxrOqGcuKyLvp3Zpit31/OXJUwj8Onf+i+/9CRe5ITMtvpxmIZGd7vSAvObhfkFqjFTwzS0oJDSD3CXbZdjF3c0lE7xP6dyxWY4WwYkvV0JdF0jW7RZ88z2mlX8QCZPLrTj86lY7gQDvGFTf9P4XCPCnVI1IbjqghMAVe9SsVWxji+y6e9oVp21jOd+tztwhyZiOmO5yoTrFv49XCOkAfO6EgyOTl6N77gwXqjgeC66VgVJoXlxZ5TivO/sk5GJOPhoVfhvX+sE6o1UZrQYpAP37xn3mmupAo+OtInjuJ50yu8wDb0mQ8p1JfliBV3TWNybomIrna/68ypWHFxXYmgCR9BQVcBfDQ9k8g2bj/npy+mkwWiuMuH1PvM64jVB4z0jJRoZmEZIKRkaK6IJjUvfc0xgOPzPxi8CBYEQSkZG00TDlXb4c+rzpHS62qs7xXyxQqls05E2eW0gy7Y3RlVyRMmaYP0kquj2vg1b+eZfnwOoHWmh1Fxks56wooIQqt7o+S27iZkaZVspB4SNW3vK5Lnf7aZQsrEdl5ipkytaShUh9MRwfMY0NJb0pgHV5G54XLV0DlO/63Fc0EQ1Bb0caksNUyew1N8zU7ULj2idyMgcZkxH+G9f6gTCk9+O3VlKlapwouNXnyOZ57VbHh4vB4kFJcuhbNmYXsZYNl8BhJfOKhqOub4lgC5U7UeY8MRjeFlP9e65vp1ZhCBoH90If4UevjaO67ZcU6LkZQQSybrnd/D4pn4vIULVcli2CwLipkZHOh5IsjRbafuf0w3f/yUJUws8CP51sx2XEc9wCSECFYFm7qeh8QrXf/cFwNuBWO60XH4qaK8Mw2O/7Cduem4yZ+LnoVpDqwyzQshO1Atg18jOSBkYiGLZVjVVQtTsbhqNtf7zGc6WkVJOUHuop9E9M1m78MjITI/Jtc4jDjn8dN8wcyX8d+ryXq5f/U40oXkNtDR0TQveX6J0w7IFK1i5m4buya0Ib5JU9ShCqNqWZmPOjJWU7D4qG8xqkIbtzzGapnZP4RYAfhqwK712xfnmq/czT5o/IW4xlWtY1P0iRTUbqmy5lCouhbJNseKoolQvaN0oQ6wZC3tSwW4RqtfNz0oDleZbsasr+mYMeTG1eEwPsummhVBq2rbjkmsS0wnXYNXvAP3fG3nqpJc19saecXJFWxkWKRsmAzQcGiqFXdcEYzlrylTmRveM47oTEhMiAc2ZMeVOxrZtDKPx06L05YOPAyH8V6ookUlV64C3alcrS7+CG0AI1QZYSlmTIeVXfXd4opGNxpwwNXYNFxFCZU6Big20JfQajTFDF3R7sv5docwjf6VqGBqVJjIxoDKwRurcaBs29dORjjWsP1HnpfTOfAPguirDrpFrTUq85myC0fEyiZjeMB7WKEZw+XnHc8+a/whclP51QyqD5r+fr0c32aQsUbuejnQMy3bIl+yWJ3FQrsrxml42rb/Y8DLnpPd/vzDW0DWEqBZkhpmOMkFnm2rM1uHVy8wks7GRInQkoDkzptzJvO997+Pb3/42O3funPC3Bx54YE4GFTFzLj5zGY6jYhp+zctcVz0rza9Q6qpUk4LpTfSa1xXTzzpLJUzakyZx06BQslnQnSSdMNB1rfmY/YIcVGqu5aiVZq7kBG46v9BQuW5U35XbH3yZbW+MMpItUyhZdKTMhtOh7/6Z15mYsFrNjJVoT5l0tcVotJ/xd1Thv9lNEhMApAvd7TGkpGHRoL/z2jNSZLxQ4Q9vjnL3I1v4wxsjNcWG/nXzr39wfDn1pBzeQfR0JGhPmjWr+Xp3Vv1GTvWTqe4uppOdBtVr47dR8MVSHU/Nel/I5ivsGS4wXrBaMgqN7plE3CAR0/frfXS4MuVO5uGHH+bf//3fufrqqznhhBP4xCc+wcqVK6PMsoOUuRb+a7TCNnVB2VvUhqeHjpRRoz1m2S5jubzXT15j1buX1QTFJxtzqeLQ05FgNFfBsmsnIVf6gpvgSkG54rDyjKN4fsvuYCIsWw6Dow6daXOCeKefEiyE5I29OZDwmW8+w8KeFFectzxY6Xa2xYmZOtl8Bct2QhO5l3E1jetoGDrLlyYnaKr5cSMXFePwTauDy//7xO9ZOj9doxsGsOaZ7U3bSDfDry8plm1GPSmghT1JhsaKnpinDApV/fYFYUOijIv63bf/rZ5/OmEE7krXdb26pGp7gVaOE66R8nduQWsEqdLPK3aZlactnvJYje6ZK88/fsJjUXbZzBCyxWIX13X56U9/yte//nWklKxevZpPfepTxGKty1EcCgwN5fZ5JbU/mT+/ncHB5p0kJ2O6Pc7DWTgxQ6kiZ/OVhkV1iZhGWzLG7Z99DzBR0yoZV7GZVmU/bn/wZUbzFUbHy5Qr9SF/RTymRCJHvDbQpUrVBRR+fjphUKzYmLpGuUlXS1+fLJ2Mcf47lgTFfeF077NPWcQTL75BqeLUuJo0jUkLG3VN7R7C5x7uHDlZBpsAjl7YFozBTyG+58dbauI1U6HrgraEQc7r7eOnHYOgK20iNFVkmRkrMZJr3lbb72XZrK9Nw9c0KKKdzvMEyi1q+eKrTDRw8ZhOMqazqCfVUt3XwcL8+YefLmRL2WV9fX38+7//Oz/5yU84/fTTufzyy/n5z3/Otddey3e/+925HmPEHDCdHuf1mVldXgMsvyYhTNAEy6XGVbG1f5R5nYkJxZ++7lUg6R/TKZbtIHNqYXeCK953fJAybdkTDYw/yfhyK6Wygytrs8HCE5aUcNl7juXJF99EtT+biJQSTdMolW229o9y1QUnNKyjMA0dx5E1E7x0a4stJyI4+5RFNe4xv7Onrmk4k1goidp9pBImZVRDsGzBmvQ1YXyXoutKxvJWYEwRGrrwRUErJGIahZKtrqMjm2aftW7WQq+RVSMeNqj1RqWZITIMDdcT1gwPKizN05mOkYjpUaD+IGBKI/OJT3yCN954g4997GOsWbOGRYsWAUrb7KyzJkpURBwatJrqHDZGvjy8r4DbaA3pSrW6td1a/3Wzdre+AKTuBX13ZvJBbEfXYddwkXsfe5VPrzqJqy44ge8/+goFTxzSr63wR6BrgnzJpi2lUl+dSrU9sQosC3RNGdXLznkLP315YpwxfB6uNwMOZPIT0r0392Va2j2oWI+qRDcMpUSt6xpb+0eDHiwbNqkdXp1uZFOyBZXeGzM0dg7mAYkQ/p5icnwvt2+THE80U03w1YB7seK2dLwAqTK6ShWnaf+dML76cu3gaOpz60iZXjEsIGWQwBF+uv9/IVRcRtPih3Wg/qtf/SovvvgioDYCS5cuJZFQ5/vQQw8F/z/QTGlkVq9ezcUXX4xpmjWPa5rGM888M2cDi5h9WunJUb/yq8/MUuKUoqavuzIIIoh/6LpgQXeqZlJulvUWFoDcM14OzRTqh+NpZH3/0Ve45rK3c81lb+fex14lX7JrstiEgAVdCYbHVYDfd6WE02htRxIz1Fj84s5WPDzFSq0cy6PPvcajL+xo6hKTEHTHBOhuN0knq27l+pqYzFjJk8V3WnLVVioOu4cLWLarVvSAprVmEBoF6P0JfzItsamQqLjZwp4Uu4cK2I5DW9KcNFV8gkxMk1MwDY3ujgRlu4BlOVguGLhNXWZ+VmM4UD9d1/ChwC233BL8//zzz+eOO+7gT/7kTw7giBrT1Mj867/+a/D/+++/f8Lf/+t//a+k0+m5GVXErFPvHsvmKw17ctSv/MI7EF+cUXjZQY6rBB3V3a0UjTWvfuKK85bXvHeuaLF3uIChq54gfoFcWADSdtwJRsGnZDk88NQ2rrrgBD696iR+/NwfGdibR9dgiRegD3e7DNJ4665DoezQv2ec7z/6CrG6BIBGaJqK4fg7PF9tuJWmZD4j4xWEEE2rz3s7E55k/eTHDB+7XNdRs8V2ME2ZXnZYs2OoQahW2ZJkYnIj04jA5RWK8di2y5t7c2iaCImjqv/738X60UsJxy/pCD6zVl3D0+VgM16FQoGVK1fy8MMPc9xxxwHw53/+51x99dX8n//zf4jH42zdupWhoSHOPvtsbrnlFkzTpK+vj9tuu43R0VEcx+GTn/wkV1xxxayMqWkK87Zt2yb9F3FoEd6RCM8Q4NVqTJai6fefAVVY2dMeD1KSNU3QkYoxrzOhdhSuZEFXomE6ru1K5nkT63C2jCHgqgtOYElvOji+oWsNU4RBHXssV2HNM9s5dXkvf77qZJYv7aCzLQ5Scv+T21gbaqfcrBjRT5MtWQ6lik1qksp/AczrSNDhqVKDioG00uArfB6uVGPPFyvsyuTZO1wgV7TY3JcBVAqt5cU9ppO0OQ3JsZbY58N53yPTUJmDfp3StA5RPVTdY7JmQWC7EkMXNTvjel7algmMQPi7X98HZ6aEi3zDxsv/XA8EqVSKj3zkI/z7v/87AP39/ezYsYP3ve99asybN3Pvvfeyfv16+vr6eOihh7Btm8997nP87d/+LY888gj3338/9957L//xH/8xK2NqupP5+te/DkCxWCSZTNb8bbbePGL/UR8TSSVMpJSM5awJ/UXC1GuU+c2u/KwmfxW3oDsJUlKy3ODmPXV5b23sx7vJR8fL7BkpsWFTf436cnvKVJplDayDHzMYGCrw6HOv8ctX9nqzomTXcHFSV48mwDTVzskvYDQNDctS8YP6zCjf/efX9YzlylQsl/9+18/JFlpbmYfjRKASAzJjSlqnI21iu7JmNZ2M6ZSFnzqsUbEdpNtcNBKmV6A4nTHPFNuFbK7ChWccxWXnvIXLgFt/sIk3B/P7dFxNTNypua6kYjmTXgPHlcH3s1mvoka0ujuZjoTT/mT16tVcffXVfP7zn+ehhx7iiiuuQNfVGD/60Y8GHqgPf/jDPP3005x11ln09/dz0003BccolUq88sornH766fs8niljMv/tv/03/vmf/xnDMHAch7vuuosf/vCHbNq0aZ/fPGL/0Sgm0qhWAybeZPVNx8I33VTuiPANHlZmBhjNV3h+y+6a4y/tTXvPK4cmahU8V71qBE+++CY9nXF0TWPEUzOux39MSoiZOpbtBvEbQ9eIm1rgcjJ14cn3hzLVHMnekWJwvLakMUG0czL84lAA2wn/LhgvWBTKqmWAH2ta0psOPp9CyWI0J7FcN3D7CSEQQgQuqeB92Hfj4NNqanEj/OLNjrYYz2/ZzbGLlavqivOW850f/W7KeE84ttZI0r/ReU41VulKdmbyLA1dW59m1fuTfZehtm5mZyZPd3u85vUHg/TMcccdx9ve9jaefvppfvKTn/Dwww8Hf/ONDVQzKB3Hob29nXXr1gV/y2QytLfPTjr1lEbmrW99K//3//1/8zd/8zf83d/9HZ2dnVGjskMI32DszOQplR3aUibtQdfFie6xRjfZ81t2N6xnqaY2jwUuOGHqNSu6sHHz05KFkMGOxrIdnnzxTa657O0TsrfuWrMZ4bnmXK/4r7MtztBYibiZUhpmTVazQS958AQobU/rS0nbZPOVoNe8K72dju3QLESTL9otT+aapmIGAoLANNIvGFSp1a7tekWsNg88tY2zT1nE81t2B43Z8CZcTVMtAnQN5ncnyYwWa9xGs2VgRMjAGF5bgmbuRv95pq4qYFWpnQjcV+HV/KnLe7n0Pcew9rkdk75/OL08GEOo4dpMzlMCuYIFUjI0WsKVLoaukUqYGLpoWL3fbHey5pntlG235r4olR2ymirS9TlYpGdWr17N1772NU499VQWLlwYPP7444/z8Y9/HCklP/7xj7n88ss57rjjSCQSrFu3jg9/+MPs2rWLj370o9x999386Z/+6T6PZUojc9NNN/H3f//3fOQjH+Gmm27iqquu2uc3jdg/hA1Gd3ucrFYhV7RwHJclvemGboBGN9lY2eb7j75CKqGkNpAq46tYcUgnDE+Lq9qS10+vzYyVuPrCEwJ3m2U7qobG0z2RUulv+UF9qG2d6z9XOpKYqdORVpL4iZjBaK7MWK4y6WrWMDRWnNDLSK7Czkwe15W0pUwSMZ2hMQeE2tW4rpKhmSwHYDqTnEDtvPzYjT8x10vNSFRHUj+l2U/RRkpMQw8ENMdyZfJFG11TacLhviqztZPxJ3O/fbZmCE8ksvocQxdewF1J94S7W/rGG2pX85v7MmztH532eHylgdk4t61vjJGK61i2oGy5lK0y8zriDZ+rxi0ZGS9j2y6G1zF2KGcxrytRc1+0pUxyRYtE3JhRT6a55H3vex+33HILV155Zc3jiUSC1atXk81mueiii/jYxz6Gpmncc8893HbbbfzLv/wLtm1z7bXXzoqBgRazy5YsWUJ3dzcvv/wylYoSD/yv//W/zsoAIuaOeoPR2RYnETeCdsKNqPdfF0qWt7KWpJMGu4bygPCyegTjRcuTtVeP+TUc/oouLNkxNFpUbh/AkRLHdQNBzeFsibvWbFaCiY6LqWu0JVVFOqgMtNHxMrbjkorrjGQndrUMT7hH9aa44n3H1yQgrHlmO7uGiyrZwXue47Qu4d86gvaUGYh6AoiGcilqYvYn5VOX95JKGPR2JVRX0XyFobGSUrfWobsjya7BHHFTZcX5ul/1574vaJ6f0XEnFkpqgV9SZRL64qZ+gW59lmJ4kWNoTGrEG+ErEcDM3Hjha2J5HTt9hrPlhh1Uw0KsmlDfj5HxClLKCUrN7SnVJ6mVduVzzU9/+tOa3zdv3sy8efN4z3veU/P4u9/9bv7iL/5iwutPPPFE7rvvvjkZW1MjU59B9t73vrfh4xEHL9MNeMLE2E22oFw3pqEzXrC8oj+J44BpeLsSz5EupUo3rc9U82+6NRv7VC/5uglDSvC9Sn6mmeNK8iWb9lSM8aJFtmARMzR6OuJkm6TFStQKM2ZqNb3sgww3RyW7hhtmzYWCkCYEV1+oFAI6yg5juXJDA5BOqI6iqu21crEkTI2dg7lggtc1PK03weXnHc8xvSkefe61Ce6nqU6jkREKh7J0zQ+uSyx7okF0ZbWOxvWCJMmYwYWeRpzmKQmEV/PhRU5PZ7ImxtUKEuhqi5MvWghBUwmgZvi1WwImpKpLVBfNcAfVzX0ZBsdKQWM2XfcLjlVNWMV2J8R1lvSmDzrZmr/7u7/jV7/6Fd/+9rcPCo3JlrXLstksHR0dcz2eA87hpF3m633VS7lMtpOp1yd7czCPQDKvM8lwtqR2LVIGKbf+lepMmxTLSsNr+dKOmhVd+JiO407ZRtdHoFxemlAr0aMXqH66b+7NBZLwmiaCFbYrJW1Jk4rlqh2Bt7Jcs7GPvSPVWIY/+cwVbUmDo+a3MZDJU7acppOjoQl6u5M1GmT3rt8a9NnxEUIZJIkgGdMplGxKVmuFmz5+coPQRE3rasPLotM0geHlUIezwRolA2gChCZoTyqx0frEkBOXdfHS7weD45i6oLsjQcVyJu1G2oijelPkSg4daZM39+amtSioGs7JniP45+vfF3xHh7xGZ+FZUdfU4iWdNCfo17Wqvdcqh6N22ZRG5o9//CN//dd/zfj4OGvWrOHP//zP+ad/+ieWL18+2csOWQ4nI1NvMFq9McLZZYWSTTym4gN7hgvYjsRt0CVS1wTphMGnV50UxFXuf3IbQ2OlYELr8vp8vLF3etdYCIgZOovmqf5Fu4cLuJ7Uv9BEqHeKmjw70/EguaFQUjpo4fa+c03cVKv3XMmasmgzZmjEYzpLe9OTilH6sZKl89M1O53pEs7eEkBvVyIw/v734i//4adeskXjdtN+GnZXe2LComVzX4Z7128lX6xMcLf1diUZypZUp8sWPwo/K0+5ZNVOudVPsVUXYnvK9BI7vIqcBi/SNcGl7zmmaZblbHE4GpkpA/9///d/z80338w3v/lNFi5cyNVXX82tt94a9ZI5SHjp1T089OTWpunFMH258vDrdlp5laGDuhmHsyVP4BBAKFkTTWWAdaRjgYEJa4z5jOZU4sG0jbisbZfckTJVQaenHpDNW9iuq9KckYwXKhTLttfyV6UdT9fAzDTG4bu3ZKMy9NCx/Wyuiu1Ssd0pg+NSQiymWi+bho7Tgj5Ys+P4u5N27zr61+Y7P/odi+elMHQNe4pYVb5kE4/ZE0QoN2zqp1S2EUJD12SNW3IoWyKdMEFK8iWrpb43UiqJHlc0ruxvhL8oKVsOMUMpfk+mPFAo28rtO/lI2No/etC5xg4FpjQyo6OjnH322Xzzm98E4KqrrqrJu46YfVotBtvcl+GHT28HQVO5jHphx1bfv1FWWjKms3heml1DBUAVNPoZUKovuzIqGzb1U/QMTP1kbXvpuK2uxE1dpcaahhZMGrqu0Z4yPW0s5X6RUFOJbztTT8KNDInvPlI9Y1yV3dZg/kknDCq2G7jgqtX6Iij41DShxELrdiaS1mXxw3R5qbId6RjlSrH1FX2oZgiqKsj1haWOV1cimHzy9/LJvGtkUK44XP/dF+jtTDCQyeO4bk3mWXB8R7KkJ0muZLdc1ApeW24vcaIVN6cAujviDI2WWDQvhRBKOLXRa/2oy2StCvwaoANd/3KoMmVnTIByuRwEkAYHB3FblBXP5XJ86EMf4s033wTgxhtv5MILL+TDH/4wH/7wh3nqqacAePXVV7n88su56KKLuPnmm7FtNUENDAxw1VVXcfHFF/PZz36WfF75eLPZLNdccw2XXHIJV111FYODgwBUKhWuu+46LrnkEj760Y/S19c3jUtxcLC5L8O9j73KawNZRsbLvDaQ5d7HXm0oVbFhUz+GIWZdLmOiBE2ceZ0JlvSm+cpfnMlbj+pkfneKhT2phrpnGc9F1izkKISGpokJ3Rfr0QTM60pyzKKOmo6QXekY1175Tq44bzm27QQ97adLPKbT1aYk4X38Kn/V1Ku5W6dQtlU3T00Zppipg1BSO6vevSzo0NnqpNgKe4YL9O8ZZ3Ck6AWlWzumlBMn0GY7u1Z2F+p5KsFjNFembNnBdzVfskGIpv1ntr4x5ilHt46fyqxrWkuyO2r347KwuyqJ1N0en9jdEwJ3q184W4+hC29Xph0U9S+HIlMamdWrV/MXf/EXDA0N8T/+x//gz/7sz/jEJz4x5YF/+9vf8olPfIIdO3YEj23ZsoX777+fdevWsW7dOi644AIArrvuOm699VaeeOIJpJTBTunLX/4yq1evZsOGDZxyyincc889ANx5552sWLEiKCy67bbbALjvvvtIJpM8/vjj3HTTTdx4443TviAHmjXPbCdfUtt3X0olX7JZ88z2Cc/NjJUmaDfNRsVxZqw0IV0zfNzJWjxv7ssEOxrfvVF/+xq6oLczwdL5baTi+iTGiOC4py7v5frV7+T2z76H61e/kxUnLWTNM9s9SfqZ4TguMVNnYU+K7vY4pqEFWVKaJoibzTf6Uir3n6FrLOpOEjM1DE25Dx99fsecZK25sqrJNpXxmuvoU7BplEqNwP+uOq5sWsg5k7HpWlWlwXLcpsYgTDJucPYpiyhWHHYPFXh99zgj42VScdWquiNlkoobdHmfuYRAj68+404ZaJdE3Dgo6l8OJNu2beNtb3sbTzzxxLReN6WRueKKK7j22mu59NJLsW2bv//7v2f16tVTHvjhhx/mi1/8IgsWLACUBtrAwAA33XQTl156KXfddReu67Jz505KpVKgkXP55ZezYcMGLMvixRdf5KKLLqp5HGDjxo1ceumlAHzoQx/iZz/7GZZlsXHjRi67THXpOOOMMxgeHmZgYGBaF+RAs2ekFAR51c2r6hD2jEw0HL2diQlSJ7NRcRwWxWx23LihMTRaYlcmj6GJIDvqgae2ETNrV5zhSaWrLRbsgMYLFmWreSDXcZlUALHRNZkOlicdkxktkitamLogm6swMl6mKx2jp31qgUfLcVlx4gKvhbOsqZw/3PHTfP3vaouJqq0f33M/uq4kGTdUwzUaC6lqwKJ5KeZ3JbjwjKP46W8GGM2VA3eY7UhKFYdVZy3jzs+9l2suezuGrrL1JP7OTtLVHqcjHWNeewxNqMzGxfPSE+ppjkR+9KMfcfHFF/PQQw9N63UtdcY8+uijede73sXZZ5/N3r17Wzqwv7vwyWQynHXWWXzxi1+kvb2dz3zmM6xZs4a3vvWtzJ8/P3je/Pnz2bNnDyMjI7S1tWEYRs3jAHv37g1eYxgGbW1tDA8P1zzuv2b37t0sWbKkpTEfHHgumvAkLVVFdT0Xn7mMHz69HVs406449uM+A5m8ipPogqWeCkC9KGb4uBPbKFc1vTZs6g9u5mbzzXjRYrxQCRp5Tbau1TUxQUiy/lrNBvmSTVvSwLJdbMdBszVOXNY1aVOz8BCefPFNT1OscTZWC4cI2J9ZcPuCJqpuOMeTyplNGzOvPUbFUbuimKnaaq88bTGPPr8DSYM6HsAQcKXXwdRPPjANcFwX11WG5MkX3wx01cBrGJfJU7EcbEfJ0PjdWA8lo/LSq3t4ZON29gwXWNiT4vLzjmfFSQunfmGLWJbF//7f/5sHHniAK6+8kv7+fpYta21nN6WR2bhxI1/60pfQNI0f/vCHrFq1im9+85t84AMfmNYgjz76aO6+++7g909+8pOsXbuW5cuX1xQMSSmDVVF9IVGzwiJf6K3+Nf7j02HevLZpPX+2WbqgnTf2jHtb+OqqeOmC9gnpje+f305nZ4pHNm5n73CBBS1+uV56dQ8/fHo7luOqbC/vPba/Ocq/DRe49sp38t+uOH3CcQEe+/EWT0ZGqeCWLQdDF/z4uT8yNl5hvFBB00RNIFXXBB0pk5FcJfDVC6FcK5qg2ka3LvgaMzXakialis3Tvxng/WcdN+Fa9e/OzsrOIVe0g3RZF8n6X/Z72mHNm2mB+nzqs+jqmSyoHMY0ND7+/rfy9Iv97BluXLgYTlaYTXHM6SKl32Z7ctfYTBBAW1ucf/rC+RP+9pu+Ifp3q5R9IcDQNPB2/t1dKd5/1nE8+PR2T81axYbChr9sOfzw6e10dqrnvv+s43jp1T1875HNWI5Dvmiza7jIPT/ewntOXcxQtjxnE/ds4Y/fMATtSYORbJHvPbIZLj911sb77LPPsmTJEo477jg+8IEP8NBDD3Hddde19Nopjczdd9/Nww8/zDXXXMOCBQt48MEH+bu/+7tpG5nf//737NixI3B/SSkxDINFixYFgXtQO54FCxbQ09PD+Pg4juOg6zqDg4OB623BggVkMhkWLVqEbdvk83m6urpYuHAhe/fuDSysf6zpcKDrZD5yzrHcu34rpbISdNQ1jXTS5CPnHNuwHmbFSQs5pjdV81izuhmfh57cCkK1qA2fquPCeMHiB2s385W/PIvPX3Fqzetuf/BlVSNTJ0FvO5I3do9j6NVOmb5Ape+KGAkV4Rm67/ZQk4CmCSX5UXfZ25Kmp54s2DEwxnX/+GyQcfdnF57IR845tmGqdBiBMhSGodc0+mqE3yhN18CWVfXjfZ3KGxmY8FENXaiAu+vyk+f+SK7QvGBR1v3fmOPC0knH0VAqZ98RAgb25oPvcbgW7KPnHMddazZ7iSOecKqUdLTF2DWYY3BwnJ62GKPZEo5LjZSMQBlyhLoH/PvmoSe3UqrYgXyS4+16Nr68k3TCYF5ngsGRAves+Y9ZL76sZyZ1Mo9s3I5hKE0/gETMoITNIxu3z5qR+dGPfsSHPvQhAD74wQ/yhS98gWuvvZZYbGqX8pTLfMdxaibqk046aUZSBVJKvva1rzE2NoZlWTz00ENccMEFLF26lHg8zq9//WsA1q1bx7nnnotpmqxYsYL169cDsHbtWs4991wAVq5cydq1awFYv349K1aswDRNVq5cGchVv/TSS8Tj8UPMVaZcQp/+4Im8ZUkH3e0J3rKkY9b9wZmxErbtNJTacFzVn2VzX4bbH3yZ67/7Arc/+DKb+zJkxkpNV8/Cd/N4AWCaPc/XwPKyr/z3rP9GdabNoJNk1lO8DTeH+t4jm9mxKxt01mz6lRTKh9+RMps8YSKOC6au/PHtSXNajcRawfSMbPX9VCxHCI1S2Q4MfytvW29gZruRWT01WWtz9B6uVLEu/3vn47t4QV2ziu3iukrqZSxXYSxX4fYHX+bEZV0k4gZS1mYdCq+Wqz45JjNWolh2AgMTplCyKVWcWcvcnAv2DBcmxC7jps7e4cKsHH9oaIif//zn3HvvvZx//vnccsstZLPZIDt4KqbcySSTSQYGBgLD4k/e0+XEE0/kmmuu4ROf+AS2bXPhhRcGlvGOO+7glltuIZfLcfLJJ/OpT30KgC9+8YvccMMNfPe732Xx4sV861vfAuDaa6/lhhtuYNWqVbS3t3PHHXcAygV36623smrVKmKxGLfffvu0x3kwMJPalukQFm5shONK7l2/lVTCqKm/SZhayLdVi19rkE6aFCsOrus07ANSX0luaAKEv4MQdKVNLBeSCSPQwlKFf1WBTENXu7snX3yTjrYY3R2qPqNRK2UplSp0KmHSmXZabgecjOu0JVViRWda6ac1S8udDkI0qJvxdlACSXhPNt138+tb/HiJL58TqBlP3Cy2POZ9kdyfKX/YOcbA+q10dqYYGyvwwFPbsOoq/l2pYmoA7Sn1Xf3pyzuJmTr50LfPNFTNV71WHKhEl+HxcuAWDX9nJWqRk/SUlg/GWpmFPSlGssVgJwPKLbigJzXJq1pn3bp1nHXWWfzLv/xL8Nh3vvOdIHwyFU1lZXK5HG1tbfzmN7/hxhtvZHBwkOOPP54dO3bwne98h3e9612zcgIHGwfaXTZdJpOVacatP9jErqF80yC171ZY3JsOHitbDoYmGgpc+t0fF89LU7acQMYmm6+odGzP2qhqcxGoL+O9j+sqA9OeNJjfnQqSEaR0EUIL3GG6F+sJp8j2dsZJJ2O8vrv5NZjvSafEDI3xgkWuYKkxeH9vdAd0pEw+veokduzKsv6X/ROy7abT4Mu3y5omWNyTZM9ISakCtPbyKVG1HKpGp1xx0ISgLWmwpDcddB61bHfaumEApg7T6NU2J+i6IG7oCKHiX02LJnVB2sta9OM0vlHvaovRkY41lFba3Jfh7h9vwbLdpkKivntuQVeiRnx1tpmJuywck4mbSunAtiWfmaWYzKWXXsrnP/95zj+/GiMbHh7mfe97H4888siUEmNNjcyf/Mmf8Kd/+qecd955vOMd72B0dBTXdTnttNPo6enZ54EfrBwJRub6776AEKrOo9Hq3ycR0ydU9Cdieo2B8uVlABb3JBkrqBW/oYugZ82OXVke+0U/thfMCV9dQxfeClztblJxHcdVvWdcqX4vTpKt5h+jfnfgd5TUNY2/vvyUQAFaepM9QCqhM16YGM/xU3OlrBYtqgQF0VQBoBH+jkJoAtNr6HXn597L9d99gYrlNK16bzVRwMfUVWziqAVt5IsVxnIWybgeZA12pmMgZWDc9nea9b503GwF3zDUN1vz3ZKu19K6Ix1rqqDx6HOvse65HcFr68fsL6TSydicpjPPVLvMzy6bTgLQ/qKpu+zZZ5/ll7/8Jb/4xS+4//770TSNlStXEovFeNe73oVptu7jjji48OX8u9vjk8qv245kOFsKVHr9G9R3WxTLDpajVn8xQ2BLVVldn0r9/JbdpJNG8Hy8GESNgrJnJAplp+YG97XHJqNR4NvPI+hOqa/40FgxOKZvOHINDAw0LnZ0peoJ4+P3G6lPggj+jtcQTVaNRrHscPuDL5MwtaAz54RVswi3bW5tZnalxDBU2+aR8QoIyHvinBKVzCGAtx3dybY3x9Sq3LsOzVobzyb7amC8cpmmhldSXVQEmXfeokAAeHpyhZLNtuworw1kPUUHgu/0Zee8BaAmPd9f6GiaCCSUNE0EXT8PJlactPCgMSr1tCz1v3PnTl544QUeeOABXn/9dX7zm9/M9dgOCIfbTqaRDhqoosmxXKWpEKLfQlhKNel1tsUCF0P9MXOFCrakYUsBYEK7gWxeFTzqoQyh+t71rdJslexPTEt70yAlb2YKweOtfLpTPc9PYJispsWXzXFcdQ2722OeMbAnyPnXM93Vf2+n6rPjuK7Xt721ZmymoXnyOILxgjXBLXgwYBpqhzLZ+fiuVN8w+108gSCOo3tqDv5xOtMmyYRZ4z4Lf7fHcmW62uNBAgoQ7Ohv/+x76ocwKxyOKsxTGpk33niDn/70pzz//PO88sornHzyyaxcubKlqv9DkcPJyEwm9Q9w9yOq5kXz/Dp+P3pNE8zriJMtWNheCvFfX35K09Xb9d99gVTCmFCj5MvLNPrbzsF8kAQghJjUbTdTOtMmpqEyj3zxTH8Ujfzu4T4zk/W5Fyjds2TcYMRrOT0Vfk8VP/C8Z7gwq8WL7SmTUtmmqz2uWgdPM0nhYC4CnapWCVTRsGruphrg6ZoWanvtBs+xnGo80P8cLdshbhpcc9nba77jtz/4MntGihS9cgLDKz5e2J2cMzXmw9HINHWXffvb3+anP/0p+Xye9773vaxevZp3v/vdM8osizgw1Ldfjps6Ze/x61e/k+VLO2p2GXuGC1heX3M/I8vfkUzmHqjvpglqt1KxXCzbIZuv0NkWC1aEFdtlcU+Ssu2i6xoj2dKs++0FkCtaLJ4XYyxkKurfImZodLXHyebVrs7fwTQo26ke20uFHcu1ZmB8/a3BkWKwRZqNU1WuNTWZLvWSNEbzFU+qf3rR+pm0Qghb7Lk0T9Kdeme5oDvJFeepALRfZ+Z47R+gmtodNuy+W1QTgpLl1ChLbO7LMDhaDBYRuqZ2RBW7zMrTFs/yGR7eNDUy3/ve9zj//PO55pprAl2xiEOLqdov18vHJOMGFbus9JzqWulORv1xsvkK2UKFznScdNJgOFti2Os4aBg6juNypbeb2rCpv6V8fj8Nt9XVv0S5qYoli4U9qZpuj2F0XWVlLehOBk3OLNtRdRNNcF3J4EgxcMFMNkGbhuY12pr9HGClmCxJJwy2vTGqxra/NiOegXOlbKEXy74hUUkopSbFtLqmCnf9hdCnP3hijTv3tYFs8BnVJ1X4ixvTayHh18E88NS2IJYFXu2UIUgnTLb2j3LZXJ3sYUhTd9mOHTt45pln+OlPf8qOHTs4++yzOe+88zjnnHNoazuw0itzyeHkLmul/XJ9fOXEZV0z6v7XrJsmQLFsMzpebtia2R/nZE27dF3Q0x5XLQSm8dH4O4iethhD4xNjIHFTC8ngSxb2pLjivOXs2JVl7XM7ap57ICRcpgp4Q+2kub+r//fn+8VjOglTa1jn1JEyKZZtOtviDb+zjz73Go++sANBbUxG85JPJNDj1dAUSjYJU2PvaImK7QYJHiIQrFU7mhOO7oo6Y7ZIS4H/bDbLz372M5555hleeukl3vKWt/Cv//qv+2N8+53DychMFZOZbsfMVvnvd/1cyf+HUkcTXm/6RgHTR597bcKkHsZv2zxZLUw9RigFOWZoNUV8pqGRiuvkihYSwVHz08G1OfuURTy/ZTdjuYpapbuTB5ynolk6citpyr4kTis5EbqmdhbhmMNcsz8Nr6GrHWP9ufk1SKahsWheqmmL8Uefe40nX3yTUkV1THW8zDtNqHiW30raEDAwVEDTag2of666JjB0je6OOIWiRUc6RqnizNo9dDgamZZUmAcGBhgeHqZSqWCa5rRFJyP2P/7OolxxsB27RmUZCIxPs46a+/K+xYrqL6N83g7lSpF00uCo+Y13wJPtYuKmFnTFnM6kprTApDehSGIx5aYDldFWttT/TUMLGr6VIVARSMT0Sbs3+qnGU/Z1aZZ2K5vvBFQjNA3XBVc2LhCsx8+k2l8GBvbNwPiLnmm9X4M3rIqwwp6RIrates74/ZfCC6lrLns7QJCCr7TKVOxO0zQMXWCYepB6bujVbLXgrYX6Tg6NlYJjzOuIz+o9dLjR1Mjcd999bNq0iRdffJHOzk7OPfdcrrjiCs4880wSiahD3MFMeAfTVVe3curyXm5/8OWmCQHTuUHCLrJETK8p+AvPBxKlcnzisq6Gx8mMlehImQ0n9UvOXMaxiztY88z2aU1qrpQITbk3dE+7bHi8jEAGmWyuZ4je3JtTbhPXxXZR+mFTHN+XggnTSEJnsnhNsx2z9LKj4qbAdjRc6eI4nmR96CXhNtaSqdsIH8qEr3WjJBG/eZ1ALSrezBT43qP/SWeb6oj52kCWu9ZsxvAWVp1tqmFZtmBRrjiM5Sq0JQ1Gxysk47qnMiFqDI2hCVJxg3zZDiSGpISRXIWe9ngQ04mMTC2TFmOee+65fOELX+DYY4/dj0OK2Fcmyyo7dXnvlAkBrRA2ZELArqE8foOpoCCOaqEcUu1Yjm1gmIaz1XbN4WK6nvZ4UCS3YVM/mig0rYnRdVHj2lKV/epnR6oqtjmWq3hjEkjH9RptSSy7euCZJlPXD63a3bTx8yd7PGZqNTIoZ5+yiA2/eoNSxQnOFwRCqJ2O60rsQ8i69HQm2DNUmNFuaDL3ZfhPxbKDoESx7Abfr4rt4hQt5TL1vhPDjgtSNSwrVQpBf6Gy5QaqCa4rcVH9kMIipH4RaLZgsbA7eVBqmx1omhqZsBjakUTFcXEdiS7wVsLikFsdTmVEJks5vv67L7TkXw4bsj3jZYTQADmh4UnMcz3oGuzM5CcYJld5rWrcHiBIJww+edHbas6p2eTi5Q15fvtqKwJDE4F6rpQSXdcCqZxdQ57B2seYy2RovnWdwfE721SpgL9A2No/SkdbnHbXZbxgeXUbgu72BPmiRcly9n9mwj4wMl5uOd60LxTK1TfwL4/jSDJjJbRsOVgUCWDvSJFUwmC8oDT3/J2olMpF5hcuhzewfstm23ZnpSvt4UgUXKkjl68wki2RyZbIjJUYHC2SGSsymiszXrDIl21KlkPFcrEdN/gSKhmLAz16xVTtky8+cxmO41K2HKSUjOXKZAsV4jG9JkYTllkPs7kvQ9/OMQZHCuwZLlCxVRGcWltXUSm2AJJUwsRxZGCYxguWZ5iq8Qm1IveanNXV5kx988qgaZ2mC3o747SnYnx61Ul0pWMUSjaG50+y/XRW9i3lV5/i7nHc6XXK9PvxGHrtF8lfICzsSaHrGgt7Uiyd3xb8DoIF3ar18Fwym9/vcsWZM+Puf5d86r+XQJAU4g9BAiXPbWZoGrYjVWtw7wmW49KWNINdjC+LBKKayt5iV9ojjcjI1CH9f56/3nGVK6VUcciXLMbzFUbHywyPlxjKlhgaKzE4VlSFW9mypzxsUazYVCyl1aUUf+V+M0T1RqRsOTU3wKnLe7nqghOCybdiuXSmVW9zPwjerHeG7ybzUzptRyK96yQB09RrerfoGrSnYiqo6vV+Ab8Ku3qTO65yS+i6YNG81ISaiIvPXNawv0q1jkEpFjiuJB03MAw9MEy5gpKxeTNTIJuvMDRaDFJX94WGcjz78PlqXjJBe6q2EZS/QLj8vOMbfq66d13DMa25+JrN9m5+to438ZoLROhB/55uaUxA2VugGaFVhOsqHb15nQlVWyVgXkfc06+TLOhKzHlDs0OVlrLLIhqjqsKVO8SFhlXWIlj5CC8vX0MXAt0QgXy4QAQ5+7Phngv3L8+MlUiYGoapc/+T2+jt7A9cYX5l892P/I6yZVMs24HqcrMYje8m62yLBYF0SbVi3HYcKhUHU4eFPema9M4Nm/oDN129lEzQU0UoQceF3ckJ53TW2xfwi1f2Vq+r54kydRFI4kgvWwjgrJMWcO9jr9a0mAa85059gafK6gp/Rgu88Q5OIjg61XtIKZXAqNfWOtyaIF+0eGTjds4+ZdGEOib/uqrMqmp67qHi5k3F9ZaEUBuhacrAaqIqpqpr0J6IeZ1fG6tmt5apKGuuoWW7pBKqW2vF2+W8ZcnEuq+IWiIjU8cDT22jXHZIJQzSSZO017grnfD/b5JOGsQMfeqDUf2CSqkCh/iGKFQb6Bfd+aqxvvHRdY3XBsb41St7GB4v05WOcc5pi3n7sT1Bymozwkbkgae2YTvSU+kt0bczy6p3q6ytYFdCY9Xlevx4j/DiOY20u1TqMqx42/wgcO/jKwM0K8+SEsbytdIdfhbb67uzNbIvhqYakuVLVqCD5rvoYqbO1v5RSk3cMvWTjGmouI2fSaTranYJmqs1q9PAWxxoghEvgWE61ExijmRorKSC/imT0fEyxYqDaQgqlssrrw2xdccwq85a1vC6+mKjuqZW10KIptd5smuxvylVnBkXdrquVG21vaLJng71ne3tTHDi0Z289PsMttugdqiFk7a91uDha1i2HExD488vmTu5/8ONyMjU8ebe3KTy9z6+em06YdYYoXSy+nvYUCXjRlPD4IUtgi+z40os4Pf9GR59/o8qjmHojOUrvP7UNla9+1hOOKoLTRdgGPzmD4O8uHUvo7kKnekY55y6iJOPnYcQ8MxvdqJpgmKhEky2luOy9rkdxE0lJePvSpAujqsCoKaucdZJCyaMNZw0kEqYXiOsiXerRNWcXHbOW2pTnb3umq4rMb0iyTAC6EjFeOn3g2ztH2VnJk+p7KBpeLUtCk1Tu8dc0UIIzyijDI3tBXbHchUct5raGh6lv9IXQr1fRzoWNFkzvcwtXRfEdMFwrhJSBlB0pEy6OxJIKRnxFgBheZyQrNekhA2gP8ay5VKyXJb0ptk9XGC8aHm9cZShe+wX/Ry7uCOY5Pyfa57ZzsBQAUPX6OlQKbW7h6aW7DnQm515nQnGchU0IeluizGSq0wrXuPfP0qIlaDY+IGntgUtJspe57VUXKNiy5YNmmqop3aHmoCudCzauUyTlqX+jxTuXfc7BjJ58iWLQsmmULLJFy3V4XEfLpUQkIwbpD1F4pyXIZSKG7z16E6OW9xZY5TSCZP/5/FXyRatml1TxXboSJr85aUnAzAwUuSBDa+qqn5do1hxsGyHZNxgUU/KayvrAlqgZuu4rheUVsHyznSMUsVmdLyC7aoq9662GKahTfAzh1OXHcdlcLR5yqYm4HNXnNpQdSBuaNhSGTS/XkQAhqHR1RZjaKzEgp4UI9lykGBRcz1ROwilKiAC2f3w8/S67KV6Q5OKG1x4xlE1xqwtZWLoIlBuNnUNKV0c11eMhvakMjBQK9Nz+4Mvs+2N0ZYnyEbjIzTGyepsjpqf5it/ceaEx8OV7aqI9eCT7g8jgGWLVJW7X3G/Z6QYuE79XWv4+ZJaLbuY4fXt8V23IfVsTag4YcLUyBUtdE2bstBW00RNDVPMUK/59KqT5ty4HI4V/5GRqWPbHzNq+12HlCr4XyjZ5EvK6BRKFvli3e/+34t2sHraF3TPFaMJEfR4cVzJxWcuI50wefa3A+SKFeKmQbliqZtHVifhQL5fVPu/a5qmguxex8ZYTMfQNK8vPBi6Tnd7nGy+TKnsEDPV7+f/6VJOPnYev3stw5pn+tjZoBVzmFTcYNnCtob6aYYmyBasCX1VNK8viC5UD5vJjJg/SftdC+szuZpJxGtCCSqGJw1f5811vbodWY0z6bqgPWl6baQFqYQxQabHd01+50e/a1nRuN5F1Oruxz+Hz11xKlAbe8sWbVIJA9t2GBmvHLTy/T6moaFrgortVhcbwtcLUwKcyMnTzGOG5i2cGv9dJeCp1sxFr8jSRQbtwKG6szENje52lT4+md5eIxr1bpquUTocjUzkLmsRIQTJuHJ7zWsxF97vxufvivIli6defINC2VatfF2lYBuuHq7fLdWvzn3W/vyPdY9MFIB0QhOYfwhXguuoCnJNg5IE6anN+ivHznSMXLGiVn5CsGhempFcmUee7aNYcThxWTdLF7TR2R4nM1oMsrpcVwa7DseRXHTGUfz8d7sb1uwUSjYdSYNcodY14k80qZTuJRY0n3QdV9UvxE1dSYSE0DX1memGSi31r7emCRb3JLnifcfXTAB+rEm5SgWurM5YAihWHLrb4yoNGtiVKeCLavrs2JWdlu5dUEfjMR1zYOgaazb2UbacQB5o91ABx3VJxHTGi/aMMhn3d7KA47i4bu3OAen3hHGn7CMD1OjSNcJ11eKpVHFYvrQz+KxLFcdr8SAxNPWe8zoTwQIi3KhvMjb3ZWpclZ1tsUhmJkRkZOYQXxzSVyMGeGJTP11t8QlNvEplmy984h01u6XfvzHKpld2A15g3pW4jktXWxxHyn3aLamMsNrfUQt1ldZsV4Olr+8Z99KCNR5/YQdH9bbx+9dHSCYMHFd6bgi1M4oZOpomeMfxPbz/jGXsHi2qHieaCqw7rqrLcVzJ3rGSug4NZrXxJq2R6/FlZ+5+ZEvQClrzxCIdV1Vsm7pWsxr1V5z3P7ktUB0Yy1XUhONKDE21koZqRbdtu8QMjZHxMomYzryu6mT0wFPb2LEry2O/6A8Cxa3ampn20elImwxk8hi6plyGIS0wP6bo1y61enjfFThetILar7k2OKJBd1H/t1ZrjKYaogSvYl/WZOP5i0aouuraUrGmO5GpusxqXuLFyHiZno5EJDPjERmZOnSvniNoWiXD1Rz7ftN1t8cnxFksx6W7PT5ht7RsYTvLFrTx898OMDJeZmF7nPeetoS3LesOXvvGUJ4HN2xFaILxvFUj66L5k4RovfBQSib48R1HBj7s4WyZ2/7XS1Q8cUDDq6YvVZxg1Rk3Nbb2j/LMy2/ylsUdPPFiPzHTIGHqFMs2pYpDezqGoWtBZhayNlbkhn86rtrxhbK76mVnli/t4M3BHLmijePFnXw628xgZbljV5bnt+yeIIeTSugUSg6uK7Hc2s/b9frgZPMVzz2q4h2+XI0vrOlK15s0W/kmMONWx6ahigVdWZWusRosNholFUyGlEoexS9eNHVBxZ59K+O7w8IuybnGlSppxZ/ww/2PfLfnlZPsWsKxyHDBctzrQ+N4YqxCgCsF2XyFBZHMDBAZmQl0t8XVRO0ZF+llfanVEMroiOrjrv93CdINPQ5I6QZZSf6t9L53HsVPfrEDiVoxK1+0y3tPW9JwPG9b1l1jVOo57a0LKOQr/Py3A1iW61VS+xOQek7S1FXqpS5IJw2VdOBCd3sM6Upst9oCuVxxppyM8qXqLqNRbVDZctmZKfCjZ18LHtO0ipropETXBIWyXRP7Cqdua56cuqELNEND1w3VAdIzRlK6JOMGH1u5nFd2DPF/XnqT3cN5KpbbMFjeSGW5Xg6nYkt6Ohr3rHFc0F2XbEFdG0MoF9ywl76djBtKQr4FVeZ9RQhIJwzyJU+yvkmL6HqmMyoJXpxkbs5FLXzEnDc7q6dUVgul+jqy6cooQVXuZ89IicW9KQxDJcIIlAG1nUhmxicyMnWEU1UFKggdOLdb1Edo5Av35VV6OxfR1R7j5/+xi9F8mSW9Cc7+k0Ucf1RXrdFyfSPmPzbRYPk5GyceUzVEP/31Gzz98s7qWFDxBAG0pUyScZNUIhZkqY2Ml2lPmYH7bnCsiDVJRtKFZxxFT0eCfNGmf884f9yVDaT91Rk23u2Ffe6uI6v1Qv65UB9/auwGVHIeYBg6//KTV3AdSVtbDEPX6Wwzgp2R75pzHJUFkUoYOI7qcZMZLQZimr4Eie3tKprNe7aj9MRUv3df+FLt8JQmmkHZ3vdEj6mQEmzb8XZ3c/c++6JM0dKuyZ1cPHQuyJeqn49fR9YMP86yZ6QEqO9KT0ccQgksSr1CdZD1Vb79Wq1IZqZKZGTmgGYVxnhG6+Rj53HysfNaPl74hvePrb7Mkq7OBMJx1ONSkhkrc/SCNhUMleCiJloB9HYlA0OWdHVKZZtF81IhtxcIb+Jt1KxrYXeS895xVPD7u09ZFPz/mw++DEjGCtaE808nDQTqpixVXE9GfWZIzz45jkPZq/DOFhuno/o9X3QvJbVccUkmdAzNxDA0BEpQ09c8c1zVyrjGXRcUeKpU6Y50jOFsCVcq42R5rpYLzzhq0sZrzZhJIWSutH+M2UxoNY7jwqQn3qz4dUZj8t6q1UNt7stw72Ovki/Zwfk4rqq9mu+5tEG5Oxf2pILki+62GNm8he26LOhWXVaP9HgMREbmkKDRjaZ5lYSJmMGrO4bZsKmfnZk84wUlRR4zVNGj9CK4AnWjdKRjpBIGFRcW9aQ4751Hse7nr6Ebqo6lUI4H0jb+7sZ3B/7/3recVNxouLtaPC/FG4M5EqZeEy+QUq30ejsSZPMVrH1c7U9nUvalamxHUh6bqEwQHFOoOJJfcKdrGmZMQ9c0DEMERbSulHSmTdqSBtm8pWpRdJ2rLzwhSJqYzqSoaZAwdcrWxDqguaSVazjT8TRSRAg/FHTwDGWENUrddmfJwISPGze1ltKMN2zqVy0VhH+fVV3jo17iRxDHOb+2y2wkMzORyMgc4rz06p4gIFmxqs24bFd6RYTV55YqDiPjZdqSKrng0vccy8nH9uA4Lhs29bMrU2A4WwoSBfzXagJSCZ13vHV+cKz63dUH330s9z72KnFTBBI5mleJrwlIJpTige263i6haoSkJEjnFoJAdLMa76ruqvwq/Z521Y3QdabO5Jpq8pcSSpWwi7C5u3BotITQBEpsQWP50jZ+8Z972LEr62UNeqtmtxrL811b1WQG/3elt/Xuty/g5T9k9l/hpADdc1XNZVikkTtM97rq6qEaoUZDmAubaxoa9z72KilPlaNZmnFmrBQE8n0MXRlGx5XsyqhkkYXdieC1kVFpTmRkDnEe2bg9CEjajhvc2JMFoHNFmw/86VE16bz+yi4R08kVLYoVB2wXw9BIxnQW9aQmXQW+/dieoM7EdpWR8Asr/Z1ReypGtlAJYl2+aKjhFeR1JAyVCCE94VDvOcrlhefr1tA16GiL01moMJorK6PkuQsdt7qLQkLMUIatbMlJa1gMXWNeR5y9I8XJRTFR8QQXsByH324fmvTz8UN6fkGtoQv0mKmujfe3V/tHOXp+mj2j1SJQV6rx+sa3VWPQahaZI5X222zG9k1Dww7tUBpdbst2YQqjP1fkilU3bbwj0bQjbMLUvGxGEEJ6xb7Ca4InEZrKJts7WuLex17dL0oAhzKRkTnE2TNcUHpgUM1wkTJo3OVT75Lwu1TWp2UWihYIQXd7vCa988RlXQ1TOKG6CrzivOU1kjNjuQq243opxFbTdM5kXOf05fMCheUwmiAocLvqghMQAn749B+QeTA0DdPQKZUrymBpAtNT5MVTSPDFPztErcK1K2Wwk3K9XUfZUqnklt+cykudVq6b6jVNxnVv9zO1689PhHBrlJ8nvk5pwFXPOXw+fsadfy6+JZGA64k/+uMVQk3krewEbFftKJwWM+KmCtTXt90ODTVAwtRWcBYIy87Uky2oRVRXm1IcD38vN/dlyBbtYIy+y9V/wE/48H/mSzZrntkeGZlJiGRl6hgayk2ranu2ma40xbfXbGZwpEDc1CmULE/oUuk41ZdhhG/43s5Eww6ZzYrS/AI2x3HJFiwvsUAlFJxwdNeEQkf/tScu6+L5LbsZy1UmrQtJxY2GCQH+Tmix12PGP2bf7hy7BnNIKYNzhtbmL38S93dS4Q6o1ZYMotbl50v7eBNtvZHyjZHjuDhedqDvHjvjxPlsenWiAZ0tBP45+DJEnmHy4gnhzz1wT9btlBoleszW2ObybkrFtZrulz6tqDrrunJ7qjChJBEzSMZ1TFMlxYQNv38efkzJx5USgeB71503K+cTycpEzCnNCr6guTTF5ecdzz1r/oMyql6j3XbJFhqr2PoP6ZoyMvVtmotlm7FcGct2OSEV4+oLq8Vp9z+5DZCM5CrgTaz+MXcPF2rGGR7r7Q++jGW7XpOy5oQNjH9D+7UzKpYjg2vy/Jbd/LcrTueY3hT//2//TBkCr/VyK4WQbrDEnd705++C6o1UYJC89gymEIGrMGFqnH3aYt4YzHsr6/DEXt0tpRIGuqaK+NoSJntHSyo7ThdBrK0ZYReemlinvgi+8fZrkjTTd1FW3XgyMNzq0/AFVcMxNDmFgQoH92fL2PgZgxXbbWhgYHJ3sY/ryJo9ZaFsUyjbJGNVYVFf8cHPPlRaedXXqLyaaJ0+GZGROQA02600K/iaTJpixUkLueqCE4LjLepJ0ZY0yXnK0Y2k9NPJ2IQmYsWyHQhDmoY+wcD1diZ4bUD1c6m/f8fyyl31/Udf4ZrL3l4z1p2ZPIWyPS0fvAz9dByJFGqHIEw9uCaPbNzO+9+xJDBO04lbTEajybA+nXY6RkrX4F8efYVSxQnJ3gh0TQtiNYYmKFsOHSmTE4/p5ppLT+YHP3mF8ZJNPKazd7jgZeyFdkuuyppzvUSKcBzKv3aToeIyMmgr0cp1CXZ63s7O1DQ0XQSTftDKwvvhuyHDOyc/iSOcIj5dz4ErJfo+9v6czOgVQ0kg/iU1tGpzPFeGXYeShT3pfRrL4U5kZPYzk+1W6ncWQNMOlWHqdw/X3vVzJcLJRDn5pfPTNfn7vrzGWK4cSNB0pM0JBu7iM5dx15rNXiOs2veXnnuuULa5a81mejoSJEyNsYLF+CSS6q3iShjKVq9BNm+xe6jAlu2ZmjHMNtVrpxIPZtZUS8Vuqj17pJdWXV1D++8zOl7BdeGVHcO8+5RFwfdkJFvGctxa110Qf9K936s7E1MTWCFXmG273k+JM8OEgqpdbSzY2gwR7PqUsra/M42ZvhK4huFJ/AhEdXcUckPW7JY8I2VoorozlFVjVk/9998nOUU3znojJITwjIwT7Mp1XZBOxrjivOUtX48jkcjI7Gcm2600ipFMJU3x0qt7eOjJrTW7IsdRyy/NE1NSN5oqJmxLmjVtmP1d0N7hAqah05FWelxQNXD+zstXMoaJiQT+vONKAqOo7dtiswbXhaExlT4s3eapr/tKTZBa4qVUzzy1WKKuvX9NswULx0sY6EybFEp20I4BlLjl9x79T+a1xylXHGzHRggZCDy2UmakaYKeNpPxohP8rmkCw9CI+W4977H2pEG+7ASGx99d+Lslx6kqhfsyS9M6f1lVpphasKhKOCtR0wS6qLokY7ogZgoScSMURxOh/jP+rqm6w61Pl5dSkowbNTutsMHyU5bVztMrunWVpI/tyMDon/+OJVHQfwqiwH8dcx34v/67L3gd/KozsJSSQsnm6gtPmNDgy5fEL1nuhESAzX0Zfvj0dvCKL/1+8Ja/0vKr3WVVMHJhT2pCLxSA7z/6CiWvtWxHSk2IfnaY/w3RNa+2Ihj3nF2mpvjCipO9taExIenhQOFPUoahY3sp4bbtoGsai3vT7BzM1eyQqj1yYOn8tuA7UN8SYSpScZ0OT4dvOFtqGjfx3T7hHVL9jqm2p5EIJvGwMoLtuDWuvAOYO1MTR9GEQPi7PKF6KfnxsrBxqk38ECzuTVEqO4wXK1iWkiNqS5qkk2ZgOEuWkma69uOnzdq9EAX+I/aZyXYr9cJ9vgy9LWmYCLBhUz+GoVwOxbLNeKESrL4FBIrMMUNDolaD9TsovydJPKZTtmxs2yUzVqpKcYRunrmcuFsNDE81eSmhA41Wgt/172vqaudXH8faF3TP4Pm7F2mp9XxMV3GYsIHxYz+AV6OhPq/BkcK0J+1C2aFUKQSrf1+MUqA++5Kn2uwft1nfokb4k3XYEBm6hm6KwAXmd5f0ewz5u6GwYXJCKc9+lp+/S3XlzJMFgkWIlGr3VLP7a01xIptXmn4SdR9ZnsvRl5rRhLqfhsfLDGXL6poIEWT5+dddCBBS3ZD+zt53H1brxWZwkocQkZHZz1x85rKGMuO+kF44vnL7gy9ju7JpIkBmrERnWwzbkV6HSYEmlC9b6CLQIUvGDUrjZVwke4YLdKRVfUDM0NiVyTOvK0kqoWMaGtl8Jaj/MIyqy6D+Zt+XbCG/oVh4gp21ha+3Ct09VAgC7ZPNnTXuMUQglDlbeLWHQQGilErLrastTlvSZPdQASBoIW2HrPrOwVyN8sJ08WMYYeMhNBEYmJniStX4birXnZ/UoHstHXRNkIhp1cw8L5tNLYYkCVO1U2hPmSpN3hun5cjgexgzND747mMoWw4bftWvlBX26WwaozrcKoOSihtYjku+ZAefk7+jS8cNft8/ErRNT8aNagJEiKC+CWVcqv/3FoWaQEegxUx6Og4v5ebIyOxnpiMzPlUiQG9nglxJ9S23PR+xKyEW0+lImWTzFmXLoWIr3S6JCkKXK0U622Ik4gYgPDVZgl42b+7NAdITjmzsFtuXG9v1EgXmAtuR7Bkpkojp2MXmRYmB6y+8U9uH2Ev9sZXBVxOkyk7y3Uyq8rxccbni8uVkxkpkxko1BX/15+NTHwebCfuzBsx1JRVX1myBwwWd/ndL1wTphM7i7hRxU8eVknkdmlK49tOqRXVn9NyWXSRjBumECVK1afB7EdV/V3UxMRtyOkhZ29rCqivlyhVt/vl/vxL8LoS6j9IJZXTSCSVh4xuhlPeY/3s6YWJ6bTktoFL/BocBkZE5ALSqdTRVIsDFZy7jh09vxxYOuubtDARBM628p048IRsMVWGeslwWdieo2G7Ne1RlNITSP5vF4IvwKvjdVvrqzuT4qNqT8bq+OH6fmY6U6aU9C+QcjcFxlSK8E3L51GemuUjuXb8Vy7Kb7grnujfN/qZ+V+l/rRIxnSW9bVz78dNqsi+Rkr0j1f4+/m5I1wSFoq12SLpGW8x/XC2Wws3vpBtqCR6KIzVC16pjnNeZoFS2+ci5y8kXLfIlizf35nh9zzjliqMSEEwdy3ZrlB+kVJ1lCyWbwRavi2logcH50jVnTe+iHgJERuYgphXXWmdnioee3EqhaOFKJ9iyj+XKk6Zogio+u/CMo3h+y+6a90jEdC8rTWDZzdWLW0WIajtk8LS55ii+o2mNEwMcV6Jr6pyFmH23WM0YhHK9TWbEpGTawfxD3eRoWm1DOT92WKrYDGTygPpO79iV5ckX36RUsWtO2t/JTJYULwSBwelqi2FL1cYhrqm0aeE9KdxvSMWIXO8xVVwpgfldSU46pnvK87IdN2iZ7v/Ml2zPONkUSv7P6mPhhm2W7TKaq9QoDBxOREbmIKYV19qKkxZyTG8KqC3ynKpK3OelrXtrijl7OxNcef7xwfs6jst4wapRCwjrok2lZwVe4Z+nsSWECrCXW5xdW5EHCeM0aFTi7xT8v+maOq41RzsFFXuZqOMV5kBKF80GM3HdhUMVvjHQvEp6/zPe3Jfh+S276WiL0Wsk2D1UCOSIWokDSolXpOp47mAC9++8ziSDngBqkEXnFZMaumqjHNcE7SmDVNzkwjOWkU6aShlAqsLXbW+M8vzmXQxlS3SmY7znTxbztmXddKRjdKRjLV0Hv135RIO07zVlByORkTnIqTc0Gzb11zxe/1z/8eu/+0JLzcH2jJSauu/CCQhh3bJKJVxIKBDeCtCnkeEJJEokXo3B1MbJD7qOFyc2QmsVEfopUcZF15Va8FzoatUatMMXgQpWqzqi1q5iTaKHZwx0Ta08dF2wuS8zIZW+q10pY7eCpoF0CWqCfHxX6Vi+Uq3r8uqOHGfidyCb11h11jJOXV5tLCgE/Ocfh3n6129imhoL56VwXHhx6166OxK8ZUmHajvhSmzpVlu1N6gtEkIE8c95R0B75sjIHGCmEsScjp5Z+FiFUnNffy1yyjFcfOYy7l2/lVLZxnFdTEND4mlvSTB1nURMBPIxkxkPFe1prb97W9Lkzs+9l0efe43HftEf1P9MhwnvIiWdXnbdnuECFcuZ1ZoOfRY7OtbTLAljwvOYe9eaCxhIL118+u/mj9GV0Jky0TXB3Y9sCT5j23YYHnfpaY8H6dBTvYvrqUpLKUnGdPyGeboGlsMEF6kIbcfUDltJ/M/rTLC1f5TLQs+VEn7ywg6KFfV9KXvSM2XL4Ylfvs51q99Zc0y/qDMs+RPUFoV2Rq6X71E1RodfPnNkZA4grRiQDZv6sR3JeKGM7bgYukYybkzQM6s/luNKinU+7XoE0JGOtWbEgtlN3QTJmMH571zK1v7RwDh1t8UayvWH0TQ/sUBVVU/WqKvTKwq97Jy3cOziDr7/6CuULXvGzbbUuwqGsyV6OhJ0pGMMjra2Sm4Vf7Xu98MJS6FMlw4vlddnOhIwUE2PldN47XRwJWhSYnqp7s3wd631xs/UBY63KBn34hG+IVUFqZKR8fK0XIuLe1KseNv8mu+loQnyJZti2UbaLtIzWOFr4hctG14hdCMpp2bZnoOh5/rHDIpB9cZGo2qMQuoELrR53/nDicjIHEBaEcQcyOTJlyyE0FQdhSPJ5ss4dav6+mN1pGNULKepOKWuKaHMZNyYtBbHP3YqadIdyt8vWw4v/X6QtmT1pnhjMD8hZlOPK8Gx3aAIbdIJKuTEP3V5L6mEQW9Xgjf25Jpd0oB6d1xn2iRm6gyPK4224bGiFwCe8lAzwpWS+Z1Jxjw3ozvN+I8AYqY25fMmY+JEStBiejYMjytBOnJKFWL/c6hdpqhrlDANOpIGuaKFLmrrp+rja812aKoBnFq0lCoOL23dW/PdyeYrdLXHg5jJWK48Iciu4oWSjnS8qZTTTGSfmnkJqsZIeIsuQIe2ZGtxnUOJffsWR+wTmbFSUKPiU7+KUjecCKqFNa+qq94PXn+sQsmiZDloApYtbKO7PR60QjZ1jcU9KT79wRMpVZwpx9BonI7jMpDJM5qvBDuggUx+SsmXmtiMLVlxQuNU7o6UOaEpWMLU2D1UaMk5IzypHVCGs6s9QSph0tMeR6BKN+qvoQhVZe8rUqrJL25oLcUshJd6Ho/pnuYcDGfLzOuIz86AqMaJZroTbITv8tKDHWprmIZGT0eCay57OyXLxdQ1FZAXqntoOEnA0NRnqdXNVrqmYjkJU71W6cNJdg0X2TWURwgYzVcoVhzGCxbFsspia5TF5biSdMJQGXChDM4wShfQpWw5qCZ3TtPnQtW7EL5HHnhqG5v7Mg2ff7gS7WT2A81WM62sjHRdgO03R/ImcOE9HqL+WNmCBVLJ9pcqDuMFdWOZhk53R5yyt3toZQyNnjOWq2DU7cIMXZu0MVk9jit5+Q+NbzjHlTVj8DsWOi3mPrsShOeiCcdyUgmTsVwF4UrVwdN1awzfbG5sDE2oFbqnnWXXxWoMDdrTccZyZdJJg7yvnC1AesWH7z11MU+++MaU6egzoZXki1YxdCUzUz/OcBzJD8BL7/GzT1nk3Qf92I7LeNENvueaEEF9lu1Co5x3Px264DgYXnp6ObQwGRwtBbucsVwZISZPyCiUbBbPSzctjp5OIbX/vOm27jgciYzMHDNZ3GWqOhiApb1pdg8XKFacQGAxGdNZ1JOqeR8/OD88Vgqadwmh3GZhyRnbcWu+7JONwTeOA5k8xYqqwelIx6h4Tch66lbZHWmTzFi55QA1MCEm4xvSQskOroOfdVS2bDTNTzqY/A18ZV0hVCZR/55xBNQYwtmq8G+E8AZh6Fp1YqXWiBmGxsLuJOm4zu6RYtAGOSzYONOEh1bQdY3OpKncr/v4FhWrccp2OEbhutWFUsV2Wff8Dl76/SAr3jafoWyJ9qRJsVztuzOdNOmwPlyY8PdkKrdNZ1uc670AfjNaLaSGmbfuONyIjMwcM9lqxv9CT5XZ9cBT20h4WmONDFFAKDgf9pP7k6nlqJt8z3CB9pRJZqzUdHUGBMaxqz2O7ik8O65kaW8aQ4Bdd/cbhh64qKazoxFMzMqSqG6cCXM72aJNyXLQQ9IifsbRZMeU3tbEN3oSZlX8cjLaUyYDQ4VJV8+lisvgiLeAqEvv9VfxTotCnzPBslWm4LzOZMtpws2YyhDUx2P8z3nXcIHnt+zm7FMW1QTrc0WLwdHipIkh0x3DVLu2xD7GwOqZSQzncGROjUwul+PKK6/kf/7P/8lRRx3FCy+8wNe//nXK5TKXXHIJn//85wF49dVXufnmm8nn86xYsYIvf/nLGIbBwMAA1113HUNDQxx33HHccccdpNNpstksX/jCF3jjjTfo6enhzjvvZP78+VQqFW6++Wa2bNlCIpHgjjvuYPnyA9tQaKrVTP3KaHNfhtsffLlmwq8vlmy0RfeD8/GYHogLuhKGxoo1wVTNa741nC2xeF664RhA1cbUJxLEYzpd6RjXr35nsEOr3wF98KxlPL9lN+MFa0JMpRm+L17TVWqz7UjPJy/ZOVTwmqJRU+mten4ILxNJnZvpGSq/HYGhCdUHRYaUqec6txeIm6rGI1+2g91JM4bGD2yVt59pty+Yhua1kZ76uWFjI1EtkHVdY2v/aM0u4tq7fj4tAzMrzLIcciueiiOBOQv8//a3v+UTn/gEO3bsAKBUKnHTTTdxzz33sH79erZs2cKzzz4LwHXXXcett97KE088gZSShx9+GIAvf/nLrF69mg0bNnDKKadwzz33AHDnnXeyYsUKHn/8cT7+8Y9z2223AXDfffeRTCZ5/PHHuemmm7jxxhvn6vRaprczMWFV32w1s7kvw73rt/LaQJaR8RKvDWS5d/1WAK5f/U5u/+x7uH71O5uKaaraApV55qfQOqEAt+/rxnfeTOLTmiop4dTlvVx1wQl0pWMUSjZd6RhXXXACl53zFs4+ZVFLsvGaJpSEDQT94/2xJkwtyASDiavUsDvM77luewZF11Wfetup1lZMVb8zWwihdqtjBesQqXgQjGT3zX0jPemWab0m9P96F9Lmvgz54v4XityZyXP7gy/PWmC+2T1yJMVjYA53Mg8//DBf/OIXuf766wHYvHkzxxxzDEcffTQAl156KRs2bOD444+nVCpx+umnA3D55Zdz11138fGPf5wXX3yRu+++O3j86quv5rrrrmPjxo088MADAHzoQx/iK1/5CpZlsXHjRq699loAzjjjDIaHhxkYGGDJkiVzdZpTMp3VzJqNfeSLFYTQ0DUNV0K+WGHNxr4pv5i9nQleG8iClDhNsockajI3TZ12rxFamPpiTttx6Wyrxl3qjWMz//TW/lHSCVWpT50aAFQzv1IJE0MXvOP4efy2bzhQKBACSpY7ZVzHdZXQpO+/13UNTSj34H6wJzX4QXQpqaltmc3g+lzgu1L3pYBzX4Q8De+e6O1MsLkvw5qNfQxk8gfmmkl4bSDLXWs2090eRwjBWK4MCBZ2J7jifcdP20BMJ4ZzuDJnRsbfXfjs3buX+fPnB78vWLCAPXv2THh8/vz57Nmzh5GREdra2jAMo+bx+mMZhkFbWxvDw8MNj7V79+5pGZl589qmf7KT8P757XR2pnhk43b2DhdIxHUEBg8+vZ2nfzPA5ecdz4qTFgKwZ0S5tvxUUF2A4wr2jBQn7Zj3eqZAyXJbioNICPTIFvWmeT1T4JGN2+nfnVVdONMxutpiSGAkWyLn6Zb5RX3Fss2312yuGXc9wznVk0ZDoOkahg6O42B7kh+gAv6G4XLJe97CJy48kZde3cP3HtnMyHgZx3WnNXFJqgq9cGAm9Wbv2cpYZqNCfzrJFo04UHawIx2jXHHYVc5z579vPkCjUIRrh4ayShhW09R9uGu4yD//71fo7U5SLDss7ElNeg9EVNlvgX/XdSe0HFY9Iho/3mgL3mxLLqVUWUd1r/Efnw5z0X75mN4Un7/i1JpMs4Sp8eaecb72r78iEddZ2ptW2TcCJnTEljA4ON7w2K9nCtyz5j/Qda1lAUGlG+WyO5Pn7+/9JSCCIPlYrhzIqUtUAFrgdWpExT0GR9R7Ntv697TFyPjdHOvCMq4rg/oGUxc8tel1FnTElSabgM62GMMzcN+4rsTGabhrmquCy9liX4dnhD6rGR9D9+JX+ziW6SJQKszFOUjRbvRek51fWCHBR0ql0YZUTcuswTyL5qWmvAdmyuHYfnm/FWMuWrSIwcFqh4XBwUEWLFgw4fFMJsOCBQvo6elhfHwcx3Fqng9qF5TJKL+pbdvk83m6urpYuHAhe/funXCsg4Vwpplfu+JKScVyGc1XQlpHKj6hfsLC7uaB2Uc2bg+OOZlbPPwn09BoT8UoW0rIz5e1kBB02czmK15fdNU3Q6nUCsaLNnFTR9e1QKwzzOa+DJmxUtMVvH8jO45kLFdhLKfcgX4MKBk36OlI1Iy3VXe/bwjDtDrvTvYemlCT8MGK7bbeOrnpMQ6AgQGVeNBqgshM8WtEpzo//zsQTrv2/+8vXhxXBm2xm90DEbXsNyNz2mmn8cc//pHXX38dx3H4yU9+wrnnnsvSpUuJx+P8+te/BmDdunWce+65mKbJihUrWL9+PQBr167l3HPPBWDlypWsXbsWgPXr17NixQpM02TlypWsW7cOgJdeeol4PH5A4zH1hIPp1doVgtqVzrY4eDUSrlQ/0wmDK953fNNj7hkuBMeMmTpesfgE/BvMNDQW9qQmvbErloPtKOkXw1BdN6V0cRxJueKwe7iAbTsT8v39nVo2X2ke9BZVH74fI/J7ieweKrBzMEc2X6GzLRZIz2hCTBlEF+BJtosgEWA6TGaM/Gy1ueDgNV37h9lUH5jsPaZCE8rl6musAYGb2EdAjbrzkVjzMhP2m7ssHo/zjW98g7/5m7+hXC6zcuVKLr74YgDuuOMObrnlFnK5HCeffDKf+tSnAPjiF7/IDTfcwHe/+10WL17Mt771LQCuvfZabrjhBlatWkV7ezt33HEHAJ/85Ce59dZbWbVqFbFYjNtvv31/nV5LhPPmw+2S/S9ue8rEcVyW9KZbqigGWNijtu6Bwqt3Q+kh5Vot5ALobleB/HAhYr0bwU8pth0XwcT4iOO4jIxXWNyTDB4LF0z6ariunNg3JTyh+EYE1IpWeAWIlu1i2Q7JmEFPe4yS5ZIwNQaGCk0nDIl6Lwe/RYBGsaKSBzShXK3TWe37tTt+OnU6btQE9GcLTTv82wIcDDRym8YMzTNybtDCXAiJ8FoGgHqNH+uUECyyOlImuq4dcTUvM0HICQGAI5u5iMn4hGMyI9lS0C65pz1OKmFStpygDqVVXs8U+Pb/+zL5otoZQTWba157jGRCaYAlTI1s0SaVUEWd4WZQUGtohIB5HQkyY6VACsRH00SgKqwJSMQMpHQ9LTAXw2sDLZlovOrRhO/vVjuaQPpKCAxNsKArwVf+8qzg2t33xO+DgGyYREyj5Emv65oyKCrBQRI3NTrb4gz71zviiEQwsTOn3wZc11WdT3d73NM18+KQTXZZaqesvAyfXnVSFJOZgqjifz8Srq6vb5c8ldheM1actJCOpOH1epEYhk6Pt8qqN1jhFOUF3cnATRV2B6UTBkcvUBl2tuNSrDg1ch2+AfZl7MuWo/zU+GKJMtgBhAvvhFApxuGKe1eCLqvFlL4Ei+tKLCnZM1IMahYeeGobpqnT2xknm7eo2C6GLuhuj5MtWIHCcNA+13tz04vztCXNw7a9bcTU+K7ZMLbfPM9V7QrGCxZ4HTT9fkOWrfTU/MxF1a4ZTEPQkY5NamCm6tN0pBAZmRky0y9QOG9+tr6EJctl0bzUhMy6en9xfc7+o8+9xmO/7AdXYuoaybiOaWhcfOYy7n9yGx3pGJ1tgoFMvsY4+HL+vvGAqpFyXDD0qqw8qKB5d0eCZNxgaKxIrmgHitB+C2RVOBoKYHuG74GntgVB1ripEzd1NE1j70hRJSl46ga6JpBaNYkB1PgKZRszXyFXnLmra65qXaajzRXReGccj+nEDW3Grkx/R97ZFmdorAQIsvmKaoHhGSHHJci885UjFs1LUSg1LxidTrPBw53IyMyA2foCzVah1kw1kvxmYI0VovsZzVdUnKMuaOD/qmsTWw6Acle5EuKmysJJJU1ihkbZcihXXNJeUzXbE0KEWr0uH9uRZEaVoeztSoCpUyzbNSnOvpyJkBLpp1kbmrejUmKi5TptsOmg+XGjKV6uhfTRpkPYRRk5rv+/9r40Sq7iPPupu/Xt2z09+4xGEgNmWISNZbDFEUKK2YIsLEvYoARZ3hKZfMGfDcQngSgE28cEYqzDiTEBk2DjnJwAhiBjIAhkMEiOkUAGYyP0gaJobDGgZfbp7fZyl/p+1K3bt9fp2SRmVM85tlCr+3bV7e56q973eZ+ngHp7hyzLKVJerudaYU2CC+K/TpaYHbLiyeP4DaqE+Jsr/nr+GSfS+TKR2iCEAnMBIshMAu+3L1BQVcC2HSTSll8f2dM7VHNM1QIdv2Y8lWcOfyh2d+TqxqXg3fetsRA+d9kZAIrFN9MZy++mBuCnJGoV5SkKxADOypNleEZgTF26EPjgq1DbjoN83pkShYtbBlQDJxV0tYRxaMic0LWDl21pCCGVserW65rrQanS1IKPsSbJwiZHGcf2uimqIWnmocgyOrzgcHTEhOO4fl9azFAxkmB9YmbWqqrSLREgHVAJrwShwFyACDKTwLH8AtWTUuN/37L9AAYSOSiyhNZGHbZLJ31E58+/9/G9AABVlRHzrGFHPEvc4O85uFuklBY1qQXfe/PDrxedumIRDcPx6grAnB0HEIx5agDEozTHIipylguLMi4+d9nkgpqUj2mKi3G1lxMvzZLKWLAnSXPm8c/y3ELrAadon6g8BgKgIayiqUHHewMpltKi8Ju4y55P4PkpEYRDhdN+MKhQ7+TL7Sz6R0yosgTLKZc3UhW2waz1mxIKzAWIIDMJHKsvUDAtB1BfV2l+WwTrLuop+pIv7mnDtt196KDwx2VmLcRTedz7+JvoWdA44ZrP4p429CyI4d2BFDI5G4NjzGlTVSRAIkW7bkWR0BTVfMLB4p62igGyTMvNcjBucoQAhi4jm3M9nxWC1kYdmjdPzspbtbQb9z6+Fy4tbk6caE2lXntiSoHRZA5GSC5LKY4HHk80jQVvM2v7DLlqz9dU5rI51cbL2Qau8szYYGxzk87aCGk26+Oy3ZqMUNfbbSgSI5XkLOYGy1NhjktxZMhEZ7Pus8Vuum8XDF1B/2gGtu34/TwEzPiuszlc9f0AocAchAgyk8BMfYFKF+WUmffplaOpvFdoJxgYzfgnlMYhE48+tw9D8SziqRyaGkKAKsPMWhhJ5nxflYnWjfhYfn84jnzAOIYxylxoXlBhIphMNoilLgqGZ5XqVp+77AzfuuDQUBrZnINYRIMiE4wksmU9I5LXjJnLu+hZEPPvvSyz3WfS87lJZywvjQlIVILjOkVjroXSEBd8viKTcZlpOduFOTaxUyx/i3zewbDtVDJ+LEIkrICCIGdNf69OLRxPgU9VkdAYURFPW+hoMeC6tED9BzAwmikimFQDgZdO8yr3CmGbg2zOga7JsB0Ky3HRP5bFwSOJYtdaRSqq+VAA8XQOF36kq+Z7TtRFcy5DBJlJYCa+QJUW5YEREy2xEJIZuyDTT+AXtbfs6PV7bQxdQSKdL9QufKl54h/vg3UjrnjbP2KiVGU2OBarJCfDawGWp9Cseswey3aRyzv40toPYnFPW5kfTalZ2+KeNnzzgd3I5TNerpxJ3fDFnDPXOK3Zdl3/Hh88ksDzvzkEM8sCnKErrMchnYfjAOoEv9VV02Fg5ANFLigOBJ+rygSWQ73a0OQxXoDhBAvbmXl9r1KMR3pob2J1tkzOmRaRT4kQtMRY3xjATqmA5TUA58pOl/W4cfO0qaqw31bU0ABCYGbTSGcL/VWuy5xIT+mKYVF3E7a+0ldmcqcqLKW2r28Ma8d5X6HAzCCCzCQx1S9Q2aklY5UtyoosIZG2ihoVXcoWXk2RcGQojc5WA7InAsrEJXNe7YJTgyliEdblz+tGvDufS+sDFIeHTfx469vYuPosn9jglhRSCQDVsy/mjxu6CkNXkc7kEU9ZePC5/Whr7ENff9KnJCuyhFhEg67Jft1qT+8QDg+lfdVp26FIZSwonlJAW6OORDoP2/PG6Wg2/AD44uuHYNuOP4ZM3kE277B+GEPFWKq8YXMyIBKgSuwz0DTZYx4VKNd84ZqK22Y9CzPxpIeOZTMpP8GMd0oYSeZAXYoFbQZO6ojilbcGJh1sOMMwnmI6forC7vmC9igOD6YAELi0eED1vhcP0keHTYzEGf09eELj1HuXutiyoxc5y0E0rGI0yb5LBOz31RgNVWwPEKgOEWQmian0uPCTgu1QmFkLo0mWJmqMqEV1nsaohuF4luWiKV/wWdBg3frEk6hhvxZDV0EpRTzFUiquS0EkzshiHc9tjTq27OgteLeAN1GynhI+J+KlFIKgKNgXB4vUbA55yBKBoSs4OmLCzDmesKTkO3E2GJqfy962u8+fF8AXNQIK1vgmSQQdzWE/FbnkzHZsfvh1/O978WJ1AG+eo8kcwiEFDdMYZFwXaIyxzyCma0hmCgscr9s0e5/RTKaUbM82+1iC1Elfc12K1lgII8kc3guw6ybKfpMk4nflA8BIIof5rQbWX3YGGhsN/MMDr0CSyLQw6vJ28feH/wYchzUSHxpMg0gsA6AqkkcmIMjmHTTixC3gTxbHTCBzLoEHibF0vqjeUK+j3rbdfbAdiqSZh+PCP4nE0xYyuUKDlyxLmN8WQUeTznztCdMekyQCx3HR2ax76YQCFEVGZ7OOiK5A4g2PtovheAamR7tkKbJC8Zn/aTvUD5psN1k+dv6QIhPkLMcLakyKo8mjJmfyjm917FIKAhYgU6bl162G4lnEIqqvEsB+yBTUpVh9fneRm+Dys+dh596jLB3mrealizoPfnnbRVhj0jmKTKApUhlrayILNv8M5rUYMEIKQqrkaa4REMqCJy8ITwZMmHH8501XDPP7fsZBveQCSpn3ilki1V+3+rX3p+tV512Xoqstgo4WA1GDEUiWnNWJ+a2G5+o6PaKiwenRwJ+OyyWRmBisZbue4ypLBx8ZSmNgxEQqY02bg+ZchzjJTAJT7ZNhzpMWuAozUEhPjCVz0DXZ38Gvv+SMMqYWZ1IBwCMvHIBNnCICguI1QIY0GQnTgm0z2m82Z+PB5/YXqSCX/mD5qez7W/ZUXSgiXg0kGlYxFM+CUooWr6PfzFpFhVLmGcRSZpoq+XMxszZylu3VmYjvMzOvNYy1K04tyncH6zu1SgTxVA6qImHleQvx4uuHkM7avnMmnysNvF6SAILqwpmyBGbkFlYwFM+i0VABwijX3FVUU2TIKsoW2XohSZVpt5NFqdZcKYj3RZvOg9d0maU5LhDSPEXxkpaAdRefhoee3w/LdpHMWHDGSR1OlrAgEQJKyt1cg38frz1AyMkUQwSZSWCqfTJtjTpGk1n/BAOwxUbyaJJm1i77clarATU2Gj67jL/mwef2w9AVEFWGoavI5GwMxzOwvSL5aLLwoyltcOPvyWsvpZAI+5GZWRu3fnkpgELvC2e0BeFSipZYyKc27+kdwo+f2YecZTO5DlAQQhHRFeTyLuKmhc0Pv1409+D9VmrUQPKWiz+7fBEW97ThlK4Ytmw/gP7RLGQJaPFy6SOB4jErGtdYkAlB0swjm7MR0iSMJh0AzE+EkzBiEVagnmyQ4QFflthmZSoF9KDMTzXwfhB3CnWkmQTvxapk9Q2wjVz2aKJqkGmNhbw65vjzY+m5YgWL5gYN8bQFt8rrmxpCCIfYd5FvLPm4huLZIiHaE11OhkMEmUlgqn0yi7qb8D99Y/4PQZYAEIIGQ8W8FmNCKsxLzurEyW3F8hZcEoaPj3fJq4rk9ZiEMTjKGiD9XT0B1l5wiv9DqJrCIaRornt6h5AyGROON07y3bTs5dnjKeYPs2ppN7bs6EU6kwchEmSJmaZRCk/PDDCzrB+IkxCK6KSqjOaGEAZGC82bBGx33hoLgVLUDMqbH34d2byDdBXNKTZ2CTFDgeUC2ZwN6rH5kqbtpbYYpZxL13DNrHplUCreUhSo4Q0GU822PbmcCV2HYFxyANOco4gZKi756AK89ObRY1bErlSnUZWCKKoswReLNTMWFIngpvt2oas9ip55UezrG8NQPAuJSAAqB4GxVB6xiFZWT6wE3gsVUtkpeX5bxDMPzFf9PLmuGcA2loeG0kWs0KPDJhzXha7JvrnZiSonwyGCzCQwlT6ZPb1D2Ln3KMIh2d/9Oi4Q0Zk45aLuJmx++PWyo/ZEjuCl47NsByDE3yUy5g47EaiyVERf5mN0nPKUAwGz+uVzDVKdW2IhDMVzcChTqOWLpWWznTlXALj38TfhpwmJBFkq+HW4LkC9vLxlu9iy/QAW97QVzUfXZCieyrMksZpLLKJBkgiaIlrZveb3jFJa0SYgiPmtBm695nx884HdSI5mkPe68GXveMC9aWywGhAFJkUrLk1pseDMTkbMPz4MUFrTP6cS6n2uLDEF4bUrTsXaFafimw/sxsBohjWxesVvgJ3kJInAHkf2pxoqpay4wyj//LpaDeRt109LmlkbuioBhMB2KQxdweHBJP7f74cQ1hTYDi2rQwbhuBQNhlpXkAEK47Md6vdtBVOqQIHeTMH8ZN4bSEFRmC4eu1+F1Dm7T6QsGJ3IbDQRZCaBqfTJ8HpOe7MBM2v5PSaUwi9wlzYwHjySqPg4AFxawX+idHwhVYGmSjB0tZDS8nZwzTEduZLUybbdfYgaKpJmHhIIc8X0fmQdzWFfbSBYKwmpMpIZG7bNKMeN0RC0nI2xZA624+L+p97ygwPxZGJKQUv+PDxsls3n8FDa6/qnUCQWzKRA4OMIBsC85dSl0ts/mi2iVgMssARrWFzPqtKSG1xAa6F0web9ITxllrMcyJ400OAEmzzrQamC8LqLevDjZ/YhnbV8C24AiBkKmmM6BkfNSaUDSwNM8F6yB1gNcn5bBOsvKfRocfO7vMUadc2sDeqyLv96bLD7+lMTGidTrnARUlndsFRdOSh86pMDLLaB0lXZd6YFUCayCaDs5H+i1WtEkJkkKqVj6vkCBesLvMeEUgoza2Nf31hFQsFzr76HWFSrSDS49PwPjDu+oC3yWCrns6HChlrxOD8Uz6LBUFmjZToP2yG+ojKvw5TOBfC0oJI5WLbDglkiy+oeBIGeHL7YsGBUazkOLlJ8bA89vx9GWAUoxUgih+F41lukzii610FyxsBIvcKV1KdWV8vp197Qk7pqAeWvYqKetgNYNvU2EzIyM8SLrpTatSy7rM6RMC2kMtbE03ben7VeJnn1LG4tEWwCzlqOL37J2XuF1xEo8viBfKJgVhOAZdu+nD+fd+lpnqfZIroC12X309fiK9FDC2Y5TlT5fxFkpgn1foFq1XOqEQqyeRttSmFRyORsxFM5DIyYuPm+nbj03PnjBrzT5sfw2v4h/wcrSQSpjAVNlYuaJINjDIeUQpHT0wcLIjgXfipzHAqJEO+HxjTXKqVaKOU/3voXi2DgUBUJIU3xm+ZqBfN6FklCmJX1UDyLkCYhaY4fLEo1znjNoXSRGg/B57mUIpHOgVLq9zfVHDcmXgsqPfVt290Hx62s2VbXvUPBqhooZy1WGmNrow5DVxFP5XD/U2/B0FmqTFMlX6vM752ixWw4iTDl7Vpjm2iTLE+FOt6pRZEJYmEViXTefx/iXRdg98WyXWgqaxjlqemgyGYpgaeWCoYIMgLjol5ac616zrbdfRUDkK4p/m6J+6lQCqiKjNFEpiyYVQp4vYcTiIZVmDnb+wGzzvpEOg9JChXtbOutOfl2ADnb1zCTJaasHE/l0BgN+eme4O6We680N4RgZu2iU04Q3I2Qz6n3UAKuV09qaQhB81IVlfLdwQA4ETordV2Y2fLUUCkTCSi/pusyt07KV9kqu22JANGwiqRplS2+fAccT+VnxMxMkYlvwcBrf/FUHtYEBT6DCKbYABZkZUkqSi3y7xFHwmRU93TOBiiFocswczbMHLsHLqWABF97D4BP93cp2yRVk/MhXj8Zt9xWZYLOFgNLzmzHky8drHlfqX8NtgmTJAluYB6O60KWJEiE/TZlSUI278BxWCovmPorxYkq/y+aMacJQ/FsUW4WqPwFWtzThs9ddkZRsyEvii/qbsJwPIt3B1I4OmwinsrBcVysPG8h2y1ZDuJeuovTZ3VNgSxLPpUSKA54nOHiuExdIGYUGiAJKCy73Pa51hgrzSVvMYqYqkhobQx7gpcS86IJPJ/Cqz9IBIosYfNXLqiZY+9qYeoAT730e9z7+F5YDitA5/IOjgybGBxN+/dp88OvFzXHrVra7d+zaFj1Hw9SfHljoqZIaPN6H8bSFlNKKB1MlTpSELIksR2xRNAQeM+ySxHikRXK/81xaZEd9niYSCAiABojGrZsP4Dvb9njs7WmEmAqjokWAgJHaRoxl3f8k6/rAkPxXOC51P+cHAoYYRXLPtgBWeJpTFpTdZlSeGQPttmLGhr6RzLY9uu+mvcrePKxPYn/0nkwNiT1/11TJTQ3hFg6W5Nr1ljaGvWytgCexdjTO4TND7+OL9/+fI0Rzk6Ik8w0oVoaTNfkimyxSumtnXuPstNG1oLtOEhnKFYv6y5ysBwYMaEqMmIR1RcRLA1mlXZMqizBdhz/NZxwoKtK1QBSr520oStoa9KL7J9jEZab5rv/IFWaUmBeCzs51WIKLVnUgT29Q9j6Sl/FWoeZY+wvfu85SYIvnromA5RCU2W0xiSkMmzO4ZCClectxL6+sbLPDGCsp+AixnbTAKTqzY6qIiEWURFPWQhrMgu8VSBLTKJEkeUiteipQCaAJNdOEVGw7vyp0K3rBaXUV0hW5MoOqsFxlYKApcWaGzT833Xn4OQ2A0s9UdfDQ+mi5tpKcF3GktM1iSlrOBQ1vmpF4+BpT8dTofCyvuy61EupUcDw7MqZHQCrMf7Htn1obzYq1mWrZQgWdTf5mYeG8NxbkufejKaIf31yL5Z+sHPCOdJKXyAzy1IBnIpZq9DHTx+GLiPm1T5yluOrvfJFv9T0Cygv5PJF13Fcv+OfZ8pzFhOS5BYClQIMMDEWTKUAqygy5rcaACF4bzDt1ylkSYKuyVh38WnY0ztU0wly596jeG3fgL+7r4aRRA6KIkEmwFM7D/rKzbJEoGuy329Tipc8z5AgiFdwLj2BAcwoK2laFdNvlu1iKJ6DLBM0NYSQNK2yNCC/pq7JaGvUi2ykSyFLxE8b1VPkdrxiyngd/8H5zAS4cjbre5HQFFHQ3mxg/7tjUJXafjjBoMFqRMz8bslZnXjhlT9g2+4+9I+Ynh6eW6VTpoAW73MIXnm8AKt6Fhb8JEQpqx9ZtuvJJwG6KoNSF4auYJiTW8BOYMPJPFww1mPp770aK7U08zDXIIJMCRIZa1KMj0pfIIUANkVdhb5687WlwSybt8vSXauWduPHW99GOmsXpYc0VYIikYqKAkHUQ2IIBiE9QPsM7tDWX1YuiVNaCNUUqWLjoa7JkGUJ/aNZqLKEnOtUZC2x1CFlqTFvMXYp9QIBRTpr+/02pePg8j3B4MhPMKULUYOhwvWaBmvm9L06VypToEwXLWxewyRvyK2GgoI18QNHa6POUqhVbIZdr/dkpk4q411X9ijlsYjmfwf4JoZvjmox/fi1Fc8rqLPFwLbdffi3Z/fBzNiIGqqX5q2vxsaFS7lidvA9ggietCilMHQVbYBH9WePJ808JE8RQFFkDMezGEnm/QATvDepjIVYRKv4e6+UIeAKHXMVc3dmk4SmyH6NYzKWxcHX3FRhp1xPoZqjEtW0NJh1tUfL2GWLe9oQi2jI5h24Xq2ENyxGw2oRDbkSxiMxlAahvM1qMtUCWLXU21A8i8Yo684uLeLGIho0r6ueVln4ObhMe+Hv1Gd5SaTQ/1IaOM2M5RdpeHB0aaH8EryGmbURCavjLt6uS31PHH7iKUoZUiCTt7H1lb66lIr54icR5lOfzlg1G0AbDBUJMw86jWUWWfJOoCGlKuNNIsB1V33YN6NzPB+ebbv7sPv/HcUfjiRqnlqD4HM+PJxGzNCQ877HbKGX6nYh5YGo1K6i9JYHT4quS3FoMAVFlrwTC+vlkSUJjVHNTzdHdKXI+yh4TTuQstQUCYeH0hVT5hyVfvtzCSLIVMB0MT4mIj8zERWB4KLd3t6AwcFk2XOyeQexiIpkxoZlu8zMDMDAiFmmDVaKw0Np5CynqhdMpSAEoK4AVun+tMR0DI1l/AVeUSSEAwtaPd3mwR4P3gdEvfw5JFp1zAoBoobmLwADI6bvceNf2zvBMJqtBUqpb8dbCy4tsMU4ZK/Y71smoLYeWxD9o2bNe0EBJE0LBONTfOuFLLF5djQxVYgtO3pxZDgNQqSC54wns/Pgc/uhqxIchxXGc5aL/e+O+Z9rPS6WQRAQJDMWqJf6pCBT8u4Bxj/huZSdCG3HASHAFctPwUtvHmVagEU1x4LBHie0oAJhI2layOSdMsV2oLBhDP7262k2nW0QQaYCpssvYqKBAxhfRaA05XP1ykVl2mUAoKsSjoxkvN1yQVVWkUnN2tCe3iFk8o6vimw7FENjGT8Ns/nh13FoKI3mhlDR6yYSmPkc3jmaQKbE156CFVRzloOUaaHBUJHO2lNaXBSZVE1Hmlkbt274qD8mQgo1DVYTYaPiEjaEEDhOccqsVhpJIgAlBNR7Da/5BOdbTYwxCENXkDLtouBXCr4GKjJB3qqvBjEeXJfVJLKWi227+7DkzHa8+FsL2ZxdIGMQ3lis4PBQGrZDvZpSMW25wA6rD8GASrwi/LECAXu71/YNVN0sap7uGq838hO0JBcaMVOmhUhYqZkyD/72R2vYfM9WiCBTgnwFSu9kMVH5mfEYXZVSPv/6+B6sv7QCL9/3zZUQXBLHE+3btrsPEV1BMmPBpWwHz3d37U3sx5bNOUhIeTRGC4Gm3sC8p3cIP976NsycXbWgnTAtNBga9BAjQQTrG5XAzdG41hgt2VEyFp1UVn8J0kcL91VG0rT9mogsAZGwhlhYQdK0fL+RIGotfS5lBXAbnG1V/Gwuyllr8SVgJ1OJsMK0my9WauayNISwE53tfeITPTlUAgWrMc1rNTCWzmPn3qO45Nz5PoMvaeZhuyyVlQl8pi6lkAP0CYpyGvNEUO886umJCgZeLugatBnnrQgupegfzfo2A6WbxU+e340XXz/E+mS8U78sAa2NYT9tnPbqM0FUa21Y3NOG9goyUbMdIsiUIBZWcVkVxtVkMF0+30FNJ0Zh1hAOKXBct2KwyOYdtMR0JE0LtpfC5wVVoPrJg5mJaUxSxizk/yWJ+PnoqKEilbGgh5QJC4Ru2X4A6axdO+1Dgf6RDFRFQtK0PDZR9TqES+Gp3jK5f7/znl8PwKFh07PQDaHBUMuaYDnbzsw5RYuz6wJ5ywbCLH1XmvYJdsnzzneJMHkZl7LFX/MCXOlCKUvcZC6MgVETOcutmIKTvBOlrsnobDGQydkYHM0Uitk+3dYTc/T+YSoBJjgv26UYGM3A9pp4X/ufQdz65aXY0zuEux7b47/GCXxGleYxlfFUOpEFP19+iqvHxoCW/Dchlc97rCZHa24WeWtBtU1kPWzQuQ4RZErwl1ecXbPR63igmqZTS0xHg6HWJBJ0thg4OmJ6xVLi53yrfdH567iu2nsDTGyQy2kArLjsOC4UAhwZMgEwJlA96B/N1unM6CKiKoinc9CU2gVRI8R8WCJhBbZbMLQivPCOgq1vKmPBcVzMb4v4C8KDz+0HIcVsJM7oYqZiBDZlpxBVJnApQUiTEDNUhEMKRpM5EEKQzjA3UdejizeEFXzolGbs3jdQNmbiDTDmBbxT5sXQHNXw8lvlz+UBWVHYHJjcj1xRtFJTJOTsysFqIuABBgCoS5G32OnJphTvDabx1Eu/x2sl8yp9y7ztThvTjV/DCMw7eN3GiIZ5LQYWdTfhv3a9MyFnz0rgadLOlgiA6pvF8TaRU1FsnysQHf+zAHynrSqSL8vC5cRzllOVSMA73hvCisf5Z34lOat6SjD4OkqpJxzI8sv9IyYyORt520UsoiFnu2ht0tHVFvGdAse3pC0wv8ZDYzSEmKHVbGwE2A7ZpS4aoyG0NIQKlr60kErjRIDWRh3z2yK4acNH/cVB12Qm5hlgI/FFSiKs+zvkSdgQQrCwI4qYoSJhWnhvkDGpPnRyk9+f4zgUTREVG1efhTd6R0DA6jly4NdGARDKUnn8sxgtUUgIggDIZLniA/XVrFXPZpqfsLKWW5d52XgILr7Uu5fBx7a+3OfX/GpeZ2rDAMAbM9l/VwqsvCly1dJu7OsbQ3tzGB3NYah1FtF5MAz+3fY2ZUvObJ/S2OtVz5jLECeZWQBetOYqx7xXwLJd2Dati0jQ1RIGCPFUlW3IHr00+NzS1x0eSvs9JxJh7zccz/g1ivG02ir1x3S2GDgynK5r9TGzFjI5Rl+tBcthvjiZnO013xWgeCs7BWNxcaOpIKU041lhE1SutyjeKa4xqmE4nkU8lfO12gjYYr973wAaIyF0thRScQCQzReK9aVpGQqKdMbGkjPbsG13H/bV6JtRPBp6Jmsz6XtK0dbIVBYS6Twcx/HTUdMlUFyNYq3IBC4tT//VQrunCDEUz048U0AKTD2g2BpZlgjCIQUhj90WT+XQ1BCCoasIt0dhZq2adgm8JuN6GwsCZoKnyhLCIRk79x7FKV2xKQWF6UqZz1YQOp0G43MAw8Op9126LJjXDXrQ6KqMG7+wpCK7rBKCBe7g0b3azoq/b1A5QJYIOpoY26iU1sktCzZ/5YKq77X87Hn4+avvIlPDn8T/4QMAZQXYWt9SVZEQUiWYOQfULVXsZakyCtYBns6wwEUkwo7xpLZsvCwTRHUFOcuFZTt+0LId16+NxdN52Daj8fK0IVet7utPIWc5FV0ruQFbznLR2qijf8SsOk9FJjh5XgPiqTw2f+UCbH74dfSPZpA0mespUJ8yQD0gBGiKhhCLaDg0mCq6Lku3Mu+bevteOFSv8Xa8FaeoTwksOBNS7vypyAQNhoZ4OoeYweqIvFNfVZimWDik4J2jjOLP61XB9w9pMmzbhaJIsG0HsiShqy3i/zv/HCfiVjsVzMXCv0iXzQIEU1jhkILmhhBaYyH8n7UfxJKzOuu+TiXhzFJxzSAqiX4SQhA3rZpif7Xea1/fGFpjOjRFYrToQJ6CS6kQnu/x0mrc0bMSQqqE1ed3sxNPBeYXL743RzVYNivsE8Ka7my38sLM354QJiHCNc9A2K7Zsl20xHR0thgIhxTYtuun1Tg4seIjPS1wqryPZbtIZZhiw3iSIoosFaVGF3U3eYZwrCdlugKMRICwJqPBu+elVHUe0Axd9QVG64VVZ62IEOD8szpghBRIEry+pPJ7aDsUqQzrC0pnbVYbC7zXcDyDRDrv24ATIkGVJX+joMoE81oMLOyIYl6LgUp+QCeCSvJMQwSZWYDFPW1YfvY8JFJ5vDeQQiKVx/Kz5034CD4Uz8JxWG3l0GAK/R4hoNqPqK1RRyKdx0gy5/t72I6LbM7Bou6motpNaZ2nlip1Nu+gMar59F1ORnBciqaohq7WCCMWyAQtMR1NDXpZoFFkpmT8lU+fjbUrTmX1owpzkAhw6vwYAOIzz2otjASeSrQk4Yrlp3h0aOLbCzRGQ1BkCSOJLI6OmHhvIMVsiz0KK0feo00fOJyoWmfhaUC+dKqKVPW5LJhR3/xq596j1ScxSSxsM3D9usVoiek4Osy+I0nTghEKfo4skMdTOV/sdLraB3m/iSQR7N43AM2zYQ6SEEphebp87E9S9Bk4LjCazEFV2IUdx4XlfY9liSBSopTNe3uCONGYYDMBEWRmAfiiEotqrOgc1bBz79E6iuzF4AVu2zMW4yw1XavM3lq1tBvprA14pwEKdsqIGir29Y3VLGiWnnQyOduT5c/DzNpMFwrEq/cw1pumSGhvCuPWLy/FGSc1oTmm+6ZpzTEdTVENRkhBW6OOhR0NiIUVPPjcfmx++HU/pcIRLP6vWtqNz688w99J16olULBTgx6SsXbFqTB0BQvbI2iMaBhL5tB3NOnTkS2L9a6wlF6BIs4DLgiBLEuQvbmVvVeAaNA/YkJXJUgy8U9SQcRTeSTSeWzb3YctO3rZKVGTp7zAc8LAwvYIbr3mfADAcCLrFb8psnkHZo7dMM64kwlBSyxU6DWR2KmgRp9oxfctBe9vsj35/7xl17VA8c/Tdtyy0zUAZPMuwprkB/GO5jDWXHAyVEUq2iTpmgw9pFTdOAlMDqLwPwtQS0usmv1yRfhuWsEaR5XqLtgJKqzJJRIzIV9iptTiedvuPjz43H60NepY1N2EnXuPIge2g2SKw0xg0HYozJwNWaJgrjZscQlpEnoPJXDTfbugazLTFkOB+qkqEv7s8kUAgEdeOOB1mrOmVKDQHxIsrysywZbtB5DzGjXHo9SGNBnNDSHfBbStUUf/aAbxVK7cpMwbeEiTWQ3J2znnvOY8LnBJPIO4Wlplls1qPrqmIE9cqDJB1nJ8JWCXsnvGNcA4zXo6kmQtMR3ZPKuRbdnRi3wVTXxeGOcaXqPJPHgh3pngSOp5Ng9u04Fs3sVJnQ2+v1DQPoMTQNZfchqA+punBeqDCDKzANPlqJe1XDQ3aEhmbL/Y2RBWkK1RwJ3fFilrJiulTVdSIti59yiWnz0P+/rG0HsoXiYwmDQLtraKIiGkSEhnGRPLF90kBApBRRtbRSmkNkIqqyEEtaQ4CIAjIxm0N4fR1BDC4Gim5j0Ka3LR7nXV0m7c+/jeql3kXLzT0BVk844vL8JPIuzUSCumfDgpIaKzz4CftL76mbOxZfsBHBoyyxZjXmyndGo+91wlgFJ2mg2pCvb0DqF/xARAQEh1skXCtPzPcbbApSzFF4to/u+mVu+LwPRBpMtmAcYrsk/kOooiFxU7FUWueZ3SvplKKYRaRf6bNnwUjdEQ5rUy1hWvY7AFDmhvDqOzOeztpCmaGkL+NQxdQdTQsPkrFxT1tQzFs2WKtbEIr/EUHuNsIta7wszKyDg5nXktRhnbLlgMLn01BXN5HElkkbccFmi8BZyPpZqYpkTg15zmtRhY2B6BoStY3NOGIyOZaTmlVEWgFwieKsFDz+/3A2S1AMPna2atuhseZxqKTKAqUlHDcCWMpfLo60/BzNoTTjULTB7iJDMLMF1dw5O5Tj36a+OdtNoadRwdMZHMWH5jHe974CcVSilaAjWY4DUq+cDkLKeoSJu3XcxvNdA/lgVAi8QtFZkgnmIqBnKJ62UQMUMtoqryExrXRWNXKwcFrwvQAN2aPTOYnmNFbcZysp0CWy04Bx7w66HR12MVUPYaFKRUCChUVUbMYOoOOcvxjcXGSyvW6j051mAnOq/HBeOn4nhABcSp5VhABJlZgIkKbU73dcZrJhvP0mDV0m7c+7O9zDMmwEjiJ5VbN3zU78kJgttXV/KB4YXvoAtpLKywxdsrIGsKqyG5rouRRM4/jVVDJu9gT+9Q0X2Svaa8SgXlIJiiQHmKKfjX4E5b8no+jgyl4biu79fC6wK1AggBSzHyYFZv2kwiQEeLgSYvZVTa56Qp7DQaUoF01pqyuOaxRr3xtjEaQs5yJuUZJTBxiCAzSzBdXcMz0X083glpcU8bFAmwAH8lkCQgazk4NJSueQ2FSBV9YEKajLDKCAi6JgOUwqbMdM52WGGci4jmLAfzWw1EDQ0DI2ZVi2LXdXHv43vRsyCGVUu7/YV4zHKrqvvynXMtmi3AFngumhl8nuvZMDiuC9vN4+CRRPGFK4EwNlcliZVaoBRFoqCVNgaqIjF9Ny/AVFJyng515+kAAWuWnUhtimdLRf/LsYMIMgJTRj0nJEIkyBItMwPjYpbVrlHJmlZTJGRzDr71pfMAMGUC26UIqTJiERXDiSwcBxgYzUBT2Alh4ycXFdkA9w8zG+Di5YnApdT32+H2zLbj+v0X1U40vEudoHIworTy4z4DzXvd1pf70NmsI2YwJYHSwKVrksfOcyB5qgV2nbWRcEjB8rPn+ZJBmbyDiK74dsnxVM6zFCCeECgbH2u6LARmHmD4J3k8KjOyTOB6ab2JpA15k6nofzl2EEFGYFow/gmJ+rReXhjn9ZJa12hrrLzj7gioPgdrQiRo6O6/deGBVUu78eOtbxel7SjgKw3wU1POe53jydtXM03jVz7/gx14o3cEOcuBJhcHUn5y4ot00SGF8nsByN5pp380i642w7dbyHn0YokAnS0RHB0xQWlBxmZw1Kx6quHBQiIEK89biJ17j0KWJTQ1hCCbFlKeR86CtghGE1mPsBAcD/MTUqTyw9XxKvuHVOacmskzEgo316sHPFUm+l+OHQS7TGDGsad3CJbDd8Tert6lCIcUzA/oRAWfv/nh13HTfbuQylgwM1YZu+3Ki07znx9k3yXSzAdekQlCmoyutgiMsFosnUMKjYOFpYnRjLmygKZIyFpM163BUP2UWJC9RgAYIQWfXnEK/mLt2Vh53kJQL5hSTwWAguKT53cjoisIqWxcSqCzn4KnzBiF2XFZU2HCs1uY12Kw13jzAVAmY+NQVGyEJKQglhkzFGx9uQ/xVB6uS0EIU0xobdKxwFOltrzrVkJLTPeFQvm1KyosBC6gyhIWthlY2GbACE3dv14iwKdXnILLl3YjYeaRyzuerA71/52PLQgCQJVZw+mJqoR8PCFOMgIzjqDbpoRCSimXd7Gou6lIEZk3cfJCf7V+mSVndWJwkAkfBus5lu2AeFIkwYDB8+/bdvfB0Jn+GxcbzeUduBRoi4X8/g+eTlnc04b2pj64FJ7zowtdYzvpiK4gGlbx0ptHsa9vDKuWdmPtBafguVffQzZvQ9cUrDxvIdauOBX7+sYwlmYL/EgiCylQFwruwiXCVIATJiNBMGo28SR3mI4YE3N0fSKBbbsghEBX2cnGzFpIpC1YNqtFJdJ5qJoCN82Uo7kXUdgzneP3RtdY/aqSQn4inQellDlz0kKasxTUO7lJBPjXGy8CANx03y44bmWBSs64G6/GoykS/u9nzgYAdhIteXsC1tO15Mx2/OqNwxhOFkgkkgSEdQ3rLuoRgeU4QAQZgRlHmdumzWocEqFFAWUsncfWl/sQCSv+Ys/TZJyFVgnBes7wWAaEkKLGz2D+PZha48ZsZtbCcDwLWZZ8b/ZSHbYGQy2y0TWzFg4PpdHRYvhjf+j5/fjcZWfgnq9/vGyMPBDGU/kiinMpXApIlKX9MjkbiiyhoznMhB492ZqwJiNhM7FUSnk6zvXHZ+gqS4l5f+f1KkWRfPO60WQOiXQelu34jZgrz1uIp3YdhOOW2xjzU47rnc64xlipKCn1/r+zJYKnXvo9nnv1PZg5GwA7YagytzZmQUdTZWRzDihxy2pWvLCvyBKiYdWvqWXzrB6leEcW7hsUDas4pSuGrS/3+YGOn0AlUtluXGDmIdJlAjMOns7i6Z+FHVE0x0KMDFDSxOlSt8wGoB4m0OKeNty04aP46pUfRmNU8wNGaf69UmOrLEuY3xapW4cNYFpiygQUrbl5Fd/FFwzVyo8Nirc6WraLz688A+su6kEsoqF/JIMjQyaiuoK1F5yCzmbmJd/RpCMS1jwXz+I5B4VKYzztR11PxsYtasQ8pSuGtRecgpAqw/ECU2sshKaoBkWRWG1GkRAzWPAihJ0SShEJazipPYKndh30+pnY48zK2fX7lwxdxYK2CPSQDLWC+ykFfN+k4CaBy9twcObeUDyLbbv74FLXq7GxZzkOxVgqj95DcdGEeRwgTjICM45q9ORKwpGKLMEqyZ0k0nnkLRc33bfLT5ddWsV3YzymW7WxrL+keo6+0mtsx0VLrFgGf7xguLinDT0LYhhL5zE4mvFZW5XM0pg2meTrrsmyhO7OKNJZGznbZQFhxan+8ysZxC3uaSsjTlDKxCcBVguKhdWivpFVS7vR3Rn1r3N4KI2mhhAao4VlnVKKhJf6Kz19hFQJGz+5CPc/9RYIOImAgFIWXFwXUFXA0DUoMimiU48lc15divr3gDft8k2Crko+7ZsQXueTIEsS2hp1DMWznkMpUNpDRAjxmzBrfUcEphfHJch84QtfwMjICBSFvf2tt96KdDqN73znO8jlcrj88svx9a9/HQDw9ttv4+///u+RTqexZMkSfPvb34aiKDh8+DBuvPFGDA8P4wMf+ADuvPNORCIRJBIJ/M3f/A3effddtLS04K677kJ7+9QsVAWmhmoLf6VeDUNXkfIK/ZoiIZHOI2Hm0RgJFaWlGhuNqmZttZhupWPRNRkKkTxhz76Ki02l8SsEsEsW2HposTxgMUWCghV1ae8MBRCLqOgfzaK1SS86MdXjQFoaVOM5Gwkzj6BdCqVAMmMjpNnQNRmHh9Jlja+ZvAPZtIpShXnPT6dSQL3ce++gIyjANg+2wwJNg6GVjfPHz+yD5RQCDBsgS8mtu/R0LO5pw57eISQydtH4WX+vCyOi+d8px6VImvmyuhE/4W7Z0ctOWIF5CgWAmcMxDzKUUhw8eBDbt2/3g0w2m8WqVavwH//xH+jq6sJf/uVf4pe//CUuvPBC3Hjjjbjttttwzjnn4Oabb8Z//ud/YsOGDfj2t7+NDRs2YPXq1bj33nvxgx/8ADfeeCPuuusuLFmyBPfffz+eeOIJ3H777bjrrruO9TQFSlBt4S89ISgywerzmVf7UDyLvOWiMRLyFzm+yD6+4wC+vm7xlMZSSdiz2mJTOn7+2olK/fBrbNl+AIeHTSgyQXOjjpFE1q+FyLKEmMHqKkC+qi9PcBzV5sDf7/6n3oLrlve2UJd6jLwQbIfCKGl8jegKUqZVpK7gOMwrpymqIZN3fLHVsCZjX98Y1qIyiYAQAkOTsfkrF5TfGMosBGhATHRBewTrLurBped/AIODSZ+0oWsyRpM52LbLlB280xOf60PP70eDoWE0mfMvz0kgo57yg6YwwVaiyhUDt8D04ZjXZH7/+98DADZu3Ii1a9fiwQcfxJ49e3DyySfjpJNOgqIoWLNmDbZt24ZDhw4hm83inHPOAQBceeWV2LZtGyzLwquvvopPfOITRY8DwI4dO7BmzRoAwKc+9Sn893//NyzLKh+IwHEHr1OU1kLWrjgVN234KDZ/5QIYuuI30HFoioSBEXPK7z9Rp9B6xl7PIrW4pw23XnM+rl+3GKfOj4FSoKs1gpihoqPFQGdzGLLMivSdLcakHEiDc1jc0wZDVyBLTNomWEehYIy8aunLWESDHpLL5pm1GNEgKLYaVDheed5CuB6Jgv/PpRQrz1tY8XMwwiq62iI4qbMB3Z0NmNdq+MV+Dl5f4tT37nkN6O6MosHQ/Ofxz6WzOQzV9yjSEdJkjCRzPu3bpRQjyRzMbMFOQigAzAyO+UkmkUhg2bJl+MY3vgHLsvDFL34R11xzTVFKq6OjA/39/RgYGCh6vL29Hf39/RgdHUU0GvVPQvxxAEWvURQF0WgUIyMj6Oys36ZY4NhhsrpowWbMyWKqFgpTleipdDoqTXsBhdOeIpOKDqT1zIG7nLIahwTAhet6Pj6qgs9ddkZVqRneR1N8veLnmlnLY85RbH74dSzqboKusl4jnhJUJOC1/xnES28eLUqXTWQOtTTySu/f6mUn++zF0UTOt/NWPd03AurbFggFgJnDMQ8y5557Ls4991z/7+vWrcPdd9+Nj33sY/5jlLJmMdd1iwT8+OP8zyCq+aNTSiFVosBUQWtrtO7nvl/QXqUIPhdw9cpF+NfH98BxXZbWsByAAldedBra2xvw2tv9eHzHAfSPmOhsMXDlRadhyVn1bSi62qMYTWSgBxatbN5GV3v0uNzTS9sbKprQNTYaeHzHAQyMmOgomWO9c7h65SLc/ehvWaCBpzIgMZmVG9Z/FEvO6kRjo1HxXl+9clHZ/Qh+LrbNBEgBZt2QylrY+kofYhEVCzrYwp3OWBgYzWBwLIuFHRGkshYeeeEAGhuNuubQ3t5Q9btw9cpFeGfIxCMvHICiMPp6KmvhlbcGcNnSk/Fm77AvMdQcY+PhvkKO4zIrhyrzFJg6jnmQee2112BZFpYtWwaABYEFCxZgcHDQf87g4CA6Ojowb968oseHhobQ0dGBlpYWJJNJOI4DWZb95wPsFDQ0NIR58+bBtm2k02k0NTXVPb7h4VRdMuvvF7S3N/hNiXMRJ7cZWH/paWU7/CVndeKFV/7g1yN0VcLgqIkfbPld3WmrS8+dj4ee3w/boUX1hkvPnf++uqcntxn4+rrF/me9p3cIN37/l4y4oEpIZOxx53Bym4EvrToTW3b0+sZkXS061l18Gk5uMzA4mKx6r/m/l46JP7f3UAKyRNDUEPJPGa7rImXaiIZZemokmWMKBC6zdZYlCTZx8Ohz+3xyQrU58HnXGt/mh18HPEZe8Pqvv93PUq+eZh1PB7bEQhhL5kApENXVqvM81piLQe6YB5lkMom7774bjzzyCCzLws9+9jN8+9vfxl/91V/hnXfewcKFC/H000/jqquuwoIFCxAKhfCb3/wGH/vYx/Dkk0/i4x//OFRVxZIlS/DMM89gzZo1eOKJJ/Dxj7MGuAsvvBBPPPEErr32WjzzzDNYsmQJVHV2ufgJFKNaWqqWLXW9tRF+ndlCZS0t9OdtF6AUikTKHERLUU96byIpQP7cm+7bVWYbUEpFt726UtDugKfEJvI5lD6X157GS7mV0tAliZ14hLzMzOOYB5mLL74Yb7zxBj796U/DdV1s2LAB5557Lu644w5cd911yOVyuPDCC7Fq1SoAwJ133olbbrkFqVQKH/rQh/DFL34RAPCtb30LmzZtwn333Yeuri780z/9EwDghhtuwKZNm7B69Wo0NDTgzjvvPNZTFDhGmA5b6pmwPphJVAqsAOt2v/XLS4/LmCrVSkqp6KWqBEBxPaXez6Eam44rZler18zGDcVcAaG1XJxOQIh02exAe3sDbvz+L8sWt5zloCmilRWq5wLa2xvw57f+vOzUQCmFmbUrU4OPAYILfzDdtfzseT4Vnaf1DF0pek49J4ngd5ynvUo/c4XAb1qd6PXfTxDpMgGB9xGmy5Z6NmE8htXxQK1TwtrA82o1jdaLaqdXM2vj8yvPECeV9yFEkBGYtTgRUyDv18A63fWeaqgVZGdb6vNEgQgyArMaJ9rCciIG1iDer0FWoDpEkBEQmGU40QJrECd6kJ2NEEFGQEBgVuFEDrKzEcJPRkBAQEBgxiCCjICAgIDAjEEEGQEBAQGBGYMIMgICAgICMwYRZAQEBAQEZgwiyAgICAgIzBhEkBEQEBAQmDGIICMgICAgMGMQzZglkKTKDpvvZ8zGMU8HTsR5n4hzBk7cec8FCKl/AQEBAYEZg0iXCQgICAjMGESQERAQEBCYMYggIyAgICAwYxBBRkBAQEBgxiCCjICAgIDAjEEEGQEBAQGBGYMIMgICAgICMwYRZAQEBAQEZgwiyAgICAgIzBhEkJlFuOeee7B69WqsXr0amzdvBgDs2rULa9aswcqVK/G9733vOI9wZvHd734XmzZtAnBizPvFF1/ElVdeicsvvxy33XYbgBNj3k8++aT/Pf/ud78L4MSY95wFFZgV2LlzJ7366qtpLpej+XyefvGLX6T/9V//RS+88ELa19dHLcuiGzdupDt27DjeQ50R7Nq1iy5dupT+7d/+Lc1kMnN+3n19fXTFihX0yJEjNJ/P089+9rN0x44dc37epmnS8847jw4PD1PLsui6devoCy+8MOfnPZchTjKzBO3t7di0aRM0TYOqqujp6cHBgwdx8skn46STToKiKFizZg22bdt2vIc67RgbG8P3vvc9XHvttQCAPXv2zPl5P//88/jkJz+JefPmQVVVfO9730M4HJ7z83YcB67rIpPJwLZt2LaNaDQ65+c9lyFUmGcJTj/9dP+/Dx48iGeffRaf//zn0d7e7j/e0dGB/v7+4zG8GcU3v/lNfP3rX8eRI0cAAAMDA3N+3u+88w5UVcW1116LI0eO4KKLLsLpp58+5+cdjUZxww034PLLL0c4HMZ55513QnzecxniJDPL8L//+7/YuHEjbrrpJpx00kkgpCCBTikt+vtcwGOPPYauri4sW7bMf8x13Tk/b8dx8PLLL+Mf//Ef8eijj2LPnj1499135/y89+3bh5/+9KfYvn07fvWrX0GSJBw8eHDOz3suQ5xkZhF+85vf4Prrr8fNN9+M1atX49e//jUGBwf9fx8cHERHR8dxHOH045lnnsHg4CCuuOIKxONxmKaJQ4cOQZZl/zlzcd5tbW1YtmwZWlpaAAB//Md/jG3bts35eb/00ktYtmwZWltbAQBXXnklHnjggTk/77kMcZKZJThy5Ai++tWv4s4778Tq1asBAB/5yEfwhz/8Ae+88w4cx8HTTz+Nj3/848d5pNOLf/u3f8PTTz+NJ598Etdffz0uueQS/OhHP5rz87744ovx0ksvIZFIwHEc/OpXv8KqVavm/LwXLVqEXbt2wTRNUErx4osvnhDf87kMcZKZJXjggQeQy+Vwxx13+I+tX78ed9xxB6677jrkcjlceOGFWLVq1XEc5bFBKBSa8/P+yEc+gmuuuQYbNmyAZVlYvnw5PvvZz+LUU0+d0/NesWIF3nrrLVx55ZVQVRUf/vCHcd1112H58uVzet5zGcIZU0BAQEBgxiDSZQICAgICMwYRZAQEBAQEZgwiyAgICAgIzBhEkBEQEBAQmDGIICMgICAgMGMQFGaBOYHbbrsNr776KgCgt7cXCxYsgK7rAIBHH33U/+/3G/bs2YMtW7bg1ltvPd5DERCYEYggIzAncMstt/j/fckll+DOO+/Ehz/84eM4ovpw4MABocMlMKchgozAnMZjjz2Gn/zkJ3BdF01NTfjGN76Bnp4ebNq0CbquY//+/RgeHsYll1yCpqYmbN++HYODg7jtttuwbNkybNq0CaFQCPv27cPw8DCWL1+OW265Baqqore3F7fffjvGxsbgOA6+8IUvYN26ddi9ezduv/12GIaBdDqNn/70p9i8eTPeeOMNpNNpUEpx2223Yf78+bj77ruRTCbxd3/3d/j0pz+Nf/iHf8DTTz8NANi9e7f/93/+53/G7373OwwMDODMM8/EnXfeifvuuw/PPfccXNfFggUL8K1vfQudnZ3H+Y4LCBRDBBmBOYtf//rXeOKJJ/DQQw8hHA7jpZdewte+9jU8++yzAIC33noLDz30EMbGxrBixQrccssteOSRR/Dv//7v+OEPf+iLcu7ZswcPPvggVFXFxo0b8eijj2L9+vW4/vrrsXnzZnzoQx9CMpnE1VdfjdNOOw0AEzL9xS9+gQULFuC3v/0tBgYG8Oijj0KSJNx///344Q9/iH/5l3/B9ddfj5///Of4zne+g927d9ecz6FDh/D0009DURQ88cQT2L9/Px577DEoioJHH30Ut9xyC374wx/O7E0VEJggRJARmLPYsWMH3nnnHaxfv95/LJFIYGxsDADTB1NVFe3t7TAMA3/0R38EAOju7vafAwCf+cxnEIlEAABXXHEFXnjhBZx//vno6+vDzTff7D8vm83irbfeQk9PD7q6urBgwQIAwLnnnovGxkY88sgjePfdd7F7927/ehPBOeecA0VhP9nt27fjzTffxFVXXQUAvgeLgMD7DSLICMxZuK6LK664AjfeeKP/94GBATQ2NgIANE0rej5fwEsRVACmlEKSJDiOg4aGBjz55JP+vw0NDaGhoQG/+93vYBiG//iOHTtw++2348///M9x6aWX4tRTT8VTTz1V9j6EEARVnizLKvr34DVd1/W1zQAgn88jHo/XviECAscBgsIsMGexYsUKbN26FQMDAwCAn/zkJ/jSl7404es8++yzyOfzyOVy+NnPfoaLL74YH/jAB6Druh9kjhw5gk996lPYu3dv2et37tyJiy++GBs2bMDZZ5+NX/ziF3AcBwALYLZtAwBaWlpw+PBhDA8Pg1KKrVu31pzbli1bkEqlAADf//73cdNNN014bgICMw1xkhGYs1ixYgX+4i/+Ahs3bgQhBNFoFPfcc8+EDa90XceGDRuQSCTwiU98AldddRUkScIPfvAD3H777fjRj34E27Zxww034GMf+1hZbWX9+vX467/+a6xZswa2bWP58uV+wf6cc87Bvffei6997Wu45557sH79elx11VVob2/HRRddhDfffLPimP7kT/4E/f39+NM//VMQQtDV1VWk0C0g8H6BUGEWEKiBTZs24fTTT8eXv/zl4z0UAYFZCZEuExAQEBCYMYiTjICAgIDAjEGcZAQEBAQEZgwiyAgICAgIzBhEkBEQEBAQmDGIICMgICAgMGMQQUZAQEBAYMYggoyAgICAwIzh/wNlwVUR+qANRQAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 406.975x360 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.lmplot(x='Temperature',y='Weekly_Sales',data=clean_data2,hue='Type')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 52,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<seaborn.axisgrid.FacetGrid at 0x2156cbe8f40>"
-                        ]
-                    },
-                    "execution_count": 52,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAFqCAYAAADIoyd5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADxO0lEQVR4nOy9eZhdVZU2/u59hjvfmisTBDGIQTDQGARFCaCEYAQVsaUD2O3wobaf0v5aEIEHh5bWjrQgLfLo101/XzM8ECMEWiBCg0EBjUx2TEOIlIaCVFKpW8Od7xn374999r7n3LmSqsp0Xh9Jcu895+wz7bXXWu96F2GMMYQIESJEiBCzALq/BxAiRIgQIQ5dhEYmRIgQIULMGkIjEyJEiBAhZg2hkQkRIkSIELOG0MiECBEiRIhZQ2hkQoQIESLErEHd3wM40DA+XoDr7n9Wd09PHJOTpf09jADCMXWGcEydIRxTPQYGUvvt2LOF0JM5QKGqyv4eQh3CMXWGcEydIRzT4YHQyIQIESJEiFlDaGRChAgRIsSsYVaNzA9+8AN84AMfwOrVq/Hv//7vAIBnnnkG559/PlauXImbbrpJ/vbll1/GhRdeiHPPPRfXXnstbNsGAIyMjOCSSy7BqlWr8PnPfx7FYhEAkMvlcPnll+O8887DJZdcgrGxMQCAaZq48sorcd555+EjH/kIhoaGZvMUQ4QIESJEC8yakfnd736H3/72t3jwwQfxs5/9DHfccQe2bduGa665Bj/60Y/w8MMPY+vWrXjyyScBAFdeeSWuv/56/OIXvwBjDOvWrQMAfPOb38SaNWuwceNGnHDCCfjRj34EALj55puxfPlyPPLII/jYxz6GG264AQBwxx13IBaL4ZFHHsE111yDr33ta7N1iiFChAgRog1mzci8853vxH/8x39AVVWMj4/DcRzkcjkcddRROPLII6GqKs4//3xs3LgRO3fuRKVSwUknnQQAuPDCC7Fx40ZYloVnn30W5557buBzANi0aRPOP/98AMAHP/hB/OpXv4JlWdi0aRMuuOACAMApp5yCiYkJjIyMzNZphggRIkSIFphVCrOmabjllltw++23Y9WqVdizZw8GBgbk94ODgxgdHa37fGBgAKOjo5icnEQymYSqqoHPAQS2UVUVyWQSExMTDfe1e/duLFy4sKMx9/Ul9/m8ZwoHIp0xHFNnCMfUGcIxHfqY9TqZL33pS/hf/+t/4XOf+xx27NgBQoj8jjEGQghc1234ufjTj9p/+7ehlNZtIz7vFAdKnczAQApjY/n9PYwAwjF1hnBMnSEcU+PjH2qYtXDZ0NAQXn75ZQBALBbDypUrsXnzZpmgB4CxsTEMDg5i/vz5gc8zmQwGBwfR29uLfD4Px3ECvwe4F5TJZAAAtm2jWCyiu7sb8+bNw549e+r2FSJEiBAh5h6zZmTeeOMNXHfddTBNE6Zp4vHHH8fFF1+MP//5z3jttdfgOA5+/vOf44wzzsCiRYsQiUTw/PPPAwAeeOABnHHGGdA0DcuXL8fDDz8MANiwYQPOOOMMAMCKFSuwYcMGAMDDDz+M5cuXQ9M0rFixAg888AAA4LnnnkMkEuk4VBYiRIgQIWYWsxYuW7FiBbZs2YIPf/jDUBQFK1euxOrVq9Hb24svfvGLMAwDK1aswKpVqwAAN954I6677joUCgUcf/zx+MQnPgEA+PrXv46rr74at912GxYsWIDvf//7AIArrrgCV199NVavXo1UKoUbb7wRAHDZZZfh+uuvx+rVq6HrOtauXTtbpzhn2DKUwcbNw8hkK+jvimLVqYuxbEn//h5WiBAhQrQFCdsvB3Gg5WS2DGVw12PboSgUukph2i4cx8Ul5xw754Zmf8erGyEcU2cIx9QZ9veYwpxMiDnHxs3DUBSKiKaAEIKIpkBRKDZuHt7fQwsRIkSItgiNzAGOTLYCXQ3eJl2lyGQr+2lEIUKECNE5QiNzgKO/KwrTdgOfmbaL/q7ofhpRiBAhQnSO0Mgc4Fh16mI4jgvDcsAYg2E5cBwXq05dvL+HFiJEiBBtETYtO8AhkvshuyxEiBAHI0IjcxBg2ZL+0KiECBHioEQYLgsRIkSIELOG0MiECBEiRIhZQ2hkQoQIESLErCE0MiFChAgRYtYQGpkQIUKECDFrCI1MiBAhQoSYNYRGJkSIECFCzBpCIxMiRIgQIWYNoZEJESJEiBCzhtDIhAgRIkSIWUNoZEKECBEixKwhNDIhQoQIEWLWEBqZECFChAgxawiNTIgQIUKEmDWERiZEiBAhQswaQiMTIkSIECFmDaGRCREiRIgQs4bQyIQIESJEiFlDaGRChAgRIsSsITQyIUKECBFi1hAamRAhQoQIMWsIjUyIECFChJg1hEYmRIgQIULMGkIjEyJEiBAhZg2hkQkRIkSIELOG0MiECBEiRIhZQ2hkQoQIESLErCE0MiFChAgRYtYQGpkQIUKECDFrCI1MiBAhQoSYNYRGJkSIECFCzBpCIxMiRIgQIWYNoZEJESJEiBCzhtDIhAgRIkSIWYO6vwcQ4vDAlqEMNm4eRiZbQX9XFKtOXYxlS/r397BChAgxywiNTIhZx5ahDO56bDsUhSIeVTFVNHHXY9sBIDQ0IUIc4gjDZSFmHRs3D0NRKCKaAkIIIpoCRaHYuHl4fw8tRIgQs4zQyISYdWSyFehq8FHTVYpMtrKfRhQiRIi5QmhkQsw6+ruiMG038Jlpu+jviu6nEYUIEWKuEBqZELOOVacuhuO4MCwHjDEYlgPHcbHq1MX7e2ghQoSYZYSJ/xCzDpHcD9llIUIcfgiNTIg5wbIl/aFRCRHiMMSshst++MMfYvXq1Vi9ejXWrl0LAPja176GlStX4kMf+hA+9KEP4bHHHgMAvPzyy7jwwgtx7rnn4tprr4Vt2wCAkZERXHLJJVi1ahU+//nPo1gsAgByuRwuv/xynHfeebjkkkswNjYGADBNE1deeSXOO+88fOQjH8HQ0NBsnmKIECFChGiBWTMyzzzzDJ566incf//92LBhA/7nf/4Hjz32GLZu3Yo777wTDzzwAB544AGcc845AIArr7wS119/PX7xi1+AMYZ169YBAL75zW9izZo12LhxI0444QT86Ec/AgDcfPPNWL58OR555BF87GMfww033AAAuOOOOxCLxfDII4/gmmuuwde+9rXZOsUQIUKECNEGs2ZkBgYGcPXVV0PXdWiahiVLlmBkZAQjIyO45pprcP755+OWW26B67rYuXMnKpUKTjrpJADAhRdeiI0bN8KyLDz77LM499xzA58DwKZNm3D++ecDAD74wQ/iV7/6FSzLwqZNm3DBBRcAAE455RRMTExgZGRktk4zRIgQIUK0wKwZmbe85S3SaOzYsQOPPPII3vve9+K0007DP/7jP2LdunV47rnnsH79euzZswcDAwNy24GBAYyOjmJychLJZBKqqgY+BxDYRlVVJJNJTExMNNzX7t27Z+s0Q4QIESJEC8x64v+Pf/wjPvvZz+Kqq67Cm9/8Ztx6663yu8suuwwbNmzAkiVLQAiRnzPGQAiRf/pR+2//NpTSum3E552iry/Z8W9nGwMDqf09hDqEY+oM4Zg6QzimQx+zamSef/55fOlLX8I111yD1atX45VXXsGOHTtk+IsxBlVVMX/+fJm4B4BMJoPBwUH09vYin8/DcRwoioKxsTEMDg4CAAYHB5HJZDB//nzYto1isYju7m7MmzcPe/bsweLFiwP76hTj4wW4LpvBq7B3GBhIYWwsv7+HEUA4ps4QjqkzhGNqfPxDDbMWLtu1axe+8IUv4MYbb8Tq1asBcKPyj//4j8hms7AsC/feey/OOeccLFq0CJFIBM8//zwA4IEHHsAZZ5wBTdOwfPlyPPzwwwCADRs24IwzzgAArFixAhs2bAAAPPzww1i+fDk0TcOKFSvwwAMPAACee+45RCIRLFy4cLZOM0SIECFCtABhjM3Ksv3b3/42fvazn0mPAgAuvvhiuK6Lu+66C7ZtY+XKlfjKV74CANi2bRuuu+46FAoFHH/88fjOd74DXdexc+dOXH311RgfH8eCBQvw/e9/H11dXZiamsLVV1+N119/HalUCjfeeCOOOOIIGIaB66+/Hlu3boWu6/j2t7+N448/vuNxh55Mc8zkmGZK+v9Qv04zhXBMnWF/j+lQ9GRmzcgcrAiNTHPM1Jj80v+6SmHaLhzHxSXnHDttQ3MoX6eZRDimzrC/x3QoGplQuyzEnCOU/g8R4vBBaGRCzDlC6f8QIQ4fhNplIeYc/V1RTBVNRDRFfnYgSP8frC2iD9Zxhzg8EBqZELOO2klw6eJuPL11NwwgkJPZn9L/B2uL6IN13CEOH4ThshCzCjEJThVNOQk+vXU3Tj9hProTOkoVG90Jfa+S/jOJgzVPdLCOO8Thg9CTCTGr8E+CABDRFBgAtg1P4ao1J097f7Ve0cdXLsVR/fF9HmcmW0E8GnwdDoY80cE67hCHD0JPJsSsYiaT/I28oh/ftwVbhjL7PM6DtUX0wTruEIcPQiNziGPLUAZr734BV932DNbe/cKMTMjTwUxOgo1CQ6pKZiQ0dLC2iD5Yxx3i8EFoZA5hNFr53/XY9jk1NDM5CTbyiiKaMiOhoWVL+nHJOcceUHmiTnCwjjvE4YMwJ3MIo1k+ZOPm4TmbhMRxpkOxbUbJbUR9NixnxkJDB2uL6IN13CEOD4RG5hDGgZIUns4k2IqSu+rUxbjrse0B6jMYwtBQiBAHMMJw2SGMgzEp3IqS2yg09NkLl4Wr+BAhDmCEnswhjEYr/wM9KdzO+6r1iva3oGGIECFaIzQyhzD2Jh+yv9FKcqZRruZ9h6BqbYgQhxJCI3OI42BLCjfzvpYu7m6Yq+nqis9IMWaIECFmB2FOJsQBhWaU3G3DUw1zNfdtenV/DzlEiBAtEHoyIQ44NPK+7nx0e8NczZ6J0lwOLUSIENNE6MmEOCjQjCk32BuGykKEOJARejIhDgo0y9VceOYxs3bMsE9LiBD7jtDIhDgo0Iwpt/y4ebNCYQ77tIQIMTMIjUyIgwZzyZQ7ECR5DlUID3GiYKI3qYce4iGO0MiECNEAB4okz6EGv4eYioUe4uGAMPEfIkQDHIySPAcDwk6ehx9CIxMiRAOEfVpmBzPZxC7EwYEwXBYiRAPMlSTP4cZgayUbFOLQRGhkQuw1Op0gD9aJdLaJBocjg81PRVcVEnqIhwFCI3OAoHYi/vjKpQe0JlenE+TBNJHOtTE8HBlsfg9xsmCiJ2SXHfIIjcwBgEYT8Y/v24KL33fMAfvydTpBHiwT6f4whocrg014iGGbhsMDoZE5ANBoInZc94CbiP3odII8WCbSfTWGfi9owUAS7/uLhW23C/MTIQ4HhOyyAwCNGDcRTTngJmI/OqX4HixU4H1hPQkvaKpoIh5VMZkr467HtmPLUKbldiGDLcThgNDIHABoNBEblnPATcR+dDpBHiwT6b4Yw9raj6iudlT70aytwYHqvYYIsTcIw2UHABqJP4LhgJuI/eiU4nuwdOfcl1bV+xISPNiayoUIMV2ERuYAQKOJ+EBnlwGdT5AHw0TaiTFsxj47EHMrBxtbMcShC8IYY/t7EAcSxscLcN39f0kE8+ZAqjE5ENlAczUmP/vM7+lccs6xABD4zmUMhunMSOhrb+5/o7GCYdpsxdl+9g7n56nV8Q81hDmZAxi1CWVBq22XUA4x82iluVWbW+lJx2bMwOzN/W80VlUl09IHC5+9EDOFMFx2AONgqTE5HNAu7+IPCc7Uanhv73+jsU6XrRg+eyFmCqEncwAjFBM8cLA/qNh7e/9ngq0YPnshZgqhJ3OA4rmXR1Gq2JjIG9BUinRcQzyq7feE8uGC2nzE0sXdeHrr7r1in+0t9pZQMBNsxQORzBDi4ERoZA5AbBnK4J7HX0VEV2BYNmzbxUTegGW70FR6QFObDwVsGcrg9oe3oWLYcFwXuaKJkfESzv6Lhdg2PDVnJIy9pVXPBFtxXyjd7RB2xjy8EBqZAxAbNw9DVQkiug5NpcgVTVi2A9Ny8TfnLQ1fyFnG+k1DKJZNEEKhUAqXAcWyiedeGcO3Pn3qXu93umytfakxqqWNTzdPNFv1TWFnzMMPoZE5AJHJVtCV1GE7DLGIilhEBWMMpYp9WL+IjSbp980C5XN0ogSAgBL+b0oAhxHv873D3gpw7s8ao9k4diPmW0goOLQRGpkDEP1dURQqFhRaTbzOZDz8QKq96RTNJumurvgsFBkSEMJrpVzG4LgMjAGuN469uVYhW4vjYBFMDTFzCI3MAYhVpy7GPY+/iqJlolSxYDsuKKE47bjBfd53uxX1XBmg6R6n2SR936ZX8eWLls3o2Ob1RLFrogyHuXB8JC1KMe3QjjjP7a9PQVMVpBOcwAHs++Ta6BoCB7aET0goOPwQGpn9gE4mWJcxTOYNAICmECRiKp7euhtvWpDep0mj1YoawJz0VKk1dKOTZdx631ZEIwoW9ScaXo9mK+A9+xDCaoaLzjoGtz/0MvJlCwBAABAC9HXFQCmZlvy/OE9NpbAdTuAA0DFTsNmz0mixcPvD2wDGEI9pdfdvNsKKe4OwM+bhh9DIzDE68STuemw7ckULCiUgBLBdhmLFhuMy/OTBl3D5BW/b60m/VbhirkI6/uOUDRv5kgnGANNymxq2Zivgwd5qqKwR7Xhv2GDLlvTjU6uPw633/QEuY54HosvcWKfeh/88u5IRTOQqYAz83iq07eTa6llpdK8mvHH1pKPyM3H/3nfa0R2NebYRdsY8/BAamTlGu4lcfO+4DAolcFwXjIHTlxUCw7KbehedeEitwhVzFS/3HydXNMGT7Ay24zY1bM0otReeeYw891rvaPsbU0jHdaQT+rS9smVL+rFkUdc+hXb85xmLqOhNR5EtGLBsB92J9pNrq2el0b1yXBfc76riQMx3hJ0xDy+EFf9zjHaV1OJ7TeXUWb9WJwOBplY1s/zoVGuqVX+Xuapq9x+H55sABkD1rkujibFZ75Xlx80DUM9aKhs2CAjKplOnNdYp9rUXTu31jEVU9KSjOPbIbly15uS2xq7Vs9LoXimUQqFBIxPmO0Lsb4SezByjXeJTfN+dimBssgShkc2nDoZ0ItJwEt64eRi2w5AvGbAdF4QQuIzh1vu2YsmitFw1t6t/mK0CPD/8XolCCWyHAQRIx7W66+FHK0qtf2VfNmwYpgMGwDEdlCoW4lFt2qv6fa0V2deCxlbPSqN9RyMq4BnDuVIlCBGiHUIjM8doN/GI7yO6gp5UBJksj+OrKkVPKoJYRG2oQzWSKaJYsUAIX/la3iqXEVYXKmo2Wc9VgzH/cUplCy5zkIiq8tz2ZmIUE7LrMkzkqoaEADLZrih02qv6fakVmU0j1WjfF599zD4dbyZxMNLkQ8wOZtXI/PCHP8QjjzwCAFixYgWuuuoqPPPMM/jOd74DwzBw3nnn4ctf/jIA4OWXX8a1116LYrGI5cuX45vf/CZUVcXIyAiuvPJKjI+P4+ijj8aNN96IRCKBXC6Hr3zlK3j99dfR29uLm2++GQMDAzBNE9deey22bt2KaDSKG2+8EUuWLJnN05wW2k084s/HXxzBrrECFvXFkSvbiEdV6CptOgnbDoMoILScaoyNoXkCv9lEMJeTga7xpDq8YtO9nZDEhJwtcBIBpYDjclYYAZAtmOjykszTxb5MmLNppNotFvYX9rbwNMShiVkzMs888wyeeuop3H///SCE4DOf+Qx+/vOf48Ybb8Qdd9yBBQsW4LOf/SyefPJJrFixAldeeSW+/e1v46STTsI111yDdevWYc2aNfjmN7+JNWvWYPXq1bj11lvxox/9CFdeeSVuvvlmLF++HD/5yU+wYcMG3HDDDbj55ptxxx13IBaL4ZFHHsGzzz6Lr33ta1i3bt1sneZeod3Es2xJP9532tEyKdrJJKcoBLA59TnQhs77e22oaH9OBLXHFiv0S1dWe7DsrQTLrfdtBQCoqoKkRmFYLiybh872psfLvl6nfV3RHwxdRWsRFp6G8KMjI1MoFJBMJvHSSy9h+/btWL16NTRNa7nNwMAArr76aui6DgBYsmQJduzYgaOOOgpHHnkkAOD888/Hxo0bccwxx6BSqeCkk04CAFx44YW45ZZb8LGPfQzPPvssbr31Vvn5pZdeiiuvvBKbNm3CXXfdBQD44Ac/iG9961uwLAubNm3CFVdcAQA45ZRTMDExgZGRESxcuHD6V2eW0ekE1Giiqd22K65BoTzRbTuOrO3QvBe9Ns+xPyeCdsfeFwmWJYvSdXkMw+Jsrr0xMD958CVULCeghN3OK1wwkMT7/oI/b3tzHgd7qCms6g/hR1sj84Mf/ADDw8P4+7//e3zmM5/BMcccg2effRY33HBDy+3e8pa3yL/v2LEDjzzyCC699FIMDAzIzwcHBzE6Ooo9e/YEPh8YGMDo6CgmJyeRTCahqmrgcwCBbVRVRTKZxMTERMN97d69u2Mj09eX7Oh3+4rnXh7FPY+/ClUl6ErqKFQs3PP4q+jqikvGVLNWrM+9PIr/t/EVlCo2bMdFvmRBVSk0hWCgOwrbYRibLAMAepI6p7Yy4OMrl8p9ThRMpGIqCKmykVSFYLJg1h33uZdHcd+mVzE6UcK83jguPPMYOcZOz9W//e6JMvq6Ik2P/fj6LYjoCqI6v++6pqBi2nj8xZGG9R7+8X585VL8+L4tcFyPDm05defe6ZjvefxVGJYDlQKuw4tjVYUiEVUD16n2Xo6M5fGj+7fCYQwqJehNR6FrStvzaLSvRs/F3mK657+393zBQBKTuTKiPkNfMW0sGEjWjeFAbDd8II7pYEZbI/Pkk0/irrvuwr333ovVq1fj2muvxUc/+tGOD/DHP/4Rn/3sZ3HVVVdBURTs2LFDfscY4ywo1w1MOOJz8acftf/2b0MprdtGfN4pxscLcP284VnCvY9uAwinndoO438SB/c+ug3ZbEnmZBqtZP/tgT8gVzQ8lWACx2WwDQuxVBTJqMZX031xgDFULBcqZVAVglt/+nu5v96k3nDF35PUA7ULtaq5Y5Ml/Gj97zsOPfm3j2oUY5Mlj6AAnotpcOxdYwXEo6okLwAAJQS7xgp1dRW1tRZH9cdx8fuOqfMEjuqPT6smQ9wfXqnPOM2acRIBAwLXyX8vc0VT5oUclwGMYdd4CQSAritIxdSG51F73EbPxb5otE2nJqXRPZvOPX/fXyzEXY9th+2wAGHhfX+xMDCGRmPa317c/q7dORQNXEfhslgshmeeeQYf//jHAQCmaXa08+effx5f+tKXcM0112D16tX43e9+h7GxMfn92NgYBgcHMX/+/MDnmUwGg4OD6O3tRT6fh+M4UBRF/h7gXlAmk8H8+fNh2zaKxSK6u7sxb9487NmzB4sXLw7s60BDs5DCSKYo2WXNQizNVIKzBQNrP//uwD6bhZ5OP2F+R024Gqnm5kwHP3nwJcSjatuJoFFoLBFVUShxyZZSxZJNtabyFay9+wVEdQWm7e51EeRM5DHE/UkndEzkKnAZAQFn7dVep0BxackCA8+NAQhonzmOi8m8iQW9sbbH9WOuQ037GkrdW1ZdSBg4NNHWyPT09OAb3/gGtm7dih/84Ae48cYbO5q0d+3ahS984Qu46aab8K53vQsAcOKJJ+LPf/4zXnvtNRxxxBH4+c9/jo9+9KNYtGgRIpEInn/+ebzjHe/AAw88gDPOOAOapmH58uV4+OGHcf7552PDhg0444wzAHC22oYNG/C5z30ODz/8MJYvXw5N07BixQo88MADWL58OZ577jlEIpEDMh/TrAbCdhjiCkVU5yv5iKYga9iBSd12GK8BcRkIgZSfqa32BppPGNuGp3DJOce2nQhqJ72yYSNXNMBA0N8dbTsRiO35diZsx/XGy1AoW3AcrmhAwFlxuydK3JP0vNHZapjVbvIT90dU6vOePi6imlq3ovffS8t2G3rC/BMCwJXn1mhMJU8+yO/lzXVBpbhnpYqFXMmCbbtQFYqip+XWCfbG0IeEgUMTbY3MP/3TP2HdunX48Y9/jFgsBkII/umf/qntjv/t3/4NhmHgu9/9rvzs4osvxne/+1188YtfhGEYWLFiBVatWgUAuPHGG3HdddehUCjg+OOPxyc+8QkAwNe//nVcffXVuO2227BgwQJ8//vfBwBcccUVuPrqq7F69WqkUinceOONAIDLLrsM119/PVavXg1d17F27drpX5U5QLMaCEUhgSrvUsXiQo2Mob87itHJMgLkMQYZzlnYV79CbrUy7mQiqDWGQgZGU2lH/UD6u/iY8yUhH8OLL13G0J3UUTZsOX6XMZRNBz2pCFQCJOP6rDXMardS9t+fqK6A0ggcx20YMvL/lrHmoVZVIUjFo6iYTtMx2Y6LbJHX9aTi2rQN7EyEm/q7otg9UUK+bIGAe8q2w42nUJCYjZDWgeDFhZh5ENbqrfCwe/duvPLKK3jPe96D0dHRA9IzmCnMVU4GaDwhbNw8jKmiiWRMg2W72D1Rgu21XZ7XG8foRAmm5cD1Vv9ipJQCX/rosrqXfe3dLzRlW1215uSOxigmwURUxY5dOYAQ9KYiUrJeNFSrDdWJ7W+9bytcxqR8DAPgOAwRjWu0UW9lzxiDy4BFA4mm+6vFdGLo070W05mwxW+3DU8BABQaDJUB3FjFIirm9cTk8RqNKTNVRtlwADBEdRUrTzkCF7znzW3Pz3+v/AuXS845NkCJ72Q/t96/Fa6nn8dfB4ZUXEciygtmGx1juoam9t7t67M6EwhzMjOPtp7Mpk2b8I1vfAOUUtxzzz1YvXo1vve97+H973//XIzvkEYjT2LHrhwe+u0wxibLUBUK03ZAvSS5Xy4F4CtjBh4ui2hKw5d8X6VNalVzI5oKXaPSwACtwznLlvQjGlFgWi5sx4XqUYFzRQu240BTlWpiHVzZYLbCQ9NdKU8n5CN+u/buFzCWLaNQtuH4PBYAMEwHpu1gxYkL6sYkwommF24jBDhyMAnTdjtu8dAq3DQdFeZlS/oR0zkzz3EZVIUinYggqivYlSkiGdelfJGqUMQi6oyEtPb1WQ1xYKKtkbn11luxbt06XH755RgcHMTdd9+Nr371q6GRmQVsGcrg6a27kYxpKBs2LJvTb2PexFgrl+IC6E1FoCgU3b4Yvh8zIRXjV819/Ld/5hPBNPSxFvUn6laolu2iWObtpXNFAw7jpfkxXdnniaWZBzIXDbNEw7mYzmDUGBkGIKYp2DY8hQu8cZYqtmwBQEjVM2WM57+a1eU0wkyGmxY2uGeG50ELZqMIfeaKBpxat60FxP2ZKJjo9Un9z5WsUYi5RVsj4zhOINF/3HHHNaURh9g3iJVoPKqgrysKy3aRLRgolm2YltFQLmUyb4CAoFi2cP2//hYgBBXTqZOJmakXdW8mgkYrVNdl6ErqyBYMAIR7Y7qC+b3xwP6mm2NolXeZi5XysiX96OqK43t3PAcAkphBPcFSx+XGQIwzoisoGTYABJQaKOFMtekIe+6LEW3Ui6cR+5CAgTPLXfkMugzIlyysvfuFad2fVKw+L3YwKhyEaI22RiYWi2FkZEQaFsHYCjHzaLQSTSd0OC5DxeCrYr9cCpegB7qTGlSFYNdEGQBDb7o962tfMN2JoNYwRTUKEAJVpVjQn2ga1681GLsnSrj1/q2I6QoWeh00azs+tgoZibj+bK+Ulx83D/GoCsfl7ZsF1Zwz6Pik719QZIsmmE8OiHqGyfbqhDo1FHtrRBsZ5qe37sbpJ8wPNH1burgbG57aIbdjrOp5gaCjZ64RJT5kkB3aaGtk/v7v/x6f+tSnMDY2ho9//OPYsWMH/uVf/mUuxnbYodlKdFF/AgDqvtuVKQIAupIRjGSKvPgPwHi2gv7umOyfciC8vH7DtPbuF2AztKWq+iekKssOKBk2/jSSwy3rt+D+p/6Mj7znaLldu5DRbK2Ua2VloroCx9WQL5lwGfHYc9x4rDp1Me58dLscp+4VfBIwOAzyt6rSXBC19phRXeHFt6YDx7GhKkQa4r3N5Wwbngok3Nfe/YI3VpcTOHyeV0RTOjIYIYPs8ENbI3PyySdj3bp1ePHFF+G6Lk488UT09vbOxdgOOzTrf750cTee27YHeyZKUBWKrqQOReEve2864uVv+KpXhC8mchXZKgDY/5XUfnQ60dQWOYpSINvhCgaUEuz2ilcB1OVdRJ0Hr29RsGUoM2sGxu8JTObKnOpNCFJxHfmSCdPmM3J3ghMmxDgdx+WKDV5OQ6V8m0LJgq7Rph00/cckBNg1XgRA0JPSocaUupYArTCd+9GV1DGZ5yFO25eHEXU97QzGXOTFQhxYaGpkHn300YafP/ccjzWvXLlydkZ0GKOWydWT1GVsXFEoetMR5IoWxrMVLOxPYGFfHDYDpvKGpDMzQBZmZgsm3rwwfcBVUnc60fh/Z9uuV6/BZO2GqBHKFkzZnE1cr6xhS8+HgCGiK7OmnlzrCTgO9yhsh1PPHZfLq6QTGlRVkYoLT7ywE4WyFeh+arsMiYiCv1711pbj9B9zNG94fYQY8mUb83v1aYWgpns/RHGqw3kp0FTOMPNv1+j6AUChZMrFUq+3/5BBdmijqZG54447mm5ECAmNzCzBz+QaG8tj7d0vyMkkoilIxHQYloNkTJOej2U7nJnki+kDDLbDZO3NgVRJ7ffYHMdFtsCVAFSCgLcR9OyqYRoAda2HAQRyCY8++wbAGDSV96sRDdE6OefpGuXarpwTOcOnv8fvR3cqAsa4yKZlu3j02TegKkQaGELg1QtxvbmNm4dx56Pb2yox1NLaXZfn7qYTguo0lyN+pygUgz0x5IomciVe08UYk9stXdxdd/1uf+hlgBDEo6pcLO2ZLGNhXxwXnz39GpsQBw/2ysiEmDu0q9gHIOXoVQpPcJQXOM7vi2HZkv5A/L92H/sDYtzrNw1hz0SFr2rTEdgMdUwjgBvDYtkKhGeCYFBVJZBLiEdV9HdHA0zITs95ukbZ7wnkiqZUjVEUKmnMezxVbJHUNywbJYP/W1WqCg+2w5DJVqCqrQ2cUFLIFs2AAoTLuErEdLqAtmMMBnI/GkXFcjE+VQZA0JPQEYuqgYZzja7fhHfde1IRuVhyXBfJqBYamEMcbXMyO3bswJ133olSqcQrsl0Xr732Gu655565GN9hj3ahjGVL+nH5BW9rWOl90VnHdLSPuUCj8EkypmGwNx6sxUBwMvcbm+v/9bfYPVmWITMxuTou0BvnuQ5hSPblnDPZCggBRvPVgsNUXGtqoPyegGU7oIQXydLA9M/hcvVM6JoCx3RQKy4h/t3OwK06dTH+5Wd/aKhOMZGroDfN2WBr734h0ONG9OvZuHkYI5kiV3pWCBY1IQnUenX5kuW1POAq6fmyDcth+NTq4+S2jRY1nJQSHGtEU8KE/2GAjthlJ5xwAl588UWsXr0av/zlL3H88cfPxdhCoLNQRruVqNhHznRQqnCPgBKK044LCp02i6PXNuNq1qyrWWhHTFSW7aJsOJjIGxga2QqFAoM98Y6FGCuWi4X9CV4dX7JgmNXmbEKBQBiSfamJieoKdo0XAwWHE7kKFvQlGv7ef/3Hp8qglKA7oTedQF3RBsCD47rSMAEABaSckKryepLafS1b0s9DcvDycIAvZAapsq0oFJbtYOurGfzh1QxUyhvZRXUVxYrFt7T58Rp5TLVeSaHEFdhth0FTeO1PsWJj/S9flds1MvAKJagVcDUsJ0z4HwZoa2SKxSK++c1v4oYbbsAZZ5yBT3ziE7j00kvnYmwhwF/4HbtyePTZN1AxballVTuRt6Lmin089NthOC6DpiiIRZSAXEmjPMTtD28DGEM8pknWlH8i6jR3sXHzMCzblYKLCgFcl8G2GTJTZRi221CIsfZ8xOQVj/IOlaWKhYmcAYUSmRMoVWyohK+mRT2OP5TTTnssk61w2rELKIq/lTUJcnYbXGNxTe55/NV2PwdjVX0zxwUYYV7YjMEFYHp5Ftd0MG46WNSglwzxCjzF8FRazQFtG56ColBUDBvZYtVo2y5gGw4MywElNCBMGm0gD1MbrrWd6km5ntYcY8DOTEnes0YGPqorACEBpQgwhAn/wwBtjUx3dzcA4KijjsIf//hHLFu27LCo+D9QKL9Caiad1NGvclbPQ78dxhMv7GxZB1EbEqmYNlQvTi+YQP5EeKM4+thUGa7LUDL4tj3paKD2ptPcRSZbQdlwPEPCnx3FN7lRwunIXOGfIRnXGuY/aicvfmzO3npjTwGaSkEpgc1UxKMq915sB5eubJ1YrqMg5ysyr+IySG+iYjWXTvE/L8m4DtuyW95X13VBKEE6rqJiOmCM4c0L09iZKSLv9aQBqt5JuUaiRqghCwimHSFATyqKoZ1ZqTAAIEAM4ccHqMJgOczb1kFmqow9E6VA5X6tV+K3m/4UGQPqFhj+9+fis4+p++zjK5fuUyO2EAcH2hqZo446CjfccAM+8pGP4Nprr0WpVIJtt36BDnbMNeW3kUETlezNChINy2k6ri1DGdz+8DYUKxYc38rTsl1M5CpIRPmEaZoORsdL+Ltbfo2y4aArqcnJpGzYclsRMhqbLKMnVQ0DdVpf0d8VxUTegOJbm7isuspVFVInxNgo1FTr1Wkq9YxfBLpKsXvcU6h22bSqyWuNpabyvjCKQjG/l0+CQg24kfzKc6+MYSRT9MavwXYcGLaLiKfM0AguAyjjBlyhBFFdxVVrTsZnv7cJCoX0EDjrDMgVgyHEjZuHkYpryHlelwDv3lkBJcRbDHr3v4FX5fdKxL81lUovNh1TkStZKJsOEl4DN1Uhddvxa0YDC5BmnrX/s1aKxwfKIi/EvqOtkfnGN76BX/3qV3jb296Gj33sY3j66afxrW99ay7Gtt8wF5Rfv6fhf4mF4ejqiuOo/rg32XLqq8hBCP2yZuNav2kIxXJw8gH4POO6DNmiJVWPAfDYPCGYzJsghCAe1by+MdUouvi9qL0BOicUrDp1MYZGPOl4AikdH4/qUEwH6aReJ8TYKFZf69XtHi+hYjqIR11MlS1Ja94zWUY6rqEnHe2IUVZrLNMJHePZsifiaXqK0S5s28XtD70sw4e7J0rY/sYUiDehu4xhsmBiUFWgKBQKpeAypo3BvQl4/XUczzvhGRbNZ5EbJc0z2QrSCZ0bhYIZaFVNQGRDOwEmv2tob3w/ZHBdhmLZRMWwMb8vDqVkoVCy4LgM83timMibUm+NACCUoCcVmTHG4oFW1xVi30Db/SAWi+Hcc88FYwwnnngivvvd7+Id73jHXIxtvyGTrQQahwG8nmNoZxZX3fYM1t79Ql24YjoQL9FU0eTKti5DvmyhbNiIaHyCum/TqwCAqEYxmTelyi3viFmd/MWLvWUog7V3v4CrbnsGO8eKUleqNt0qQibiT1UhMsENMK8/PfNYUnxjlzHejIvxynQRR1916mI4jtBQY00lUJYt6cfq0xaDEgLHdaFQIBXnq+KVpxzR0T4AbjyzBRN7Jst4Y0+Bh8NchvFsBblScKWfK1mYzFVkPkBcm0b3rr8rGqi7iUVUpBMRqJRgIscbiPV18VBlsWJzoUhCUDYdEBC4DpMimATAVMHwwnntw8q8yylDIqpi/aYhUMoNhOWdm/iTUhIYtxhzPKpBoQSqQiGY0I5bzSUptDqGtgYGvDvp2GQZjsvzY4QQ7xkBKoaNZFzHylOOQDyiQqFARFdkCHamGIuN9M2ElxTi4ENTT2Z0dBR/93d/h8997nN4z3veg8suuwx//OMfoaoq/s//+T844YQT5nKcc4raFTovsKtAoTOzsvK/RI5sDMUCqrt7Jkr8xzLkQUGILxHtLVPFJHr7Qy9z3SqXSV0pP/NIoDbWz4/Pf9+bjmIqb6BUsWXfGE2lPuYXwbyeWIBeLM7HT4ddv2kI63/5KipWlen1pgVpzOuNYXSiBNcFEhEFF511DJYt6cebFqQ7YqiNeFptzWi/tciVLEk26EpGkIpr8t7t2JWT4o9RjaJU4StzfwhvsCcG22XyOZjMGyA+dWShQuB6Y6CeKrFpudg9zin/jZqX+cGJELzT6EimiHRCh2WbAQYaJdzw+Z+5Wtp0o2O4LjDQHUGxbKFiVfvUpGJandKAH5KlxoDJXAVFw+bPEmOy4HXlKUfg6a27PcUFA+PZckPG4t4g1Dc7tNDUyHz3u9/FihUr8M53vhO/+MUvsGvXLjz55JMYHh7Gd7/7Xfzf//t/53CYc4vaBPOUp9XUldRnRDnW/xLxSnZORfWr7g56uYCKyav78yVLGhgCHvYSq37LdFGs2DJ+L1LEtQZFod7fWVVBVySMNZXCsl1oKp9Qe9MRjGfLKFUgDWEsosraGz8KZQuFsgVVoVAVJaCjVVvtLVSXjQYV+4blYHi0gNsfelmSGuBd56Gd2YAoYyercoBP4AxAvmRK+ZOsYeOh3wyjrzsqCQJgDCoNMtFq6z1UhV8jcZ9UlUqaMe/qyVlufMLnati2wzytr3qoSrUFQLZgQlWoJC+4Xt6DEO5FxaMaDMvB+k1DdWrWtWFRP8am+MQ82BND2bDRk4qAEIJCxW5NfwN/lvJlS9KPNZUGCl5PP2F+S8bi3uJAqOsKMXNoamReffVV3HTTTQCA3/zmN3j/+9+PeDyOpUuXYmxsbM4GuD9Qy45hDOhJ6YFukHuzshJ5mGzBRK5oojsVQTqhYyJXqVPdvfBMPplHdQWT+QoopVAJn/DFCleIJ95631afLAmg0CqrSLY8ZsCC3jgqlovJfKVuFWvZLnIlE12JiCy6q1jeSt3lIbNc0cT6TUPyGomwX7ZgypyECFsRMGSyBiJeEzJKeNweCOaSAMgampJhe6QGhtHJcoBC7bJgAWaj6ZHUfCeagPFrQJArmohFVJQNBy7jK/s9k2WvboggnUCg5XN/13BgshO5GoVyoxLTFeRsB8kYD/1lCyZMh1OJe30sPoBX4ZsWl8WhIqzlMNi+M9IUYMLToRPgyX/i/d7F6EQFmkKl4Y/qCpQmyXg/hOKA47gY6IlDUynsJh6QvJ6eegQngHAjunuiJOt2tg1Poa8rWpdP29fcZdgh89BCUyOjKNUH58UXX8QVV1wh/32os8uAemn6KS8RLjDdlZU/mdmV1DCZNzGeLaM3Ha1T3V26uBv3bXoVu8YKdTUbwltRKEEmW8HGzcNwXB47F7OTQilcb3nbm45KFtS24SmMvD7VdAGrezpfAA8RCmoxCJMT357Jaq2MCPu5jPli/8z3Xz6pcWpt8KDCSIt9CJVlTmUmKBu2rGbvSUdlm2bX8Se4uTehqxTFil1neBgDqFeZLmpwAN7ThRLCjbsXXrQZwxtjRTz41J9wwXveDKB+sqOUIBHTkY5xGZX5vXGcedJCGXYTFOTBnlhg0k/Fed7k0pXHymcgm6+gbAZneMvhV07kQMR9ykyVQQiRiwvXdz65UucdKQGgZDjIFgykYiom8y5a+4PVe6lQz0t2XEzmTSzojc1aWCvskHlooamRiUaj2L17NwqFAnbs2IF3vvOdAIChoSGkUqlmmx2SmImVlT8PIxKa2YKJqbyBJYu6pOquv2Nio5oN6hUe2i6T+SGx4iSk2reEUmBBXwLf+vSpAQOnqbx3eyNUPEWAeFTzVvfcwxFhHeJ5UiIJKyYZEfKjJLg/v+hj7VwmjLTYh8hvcDAYZlUMs2zY0uMT58d/BS8x7iKiEZg2CxhQ1Us2cbIEk+0TRA6MuazOo3voN8My3OPXWOO9ewjm9URlLkngAt/2a+9+AYWK5THLgufq31+tgfFDhE8FXH+cEDw3wtA8F9UOpQq/ngt6Y9g5Xmq66GAA0nENxYoFQnhLAdfzpHdNlGVOMe1r/T1TYa2wQ+ahg6bsss997nP48Ic/jIsvvhiXXXYZurq6cN999+Gv//qvcfnll8/lGPc7li3pxyXnHIvuhI5SxUZ3Qq/r4tgOjRhr/tWpgDBGUV0FIQSayg2SolAcMZjkLCbK4+MiP5RO6KCUGxguUQIkYjouOnNJYJ/cwLUmFE7kDZQqPL8iFYK970RIz68PZtquN8nUT9iKKLD0dtKIQdbfFfXyTbww0LLdutDPRI6vjBNRtfHE6oXY+tIRHDU/hYHuqMfsYnAZQyrGw5y2wzA+VUE6pnIPpmZfXBXZrWMxGZaDvu4YFvTHpYhnM3bhqlMXw7ZZw3PdMpTB+l++KgkMrVB7mrVGZ28NDMDt1drPvxvf+sxpLZ8HSgj3ML0Fhu1yejMBN9plw8Zknif92zEDQxy+aOrJnHnmmXjwwQcxOTmJt771rQB49f8///M/49RTTwUAlEolxOOHR8Xuvq6saptpTeQNgEEWv4kQlFjZF8v8N5bNcweOVxUuZN2Z5WD3RAnpuIZUXIPjcF2vRuEFsc9SxULRaBPqZLzwjyfEDUkWEBNyOqHX6YMpCkVPKoJswaut8ZSFGePeQyoeQSKiIBnX68a3Y1cO29+ohvD8+RQRMmIMmMiWEVzfc2he0p25DLmihUSsmjvLFrhCcTKmwXV5bkd4ooSYAZl9kdxWFRII90y3ZmrZkn50dcVx76Pb6jTgRP7Kn9hvhFpGmkIJFEokzbrWOIpIaeeGp/rDVqQBUYxrOwyUeosGcANDAEkWKVZsUGJ03IkzxOGFlsWYg4ODGBysUhLPPvvswPeXXHIJ7r///tkZ2SEGf8gtV/SaaRFOrfVPXP1dUeyeKKHgiUQqXq0KY8CeSU5rFjkZx3ExkTeQsrmB8bfKFdgylEGpYmMyX6nmdChpqN6biKqwHReW7WBeTworTlyA57btwch4CapC6ppM1cbO37wwHWiyVqsI3Wjy2TY8hXRcR9l0pF4XwCdMwnjOhbkMtgvoKpEFpYIEYDuunHRN20W2YCCd0L3cF/c4N24eDlCRI5qCdFyXE77wuESBqD/cU5t3KFUs3gvFk18Rua6AWsNpRwfkUrYMZfCTB1+CYdlwXNSFFf3QFJGbqcJP9qgF9Xam+oxQO8zrrY6t2X6BoDflel5M9bj8T1UhcBiaPn8hQrSt+G8F1oYCGaIK/4S8Z6IETaXoSkYkA0mEoC5deSxuvX8rT7YSIvMrqbgOw3TQneJ94xlEeIyr4DbrAX/XY9uhaxSG7RkWxlfKtVpW3UkdXcmIlE8RE8YF73mzZMWJbp3iWEJGvr8rGtAH66TuRYxvaGcOLmNQVYr+7igm84YMlwk5ecEQm98Xx+hkOdCky09pVhSCYtmG47KAdH0j6fl0QkexbMJ2mFyZJ2IqVIUErmUrD3R0soztb3Aj6Vdr+P3QOH73P6NS+oYSwLBZIOzYCLTFd4HfEUDXKBwHSMY1T1m7s3dRoUSGUcW+GmfoOMQ9cN2q0RF5McczalqDZH9tDxoQzu7ztxao1S4LpWQOTeyTkTkUhTJ//MBWnPq2ebPycIuQm2CruS7D6ERJdnxUKcGdj27nTccoZxH59byyBQP93VFoKpUdFsWLv2NXru4FFaGeeFSTEwEPPzEMdMfAGJMqxumE3rJi39+ts53sRyehRbEPwQsQXhl8RkN0lgRcKJRrkzVtXEZ4QyxFodJIChUEP2VcGHUum0PRleSUZstxYVgu3v+O+YFmXf52wZ6zIz3QXNEEAa/81zUHuaKJiulg0ws7fc3J2nsXlAIUnIzQKnwFVJucvWl+Wt7jkYwLlzmysLYVLfmdSwcC92ZebxxvjDXPEVERt/T5NbXejy1Ulj34nw+AkwSEWjQlRLYW+PF9W3Dx+44JEF5sh6FUsTCZr2BoZw6r37VYsv1CHJzYJyNzKCJXtmZdJ2nVqYu5gGXZhCgrdFx4cXpOB3Zchj4vbJMrmhjPOgAI8iVL5iHESwwADz6zo25FXTEdWZsSj2roB7yJnCGqKzBtV2qmdSKHL9AoT5E1bPzkwZd4R8oO9iP20Z2KeIl9AgLOmhM5HWFkI5qGXMmSlGrmsEAoh1Lu9U3mucEslS08+NSfZKGgQgDLZpIyriic8pyMa0gndHQlIa/zo8++gaf+sBtRjSJXtgPtggXTrjfNa2AE200Ij/rT8y4DWAfeBQGQjGqomA4IqxetrIXLeFhwp488oGsK0nENY1kuo+OvjZK/8TptvjqSC7RRuOjMJbhl/R+qLQNqxgZUw3U8b8UC33MbFHSLRWsH0fMnMH4wMBfIFk0USiZuve8PWLKoC4Uy98byJf5OKJTXAj302+F9Lu4MsX8RGpka6GpVJ2m2HuxlS/qRjqmoGLbUmaJeriRfttGV1DGRM5CZKteETximCgaPwzMui8/AwyxiRd2VrCoSOI4N03alMYhHNVi2C9NypVG5+OzGuZJWytB+IkGuZMGyqh0eHZfJpmSrT2u+ChX7IIRP2rkiF3kkALqTkQAtdlemCM3LsUzmjYDYI/GKRRmYLEq0HAv/+cxrAHhOiwEgXg5BUMZLZQupeLW4tmzYyBUNMBD0d3PxTcflK/RETEcipns0ZkhvSCgA8GRX1eBX71Y9apUKGCALWAVduJUnIlCq2AGxTmlc6tni6EpooJQiWzDgMuCW9X/ABacfJe9NRCMom/WjZYDM81DCC5KFtI6qULgua9gGYWemiJInRVO3T1b902a8aHeqyL1F6pEvRM5KhINn810MMfsIjUwDzIVOUsVyMb8vDkIIdo4VeGdExmB7ooeW7WCqUN8hkjHO+lEopzWn4xrGvTCYYToYyRR5HsN7mUsegUAk4TWV4m/OWzqt/iq1ytCCnCB0wfyG0HYcnktyWaDmpBb+XEcsoiIWUWFYDlQCGLYbaG5lOy5609wjY6jmCRwXAVaaYEGJ1gSCMi4mO4XyNspXrTlZhiyFAebhsyo1nIeEqioBAJBOaJjIGXJsXBTS8HTiOAW7HVr9QrRx6AiE1zX1pLm3G9GUpon/bE2bAJcxPPjMDgCceNGVigINikP9SMY0JGI6CmUblu2CUoKF/bxTqMjjCTgOt3SUkqDeHuqNrKi9EfePEL7iEp1CNSXULDvY0VaFuVV1/6FKX55JnSS/OrJfAdiv/CtqUhg4mwoAykardCyvIhe9Tlzf6lXUmbgivEEIVIJp1fc0U8G9b9OrMk8xVTADvWoEeOMxwdiqrzkRaKbgfNFZx9TVJC3si0NVlaoqgKfXVbtSFt+JSc2tmdwsp3pfa49v2Q5AuDcB8PtAfCoB/DMFC/vicmzzemI4dekgCCEdGZhmkFoJDbyQRr+lnsviz42UfB6QYBA23Qfhnu+jz76BnZkiJnNGSwNDAKk1J2qiLNttWhujyhqleiZd7fkxeHVQfg/HYXBcnm+MRZRQs+wgR1tP5qyzzsKFF16Iv/zLv8SiRYsC3911112zNrD9BdPurKBsOr3tGyXIBaU5Zzq8V4k3ScUivCq93aRVrNiIRlTkvN4wjVhJ3akIKCVIxnV8axr00mZyIcO7c7jrsQIUhcpjim6MtS0EROFms1VoO+mQ2iZsQt9M9KMRHo24brpKA9cRqBoI7vnwRLy4r/7j78wUwTxxS3/oqra1s+O4uPicYwPbDe3MIR5VeJO3JvM0Z4MpUra/FtMxT4Twc3VrDMyET4RTkDuaQaG8JUHZtKFS2jAfUzs+IQoq2iAYptM0j7ewP4HRyTLKhg3bIR4tWyT+IQt0qULAPI9RUTyatO/56YpzwkpY3Hlwo62RWbduHX7605/i0ksvxbHHHou/+qu/wooVKw5JZhkApGMazmmz2p9Ob/tGhXzrf/kqknEdxTLvOsg8SqzruiiWbXTFdSyel8Ibe/JNE8GuyzA+VYbl8ILHdEyTxYcAbyQVi6hgjE073FCrgluqWMgWTFiOK3MjmqZ4PW68anCP6UakwQvWnDQzyoJZtHHzMO58dDv6u4YD6svi96efMB+PPvsGDMv2QlqUGw6FEyZsx21K/xWSN+m4HjiGuFd3PbYdqkKRKxqwba/2KKY1JEWI3ysKhWm5cBlDxXSQiusoVmyZV1K9QkWAe53FCu+ASQgPJ+2t38ONN0HZM1i7vPDodHZIvXAgAUEyrnnJ9tYIGFuXoTelN21HLRZQ3V4jM9PmOUAhduo4rvRemPesMMBHdLFg2Vx9HIw1vGchDh4Q1mGxi+u6eOKJJ/Cd73wHjDGsWbMGn/jEJ6DrevuNDyKMjxcaFir6URvPB1BXXwIAV932DAgB8iXeWVFIshTKFgZ745jMVbgRIUBvKoJ4VEO2YMC0XOiaglzJaEppVSiwaCApE9R9XTFZhwB4OmaUwLJdRDUFl1/wto5oxbXdOlWFd8wEPIIC5bHyREQN9BmJ6qpsN8CZTBpUheASb+UvJmZ/gWaz70plS7YG8P/+9BPmy0LPcsWqyzW0Q0+K95TxH3/j5qrSMk/+m7BsBxFNbXjN/Pf+jT0FqfCsKgTzeuOYyleQLVpeLRKfzEW+bV+kYPzQVIpElC8gckVr2gZLoQQMPGeViut1nTVrEYso6EtFkCtZvCZHhOXAbZum0jqSR6NFBVBdOER1BYpKMbKnAEJ4G414VEPZsDGVN2SjNmHo/fdsNg1Nq5bQc4GBgUNPF7IjIzM0NISf/vSn+PnPf46TTjoJF154IX79619j9+7duO222+ZinHOGZkbG/9JkCya6kjwRKlCqWJjKG+hKRuRLtX7TEHaNF73OkyK85EJRCI4YSMqEv+vRkSNegzCAS/yrCkGhXM2J+ZOmmkqxsD/BQyVeWIez0ioyti/EKdOJiJzwm72gfu9MVynysuUuN47dqQjyJcubjJgkHYhOmksWdTWsfvfXBTUyygDqvhMsrgVeYtn/e3FdeYhrGjcWCNCPc0UThunIgkl/YSxjDKWKjbWffzfXG9s0hNGJEgDe2bM3HUEipmMkUwxMzkJmhRBgoDsGALKeaaZACE+G2y7zQk3TC7cBfPvV71qM514ZCzyf/rorgSP647KH0O0PvVzXgRTw1LC9fTa6/80wMJDC47/9s3zupIfj0dkZSGAB1mghN9M4mIzMt7/9bTz77LMA+By9aNEiRKPcG7z33nvl3/c32obL/uqv/gqvv/46PvrRj2L9+vWYP38+AK5tdtppp836AA8E1IbHckUTk3mufixWX406Z7pevFl4AQIi0EgIkS+27TiBmgLTdmA7RFKbudKxC8djUAlDGI9qMEwH+ZIlw2LiWFQh6ElFJXOrFRW0NrSXTuiI6ArGpyqSBacoFGOTXLXXtt2AdIvYRyvtND/8DL7a7xr1tBe/X7akHxs3D0OTLQYoTNvp0OAQj0UGSVfmLQT45CYMkCB+bBnKBOqZCOHeyHiWe5u1haHCmBDvnIFqj5/ORteBwWD8+rTztlvBdl0pF+QyQKEuGAgUL3e1oDeGb33mtEAYs1SxUTGbk4Asx8UDT+0ApdzgOC7rqN7Mnxsb2pmFQqtUdYXUd4wNmWZVXHfddfLvZ599Nm688Ua8/e1v348jaoy2RmbNmjVYtWoVNE0LfE4pxS9/+ctZG9iBhNoJuDvFu0ZmC5ze2qxz5lS+jHhUQaFsS90wEdsuixqZJsd0XQBEtFJmUm9qdKIkKaSjEyWYvhoVsGqTMk5Aqu693QvazBAATNbaJKIqyr7cT65g4sQlvVxZeJxXxXcl9bocVaNOh3mvUM+yeaW8CJcAVbFKP/wT/9DOrEwk11Jkm0H0Q7EdN0BXTsc1TOQ5DTnr1SAJ4sfGzcOoGLZc6fP9cOq06BjpT1YLI6FQKg0QVadhZDwCRTMiR0ynqFiNyQPTAWPAromyHLPrAoxyT0zUvDz41J/w4NM7Ogrx+R4/r4iSdyJNxfWOalxEbu6q254BwI0Kb3cgSCXVjrEh06w1SqUSVqxYgXXr1uHoo48GAPzN3/wNLr30UvzXf/0XIpEItm3bhvHxcZx++um47rrroGkahoaGcMMNN2BqagqO4+Cyyy7DRRddNCNjampk/v3f/13+/c4776z7/pOf/CQSiUTd54ciaifgWERFbzqKqbyBUsWWnTMBLpdh2zzEZDkMbsWRbB4GeJ4I4YapA1YPrzeggdoMwzLg2gxOg8nIz85xHYbMVBn93TFQSlq+oM1a3s7rjcOwHBjgIat8iYtK9qR0OC6wedseWYnvMh4eElX1YoKp7ceTL1nIFg2k4zoSMV45P5EzuGqzqnCJEkICtTKO42Lp4m5PikaEUyAT7a2uZDyiwPAS1qpCPLoyQTquScOWK1owLAe5gglVITI35bhuoDcMJQTM82gYY9C9+hRV9PlxGBiqi4d2zK3ae9fIwFCPMFA23YYFjnsDf46IgBetzvfutUoJNjy1Y6/3zYsoeeFrtmBg7d0vdJS0j2oUuybK3mIMsg5KJQjbCHSIeDyOD3/4w/jpT3+Kq666CsPDw9ixYwfOOuss/Nd//Re2bNmCO++8E5qm4VOf+hTuvfdeXHzxxfjSl76EtWvX4vjjj0c+n8fHP/5xHHPMMTjppJP2eUxNjcz27dv3eeeHCqK6gt3jJZ+WGFf5XbKoSxb28eJE06vVqNJnXa/JF2/361Wfg8Gy2zOMGKvGz0Wse15PDBQM+bLdkeouD++UkYjpuPjsY5r+rlljtovProbChkZyMpwRj2oYnSiBgNOINa+bo8t4SGqwJyY9p1q6smE6SMe5ICfAw4Z8QrKwZFFMjrOZFltXkrcMkLUV3jlQAkQ0vtoXc3sypkpFgWLF5jU/lELXqDQwQgnBdRnSSR26136hbHJj5K/34NRpKr0O25sJHdejF+sKelMR7J6oNgOrFSNtd7/qPvN9OEPcgcBxGDjFOFsweF6pRc1MKyhU7Ltaw6OrSlP2ZR2kRhqVEjbC2xf5uJBd1h5r1qzBpZdeii9/+cu49957cdFFF8lOxx/5yEekc/ChD30Ijz/+OE477TQMDw/jmmuukfuoVCp46aWXZtfIfOc73wEAlMtlxGKxwHe///3v9/nABwsefOpPGMkUqx6C69RN2qtOXYx/+dkf5ItFwCnEQn4DjElGjlyhdXBsQiAFAv3dF6+67RnM74t7K+3m4SJ/+CYdU9vKxwi13FrKrvgeQCCsJbpnOhDGs2pga0MbftHMq257ps4zjOqKF3aER1mtTxwLNWWiKegH95oEHbi/KwrmupgsmJJmLXqdTOWDvU6ErtlUwYQ/ZZKIqgG6eSKq8oZqcOGwaktkReV/Mb0aIZ5CEvfehWk7vFEaIagYNkDba5LNJcRzIcK34hqaloszT1q4V16M2KfreXMC6YTWtgePQMV00JuOSjamplIkVIqy4chW3cDsaQoeKjj66KPx1re+FY8//jh+/vOfY926dfI7YWwA7s1SSuE4DlKpFB544AH5XSaTmbEOyG0r/v/2b/9WVv07joObbroJn/3sZ2fk4Ac6tgxl8NBvh70Kdv6Zy7iRqNQ0/2oUFhFCl1ShUBUC3avv6CTmoakUHzr9TQ21v4RagKrQpollhfLE/0B3FPP74g1rGgShYapo8hbIjIclLl15LK5aczJ27Mrh1vu3YvsbWT7ZujxBXvbOXSgVqAqRE4yg7LYKbfjVDgTyJV4zJMYiVr/+DpRRjSsxv7GngFzJQiKqQlF4KDJbMD3dtwgW9CcQj2roSkbQ1xWVvU5ETc7TW3dLyRnRFI0xoFC2kS1wQ1c2bJk3UxUhT0OwoDeGvlQEXamolLrxw/VoxWefvAif+sBST+KHSVXm/Q1xr4Bq7kvxnhNFIfjF7xorNPjhPwtKqrp7zA0qs3clquFIf05QqGB8+obH6lQwFIViXm8ciwaSsr6IEDR9JkI0xpo1a7B27VosW7YM8+bNk58/8sgjME0ThmHg/vvvx1lnnYWjjz4a0WhUGpldu3bhgx/8ILZu3TojY2mb+H/LW96C/+//+//wxS9+EV/96lfR1dV12DQq27i5quLLaiL/to8942c7AVX2j5hGDdOBQgHXk3NvFzqJaBRX//U7kc2WAj1bxEpchLZiERWWbdTF8XkxoCJzDoblNMzHNFNTvm3DVh4+8vbJvS/OQHJdhqm8Adfl7CqR54hHFBimC9t1MdgTx0VnLmm64mwUmiuULCRial3hqlj9bhnKIFe24XBGBGzbQdZj43n8PVg2g5XnIZ/aPj3+c7ZsF6UmHUJFd89C2QJjfBw96UigRkN4YmWnmoQXasRHDCbhuC62DU/hgve8GUsWdcm2DqKN9GxAiGOKBnfNoClc8sf2xq0qBOkEV4YwTLNtCFah3DMWTDrq09ATdPZ4REVEVwIip37ihpD0Lxs2xqdKUtK/9rng94KhOxUNEGoaeURhL5ogzjrrLFx33XW4+OKLA59Ho1GsWbMGuVwO5557Lj760Y+CUoof/ehHuOGGG/Cv//qvsG0bV1xxBd7xjnfMyFjaGplrrrkG//AP/4APf/jDuOaaa3DJJZfMyIEPBmSyFWgKheO6gVCYKEATye1MtsLFE/PNiycdF9BULknPmrDKCAH60hGIteLtD72MiunAsl2M5yp4ZXgKukahawq6EjoiKoPjaDzZzFyvCt6F7fLeNLmiicwUn9hyDRKwfPJlvFGYx1hrVNPhuICq8KQ3VeBRfg3OJkvwfiz5ko2IRpGMabxSuwUaScoUy1ZgUgKCBmLj5mEolIBSKtUFBDRVOOT8uvpFLWvDdkIhuNlEzABMFaoV8I7rYDJvIKYrMlxTqtgY9+qR5HZeyKxs2EjFNTnupYu78dBvhuEyt+O8TKdQfGKgot31vN44xrPlhlpkiaiKIweTstVExbC5EGveQDSiNu/V4wP/SfX6M0AuZmIRFaWKjUtXHsuNRQ1xQ+TVyoaNYtmWITvGXDz022F84SMnyAJZ3vuISVq5QCOWZKcKHIcynnjiicC/t2zZgr6+Prz73e8OfP6ud70Ln/70p+u2X7p0Ke64445ZGVtH7LKFCxeip6cHL7zwAkyTv4Cf/OQnZ2VABwLEqihb4LLy/ryHeLnS8SpvXzCzmoFSHmoh4B5Bs0SwCBd0J3T834f+B8WKLTtDigMblgvbE7/UVIpPrT4OQLBqfiJXCRRxUo+dMzpZDrx8fjaPKMZrBh4G8xLcgFfAyI1CyRPzNG0XqbjW8CVvtNL0F9U1Ktj0G4iRTBHFigVCKDRv4qq7zp5HVzEdvLa7WlA3NlnG9f+2GReduYTnH6ZJATZMB6bFCzfvemw7IrrS0BOinmF3XIZyxcYVt/waFcOBrlHYDmfLzSQYAxip3gvhaW0ZyuCW9VukJ6qpFP1d0WAHS+8BZIzfd9NuLy0j9OHEQor4CiWB6v1qpUt3+0Mvy2dTvAcMABwupirCmgAkoUYyNlWKmK5IYViBZvJNh2uLgK9+9av43e9+h5tuuumAkP/qmF323ve+t+Hnhxq2DU/KCVs01KqlyCqUeFX2Jga7o9LNb+bFMBfo7dKRLViAJN8GWUeqF3YQK75b79/q0wELgosbOohGVLm69r9ktY2iRJ+OsmGjOxWpvnw+Ng9/FqveWvVf3t8Z4PgMrcuYXM37xTEnCyZ6vQ6V/lBXu5WmWF1PZCuSNhyNqJJcwb01wGUu7EYMrBayLYwx7Bov4vaHt4Gx5hpnQPMaFca4ge9WKOJRBdmiGWipwPkdXMes4l1/Ck4AMSye0B6bLM8YOwzw7oPLML8vhovOqvYFWrakHwv74tgzVfFUuV3smSxDoQSD3VFs3DyMeEzjxbY1HlkziE6tikdVB+DlxGhAQNQvQNpoghekAFmQ7J0HA+o8lJ6kjm3DU9XztXhd1ZknLQz8rl2x7+GGf/qnf2r4+Xe/+905HglHW3aZQC6XQzqdnvUB7W88+eLO6oTtSd0LLSVR3CiMg+O6yHmrstNPmF/HyvEbJ1VVMK9XlVRawklncMET5apKAjUajutycY0mRsb2XuqhnVnPywBIg1ASAC+cAtljRbx8fjaP3zNoNeeISVgUIfrXSVxCnjfhmuejMLdbaQrpFinUyDw6rO/k3RbGQXRubHTdxflQQlExbI9+zM+14bVtUXTDGG8TPZo3pDfkkQd9PWiq4JElHsrKTM2sgQH4wuQLF75dXkORv4vqCsb97bkZ4DDGSQllG9mShZ5UBCNT5bbtngEgFVcR1VVeJOkRTnSNe9HTzYMoCn9i/N45AK8Y1pQhXQB4bnsm0OWTMW7Ytg1PBdiWzWq82omzhpgbtM3J/PnPf8YXvvAF5PN5rF+/Hn/zN3+DH/7wh1iyZMlcjG/OMZE3JPMIqNJrSxUbUV3Bnkner1xTeb0MpQTrNw3BsBwoCgn0WPHHrXePlwDwRGsiqsKwXdg2VzVOxVRQhcpw11TR9BhatXSD6gRKKZFSNiAeRbrFjOE4vIvh7nFev7H27hcQ1ShsxiVkJnIVEFo/UfohNKoctxoyqfN2HAbHcQIveW0nTTFRFcuW9HKyBX7OxJtUupJ6wBuihILAlYltf3W8oFEDVYo4asbFCwR5p0shby9W5yIEKFttNjAHwriKHJf4hdi2FUXZceoN/76CEGBeb1waGJFjaXZvAH7v4lEVuYLpE1NtDvEeJGI6IpqCeFSTitwVw8bGzdNXRl7Un8DwaF6GWP3oSlZDrRGVypbPIuTjeqE9v4eyZSiDQtnCnomSV8OmQVUV6VWF+Zr9j7YU5n/4h3/Atddei76+PsybNw+XXnoprr/++rkY235BbypSF+8XE2bFdDC/j9Mr5/XGwRjDZM7AG2NFZAsmklG1abMo8antMBQqFiIqheq9SBN5/sL7m4R1JSMN9yVCVa7HsopFlI5Wowzc+xGdJv+4M4uR8RJ2j5cwNlXmBo3wsEgtuKJw9dit6nxE6KNUtuSKtL+LF0NO5A04Xm2N7bioGA7WbxryilX5hEIJkd6Q3+tSFQLqMZt0lUKhFAoF0okIfnzlWVi6uNujiBPUhqEJEYw/3gwuHedrK4cBqqKgO6kjldB5nVCDE/N6v0E0WK79STsDMtMGBqgSDQBg/aYhFMump0NGG44R8CboyTIqph0gN7Q6BqXA+FSFe+BlExM5A47rIh5V8aeRHG5ZvwXX/+tvW9KK/Y37CmWLC64mda7s4KEroUljpigUo5OcdOM/D/Hc+D2Uux7bDttlsk3ARM6ASiDzU80a8DVrphdi5tHWyExNTeH000+X/77kkktQKBRmdVD7Eyv+YlHDjo2rTl0cqO8QjaJkZT9jKFRsRLXGRsb/srgun0RN05EVzVMFQ9afAEB3UoeukoaGxhVt5VHfWrcV/J6V41Q7F4rkq+1wwUlBcxXkAn+b42arX9WrVwF4SEQwxdbe/QJGMkVkiyZcx5O993rQJONcNUBXqay5AarhQL83tLA/IdWkufICp94eOZ8XjK06dTGiuiKvS+2JOy43ol1JDZquIhFVsbAvLjuMpmOqrH3R1OBroSoUiZgOQok0uH5IB2gG0UlNzc5MCQ8+9SepEM29rdYmzXY7bzmgqQSDPXEkYioKZQuTeRMKJbJ3jsu4R71rooRb79+Kv7vl14G6F6BBLRZvnYpkVEVXMgLNq9HpTlUZgEIzLxZR5MKGyRosGigSFgYkHtWwoD+Bwd44knE9wKDUa+7n4Zyv2R9oa2QAwDAM6bKOjY15q+j2KBQK+OAHP4g33ngDAPC1r30NK1euxIc+9CF86EMfwmOPPQYAePnll3HhhRfi3HPPxbXXXiuLP0dGRnDJJZdg1apV+PznP49ikUvA53I5XH755TjvvPNwySWXYGxsDABgmiauvPJKnHfeefjIRz6CoaGhaVwKjqWLe+ra/4pVkWjZmy0YyGQrfKJ2mbf6F90GW7ex9aM21DQ2VcbOsQJGJ0peNTr1VvfVSUzsw2WQtQ77gtr6GsYYbC/H4bisY5l612WI6AoGe2JY1J/ARK6CW+/bij++McVZVdKQuVJyPxXXABDkSxYclzce4/U5zKtEryaSV526GKpC0J2KYGF/At0pbnAuPJMTA5Yt6cenVh+HBb0xKJQLWqq0OllTwskRk3kTk3kuhJmMaVj7+XfjqjUno2K5sg/Owv4EBrqjiGgKKAHevDCNT31gqSctQ6B5xbUCDLxQdCbRicoyA/DgMzukAa2ttm8G8UyJItNmKBsOyoYti1op4RX8ItTmuK73Jx+vYTl1BZONPIl4VEUyruNfrz0HSxZ1QakZh2m7SCe4IXMc/hzaXn+Z1e8KUvAdx8XoREm+N44TDKc1KvwNhTbnFh2pMH/605/G+Pg4/vmf/xkPPfQQPvOZz7Td8X//93/juuuuw44dO+RnW7duxZ133onBwcHAb6+88kp8+9vfxkknnYRrrrkG69atw5o1a/DNb34Ta9aswerVq3HrrbfiRz/6Ea688krcfPPNWL58OX7yk59gw4YNuOGGG3DzzTfjjjvuQCwWwyOPPIJnn30WX/va1wKSCp2iGTNm2ZJ+7NiVw0O/Ga7K6VPB8nFBSDBR3ygBLVQAGoFrYTHYDmcoRTRa1+NjNkIvtfve23oOoXBcqhCUTQeUEKnKC/CJXtMUqShtWDx0NVk0QEBkPsVxge6EGuh/04wWCyBQsOpnWQlcccuvvdoYTpBwHBf5sgvH61sD1CeP41FN0smvWnMytgxleB1RExVko4UxbsEl2CeIttIOY3CnIVsjx+9dj6asPADjOdE+gsFyGDLZYJtnAfFc15I62jG/GhXmiqZ1yRjPAXH5ovrGaFFd8fXD4fVCwnO56rZn0N8VxdLF3Xh66+46Tb5QaHP62L59O84//3zccsstOPfcczveru3y66KLLsIVV1yB888/H7Zt4x/+4R+wZs2atjtet24dvv71r0uDUi6XMTIygmuuuUYO1HVd7Ny5E5VKRQqxXXjhhdi4cSMsy8Kzzz4rT0Z8DgCbNm3C+eefDwD44Ac/iF/96lewLAubNm3CBRdw3skpp5yCiYkJjIyMdHwxOsG24Sn0dUe9pmLUWzVz+rFQWybgL52i1Ic8OlmhivCL2YAp5kez/M/eQCbQRS92b7XbKYQqccV0ZGsDMbWK/biM06t3j5eQLfD8TCyqIaarXjiE/zYRVTHQE68zFsKb7O+KIpOt4I5fvIJv//tm/PGNKUwVDPxxZ7ZhjsBxuBvFiQU878NchmLZxlW3PYO1d7+ApYu7USpb2JUp4o09BezKFGVeSYR8YhG1Yc6KAIHaEbXmvu+NgelkG+ojKUz3SeBjbh86c11enMq7o7b4Hat6Rn4j0s6TWLakX0YOpvIGcgXOvqwYvJnc/L4EjhhMoa87GqAzA6hKHEB4Va6kmhPCm+E9vXU3Tj9hfsPIRIjp4Wc/+xlWrVqFe++9d1rbtfVkAODII4/EO9/5Tpx++unYs2dPRzu+4YYbAv/OZDI47bTT8PWvfx2pVAqf/exnsX79erzlLW/BwMCA/N3AwABGR0cxOTmJZDIJVVUDnwPAnj175DaqqiKZTGJiYiLwudhm9+7dWLgwyKvfGwga5PbXp6RsSaFswWWiyJKhLx3B6SfMxxMvjqBYNuE0qL3rRJG3lt7ZDPvSuKpuX4wnX3Nejme6feOBKtPKz7xqVJdiOw6KZYbV71qMJ17YiYppg1IK1UvQFys2Xnl9qk6hwM8UIgRyVU1p1TgqFNgzVQkwiFSFwLAYXEZk8tj1LrIQYxzJFH2hJm/y8mKUIuQTj2q8oHGqIqvV03GN67p5m/Z3RdGVjGBkrNCQQeVHIw9HVYjsltpK/BTgjcIE0y4d1/YqP9cJOgmZ2o6LiKZ6/Y54++otQ5k6T0VQ+EtlC9fc9jSWzE9i2/BUoOW3YTmwHRdjk2V4zTG5VzVVxpahjHweKpaLnpSObNGqCxP6W05sG56a1W6aBwKee3kU9216FaMTJczrjePCM4/B8uPmtd+wQ1iWhf/8z//EXXfdhYsvvhjDw8NYvLgzb7Ctkdm0aRO+8Y1vgFKKe+65B6tXr8b3vvc9vP/975/WII888kjceuut8t+XXXYZNmzYgCVLlgSqUhljXtiJ1VWrNqteFWqitduIz6eDvr5k3WfPvTyKex5/FapKoGsKLMdFoWwjndBRNng1eCyi4m8vOgnLj5uHE5fOx/976CXs2JWT+1AVvop2OpDu2F8oeFIfgLfSneb2msq9On9le62BUSjBYE8MikIwtLvACzwJkQ3A/PI9hYqFex5/FV1dcSw/bh4eX78FEV1BVFexc6wa6nLd6kqeS+7z/NDjL47gfacdjaMWdvFJv2IHmrwR8JCdGC8BML8vjoQnizOZr+D//PxllA0bukrRk4qgKxlBoczlWABgoCeOYiUPBZwiLtoXNJuYYxGKsuHV6TT4XvSuoQDsNqsR8XU8osC0WR2Ffl/hXxBRWq1VaYZixQalQn6I4Nb7tyIeVdGdioCAYDJfQaFsgXi/fflP4/ifoQx60tzbcRnjCze/7JJvrcNAAs/DgoEkJnNlFCv8XsjOpITPFfmShYX9ceyaKOGm9Vs6noCn0wL5QMBzL4/ix/dtgaoSpGIqJnNl/Pi+LcCFy2bM0Dz55JNYuHAhjj76aLz//e/HvffeiyuvvLKjbdsamVtvvRXr1q3D5ZdfjsHBQdx999346le/Om0j88orr2DHjh0y/MUbVKmYP3++TNwD3OMZHBxEb28v8vk8HMeBoigYGxuTobfBwUFkMhnMnz8ftm2jWCyiu7sb8+bNw549e6SFFfuaDsbHC3Uewr2PbgMInwBScQ3juQqnHud4TU0ipuFTH1iKo/rjGBvL46j+OK7/6+X47Pd+6dFKq4ZvBp2PfQaBV8ntVqm5mkqnZQj9E5HtuB4rrb5WBYBX88Brkeb1xLBrrCBDaSKJHPw9hU0c3PvoNhzVH8eusQLiURWW7cKynaZeISEEY5MVjIwVceUPnsTSxd3YnSnwtr7evQMaU5F3jZekqrDrJdQ1hefG9kyV0etw6ZzxrM1bP1uO1ItzXAev7ymgNxWRnTtrYZguklEFhUpjL8f06q0ES65luNS7dpbN4DIXCiEgysy1FaC+uiHiVdq23TcDEjHVk0QCKoYDI8IZmpqsXOX0c+GJ5Tz1BIUQHvJqsmsCflHE8/C+v1iIux7bDtOyA2rk1PN+LNvBeLaCUtnG2GQJUY23D//R+t83DZkNDKQwNpav+3yusDcG7r5NfAEc1fl0HtVVVGDjvk2vzpiR+dnPfoYPfvCDAIAPfOAD+MpXvoIrrrgCuq632bKDnIzjOIGJ+rjjjtsrPRzGGP7xH/8R2WwWlmXh3nvvxTnnnINFixYhEong+eefBwA88MADOOOMM6BpGpYvX46HH34YALBhwwacccYZAIAVK1Zgw4YNAICHH34Yy5cvh6ZpWLFihZSrfu655xCJRGYkVOanQRJRMBI8uSZb1tdsCMQjSuMv2mBfqLKN2G3EW3UKcU7Fo7K1MoYi55SKq3UikbbXmyQdr4pkCpl7kbPy05MX9SeQimmSYUS83+teAr5ZfF9VaOB8hJEEII0QALwyPIUNT+3ARK4C2+bstXbX0GU+ijfl3olIf+SKFiglSMR0DHZHMem13harZ8eTcPFfK/F/cY24qnDjPIqgkgPAaW8bbEll7u+OoTcdgeW4cBzm1UBxtmM6rs1AF00eUUhEtY7Da5QSGBav4RKhSVGbMp6tyM8B3+LEK85123hKDMHnQeRzIpoKh/EFkrwPXsuJYsVGMq4d0nUyoxOlgNoBwFU19kyUZmT/4+Pj+PWvf43bb78dZ599Nq677jrkcjnJDm6HtkYmFothZGREGhYxeU8XS5cuxeWXX46/+qu/wurVq3HcccdJy3jjjTfiO9/5DlatWoVSqYRPfOITAICvf/3rWLduHT7wgQ/gueeew9/93d8BAK644gr8/ve/x+rVq3H33XfL4tDLLrsMpmli9erVuOGGG7B27dppj7MR/JNbrmjy/IFCENEVLOhPgFKCnzz4kkwii6TzvJ6olJ8xvYlVwLBdtGGQ1kEk5/cW/veX1PydU6grqJiOlM9phr6uKBb0xlCqVMNMgWExIB7j+YueVAT93TGpwyYZdh7DZ9Wpi+XvIprCCQe0WmfjTxILCrlhOUjFtZbGwmXV4wHcs5rIV9CbjqI72f75FdvZjovxbEW2fLZsB90JHZ/6wFJ86zOnYVF/AgM9MQx0x6CpVEru1O7H/+eu8VJTF0WhvO/Qgt4Y/tcFJ+D8dx/V8HeUwBPjrJ+YXRfIl7kx3FtidSKqYtFAgiszeMXDneQAXZfBtJyqHAwYXh/Nc6UJBK+N//7x+926WyxBPf142ZJ+XH7B29CX5jTrvnSEEzsYw2BPDDFd8ajyVRxqdTKiRbofhuVgsEZIdG/xwAMP4LTTTsOvfvUrPPHEE/jlL3+Jz33uc7jnnns62p6wJjNKoVBAMpnEiy++iK997WsYGxvDMcccgx07duBf/uVf8M53vnNGTuBAQ6NwmT/hPDZZ4jkjcHUAgId/wBgWDSQlRfKSc3jb4h8/sLVh7YyoU6ilKDf6nZyg9jIKIsJKPPRDAq2fW1FY5fbi+N6+3npkN65ac3JdONBfp7F0cbekjwrhz2zBhO24WNgXD1CNH3zqT3j02TdQNm1uoKIq+jzD7u/jAtR08tQVjHntnMU4a0/F/5nwprqSuqc+0NkF9e+jL6Xje194j/xO9JYhhAuQip4xzcJKmsJ7uTDG83S1vxvojkrJ/LWffze2DGVw80+37BUNuicVkarQ00XEUzsuVSyMTXU+IYvnqdV4Cfi5Oz52mwiltgrHUQIkYxo+tfq4jvvJCHVvx3GlpJEQCv3WZ06rO8bBGC7z52QimsKJEzbDZ2coJ3P++efjy1/+Ms4++2z52cTEBM466yzcd999bSXGmhqZt7/97XjHO96BM888E3/xF3+BqakpuK6LE088Eb29vfs88AMVwsjUPrRLF3dj2/AUhnZmQQiRbYiFDLmm8o5+QtuJMYYli7owNlVGvmR5Vepc7ywzVQZjkInaVlNARFdAwVoWebZDRKOglMdsc0XDUzPeu30R8Er9Rf0JSSkVjCiAGxoCgh9feSaA+pdfXEf/v594cYT3NnGqPVcoQZ0xqsWWoQxuvX+rDIH5WwnXjZtwQUnHZfjSRcuwftMQ3vCRB/zgKgduQ7kehRJ88aNvD8jRi/qa0YkSbIdL/jQj50k2WpPrqygEqZiGpFewOLQzB9txmypyt0JEV+oUuaeDgW7uMXRqZIRChFhV184sIs8lfkvANfcUha+CFEqhKASaqqBYseoWAbpKMdgTw7c+fSqAzoQvtwxlcPtDL8sOm4Jan4hxb7T29wejkQGq7LI9EyUMzgK7bF/QNPH/5JNP4re//S1+85vf4M477wSlFCtWrICu63jnO98JTWvdmOpghngwK57sS65oYiRTrOvdwhiviBeSF6+P5gMTwSvDU2Dglee9XTHZfElTFdiOg0UDSYxOlKQ0PBBcAWoq7zjY7CWXE6ssrms8sdkOg2u7sCwHDASaxvfLdag6XM2TqspyxeCV3arXYZHL0QhWIDC/NxjOaERBFmKF//nMa1yssqaQlVLSssBR7Msf32+3CnYZT4qKMT341J/w4NM7gqoHBIjpCnKlxt4nwAJ9SvwUXct2WhpwSniYVNcVWD6Wmx+Ow5AtcB0ym3lG22dgpuPR7IuBAbiHLhYPggAB+CngHIIgQClP3HNtOVJH4WasKvjak4rwdhVgXgGyKxdCiYiCcsUGKKB670A8qoExhlKFq4E0E77c/D+78d9DE6iYNqK6ipWnHIF0QkfFdOqEbQ+lfjPLj5t3wBiVWjQ1Mr29vfjABz6AD3zgAwCAnTt34plnnsH3vvc9vPbaa3jxxRfnbJBzjfW/fFWufIQeVLFiY/0vX5UutlhBaQqBabOGk4uM67vARK6CZExDxWuABfCYeiqueTppwW0IeGilVezYTyltFUpzXP5yOww4cl4ChBCUKlbHBoaSIH1cJFJ70hGvg6Fgk3E5mOVLGzP61v/yVWQLPHwjJg8xBhE0FJMQn3gYfvLgS4hH1UCF/8bNwxjameMTn0q9RHM78D4+K085Qn5ywXvejDctSFfDbxoXJhudKDfcg8u4N+S/J34lgvGpMmwhieMGFbQFWcK2XV4L0sIAMPBrHtEULqLquLKify8d0L0CZ2i51b/7PE0CeO2/Xbhg8lkUlff8WvFnX56Xb/BRXUHZtFE27EDFfq5owHE0LFmUbinf75erKRs2ckUTFdPB2FRFEk0My8GDz+yArlLM74vz35UsjGcrUgU8xOyjLYX59ddfxxNPPIGnn34aL730Eo4//nj85V/+5VyMbb9hdLLiGRhvFQfAYS52Zkq44pZfc9l8TwRyMu96q+jWE53rMkwVuMAgVQgiKkWhbCGmK1jUn8BUvhKgtcYifPJsl4cRk1k7iN2IPMd0Ep+M8SLHRYMpTGTLMpEaj2pImQ5yJf6yRjResPj01t1404J0YJW4ZSiDkfGSVBJwHJfnsnzHqD2PXNEAA0F/N5d8uf3hbQBjiMc0LgTJAKtS36ESqHokZcMBA5+wV55yRECWBGgsIXTVbc9gqmA09IwYEFABXv/LVzE6ydtYpxM81yO8Pn/oTxARRI2IYKvV5otc71nKFk3kSlZdfrAZPXw24O+f1GgBdeKSXry+p4A3MpzFRCgPf7meB9bKIgZDlcETMiynodyMXw5GyNVU82DBMgEK4eUDpsWQmSpLz4oAMF1HhsUPFW/mQEVTI3PTTTfhiSeeQLFYxHvf+16sWbMG73rXu/aKWXbwgVUVK1CVtwfA2+4yoGwy5MtWWyNQ3SOH3/03LM5UEl0hFepA0GFLhisTpG1rE6YRQ8l5yfdOf8+pzVGs/fy7MTCQwpU/eDKwwjS8RKrISQF8kqgNRWzcPCxpqiLsVqsYXD8k4tFSeUJzwjOMPemoXOE3Ow3G+Ni6kjrm98anVfHd3xXFZL7SkBTBXCalZmpj/VMFQ/bU8XswguVFQKT4Z18qCsaYDIW6jIEwIsVnuWdQf3aOC8S9gs46koOXGM+XZm6FLpiHjT7fvG0PBnvi8vET70gnqhatIDzTS845NuBlqpqCOx/djv6uYUR1BabNtfL8tGgBx2WgCv/cclkgdCdJL/TwbdE8l2jKcPzxj3+MI488Et///vfxzW9+E2eeeeZhYmDgTZZV5otIQIrJUanyMzuGCH/M743LnuiCSrlx8zCKFQuuG+zyKMJG7TCdF7pk2G010QLjpiRAGV26uBvj2Qpe31PA7vGSF/ZhknLsPy8/MtkKupKcpurTZwQAxCJKQO/LC/EDJFhv47hVccp0vIPaDca9humKIa46dTFvkkaILOwDuMFf2BeXfUoqpiM9XoWSQMhTFKWKezi/J4YvXHgCelIRzO+LIxZRpUyNuBadJvdLDQwMwK97xXRmoD6Gw+HlLg3BwKnSu8dLAEHgOu2LgQH4dRCT/1VrTsalK4/lTf5cJvMvXIiVKy8QsPoFC+Nee7OiWIAbs9d255p+H2Jm0NTIbNy4Eaeccgr++Z//Ge9973tx9dVXY+PGjYd0LxmBi85cgkRMl90URYwcvpCOsDGd1rpQQhGrKcAUMebh0Xxg9dvuJZ2pSaQTOA7D2GQJW4YyeO7lUTy9dTeSMY1TcR0+oUV1VZIagMZS6v1dXEeqNx2VPWEUSnDEQALnnnIkdFWRE3ZUp4jpKlIxTRpkAF6jMn728agmKeTNwFzeiuHOR7fX9TlpBNFc685Ht6MrqfOqDcKlhLqTOnpSEVx01jHYMpTB0M6sLH7knm5NMpx6fXPADU4yrsvr4K+X6k7qsjZmOjVQtT8lAEzL5SoFTUQ8pwPNG4/oVtoO/pokgb2t6WIMgUVKw3YBMQ3pmCoLMRWFIqZPvyqoYrltn4sQ+4amd+VNb3oTPvnJT+KOO+7AQw89hPe85z147LHHsHr1anzyk5+cyzHOOZYt6cenPrAUb16YRk8qinhERTqhQ9eVQBikWSihFvGIitXvWizpnf5maD1Jva2Q4v4EJUC+bOOux7bj/z30EhSPhi3Ucbu9TqKNmrz5IQopTavKwGIAjhxI4Omtu5FO6jhyMInB3hiScR0rTzmi7npFvVbY4jPbaZ2PcsEneD/7qNmEUttcS1UpkjEdC3tjsrGZqH2667HtXnEmh+ipIkBIVU5fKGWL4y9d3B1oiqcoFImoisGeGKdid3hfah+76qKH08k1lQaar6leI7pOJn7q5YeEEGlbQdcG36sKgapMz3D64e/P06zxWMVyZSFmTyqCAS9050cnhz+Uqv8PRHSkwjwyMoKJiQmYpglN06YtOnkwohH1FgDvQ+JWXZp24Q2FElx+wduwbEl/gMkkakQe+m3rB1zEu2s9qH2Je4twVKd1F47LJ8OdYwUs6AtWEafiGhzHRXdCb1mvIHrx+CnDlAC/2zaGdEJHPMq9PNGPZNvwVCAm398VxcVn8wZlGzcPV1V74xoKLXIQ3amIXP36+5zUwr9aFuMAgGRcx7d8+Zy1d78ARaHoSvLzbRaz8yfsKQHKFQtlw8FDv3mNh2M9Om5Uo9C9Gpu9EL6uA5dT4cQKzWu6BhBYDkNEo+hKRpH1ihMBbiBVhYIxN9D3R9T77G09FWMMLgBCCeIqndZCish4KUdtrx+g6i3X9hlSvWJXQbdu1ciNANBV5ZCq/j8Q0dTI3HHHHdi8eTOeffZZdHV14YwzzsBFF12EU089FdHoodtV7scPbMWpb5sXmIj8D7KTKUp2ma518oAy3LaBFwwK3r5gOK29+4W2MurUYxPVrVw7ePn7UjpyZduTjGeSzcQ63B6ApKKKlaRpu3Uv+8L+REeJ9V9v2RWYtEQPmXzJDOR0HMfF0M6sl+SN4tKVx9bdD1EEmYxpeM3MB66jKPpTKKeJT+Q4ZTUV1+T9qi3kG8kU0V0TfmuWW4pHVRBNQT94U6/aos06mRfG22SL0KrtMjiOi/e8vdoWAiDyXu8LHJdBTOeCJk0J1zOLRXhYkzFWo3gQ9MRsh0FTpr+I0VTq1RhZcFzONoxFFE9uh4ExElC8riMugBNj4hFudDttPOZ/P7MFE/Dq1lo1CAQAqhDEIkrYJXOW0bIY84wzzsBXvvIVvOlNb5rDIe1f5MpWoBcJEJyQFvUnApIVuaIJ0wtzNHqceadHF5pS5e0DvEYjk6209Eh4Tqj+847JZIQgpiuwHQbLtmE1WEx2si9CCDcmAwmUytZedRncMpTBeM4IHFOcm3+lKSipCg0W2QEIGBo++TPsHDPkqtzT9sRATwxjk2W5iqWEwLJdjE1VoFCC6/9tM3JFE/GYJo9RNh0oJStg7Jrllvyr6ulMxKLfzniWi3VueGqH/I6ASaWBmYbrrSxyJRNRz9CkbBdTBVO2pbadoKq17XBvnQAY6ObXs92pdnsqGLpGkS1YSMU16dlu3DyMqSJvfS3ul79fjqZSLOxPoGzYGM+W5f3fPVHC0EgOKgUI4ZqBC33v4JahDNZvGsJIpghVoYhGKPIlN0CgAQSlPcjKS3n6eoItuHHzMCYKJnqTekNvPMTeoamR+dd//de5HMcBA12tqrSKh7hRZTHAJ7p0QkMma7R9AS2HyZf4wadfw1N/2I1SxW5pYBSFwm3g6XQ6r+VLFub3xWHaLsazLhJRbhj8q/5O9uV4K++/Wb0M2WyprZRHI9TGvWuNm2E50FWKKU/VuCuptwxzRTWKXRNlyewinldEAXQndFimjamiBb5Kr67UCRh2TZTgOAy5kiUZg4RwryeiK9U2wBUbKoFcUa86dbEMcToeqWC6YGjca4YBdR0kZxquC+yZKEGhFPN6okjGNOlVjZlO4FmkCvcGda9BH6G8m2gziIJdf9OyWg/0rse2c0+nGOzpwxl4rpRkEve/bNjIly2AAS4h6EnpclHjfzezBROEEK8fjd1w4ZaKaehJR1E2bEzlDU+ZIi4XSOIdT8WaL2xC7B06yskcbvCHSRrF6sWkJ1a18YjSUcxZPPgu4x0Za5VTa9Gur0urcACBV6jpTdSOy6U7FvYn8MaewrREE6OagkvOORbLj5uHsbH8Xr14Qh3B8lh0/oRsKq4hVzBRMbnRTcWDrLKGqrmimpEQiP8p1MWCPh66u+q2Z9CT0pEv2zA8Wi+lgAsiq+cByDyI4iXrVUp4rkTn8SKbQS4ubn/oZfh7zxsHUnOgDkEoQSKmwrBdnH7CfDy9dbc3SVefTwJIgyLug2gqVwtKhZEmGM+W+daEQNdoYKL2h7RyRVMyCVWVIqJSlAxbdhxVPbZArmTJOiPHZYhoCrKGLVUgShUbukYlUxEAHMafL12lvL+RJ0KbL1vQNQpVVdCVDLZgFnk2P3utVf4uxPRw6Gfw9wL+MEkzZksmW5GMKR6Sab3P2q9Fv5NWG7Sfw1hdP/nqN9yYlSo8Ka4pVK4Wp2NgCIDe9L7XR/V3RZGIaRCcEVkQ53kS6aSOIwaT0FQuLV82qpX8jcJWFdPx6NDUEx8l6E1HpQ5cf1cUqsrrkhRKvM6kvGmW/4qJv7suv6/JmIa1n383kjEN8ViwD0nFdFAxbMmum01Mtw1Ep2CeFt9EroJHn30Dp58wv67NM392uKyR6oV5m7V/4LVd8LpZcqPR63UQVRSK9b98FWvvfgFX3fYMNm4exqpTF6M3HcWRg0kcvTCN+b1xRDzWJqU8j8PAddNMb3HgMq5YXqpYyJctGJaNeFSFYXFPR/xGjB2o6qsxxnNzjAETOQMqQV3DslbveIh9R+jJ1MC0gxRcfwxeaCSJcADAH9hb1m+ZNgun1c+58CWV1d/NIPTC/Nv55wICSOmWWISHKSZyBjqFQoHedBS2y3DXY9vR1RWX4bKdPgKEiJEDaBpKEzIhUU1B2QvNEMKbt4nJHACX4c8ZmMobsqq7Ud5H3JdFAwkZfjIsByolWHv3C9iZKaJiOEjGNaiegSWEH1Sh1TxQNfUNyRjjdTA5brx8Cg2Ol9wQz8FsYrakY8RzqlGCiuXg6a275UJFUK+lR0OIZPjtmShBU2lTogonXAaf6mLZRL5kg9KyXOTc/vA2GKaNyXwFuqZyL7bEQ2KaqnCV8mxFepuWw0AJQzodQ7Zoyt8RwtWaLdv1+mEwuIzI8JuQQqKEwAVBVCfoTkWQjOt13kkr9lqIfUdoZGpQKFo4/YT5dZNjpmiiGNDJ4hPv6SfMh0IpCOMTUDX2z/8jJtPayb9VwpiQ5j3i/RCyJ6LPRt4T/BMvGqeac1XfrqSO3nQUuaIZ7KHeAOm4Fpj4AcAA8P8eegnFsgnLdqW8TslgyA1PSdn/hNcLpjauLSjMD/1mmPfSUbnOWbZgIBpx5LGE2m62YKFUsQPGKtBLRqM8Z+K1GRA5FDAG22W8lwo1UShbUClf0RLCQz7NrixXkya49b6tsKqsBEzk+d8VSuAwSK2sTnrxzAXasahqQTzBCk2lMpwE1Bs2Ie9y1ZqTJZtvz0Sp6TlzSR2uSWeYDvIl/r4oXlFzruSAudxjASEwbQdjU9W8JPUanjWC63pdTX3qEumEjvFsGY7Lu7pmCyZs73owT9mbj5UhnYg09U78OmnCc+uU0BKiPUIjU4NkIijwKCbHB3xMIAAoGQ4My8Ejm4eRjGvIl0wAFKrCZAviPq/XezyqQlcp8iXLa9fbus6lE4KRv87FZVynixJOg2We/plCiWyKdsk5x+LOR7djfl+cq9W2YAvlvHxRVzIiK/l1ldfJ9HVFZay80TCLFRuqYqA7FUXOdAIqyoWyhb7uaMB4FcsWckULiViV1aWqCpYsigVo0bUEDNPmLSFVRUGhZPLwGAEKFRuTXqhFxMIIKKK6Kr2ZRtdddJpkXp2+MCDCW5zIVZCIarx3PTgteH8aGD9xYrpNyar5Osafg5okvCBDqD4CjNDXa38o3idGLHh4mNJruy1zYQS9qYhXr1Pdoe0x3kR4U1EouhI6pvIGsgULUU1BRFfkMxmLqEgnIjA8z/jNC9PSMPzkwZdgWLYn7c+fY8NyGnon/nzRZMFET8gum1GERqYGtewygBcGUsrDB366resChusinSDSS7C9oreIpuB7f3t6YPU9ryeGpUd24blXMm1Vm9tBqBaL0YiaCK9dFLoSGrpTUSnCuWxJP/q7OI20E7aQZbuYyPF2xbGIKplPukph2y6fhJtsnytZiIgGaSCIRxX8aSQH02vuJqiuAA9RjWcrcvUoumeqBAGF3GbFkqmEjuv/ejkA4Ipbfo2SYYMJT80bnmh93Z3U0ZWM1PX94S0DFK5GAN+GPjgucPbJi/D4CzthWm77nNpso2Mee+NtuTfNd0C95nm8OJFKFWWXMWx/fQpr734BSxd3d8TXJt5zwRi8MFx9zlB6sTUhR7/RVBSCdFxDzFN5mMobSMc1jIyXUCxb6ErqUBROaf5rr9jZj8sveJtclOieckQr70QsKOeqaVm11pR4kQXOVqwYNqKRQ2taPrTOZoZQ61ZnvP4TplXtreGVHoAQIFswsaA/gVhElRTJYsXG/77pVzJn4adznuoZnp2ZIgotuiTuC/Jly4tbU/li+cMCmkJhuM0nSpcBhAHZgsHZPY6L7pSO3eOlQMFfIzAGz2PjHsFkwZRTjWVXJf7jUQ2KQtGTimAyV4FhuZ6SsAqbIRBuE3Uxk3kDtu1CVTnddM9ESR7XcZgsOG0ETo8NhrgEM0pTCYwW4sW6SrFteAqL+hO8G6rr8gY9+wn7IkLpuvy5tWsWCYJezbXPuOCnpiqYKpp46LfDSMY0pEUOpQFEH5e+rjhyBU4Hz5dMuCwoZyNETy3xPpFq6FecV28qIhci+ZKFsukgHtPQm44gV+Q9YRb2J3Dx2cc29DhqlQCmQ7efDvy6boJowP8v6pN4eNZ1udFmHknCYQwuc8FEoTUD96I1FfNDI3Poozbp198VheMyGFYwaU7A+feFsoVc0US+ZAY8HcNyUDYYXt2ZxS3rt2BhfwIXnblEPuh3Prodeey9LHvtPKOrVBahuS6QK1q44PSj5PH8L16x3JpCLcIlls09oaWLu/Hkf++C4zYvPPXDsl0oXqgE3osnizAdhsmcAUWhKJUtwOuKKfq8lwwHUd0NeJSiLkZMSI7jYjJv4oh5SXlMVSEoG83zTQxouHpmLq+vECykWgeNoEoKuHTlsbj1/q0Aa96GgdJqyFO0fW6lBjyXEGHaZkaKeyI8iU8UgnRCkxT4UsWSrLpGhoYxzvobz1aw/Nh+vDqSQyquI18yYdr8gASQ3WT9DEOFUiiossJE51nTdlEoWUjEVEQ0BRFNQSKmw7AcJGNaw3bLe2NY/MaC2wavERv4uySNBWNceJVBCrA6zA08N5KJ12LB0xwHxnMykwiNTA1q2WVbhjIolExkC74GW96f6YSGmCfXnitZdROOeJFEQnnPZBl3PbYdO3bl8PTW3RhvQZGcbjIXEH1vgst0f36pVrngtd05VJo0RtN1BT2pCLoTukz8JmIqP9eiCbNJ+2DfoZHyepswVp+/sF2G0YkSwKrhGqC6qs2VLMzriVU9SlEXA79oowsCggef+hMeffYNTkZog5aECwCsgQUV3upgTwzLlvQj5ol0Oi6v0rd9HSN54zHm25Zg4UASZcPG2FS57viU8utUMpyOyB77ikZEFD/898nvTWieKgAARHQFaGRkvD8jGsWrIzmcfsJ8PPfKGLIFA7pKkU5ocFygUOI0+oiuwDQdjwZdPfeIRqQWXlRX4Lgu8iXe+TKd0BGLqA2T+Fv/PI6fPTkEVVUw0B2F5TD85zM7oCgExx7Zw70IsHpD4T2fjLmwQTA+VZYnxNDaO+bXjMGyuOip//+m6cCwXFQsG6bZ4HvLgeH/3HTwg79f0fL+HYwIjUwN0jEN53g8epFstrzGXIJWSQmvHVFVBY7jIqYr0DQFmamyZDoBwRdWVIjbDsOjz76BdFJv+eD2dkVQKJowrGqvDLmK981FYjXNOyYG9ygopz958CW+yjcdJKIqVIXIHEkzGXfbdlAqW1KUUvSDUSiVYcFswQi0PqaEF1LGohpUr/0tJx80PlMx0Tk1xZEOAxzTwfBoAQTA9f+2Gdmiid50FPmSxXM2CkUqHsXYVBkPPrMDpEHsvxlEYWZtjo15dEC/JwJUiwFzRRNbhjJY2J8IUF5LFUs2H6u9B67nASgKhabQuqp+1+W6ZoTwybmzVtL7hk5CbbU/iUUUFMtcDTtXtJp6s5Rwb0ZTFWwbnkIypmGwNx4ge0R0Bd0JHR9fuRT/+O+/heVAdkzl5BWCt7+5F0fNT+NnT76KvnQUINVOtY7jwgWQiuv476EMlizqAnOBTS+OQNcVqJTC44XAsBz8/OkdePcJBn793yMYz1XQk4rg3W9fgDfNT8GwHK8lOp/stUge4xOlwMTPDUKNkfDaqBuW68vlhWgEwppVWR2mGB8vyIT22rtfwO6Jkiz4Eqwcxnife6Fjduej2xGPqtgzWfZ607efKCKa0jJc1ZOKwHFcxGOazFcAkDUNov+MrlIoCoFpuYEJjlIgGdVQNGyPhUU91hvriL2mUEDXFPR5BY6lio1YVEUypkl9McaEGCXvbtWT0qXhFavYkUyxTkJkOhB6ZABBKq6hK1ktDDUsB3smy7Jny0zJskQ0bpz9atHCeIpOpv6ksmm7GJ8qNdSGE9vztgWtx9dRF9Q5hK5SKUvkOC6OWZjGfw9NNPUYedtpAl1VoClAOhEBIfCKcImP/QiYpoN/+NzpuOqWX8F0eDhVEAa48gJvHpgrWbBsB5P5Chxb5DIAMED37pOmUqRiGrIli987h8HyPG2xiKKEBMJgc3L9PAKQ+L/u/RnVlep3evD79526GPP7ku13fhAh9GRaIJOtoGx4kiTe06oqBI7rYpFPeViwtiIahWF2lmOxHbdpnUUiqnJ9JfD8EKdf8lwCV5elUBRuiBgDLl15LNb/8lXszJRk/UN3Ug8UudmO603Enb1hjgtUDD6Jz++Lw3ZcTOUNuTJnDADhooiEEEzlDUzm+eresu0q5bsm1u1Hu3YFogbG9cIWxQpn3vjFOcWCoNPQYictEmqNAWM8+axrCnZmijKnVTFduIzre2mqCssJTr5ejWAgoX0wgFIClcJrTMcwryeGtx7Zhd+9PIYFA3FMZA3eNdTzBoX3AXDPTSH8+ea0dROjEyUv1+I1eHMACoIf/vT3GB4tNF14jGUrHiG6sWEQ98mwXJkvrQ05Sm+5gxugUIKozlWjaw1AnUHQgwaEf+YZEU2BplE5ZxzuCI1MC/R3RTHurdgBVtVbUoLx4FWnLsaPH9iKstnZSpozmvjfhGaW+JzLZVTdb9thvKDQe+EFNTSdiIBSIunJtWKeukoxnjNk8ZqgV/vH0O61E0auYjqeTAhBueJ4q0cF6URVY4wxhvFsBbpGUTJqduKD4oWiGPhLLcbUajzUu0axiBroW7N0cTceeHpHHZ27Haab7/JIQhibqkBTKEYnyzAsB8QT53QZg2FVDYxMrvv20cnx+GTdmafphzie34BSAuk9EFo1BIJcwTteckMh/k6kUXTBXIb+7hjO/osjUDZs/Nfzr6NYsT1pIluSB/wJ/FrsmWoty/Lr34+0/F4k3juBonDySKeipeJ5ufCMo3Hcm3oR0RSoCkVvbwITE8WO9hGiM4RGpgWWLu6WleyiSt9hrGEPik49BIBPBr3pKLIFA5btIh5REdG5pMboREkczfOg4MllMK9vPMFgT6yh3IqfPbYzUwQYL5jMFU1EdQWFctXLms7CWtTLdCcjIDCxeF6yToYjWzChKhRls43op8snBBEaoRRgvmZZ/jmCN9QCAAKF0rq+NZyMoE2LBs6Y7/gdbuOH7bqSBEIIg+vUX0tJLvL+FIWFTotrI9a8zK2GnSgh0lgQ7+/EMxaiLTIhPCkvZEcJANPz8FyPZegykQ90q6wpbwJvtcDPZA1se21qL65SewhjJ8JjzUAJZAFmtmDAdTnTL1fkbQoYAKpQDHTFUDYsTOY7k/th4J7a7/+YwfKl82bmpHwg8j/+z4jvy+pfiReLJ4RAVYIt2g8FhEamBbYNTyERVWWVt0CxbGMkU8Tau1+QvTLEQyskx1vF1hl4tbLwRGT9iuXAsqsrZMdlsmIf4P0w+rpidXIrfgiFgqGRnCQMmN5+YxEVhXJ7BlYtHIdhz2QZY1M8/yEkXYBqXxnbcZGIqVJKpBEiGvUmSoqyp7gc0fg5jU2VYTsuNCWoj8VJDQzRqF5XSCcKXBWPjdYuIiK8KGcvDQxQ46E02EnVQNQbhERMC+SYaiciKmRvPKMgWE88D+h2bBxmGrrGC3A7df7e/uZevOOtg7jn8T9yjw/1tUnzeuNQKGeaMca8tgxViFYXUZ1rBlLCq/ULFQeql4d0vJ43yagKAqBUtjy1AIAS6mmxQRafEi98JRQNetIRWLbL85yE3xFNoYhqivy3iHgRbyOxLUj1/lHxb8Jry8QB5W/hu+fi/jPiIzNUL05/d6yzi3wQITQyLZDJVtDXFUU8aiNXsmCaXhiL8La+o5NlqXNFAK/ixQurNZFGB/hEMTyaBxgwla9g4+ZhnH7CfGwbnsL4VBmEcDn2qaIZ1DwjFBeduQQA91Z458jhgLHZMpTBQ78Z5hIq4I+vKKx0XeDD73kTHnxmx7RCMmIIYoLdmSl5LwrDuGFDvDzFst0ybCWS6brKtaYESeCiM5dI8gQhBGXDxmSuImtLFvRV64v8NOxSxQYD85QNXC4v0vJMCBQFDRcAfu9BpQAjPm8BAKF+/hrh8jT8bzJkJMJHsvCO8dwEL7ibW8PQKRRKPBaiI3usvPO4eVh6VA8iXm5h0wtv4IkXdrbdFyFcp2xkvIh3gEGlFEz1SCcukzkKQoBcgddJUcLQ1xVFLKojFlVQKJpee3PiKVETpLwizM9+6AS8ujOL3/7PbmSyFZmvTERV79niUQahqwdwqnxdaI/xBUdEV9AV1zHgm9j7e+OgrjP798p7mA4H3lVoZFpA9ouJ8tzD7okSbI/NUjEd5Etmw3yAeKAB/h1/mYJNqcR2huVi++tcYFKhBD2pCEzLQb4cXJkrlMCwbNz56Hb+MjdoorZsST82buYGpi6EAx4muuA9b8YTL+yUtEygGj7qdKUqJtRcyUJPKgJVIZLC2wqud84uY5gsmOhNRWTBpV8JNxZRERtISkkcESLbMpTB3f+1HaqiIBXXYDsu8kULhbINSgiiEbUaQhHLTN/NEZpYhuUG6h+kcWA8vGQ5Ps+hs0tywIJ68RixkhdGkyoE3UkdsYgmS5BMy8EXP7qsutomBH/amcV//2kcvR6NmMjVOPH2TwKXmTGGVFzDy69NYaAnyqMArCoc6zJx3fnkH49pYISAMRcK4VEDSr3ws88w7Jmq4InnX8f5p78ZJ9Z0rH19tID+rigUwgt5RUM607fo8IdiCfgiMVcwcf673lRnUA6DeX9OERqZFvDLsOhezYk/kQ4QUNJcYoUCiEV5TYnte8C5p0PBmAvHrU5kjsuQyVYQ0Wjdalu8nOPZCub1VesOXJerLN9631YsWZTGSKYo33h/SJiBh722DGUCNGtCg/LufhBUa0SaQQh+1p079UIHXlJZ8ZR3IyoFIZwx5DKgPxXBVN5AKq6iXLFhWTYSUQ3wPIoli7rwyxfeQNl08NSWXSgbDhzXliElBsDxQopzSU/dW0jPyJuoxeTfk9SRK1u8YRcR0i/VCZ14E7y/XkSwu4IGJDjpg0GGTf1V7IzxtspilW9YDgZ7Yhjs4av6//nzBP7rudcxNJKFZXuemvccuL7JHw0KbUcnAEpynsx+lZrcCKblYF6v4nkuBEcOJvHqzmxDb/P+X+/Afz2/M9ACHUCdMnc8qmJeT8yTQHKRiusoVmzZZZaBMzj96hshZg9hnUwN/HUyAOrCMyJBv3Os4NFrW+dfGkEka/35lulg8bykDCtN5CqyZoZ6EufN7mg8oiAZ12A7DMWKxamkYlXqm7wUCtmrQ1WI106g+hv+M+bRmcTeGRgjUj7GhdfZk/FqbpdBGoWqtpOY/PbiIuwlOpXnryZk/WwsThvXVK5jZ9suHMZkmE38LmAI/Ct93wRfDbF594uhel1BYDlu9XfS46reW1G17v98uoZ2fl+82mq6zCna2YIhjUhXMoKpglG3v1YhUfkbwkOik3mz5SKFABjoiSGqKyhVbFy68ljc/NMtTX8f0RT0pCOyFuvprbsD9UqlsoV0QkfFdJAtGOhO8bxLtmDKMRPCoxS1zcsAzJlAZjMMDKT227FnC6En0wb+1rGCIlytZO88GeqHYNTUrmZr4//iMwqRI+CfCRVaAiAd1+VEqFKPieYLZ/iPoVIgGtOggLcYzpYMMJEI9038tgMoCoNlOyibwbDFXC9JIpqCeFRFsWxJoyxYSQKKQpCK6ciXuOoz9a4hp+8CCuH1D+mkDl1VsWeyVFfnAXCDoCg8WVxlYVWvC2OArlAM9sRwzMI0Nj77OmwHsrlcQK6kxUq/FsLwiQifn9o9m9gzUYbLmMylFCsWgKrn2sxL7WRkBEAixmuoMtlKU5o5A2cvpuI65nmyPa0o5rbjyvbIQjmjVpk7GdPwrU+firV3v4DRybI0MNWQHs8Phu2V5wahkekQhAAnHtMPVaF4/Pk34DiuLAarW73SYNiCEAJNIdUkPNqHMjjnn0+qItzgugyO68K0eB8Wh1XzCSKu7siY976h0oaK3AkUSrz6BQbLrgpkCiNBIIwq/1DxrhP1VA1ScR22wxCPKlAVwrWuLMer3q4a056kjoiuYmSsAK5lyHMrfgMhCuYYY6iYjgw/cuMhqsh5krpWOcA/OQ4u7sYXPrIMa+9+AfmiNSM9ZaSwovefuar6J4R3yLQcBtu7H5o6fc28RnAZsHuihHRcQ186gvGs0fSZtB2urj2ZN/C/b/oVYjpFocKfv1rDpHptknWVomLa6FeDpQR+TbNVpy7GrfdtrRJXvD8pAcqGE7ZXniOERqYGZcMOhCrgm8hdAPP64virc96COza+grFsBRVPCE+srB2v0lCsfAFRD8Jn1jnQQJxT8LwNJF1XoRSUAt0JHZqmIKKpHunB8WjPDLqqQtcpUnEdoxNF7g14ORZhKF2XcXFNcFWBCdNAsWxzDS3LgWnacDzGkqYQTOQNjHoSM0BwYlIowcK+OKYKJhzHRcWsdmOsRSNJIP9PxcTkl8s5WKHQ4NViQLUjaM3v9sbwGKaDcdtBTFdBfPVQrVAybF99WPDaU1ptE2DaLqI673PUrG3ysiX9iEYU2GX+PotIgevloJQKCfQsCjE7CI1MDYZGcp5WWFUcz/CE8PyfvTI8CUKIFL5sB3eGV6eUNJfb8KOaZOb/cBo4KJTwgkGGamW4yC9UNaeIpGZTXw5CGFN/fYdIJLsgIMSBqhA5eV38vrfgrkf/CEDB6/k8xnOVtnTqSd1ANKJiPMtrabieloZS2UJvV0x2xtwzUZI1RgLcEFVJHFmv82IzNl2rW0kpQVSj3Itp0lNlpiDETWcTjuvy1uEI0tRr0WkVfSO4Lu+W2p3UMVXovFBSpRQLe6IYnaxIbz/lNTETDchWnnIEnt66WxJzRIHy0sXdWHv3C8hkeb4y7m0jwtQCEV0JMDNDzA5CI1OD/9i4DXsmyx3+evovn381Ne1tve1VlSKd0JGOaXjzwjQ2vTgC22VBw9BESiTwHalWXQsKrzCajHHJ9bLpwvRqKHi4joGAe3WsyUSteC2gk1EXCtGRL/JCulXvXQzGgELZQiZXAe/D3l4YcmyqgoiuIBHl4pyiGPXis4/B+047GmNjeWwZyuDPu3IwLF7trsiujAzzehNyErn1vj945zB9uC7DyHgZmGjeunqmYNluoNaqk2T7dCFaS7fb70wcN53o3MgA3KP61mdOk/9u1ifmTQvSgc+XLu7GEy+OoGLYPKpA+DWMRzg92g/XdaHoWpibmWWERqYBCOApplL+p8d8aUrX9Was2glXVQkUAIRQxCK8P8t7T1yIX//3CHbszlcrkhvt0zMECm3gWVAC1+Uss7cd3Ys3xorIemKYwptw/JXjnmEwfRIjruvLRYCHIvj2NdeC1K9uheFitLGH5rg8th+PaTIJC1SJExFdgWHZvJqdcaPEhUebe2aW5cC2XSzojQUmH/9+eZto0yuCZAD45CIKWJct6ce83jh2jRdBCIW7Fy2wXcZ4hfccgBICqvCaqPm9cby2e+ZZTzORf2kGv2GcrkJ27SLAT8Bp9flVtz3jlRdAkmaAxjnGbJHXotmHWgz7AENoZGrw5Y+fBMdxAwqqrwxP4j9+8UrTbRq9pwSA4n032B3Bue9cjGOP7AEID4Xc9+SfeJy4NgzlU7P1h5/Ev6XUDGN4Zusont+egeWJWDaDqnB2WavujM1CVsxnhBRPqkMkyVuFURhjsG0HQztz+Nvvb4Lp9cUhhDfp6uuKITNVlkysvq4YckVTruBrQ0VctYAJnm8AGzcPQ1GoZNEBVYKBaI0QPKF98wvmKhUj6qhc1+H1T/sRvF/R9LYR14mA09mnc9UT0c41vISXM5IpBjp2Mi+/RxBUYfY/I/myhbf2Jzo+VojpIzQyNdBVCqNm8nz6D7u4vH4Dg6AQUm8ofPmKWIQiomv49ZYRFCsWXt2ZRcYL/2Q92Zhaz2M6sFo0HhOoGsy9nx4VXw6Ih/ta78t2GDJZT37dZ/8Y40oBuRJXloYX5ovqCixbhWkbTa+B6ikt1CKTrch+PpRST2Kfe2nxWDAcUrFc9KR05Mu27PQ4XcwVjdtxq2rKneZnZiOsJsayt2AAJnLN2WWNQBWlYVJedEGtmDaiuooTl/Ti1ZEcFIU27c8kjZ0IDfu/Y6jTxAsxswiNTA1iOu9XIthShPBwRU86Iqmxfi/DFv29A55HNQylKAS9XkHYfU/+GX3dUTiOy4soZ8BLn86L24wl1Ghiqv2MgVOKRbEeJQQRjaBi7l1BKVClZmsqr9Se1xPDihMX4KHfvAa/CpnIYzkuq1O/BqryP7bPA2XgRklQWsVqN1swQQiXFWFx1pEcTqcQdS5+I9Ss+FNXW/f2ScZU3suITI/SzMOr01MF3xs0CqO2wnTCcomoinhUxcbNwwCqFf2MMUzkDRlGNiwHv3lpDxJRFf3dsbbHaDReVSFhPmaWERqZGsSjat1KmgCYzFU66n1SC+ZJxYgHfDxbmfEYcLuXXbQrbrp9B5+JWgYBStFx/5xmcL18zEB3TOZtAOC5bXswMl6q1o94q09KWMNVp2COUY/tJ4QI0nHNo7oqss9OV1LDZN7EeLbstS/gkiPCU9iX7pSK12SNMZ64brWvVkZA9SjhPSkd2aKFTp82SrjSwkwzGRtiBg6ha1Tq9wkIg8EYw0imKO9bPKri9T0FL8TMr4/oxSQ6dfLur9PzTrs8SnSI2cNc5TAPaqw6dTHinvgiML33i+ccqv8WVetzFdcXBtFxq+2ZaZvwWieYqYLBXq+9cwBeuFGEJ+VvU9G6VedzL49i4+ZhVExHhiipV6CpKNSTtmFQFN7JMBHT0ZuOQKEUU3kD83vj+MJHTkAqrnmMtHqoSpAWDXg5qprPqnkzPmk2W1mLzeryRR4Y4YoMpYrdNizp36cgZMxULp+0GuMM7F/0uBEQ3knZsL32EUzew9HJsnyPap898Xk6oTdkDYrrLan83t9TcRWEhlPgbCP0ZJqgljJ59smL8Ny2PRidrABgsBwmX+x2E+5sxckVb0XX6vj93VFM5Q10JSMY9woJKSXTWu12qve1N8gWTAx2B0NgFdNBbzqKqYIJ11MKUBQCsybmvmUog3sefxUgXFOsVrtK9OoRbQQE4lFeb1Gq2FLheVF/ArsnSoHGbgKNrq/r0X8FxDVy/d5uk2smrmV/dwyuyzA2VZ1AOfGawGEuSgaXL+rk+XEZ95o/dPpRePDp1zo2Tq3g8Tu4asM0VLo7Bfc6ef8XQQphDN7zqkNRCGzbwWTBrDMeosZHtLg2LAdRXUEiVu2ZJBiZDPxEGOO1Mek4V1UXKt8hZhehkWkAfxtjIaf/9NbdAUG9/33Tr2B4EiftpgB1hgvrFAqkExFkCwZ6UnpTEUJNpVAUiiWLunDVmpPx2e9tAgObNm21g1NsvF2bzXiexUWubAeSvP1dUW/lymSbBMdlKJsOHnzqT9g2PIVMtoJ8iVfwMxBeOxTX6mjTfH/DdZ08TduVhZVCwVfkmtQmPWeaGVvqleQQXx4OaO/t5Qom0kk9mMOhgFCJAKqiop1ApRQXvOfNADDtnkGNIOjziaiK7DRqXDoFIcARAwkQQlCqcDKIbfMc5yXnHIuNm4fxp5GcpwBAPIYbvxrSyBPgtOMGMVkwkclWcMRAEj1JHc+9koHLOCnG9QpyBV15Im94LcRpmPSfA4RGpgEEJdYvvJc1bPzkwZcQj6ro74rixCW92LxtT9vkvYgxj06UYHpVx4Jeu7eLTcaAQsmEplKUDafpqjUZ0wItmuf1RLFrojzt4+4tQaHdYXjIQkc0Ekzy7swUUShZXsjMm9gJ7zz60G+G0dcdBSHwaccxTqbIG+hJ6nWaVLUtG0zbRTZfgWkzsIkyNIXCjigAEwaYQfPqdvxGJaA75z/PmpAobxvdPiZZMmz0piP8WqAqz+M3ToJ8onvMulbrA8txsWUoUzU0++DRUAp88aNvBwBJmAC8eiYnaPg0lXfOJE2McCMQALqqSFkY0bNJeBdiwXHL+i1SJZwLxlYVpyOagpWnHCELMgVOPX4+Tj1+PjZuHsbQziw0hXJBWUI8mjzvpfQ35y0Nk/5zgDAg2QCZbAW6Wr00pYqFfNlC2bSRL5n44xtTeO6VDI5d1FUXl69FsWLjjT15RDQqac79XRHZY6Ud/bgRXM9KmbbrNYWq/w0lwLyeWMD7uuisY5CIqnt1zJmGqhBQSlEoWyhXLPzxjSxuWb8FfxrJIaJRKSbqMM7u601FYFouLMfF2GRZhv4AQQrgYaVc0apjoC1b0o9LzjkW3QkdpYoNlVQT7wQMhuVgqmAiV7LgMoZ0IoKedNT7PohGeZtG82rHOSvGcER/3DMm9aFPx+WtJEpGcwPDV/rcEG3cPIwtQxlsG56CrpGGOYpOsLA3Lgsdr1pzMs9Z0XoKMNA8z9jsOaOEh3GjuuoJzTpgjEm5GLEoWrakHwv7E16eiRvuge4Y5vfFsXRxN3745TPwpgVp3PXYdq+5YLCJ31VrTkZXMoL5fXEZIk0ndKgKF9cU1yrE7CI0Mg3Q3xUNVCjnShbv3cEA0+IFcpbj4o87cxjsiSEZUxu+zCKe7rjV6mJCvJoBxjxJ+b0bo+WFFeqPKRLVFFetOTmwUlu2pB9nn7wIWgum2UyhvysauCb/f3tfHiZXVaf9nrvUXtVbdWclLEESNB+yhIGAH2GREAwJglERFDXDsMyM6wwxAwwM8WGGiYxgFBicGXQc4VEMSxBCiIJhJEE+tiFkTEQaQ5N00unqrdZbdzvfH+eeU7duLV3d6eqGcN/n0dC13Hvq3HvP7/y29/XOD+snYr9/JGc4MXkiVDNVhfUlBRTW7Q4wKV0AFR4GnwfW6V9apHZ0p7DuwVex+t7t2Pwik6led90ZiEUCAGhVxgVKGcU9pxaSZS4JwN6faIbkvak8YmEV0ZBSkifmcyQ1VqTBDbJu2tjdM4zvP/wG/vDucNXy8kaNzt5UHjf/x4tiEZ6ZjCIRZWX8tY7jvh+rbb64Z6qqMmRZwhHT48L4D2WKSGd1FHWrbPFfefZctMQCSLYyQTVJImWGyB11IIQg6BybezbuZ5nrL5kWharIwiD5hqa58I1MFSw9bU7ZDsutG+N+aC2blVkWiqbo1C9HeVjBpmyR8lacTTQ4+7MXO7pTQqt9IirMaiESVPD5JcdhVjJSsyKPU+zzGDuBkwNwPBLqdH0y7Xk6ak7AtGzGtpxkPGU8r+bd4e7oTiE1okGRJVijGAybshBNRyKEZEsIquPdKjKn+RnH5FTB7ndHmGS2050uSSwEVRKIGxuq0fOI+R3DoPf153D/pt3Y0Z3C/DmtyBaMmiHDRsbACCoZRZBl2bj07GNxwtwk5s9phVa0UDRMFA0LfUMFca28XmhrNFDmnXujDgDz6Palclj34KvoTeUwMKJhJFvECBdgI0AiqlYYJB/NgZ+TqQKvrCup80jZlHXDV1sMDjXxOh5YNgsBzehkVBnuKrk0b1jkpcETYOi8yXCJAFev+DBOmJvEnv1pPPb8norvELDFm/cjKRJL3JtOxR4BO2Y8okI3bOQdnfh6Q6Zg3uXBoQK+tv63sCyKYEBGJFTKqxXBrmmyJQTLpiga1bnoOGSnJDgSYr0UsixBkQhiYRX7UjnoDjv3RCBftNDZGoJpUYzkio7U98RVJVKMrYiAfydX0PHTLW+CEJbjG86MrXOfw92oalNWQfjI1rcwd3oMT/6uB5ajncTYztl1uesXOyARgoBKcNT0BD6/pFLJkjfiuos60jkdWtHCcE5HazwIOW8gmzdgOIJniagqrqlbf8ZHc9BUTyabzeKiiy7C3r17AQDbt2/H8uXLsWTJEtx5553ic7t27cKll16KCy64ADfeeCNMk5Ug9vb24oorrsDSpUtx3XXXIZdj/E3pdBpXX301LrzwQlxxxRXo7+8HAOi6juuvvx4XXnghLrnkEnR3d495zPdt3Cl2UKsvPxmfX3LcqInvWhLMTXRW6kKSCFaePbdiN6+7PLLxlqOqClOGdBtVSWLKk23xIGZ2RLD5xR6svnc7nnqxp+puny14NhLRAFRZQiyiIhFlISzbifnLEoGqSLh6xYex7rozMHdWS9355Ml3w7SRyRvIFxmh6Ui2ZEj4grL0tDkspDhKct6mVHhSPF+w8uy5WH35yfjeV/8vjp6RQFs8OJbpq4v+YQ2FoolIUClXtm4AjXg8Y73kPHg3MKJBlhnzd2dbuKGihmrjc98LbfEghtIFPPm7HpjOfVnNu7cphabb6OnLVA1teaMORcNCTjMRi6gihJaIBtDRGkIkqKAtERQGBijXn/HRHDTNyLz++uv43Oc+hz179gAANE3DDTfcgHvuuQebNm3Czp078dxzzwEArr/+etx88814+umnQSnFQw89BAC49dZbcfnll2Pz5s1YsGAB7rnnHgDAXXfdhYULF+Kpp57Cpz/9adx2220AgP/6r/9COBzGU089hRtuuAF/93d/N+ZxpwtG2c28YevohqqZoS9FZnkJ/oBWS6fw1yQCBFUJ0ZCCE+YmK+LVHPXYjutBIkAkKGMwrYkVixBH+dKyMZQpYv9ggYmHOdVftYyZZbPch2Uzo6AbFtriQeYZ2RRdreUa7I2WmnpPN5LVUXA6wvmCwkMwM9ojdZPTskQQVJWqYRoATtiNTGjoUdMtZAu1RdWqQZYIVFma8IIOUQUJiJBUOKigPTH6ouwdC3GYEAhYrwohhCX+Xd5VteHz1wq6VTW0VS2cFg7IiHs6+QOK5FTG1S40mErw/OGf3/arqR7KhKNpRuahhx7CLbfcgq6uLgDAjh07cOSRR+KII46AoihYvnw5Nm/ejH379kHTNJx44okAgEsvvRSbN2+GYRh46aWXcMEFF5S9DgBbt27F8uXLAQAXXXQR/vu//xuGYWDr1q1YsWIFAODUU0/F4OAgent7xzTugFKK0+7oTo3KftvsQi3TomUeiCRJkCTCZAgUyaH+l5hsscQe5ITTYOaNV/OcwqEYxXzRKqPdcYuWqc4ON5PXMVylga4WLJtiOKtjYERDV2sIX115AtZedXpF0UJHYuxeAwUwki1WrVxa++en4WsrT6gwErzJ1bap8KSWnjZHeGjrHnwVO7pTCAVkpEa0KVfItOyx9z41Cu6hc5G2vGZgJFc/PyZJrAqsqy0MWWLz6Va6NEwLeY0dz12EMpqnWiu0xaMO6647A6svPxkzk9EKaQHdtDEzGa2b35kquCMO8fDhl8Fo2i/i3gXHwYMH0dnZKf7u6upCX19fxeudnZ3o6+vD0NAQYrEYFEUpe917LEVREIvFMDg4WPVYBw4cwMyZMxset6IwT2D/YB73PrZz1AVkstcXw7QhS8Cnzj0OHzqiDet//hrSOb2MRDJbMPBOKo8ZnTEMpQsIOfHqZEsIfYP5cS+KNgVs18Przscwvi7OgsD6JqQGZHu9fSh9wxoOpovo7IxXfPavP3MS1v/8NWRyuqg0Gw2EsHF1tkXwf+Z24JnXevHjp/4guMXmTE9gzvQETMuCZbNu86JugoJCkgieea0XB9NFPPvSuzAsG7mCgaFMEd29OxEOypPGyFwN7vlvxMiMtzeLEDYvhmVDK5qj3vNt8SDiEdXpwldQ0M0ymQnbBlLDGoazRZijEXk6iSn2WylmdMaq3htufHbJfNz3yA5YNsvBFA0LoOz1hcdPw3mnH133+52dcby8qw+PbH0LfYN5TGuP4NKzj8XC46eN8svHh2c27EAwICMUOPwMDDCJiX/btstCNpSXrNZ4nf/rhvdv93ckSar4Dn99LDBNGwMjGjI5fcp3qLVB8KsX30FXIgjDtCoWGEIIfr5lt2hCNC2KgMJ6T2Jh1emtOXSakGrft2npjfHI9to2xS+e+SO6EsGKHeaRyQi+uHSe02SXBuv1H72seGZHBOedNFPMRSZfBOvuA949kGbjJASRkIJoSIZuWCCgaI8H0T+Uxy9+PYiAyqnk2apnmLTp8sijYazTKxHWdzRW8DBX1vFm6nmoikzQ2RISdEyggDbI5tN9aubR0FF1arhRDAVkFHUL5500E/39TLytllrmkckILjvv2Ir3jkxGxHdrobMzjmd+9yfB+BFSJfQP5XHPhv9pmtezvz+LSEgRLASHGybNyEyfPl0k6AGgv78fXV1dFa+nUil0dXWhvb0dmUwGlmVBlmXxeYB5QalUCtOnT4dpmsjlcmhtbcW0adNw8OBBzJkzp+xYY8HBoTzSeX3M/F6TCctmFPV3/WJH1feHMkUMOwnvMxdMFzQsXLKY03VwMkneTDdRsG06LjZjnhy2bFpTEpc3CD7+/Nt4fPue0TPeFAClIj+VyRdBiCR2xgWd5YIUAsQiAXTvS4uKskzegGkxokbTsiHLkhASez/CssfPMs2/wSvuDKt6n5ZpUfT0ZbHk1NlY8bFj8HWn0g+oLH0mADpawhgY0Zh6KyltJEtkrqy6bM60uDAiQHXqJ96Eye+R8RqEaowfvDKxGUamWoXc4YRJM5sf/ehH8ac//QnvvPMOLMvCE088gbPOOguzZs1CMBjEK6+8AgDYuHEjzjrrLKiqioULF2LTpk0AgMceewxnnXUWAGDx4sV47LHHAACbNm3CwoULoaoqFi9ejI0bNwIAXn75ZQSDwTGFyjh4jqGZvSRNB4XgXONNiLw5c+lpcwTLre4Jf9VLvo7p9OPcMRsWhSyRUctKd/cMIxEJiLxUrTESAozkDZGfYpozzntgnmtAkaAZttMhHkBLLIBswXBKqtmHqfP/U1GWXgvjuS7j8S7d57Fsds/Uu775oonHnt+Dx59/u8KguY8VCsqOR00FGWd7IojZXTHR1f/v3zoH93zz7IrG4tGaMA8FtXpvmlXq7K2QO9wwaZ5MMBjE7bffjq985SsoFotYvHgxli5dCgC44447cNNNNyGbzeIjH/kIrrzySgDALbfcgjVr1uDee+/FjBkz8N3vfhcA8LWvfQ1r1qzBsmXLEI/HcccddwAAvvCFL+Dmm2/GsmXLEAgEsG7dujGPs6stgv6hwoTv7icbRGIPXlq3yjjXeOLbLWBGAdF9ryoSbNuGOxI0nnnobGN8baCsv8Sy6y9MbpiOvDQnr3SHQjhSIxoS0QACqgzDtFEomqJLX8yBs6JZFkUyyXaLTHPEIUwES1IfGMiDUmDdg68iFJCd45Cyij7Lrh6Wm8helrFiPDmWsdqYQ/l9m37Xg2BALkv6uyEBjggZC+NR5+9GyCu5Gqobh2oIdnSn8MyGHRjJ6kg7PTbhIDtHM0ud3X15Q00gIp1qEHo4ms5DwM33bcfeg5kJVUycCoQCMhLRAAZGCqAgmN3JKm4spyEtpzEeNr6YcoMzoz2MdN5AVjOEANdY1RlbYwG0xILYn8o5nFMSdKM+uSPAmzTZwilJBJ1tYUFoaVl2WUx83YOvYjinIxZWRW6kpy9TRpnPTxcJyrh6xUdETiadYzkZCgpqs3O1xQNQFBn5AuOpc1PsUzByTq2KSNtUGpn3A1SZOIqxtedJci68LLEcbVBVREMvUD33svnFSmZtTq7J5Rs4auVuvJ954FdvIhiQoRVNDKaLDuMDq4ALBRWs+kTzCTVHK2p4P+LwLGc4RMiyVFOqGBjfwjLZi5FlcyVL9vD2DRVgmox6xbRszO6KQVUkwQKgyMzzWXkOy9n0pnIOBY4Ny0IF/b27g7vsdxIg4Dz4LbEABkY0tLYGGdVHf1bkM0r5l9J3Jafz37Zs2JTWjYnzogZNNyE5ZKEO87sYF6+4A0jZbpGHJooGj/uzijh+Pi6iZpg2rw+ATQg64gFkCmZZiNF7TWvNy/sZh6IW2hoPYjCtOQ22pY5/d2WcTYGWiILWeAiUUuQ11tfEaWEKuoVoiJFb8tzLmQumY9vOA2XM2tV6XkbL3XDw8FsooEB3sTiI63g4XdBJxuFXynCI0E3WTzGjPSzIJr2g4NxSzeUAOxTYNudcY0lry8lF2E5VWTqnIxxUMK09glmdMbQlQkhEA6JevzUeRCIWgGUDsYha0dnOY+gAmwNGaMne6B8qoG8wD9OimJmMir4EiTBaFkVmzYOyVGogdOfvDYtWyEV7QyG8CU+RZexP5TAwrInmQdacyIwrkUqd/byfYtWy45GIBiA5n6MgGEyzbvuAIjnlpLJQmiSEwLJtGDbwidPnIBFRS+N2xsNISfn5D6/Hqp50dz3wAoqOljCA0oaCPVela6/IBJqzsLvlsodzOooG68vKFAwUiqbIvezuGW6o56XR3I07D5PO6aL3TJYIZiSjiIRVn+NsnDi8noYJQCKs4orzj8PKc46FRKSaOzjT2eW2xIINJWAncx/Ex8NDT4J4khAAbNHNaWZF57Nbppg/kJZNkdcMRELM0FQtDCBs12/ZpfCSYdoYyRWxcF6noOdRFQmmQ13PcjS0LLwlEWdeUbmw1YqJa0UTHa1hzEhGWJk2dRopnX9BKbSiKRoogdLCozpl3ZLjfqRzOnTTxqxkFIloQDAJ84bXXEHHlpf24tyTZ0GRmFEJBmSn7LQ0x0fNiKM19v5UXKzs1EeFImmj4Fo54aDCFnenyZUXU/CCDdumKOoW9h7MYMCh1uH3oWVTEbpMOyXUY8m9NJrEd7M18+IQCtY3N9Zz+iiHb2Q8uObiBaL8cdmi2olHCuC4WS0oevXppxiyRBAMyJjdFROLMnWFJeD0f4QDcsUuUDPsigdSlSWhw97REkKni7eMU69U27lTShEOKNjdM1wW75Yl3jTKqPsJYfmjgCoLDzEWZjxro9F/bH6xB4ZlYShTxL7+HKjr3AQlw2faFG/3pnH/k7sEC3PAUdJkbT0UBIynjJ+HN7jalBk+Vm1IoBkWtu08gJZYELJUmhvuIXKtEuHZvccRCSpoiwfRGgtUlYzm4a1xHdvFERYOypCIJLRhDNOGZdEyoTNJkmBTGwPpIlLDBRSKJhRZEszPfAPi9Xa8LNtueGU7+Pe9GxZe4aXppgiVUwAJh57G5zgbP/ycTB2s+NgxePkP/diXyokYv+xo7VJQdO/PoKMlhGRrCAMjGmMLdn3/UNQvxwO++7JsincPZkFdTZEUbDeWiAYhSQQzk6GKBGk1meJwUEauwBZ6xaGuIWCiU4SwMJN3EWIhRgJNN9GbygnPIRKSRR7IMC0EVQWKTNAaD1Y00Q5nimiNBiqSte4k7mBac9QSeXUcW4283iejmLeR0yg2/OYt0ZfAF8F03oBh2gipCq44/zgAjCvLtpkcAZ9TSICqsGo2ZoSIkPfljcABVUJbIlzGLvxeAwFAnNCmLDMPjun5HPr9qjiVhABLxPN8iapIWLZoDn67Yz8G0qyHy92IGQkylUxCJBCw8vr+oYJIZhLC5p5vOBQiNdTLUk0V1bJszJ/TWlG9eMX5x+GZ13qRzuqwKcsDhYPKe4rj7P0Iv7rMg4GBbFkvwY7ulJCAZbswgAe/bAoc0RUTn+XVLdmCgf0DORBS2uk2Gzy0Yzu7eC/9PiFAeyLEyoldlVp80ebU9bppQ5UlJKIqFEWGZdmiofPAYMGht7cgS8w4AA61uuPRMcLIUkMdk9ZVEAkpFYYkr5lVG9G8VUJ8jD19GeSLlZ6j+5y6IwPsrTLjhsi2mYSAO5nsrV5b9+CrODCYR6ZgVGjOdLaGkM4ZMC0L7YmQ0KWXJYKu1hDWXnU6OjvjuP57z+Hdg1nknCT2VKBW8YokAdRmXuP0jogoyJAc5mvbsstoYMYCAkCSCdpiQSRdnf98gf7h479HoWiKxkv3+AhQlYqIFwmEAhKOmp7A0tPm4Kdb3hT3VF4zxHWQCMFfXbqgzNB4q8vmz2nFtp0HIMtSRfXieacfjf7+TEMVac2AX132AYL7JlOdJj4R5wfrkicEIl8BlMSSirrl7NDsSfFmFIlV8YRUCQeHNbbQOu+xcBD7j/5hDbOTERw9M8Eedr06269h2RhMF9HmhNWef+MAQgEZAEUiFoBpWhjK6BgYKaA9EUJrPMh6Yvg5nd0/CNsp19L80A0b+4wctKKFWERl+jGeKiEeauMSxNXAaHOIMOjVBLsoLVGquDVGLJtiVjJatojwHhzVicO7K9UiIRUD6SJUWRK69Pw3510GpTeVg6ZPnYEhTpGHF9x7IGBhyr6hgvAmbJvCMKwybzzguvcbgSwTR0HWqtqhrzkeMQWpaDwUHmPFMSUkQgqmt0dE+fJItoh0TkcoICNXNMvykN7qMW/3/7oHX63pBXFeM+93OEvyZBudwwG+kakCb9mjZTMhqZAqOwuHc0tT1jwGsMWHiyXZ1BbNjZPhJ5oObb5ECEJBtjOrddq+4QL2DeRFD0w1UApEQgqGskWMeHTnEzZFW4KFykayOoYzRcyd1QKFAFnNREG3YJo2FEVCOCCLhcEdskjndKTzOlqijEhxwNYw7FDhhAMKlpw6u6zkmNPB1J2DGguh9yVVkUAIcf4FtCqGyx1OS8K5xpR5TNyLc+cbgMqYPStuqDvkpkGVAcMqhU85SpWSjPwzVzQrblDvHHrzGaPBtCgiQVlUY3mvoywRp6+p8QdDkpgmzL5UTjyXvDQ6nWfPGpEkEELRGmfh4HoUMGNt5Gy0DHo88HpMnMTzcIJvZKrAy13EqfNHsjrgLFAxVXKIJhlD7UhWFx4ERSXlBwtnNW/hsWwKCxRGvv4JDIf1VpbrMyTzMI/XXKXzhqM4qSIcZForqy8/WTyIoaBS0bfAH8QNv3kL+1N5hweMlTJrOgu/SRKBIktIxALYtvMAjpqRwAlzk2JBGC3sqCoykzB2/iao3BVLEmsU5VrvfH3li8ae/Wns7hmu6M2ImzZyGiufbY0GcPrxXXj2tV7sT+Vg2TZkiTXrXXbusQCAl3f1IV+ceC+mEa+YgBkYoNJg2DZFsjXsSB+w3qhm0PPlixZUxRCJeoAt7ISAVTFWgVdhlUOWWMJfdwoFxHPpVEAeHCrApkBAZvo0PN83MFwQ4oNeVPOs6yX2m8VlVs143ffIDiy88fxxH/O9CN/IVEG1nU48omIkW8TszpjILQQDbLFifFvsCREVTp5jEgJEQypGckaTR18bozHe1oK3kTSdZyFC/mDy3VhRt2BaJmSZVISgAKBo2uhoDaF/iIXWBjNFp7yRQCKsn8f7APMFgdHBVA+Xsd0xM1SSE+fnoRgCdu1MiyKgshAXC+0REFJatEaKJp58oQcdraFRw2k7ulPAq/tgU7ZpsGwbpqVjz/40AOBnz7w19kluAG4Do8qkat6kns2wKTCY1hijsWE31dNO5wzMmxMVfydbQni7Nw1JkkBouRIm80RIBUW0REolz5bTMOyufmSl0RIMiyIRDTAxPRCnIIPU9DZqFQPUSuw3g8IGqG683ouFIoeK90GR5eSjVtljKKCUvR4OKowlVpGgKOUMqm5PRnKS7toE6cGPB96mUqNBa1OtL8Z0yot5lY67gZPRcljY51SVeXtTgqoMVZEBEEHTT6nthJcoDgzmYZqWeIB5aSnnkKoGy6YiYUwpoDh9LbIEzOqM4q6v/l8sOXU2cgUTew9moOkWKLXLSlQLTpjTK9k7KxmtSc7I5lUS/Tkbt+3B9x9+A0OZ5vZTKA5Vy3hAKfutitSYBs14QVGuZrr0tDmON8pKwVnvVsmDcTOe89c5US1XSa0mRhYJqZAlguFM0TFaLB/YEgvUJMyspqZZj8a/0TLosaJaD8/hyMTsezJVUGuns+TU2RVUFqZloz0RxFBGL/MU3I9vsjWMcFBhJZlTBErLQ3X11ii++0/njao7Y4kQtEYDIgnLjUehyPjQWOLXLotdu3eDfNdpWbw8uHRey7IxlNExo511ibtj+sPZYs1x87wRD6sxG8BWqh3dKWzbeQDRsIJC0YJls8KMREQRuRXDsstUGoHqu9Ud3Sl070vDsGynGooKckdQwKKjs3fzXMl4vYhoSDkkj9iyKdriQaRzxUPqg6mHgCJVKJvO7Ijg4LAGy+mPUmRJLN7uMKd7PLM6Ilh5zrE4YW4Se/an8eQLPTA5ERoBFEnCwnlJvPwHtpmRZdb/FAmpoJSWXb/xVoyN1fNpFLUqKw83+EamCtwLm/eGPGpGoux1hQCmU33kjebIMltNJIkgV9DFg1Qr/uwFK7sdXV1ytGOwPhH2d2ssAEopMnlDjMEdDuNlpLVu9nBQxjUrPgKAzc+b7w5DVSS0xIJI5zjhZnnoa8Nv3kJeMzGU0aAqjLiz2kJJAaEr4m4955U+6x58FW/uHYFMWIMlF9OqNjvs91LsS+WxfsMOKLLk0PgHUSiaGBgpIKcZKBq2o41CHQ+rBO9ulcfQ+dDcBpLPNa+X9op0ic8AohReUVgIsKMlLHJEjVzrfNFq+B5yw02Emi+aiIVV5DVzwnWTJInR73ix8pxj8cCv3oRh2qw83GNlubfNNwxBVYZJIfJl23YeQECVYGilnZyqELzVm8a09jBMm9bMsxxK8r7eenAoqGa8Dke2Vd/I1EAt0aNqpY33P7lLNDxySASIBhWce/Is7O4ZZmJYTnmnRAjsUcJVvHT0UEMahADT2iM46MguD2d1qIqEZGsYoQDj/epoDSOoyshrhqik0g27YiFTJKDD6Y3hD6xECIqGLWj2ZYmdlNNxmKaFg+kiEtEAiiarLBoYKTh9RwB1sUDzNac9ERJ9N24sPW0Ount3Os2P7LXRZod7DKZll1UCRkOqQ1NiQZUlKLKMfNGEmtNrllL/8PHfQ3Oqy6pBIgSSXGKuruap8DJdVZURDrBGV0kiDXsnnMlAldnFGcvtwT8rS8xjzFp21XDooUCWCFpjATz/xgHs7hkuW4z5vz98/PcApQioCorUAhy2BG8TbSKqio3Klpf2Olx6jNeO8/BZzvdGsgWH6FUSoTL39TvU5P2hiKDVOyYfm7u67HCDb2Q8uG/jTpz24WkN3VDc/eZVZoL1lxAoTtnlio8dgxUAVt+7nWmlZ/WyqptasGyKmR0R7Evlx7W54btCm7IFxb0YmaaNwbSGeCQAoJRMTeeNsoY4VZZgO3xm09sjUGRWtrxhazdGsnrVsmHLBgihaIs73fQ5w3nwg6zb3+muty2KZGtIzIf7MLIsoTVa4v7a0Z3Cht+8hb4hrSKXNNqOnjMIU8oSkLxoQdNZN/qMZCk5PZItOsULNnTDgmHa+N4vdlSoOfKQWLWG17Z4ELIs4UAqV3NMtpM3yhVMyDKQzuooONVo9X6PKjOuvIGRIiwKqCqTJK7lzdWG0yzbhNIyCmYw4mHmLdz/5C4kogFouiU8gEhIQbI1BMOiODCQq2qM3WXiAYVR9SSVkMMrRsSv0A1LUDupMiMyHRjRMDMZxWXnlvIsh5K8b2Zjptd4HY7NmH7i34N0wajKgeQFd7+Hc0xkyB0qCShsN+XejYcCsgiJMF6r+ntIWSJYec6xmJWMjPpZL3ihgWWxKiuvNg7f3WfzBqa1uYgBnRJszhVlOOqZRd1CXjMYl5htY29/DrpZu0GPENZot/dgBrpTftrrLLrT2yOY3RmFIksoFM0KcTibAvmCUeZB3P/kLuwfLICiRJYoOZQuo+U1JOExOR6NU7RgWjZaPCSWiWgAsswqk/jv8x6eomQEVIUl/XkVlGVTHBwqYH8qJ1gGVKdU2008ScBCOdGwgq62CAKqJM5Tz2AaFkvaz+qMIhZSRDnwWEwFcbzGMUtj8/+NcivaNjPWms4KQ3IaE5Nzh6hCqoRM3kD/UKHm9bNsir7BPApFUxTdZJxqP35PGRYt+z51fmAiGkAsrJYt3uNN3vP77+3eNIYyxTIOPB+NwTcyHgSUxmRc3e635MTY2ULGHmBeKipAnUwlOM9V7WNLBFh53ofYHw3mZCSHQp9T0+tO53at0yiyhFCQ6cdwfRVORmg7yQ73WQdGNAyOaBiuE9IpUbdQpEaKZfkKw7QxkNaQ1wzopo1EREG2UL2XRHUljTe/2ANNt0R+SpYYfxqlbMLrzQw3zrz5krNRt0YDmJmMigoxDt6LoRXNUVdunj8JOQST7nCf+zM2ZdVULCTHjFJAlUAAZPIG9g/kMZJrXA0xp5k4ojMK0xq7oeBjagSJiIrpHRGWRA8qkCQ48z76d3mp9HCWk4zSMpp9EIJs3qiRtSqBh1bzmomPzm2vW/jBqYUImCH2eiheieNG+cg2/OYt5DTTuY7st+Q0Ext+05wy9cMRfrisChpxo8vcb9edz8sovcpVmmGjzRG9Eh3xQRYyIYQwll+JoDWqIhxS8eS2PyFfMBGLqOhsDWEwUxwlvEHRngiLUk7dsBELK6xc1yo9zgRMGpmdK1C2mOcKBmybCZVVNPJRpvNSr3SWuhb9gCKJz/LFkO1ydbTEAgiHVCBTfXEdyhRFI11qhFUjcWeO9aY0YHQJmxPLZj86FlKgKpIoVX38+bfx5As9sCmL40dCKhTH6ygatjDQtc5EwRoAQSky+XJjycOMlk1F+JCX49qECH45JpEwRo+CAK93D4r8A8tn2WUVekRic83BmK8JzAYTOLOTEWiGjdZoAIrEvmfbKgbG0BfC82Cyw4fGEVAk5DUToaDsMDHXr6aSJQmJsDKqLDEPoXEDYmdtrHvwVRHaGm/yvm9IExscwKl+A0XfkE/73yh8I1MFjbjR7vJDivJGR9OiUGWCkbwh4rkjzq6O64bnNQOD6SIUmZEU6qaNvGbCsChUR1/DphSZvI72RAiqLIHatSWMbZsxD3CZWE4gqOkWhpyGUQAAcXIuzi7OHW+elYxi/pxWbHx+D/so4XT+EixHBK1R8AWGEAJFLiX2DdNGUbcwnNGh8nwJSh4XBfOy3M2YgiUYjfd2tMWDItwny0TQ2wDAzf/xInpTOYdRmjU1ZgsGlp0+B7t7hvF2bxq2XZ2ahy84kkTQ2RKCSVHR3W/atjA0LMzEcgXc0+W/czwlzDJh7NaElMTRZEkS42XGT0Y4IiOd0yFLxLk/JVBYZU2QQPm8Ayy8t/aq0wGwUNHdj7wBm1JQkDLi2NFQuk5UMGYA5c9WVjPQN1ioeV91tIQQCsjIaybSqVLupprx58S1/BkMBxW83ZvG+g07MDMZxcqz544zeU9LQQj+CmUbBx+NwTcyHuhmpRtdLfHnLj+UJQLdkfKVJad6jAJ5zcR9G3cyTROH8uTgUKFMzjYUkHFwqMByAM6DWTRtGE4VEwXBUFoTi3E92K4Wbm4Ew0EF4c4Y8pqBkawOSqnocQFQUda5becBl6SBQ1czRv4qWSawLOqUxpZTyFMARcNm3pKrYtP928JBuawZ8/4nd7GQBUohKc4kXGtO0jkDyxbNwYqPHSNe43m0wUyxrAEwEVERCauiGur+TbthWHrdkFkirKB3IC+40HjJMgEPkzGP5piZjDX47kd3VhRgeNESHZ0RgpXpSmUyxpZdTqdjWhZyBYpISEGhaDr3nyXuTX4neXNOBKwS0T1XXPitEQNDXP9BKfNaQkFFhDe9FXs/e+YtxMKqIxNeDolwhUrG5tzTl604Fx+R7KiScjntSFASpJmceqZaAUIjBmdaewT7B3KwKXEVZVBMa4+O9lUfDvycjAdcGdPLHusVRwIguoaDqsw8BCcBzLvXLZuioDMJZHfHPTcwBCzGrjnaJeJ9k+042e7fSXA2MHZZlgQxIY9Bj2SLODCQx0C6CApg2aIjRRPl3Y/sxEhWd3pTSjFzVZFgO8nhse62VUVC1NOd7z4G8/hqE3gCwEjOQCavi5DZqmXHY0Z72OEI4AetnzYxLBsbn9+Dx59/W7y2+cUedm1c8w/AoYlncfwT5iax6hPzMSsZFUUGBBAiZ7OSUURDCtSA4vClUSFw5QwLAKvoCwUVMdejMRkrcnlYqR5sm4XKKGUl7jw0JkkEnW1hzO6KIxZhPTDuvBj/7xVnHoUVZx5VUVAiSQQL53WKuZKdcuCxUBHx3IgqS/jLSxZg1SfmQ5EI9qdyODiYR9qpONv8Yg/OPfUITHNE8Nw5Si6G5xaRk2UiQqbcY+OY0R5BPBKAKktItgRh0VJxiCwxdu5qBQiNJO9Xnj0X0XBAGHOJANFwACvPntv4pHzA4XsyHlxz8YKyBd9bX88Wbh13P/IG5s5qETuiv77zOeSLltgdS1IpvEApZZxNpNRAGAjINVU1LdulBeIMpZY2CAcBq5zi+SR3h7RNbUFN/+xrvcCr+xAJq47nw5K07YkQwkFWsWRa5f0XYymRNUxbhD9qeRs8dEbqHNi07LJmOa59c/+Tu5AtGHUXbA4K4LHn92Dz/+uBRCQU6lDvp3MGjpmZKDtfNax78FXR9JeIqhjMFEGr5MokieDck2YCALr3jdQ01oQA8UgAibDScJzftAHbKdTg1Xl8YU4Ns36lao22ANAaVcu8O29eipOT8pwjUWVIpFKYrhoo2LWVZQnLTi+JzBUNC9GwikzBcAoWDPQNFfDsS+/isvMYqSgPPXNtGLeI3Alzk2iJqMhrRtmPkSVmYNb++WkA2LUZzukwTd2VwyvNs7sAodEeGb7pmAptmcMFvpEZBe4EP29WZCERWsbeW/TwkrkNlU0BGeU7+kRERX8d6WZZgoifE55HqfGkEzghA4emg5NWbnlpLzMwTpd9OKhgv1NK3JYIsY5z04JlAf1DBacDvZRP4OPlbL1jyYnwkXW2MdVQ/r1q1DbhgISCXnqDe4SyKzcDsEVBcnIMYzF8mm5DlqpUf7n+22yQJsR9P/A+jtSIBlAW+kxEA5AlgoERDb/c/o5TeVh/c7DqE6wB7+5H3mjo97AcAUVbIgzLYkSXQxmtajiO5wsVmZEvpp0iBff9wWSPgUxeh0QINmztLss5BlS5anNsNYQCCq5e8eEKin93D5ZNCQpFE9GwIrxuHnoOB5WqwnpppxKR5fnYHERDClaec6w4Nz8Ol3gWRTiOrIW3AKFRgstmNGJ+kOAbmVEQCsg4MJAX1UJu5ljb2bU99WJP3Zg1peW6HEoDYRHLBsIBBe2JIEyb1q3soXD0SywLA8Majp4WEwJRshO+S41oZUaiN5WDKgNFT5kx/82SyfNGFJIsQQKcRrjR6Uy4AaA2deLq1Q0kr7ByGxjAMa42k98dGNZEWKOcM6yU8G4kZeTOMVUDpcD9T+7CzCrs0e6cXF4znR4bxnwQCakg6SICCsG09gjymiH6kjgbdK35CqoSjp7BvCeR/2jQdFpOoUc4qDhVgbW/yc/PE9ZuATHeDwU4mwmbojeVw4ozjxI8ffGIiqJujToyQpgOkXvuhFSDaQvvQiIQtEPc6wZqV35tfrEHkZCCUIAVM/CikoSrOhIoddBv+M1b6B3IQ5EJWmJBjGR1WLZdswDBR3PhG5k62NGdQjqnOwtT+U6Y69u3xYMoGvao4Sw3AoqE4SrJTjckiTjcZ0xxsZHKroAqQ5aA3/3+oEg42IDQoXeDhbWqHydfNNGeCInmUV23RDK/7phJedUUS/JbNVe/lhiTqrYtWuGZ8IoeQtjiD1JqaGRhGfbrJElCUGaf0/Tac2RT6tnhloOC5Wbs/myZtsy+VLlyJxew0w1Gssk53nTKFmfvdap1S0iE5Y3mz2kty394G2frgV1D1o/EWYurgffr8IQ1P5+qSGUhW3ffzZaX9mLJqbPFHARUFpqrd4tTioqFW0g1KMw74c2+iiyhaFji8/W8BRG6I0SwcXuVSDncoVVutLpaQ0gXzJoFCD6aC9/I1MHmF3sQCasIBuQy15qgRHI4ktUb6oRmPRgSFJlAN0bXUKeUVRGZFDBqWQPXsWVZgmFYKHoy0BZ1/THKMbinZloU4aCC9kQIAyMFJ+ZPIEulElGJsEIDnjfidCJAeShLVBkFZGQKhshJKQ6pZibPSpm5N+aGbVPEHOZkgJV/9w8VSt3xtrN7DquY1hbGm+8O11wEuVfmHZ8XvEH0l9vfYVWDjtEYyTHOt0Q0AMO0kHM1kvKKsrGUeAPMU93dM1yW/wAaNzK80ZNV8DkVbrT67zNMthFaOK8Tz79xAJGQUjdkW9BNbNt5AGcumI6BtIZoWGXy4v3ZmoUAkoSKhZuHsMIBGZmCLTZs4WAQpkkbWujHKjIGVOcY9PMqUwPfyNRB2cPv2mGyBdGGJLGQUns8ULMTXiLMw+CloZRS7OuvzWvFQUAwlNURDSrQR2nYY8nUxmLmnGPL3S9BnGO47SQrVmC6LImoyuRv+3MIKCWpY4lSxohMq9B7oMToPL0jwhKuAVnktGybdV9LRIKqEIfosPw3SBKTdLYtCkli8fqWWICVYjvnaYmxyp+lp83B3v5sTRYB9+8fzeHkxyCunYNtUww54SnDtEGcJkPL4dIaq0yxTVll4TsH0uhIhHBgID9mMlRK4aoPLXmD3qMwo842RY9v2+MIwPGQX3WjxvJ8kiCm5Au8qsigRvV+rZBauZy4Q15WKgfLYpWW09rC+OyS+TgyGRn1d04E1b6fV5k6+EamDvgOyrIqS25tChDKSCxXnnMs7tu4E5peXmqsyMw998aCbbsyPOQFD28wpuCJAydnZLmaEveVezyKTJDXTCRbQsgXDMQdYS9VcaqZRF6KLVxBVRJhMfcxWmMBjGQZjUxQZZLNumExnRrKiCHnzozjzX0j5eXJDsQi72o8bIkFEVBlwWwgSwQj2SK+t2FHQ+XWAVWGblpoRIDQK/nMiU1ZcYRclmcYLwq6jYFM0VFEHPvBaJWCCg5CgJZoAAFVxmC6KNgALJtiOKtjuE4XPQUwlNZQNGxYNjNI4SCTox4YKVTcvC0OU0W1iq1aC3xnZxz9/ZlRf2OzqPZ9TA58I1MHfAc1ki0XJFM4Zb9DYgkAqqrAsk1Hm4R9jvef6IaFUEAWOzDJqZCx6vS/1Ksk4++MR1MEYF6LLJU8F/fuVyLA9Law6Pq++T9eFIUPLIFfMrh8R5+IBjGSLcKwKOZ0xcR5ioaFaW0yiqaNIhx6+YIBiRC0JQJQFBndvRmEAwrLcVQZJ1/EQ0EFRYMxJ0sSQUssgGNnJvD/dvez39DAPIQCzKPc159F/U6d6uA5JolICAdl5DTOgjCOi+CCYbLc0ljDbUD9nI/tVFSlc7pgCOdUN6MJp/GwKSEQXHztCSc85SpQUGSCtniwqkiYF96QVaOeDOB7Iu9n+M2YdcBlWjkViKpIogxSkQnCARknzE1iw9ZuaEVGosekfyE4mxLRAHIFE0OZopB5bY2qDXXwuyG5tswOx+CYDIyqSGUNoTM6oohFVHS0MMlkWWLhrPZEUMhElxc+oMyLAdgyY9sUumEJGVwvAeHKc44VTavDmSJkSUJ7IohomIVgbEd6WZKlqvt4SoFZyShWfWJ+hVzu692DjpfTmAfAPcqxEEu6jyw7fG/LFs1hXG7jMArVjs0qAydWmpvfG6lhDbrL47LsUk5RIgRdTjNkNVBQxMOq6OAfTGvCi1Gce9w9k/XyJNWamu97ZIfPZvwBgO/JVMGO7hQ2bO1G32AeAOPfSkQCZWGvdE5HUbfw9fW/FT0AIpwECL4uVZFggyKbN9C9bwT/9fQfKkp260FyWs4lwkMdvFmTJ/VHhywxYzC7K4aiYaE1GsDqy08WzWvT20u/i7/PRbqKhulQkdTe9Q5ndSSiAcH9VS2kccLcJFbfu11UCQGs78impQot71qnyKyhtRbvVEFnOj6jF9fCYRImYsNQD4mIiqxmgro6+QkBvvKp/yPG8NvXe0c9zmigNf67HtgGgzRkKLk3Q20KA7xIwGmSBRySVsXpineTkEJ0zLclQghqBtI5Q3iSikxQKFqCnmYwXawQCfOimmiYZdsNi4b5eP/C92Q82N0zhPs37Xb4ithuzrRsDGWKSOcY91c6p2MkVwQhjK4dYA+tWxvFslioLDXi1rKnGEgXKwgV6+GIaXF0JEKQZQlMRZLlOmZ3xUelIVFk4nhARJSMuheCWvTn8+e0ij4KZmBGL19WJdQ0MBxuTQ93YysHzw3xggGJEMzsiFRdhHZ0pxpemRMRFVev+LDwhAJ15i2gMGqeZEsIwYAMRWb6QLOS0bJxpPNmmWd4qGgk3Me0YBrzxLxULTwHxX462zQknFwbq2SUccS0OI6YFmd9Ui5a/0hIRVsiCFUmCAdl5IvlZt2yKUzTLqNj8iI1olXMO++T8XF4w/dkPHjutX3QiiYIkUpJXQmATTGS1TGSLQJgobCiYdXcjfJQEk/M8v6AseLdg1moMssBJJymOO5RtcWDQvbYC04zEg+pyOYNBFRJEGN65XC9CVXO8QVKYXCqes/x3fkcRWKVcGpAqaufPn9OK578XY9oUgRlTAWJsIpcwRBl3cnWkNgZuzu63eANerkqvRJl4ySlRXn15ScDYAbqvo07yzxKAiAeDeDck2Zi284DkGUJXW1hkUfzclU1KjkAjD935sWYeOQo83T5fWA6mx5VkWBYFNGQgrCT56KU8XLtPZiFokgIqRIM02LMzc6mimmqoCaBZ14z63ok1cqQ3X0yPg5f+EbGg0Gn0odXMwGODggFZIliVmcM+/qzKBp01Fog9yI0njVGcZoxi4blJJxZE1smbwiaGB6iAyDYk20nzGOYNqa1hfHFpfNqLgDVwlCM9bi0mNRqXhQggCLV10/f0Z3Ctp0HEAurjsomO0I0pKAlFkRLLIhcQcdQRncaVQmmtdVegFIjGjpaQtD0On0bBCASQUCVKnjQrrl4gZB0Zk2KERGWO2pGom4l047uVENhNw4vD5x7/sZCj9MIJK5X4yT6FYciKBSU0RILio3Ghq3d2J/Kueh+WDjNsmxkTRsBVUZHPIihTFE0o5qWVaGdw6HV4YUDqpchg1b21fg4/OAbGQ/a40FGV0IhPBm+nqgK43Byd7Q3ExKhcPfK2RQidAdAdKADzLgIJUgnX3Pc7Baxex8L2M6fFTDYo4RmIkE2J20twfJjmBa696Wx+t7tSLaEkC0YjqQA4/fqG8zDMG1RZACgxEYtMQObK1plxsFL76LppggDce0bSWI9IJQCqsq8v0hIRTqn44eP/57py7eEMH9OKwCHEZoC+wfy2LC1W5yrllHmuarxeiber/G9TKN5/1pGSZYIoiEF5548C9t2HkBqRCujM4qH5TK+rqJhoaM1jKF0UZRq85yVLBF0JEJY++enibxdUJVxYDBfc1yhQP2lpJrXPJbqMh/vX/hGxoPFJ83C/+4ZQq6gM8pwUnqoNd2CplcPTzUD1TaHhLDwVFFnejMhVYYkwaGeKYW1qnVfNwpZJoBZPfYfUFiXP5MFIJiVjCJbMMpUF/OagaEME8zi4bODg3l0tIQAx9vh/RasYo0ikzeQLZhO5ZMEy2aEjfFIQEhhu7Vv8pqBbKFkgakTHrLsEg/XdKcBtlA0kc4VQUGQbA2hb6iA3T3DZb/Lsin29ufw/YffQCSkYFYNDjOeq5oIcEE4m1IEFIJjZibQvS8Ny65N30KBMn0efpz2RBCyLOHl3QfhkhUS72cKBiiA6e2RsiQ856PjfjljdrbQN5jHju5UGSEo7wuqxuyw5NTZo/5er/FutE/Gx/sbvpHxYP6cNqz6xHxRXTYRsfSJBNt0UpgW28kzlcvKnEm17utGMSsZRU9fBnlPBz4B67CnFFh33Rnidb748lDISFYHQNEaDwlqdUVmr3PmYtbYF0RRt5DXTMGhxZPpbDEjyGsGUiOkUnLBqYDyqFyLhc+yKQpFE+GggnROB8+jEcIYgL2/SxRs2BS6YWPY0T1xC11l87rg/NIbIIwcDTaF4FILBWUWxvrNW9ibqu0xAKhwZSgA3bCgUoq+dLHifb5Rymkmlp42R6imAhCcYgBlmxTZEWEjBA/86k2E1FKHvZf3jRdqdLSEyuQDfPhwwzcyVeDeca178FX8ce/wmISbJgs2rR7Oao0FEAoqDZeHepvk5s9pRXdvuuJzkkwwktWF7or7u5puwbJMwXLA9Wk4ElEVg+miKIPVTRuKTPBFhxZ+9b3bnUZBW+QtOFtvsiVUtqMG2K5akVnlGyHsbwqIqqmcZjI56oAMw7QAQkQ1lbeT3wvTYosqF5Sb3hER3lh7IoiQKtXUAmoEqiKxogqLgoBgensIK885VmgA7XXkr6uhWriMVknIlxtOsL+c0Jw7CZ+IME2cUvUgFXQ9stOQlc+zxL/7mIQArbEgFJngivOPG/dc+Dj84Zcwe3Dfxp1lDWI8hi2/T2aKAMgWDFiW3VB5aLUmuW07D0CReLkrgyxB0P3zMJz7u23xIOO4crrqZc+EKYqMmR2RioZKbgSTLSGEgzKryqOs+owloyUsPW1OWfkzO54kOtoppaLZVHUMmG0ztt19/TmWt3FtwZVRLqaiOPonpFzoSpElDGfZgnsodDKGaTsGhoX3BjM69uxnRn13z3Dd0uhq3pP705ybzvs5RWY5uwd+9Sbmz2lFXjOxP5XDYFoTc8NJT9udDv6AIkFzqhllfmA+DsrCovXKln34AHxPpgLpglGWbE62hMro/icKE11VxMELpr0eRy1Ua5IrAiBEQrItBMuyHXliRoeTiKjY8Ju3cPcjO5muh0MrQlRZfBeUdbB7CQ0vq7Mg8eqjeFhFoWjBcDRDuMIigLKQXDggI21aiIQUZPO2w6BAAZuCUsmVt6BIRFVkCwYG00VQyhim3SJc7usgScwTGkyz4gp3LxKn4udFFm4vcjzXk3++aFh4fPseAGxT0xoLIDVSXwqi2nHY+JkhqMynEbTGg5Akgpf/0O8yurxghHHsVdNcSY1oaIkFMJQpMm0h4oQVTRsbfvMWfrrlTZ9PzEdNvE/255OHgCILRUaALX6hoDJmhtzRMJajEbCO9dmd0YY+C6eBtFGlR2+THO/qtiwbsixhWlsYnW1hhIMK8rqF/YMFOEs6TItiIK0xaVznu5phCyqZal5LNXAKn+ntEcQjKo6b3YK/umSBiPXz9/kxp7dHsOKMozCzM4agypoHCTipJi85Z8ayaNjoaAk7ZJoGprWF8cmPHYXZyUhFGXo4oIgueL7wcsiyBFlija3e+2G8dwcn+SQg2PLSXiRbQlAUefQvusBL190FAV5njV+/gCKhbzCPSFjFjGQUs7timJGMIh5h/VTexlzuRbI8G3FVXLL8zN5UHpm8gQODeTzwqzd9mhgfFfA9mSpwl3pyje/vP/zGhBoaRW6cGgSEVe8cNSMx6jh40psAwlCOtUlON22hEOnO1WgBBb39WadcmLAmTcq6ydN5g7EsO7vf8RAajvadau/zCqUd3Snc/chOJk4mS7BtyxkjC/GFg0xZMa+Zoqz7qBkJUbEWcIgkeS6nltDVjPYwspoJ07Yb5vVp5FpLhPWaCAnhBkTiOCgFKKE4/fgu/O+eIZYfo6yJFpQ1t0ZDCkayRYxkdRgWxVC6iERUFYUYiWgAlk3RGg1U7Q9av2GHYAGwPWqflm0jU7ARD1dnYfbxwYZvZKrAS/R3wtwkPjS7RdD+czqUsRAtetGQgZEYpUk4yMStVnzsGCw/40j8cvs7FYZG4ZQfmgWAJd5rdd674W6SM00L6ZwB07KhOFtWd5/Nmh/+zsmTsL95JznAEu9e2prJxAlzk5g7K4EDg3kUdEsURchSKeTlva7eUGFLLIhQUBHcbtWErgDg7kd3MpLIGsbDGzpr5FrblPWaCAnhrd3YW0N3iNPu8HtAIgQrzjgSKz52TNmYuVyxLEvI5nUnBEidcbP7GIDYHMxKRqv2VZ0wN4mZHREcHNbKJMgBiA2HTSkKRcunifFRAd/IeKCb5Qslf2jdMrxtsQDSOUPs5MeKRuL34aCCrrYwAAgK9R3dKezuGUY0pDC6fqdPZf6cVuzuGUb3vjRjCo6XKru8nfdeuHXRD6aLUGQJHS0hmDatMFDT2iMYTmssGQ6ulskYESRCKmhrJhvz57Tizb3DIE5Yx6bMq4up5bxtnACVL+KqzIggeTjJ7cVW+y3hgMyO5xCg8uZPoHEP1Q3ToUbmvSb8vI8//3bVDQUPjwHs3lhx5pHY3TOM553GV/c14Pdvd2/p3tANSwi/pUY0RDQTumEjVzCw7sFXq17DleccK7y+/qG8uIH5hoOAyUn7NDE+vPCNjAeJsIrznfwBr56SZQlt8SDSko5swUA4IOOYmQksPW1OWfiqEeMRCyvIFkyoMqkrweymkedVVXc/upMtbA6XmapIYkFYAVSwHAPlob9aOGFuEptf7EEXRTm3FMoN1KVnH4s7H3yF8ViBisR6PBrAqk/MB5zP10sEN1MGd3fPMMIBBYWiKcI5ksQE2GZ0RMXG4f5Nu5ErlAS7DIsiNVxAsjUMSSKjLpQzk9GyEGOhaJbJQnvvg9Hvi5In4gb/+8nf9Yj7QXLyLqbNZCUS0aDgWqvGG8f/t+aHv0NIZdVi2YIhPCFKWf9MJCijLR6s6f26O/YHhgsgMtdLYl6i7eSWfJoYH174RsaDay5ewKhNMHo4BQBmtIfRO5B3GJtHRzioIFcwBW1NtfQK1/vguYC8ZiKb10EIgUxqx8DHo4XO4e1DASoN1MLjp2HVsuMF5xchFNPao4I80t2RX22xchvtekSa48W+VI4xR0sEMkpibKGgIq7XugdfFQSoikyF12FTYDhTREssMOpC6eXhkiSCeDQAVWLszESioK5WHO8lPnJ6vPQepchrZs1mxt09w+hoCZWFaXmxQEssgKAiwXRtDqrxxgHMC+0fyovGVKFJ5AjrGRZF31ABpsmq+v5r8250tkUqNgPuzZdpUeQ1w2ENkMoqAX344PCNTB00tPDO78JjVZrnvESIHINpDbEIK6mtFmoLqsyotbeEkc3rrNqIALmCXuImA6rGwA9FC71RA1UrhLTuwVerlkK7F7ta5dITlSy2LGbpJdc8WTYtS6CnRjQXASqBIpdyJpSiob4Pd95kfyoHTubJGyo7O+O4+G83luhXHF61aj2go20C+D1YsOyKPOAV5x9X1r3PUc17vfTsY3HPhv+BYVpCNrt0JNbtr8jEGaeNgYwOi7KCgGreEcB5yIhfvuyjLnwjUwejLbw7ulPY8tJeAJV8UpxyoxIELRHW6Dbo6NRz7Q/O27Vq2fE47/SjBa/T6nu3O2WzlTHwkCph3YOvih3nmQumj6rrUg2NGKiXd/Xh51t2Vz12Iwa5kc8cChSZoGhQ2JS4vERa1tzI+564JykRZmgkwrjDvLmMevPISSb5fPGF+LzOOGYmo9iXygEUTkUW+w5XD210E5BsCeHAYB6ZgiOMJxNn7ES838jmYOHx03DF+cfhh4//HpphMdXWiIpM3oCmWyLHBpRYJAq6hZYYqboZ8BJeNlLJ6OODiSnpk/nCF76AZcuW4eKLL8bFF1+M119/Hdu3b8fy5cuxZMkS3HnnneKzu3btwqWXXooLLrgAN954I0yT8U719vbiiiuuwNKlS3Hdddchl2NJ3HQ6jauvvhoXXnghrrjiCvT39497nLVEvXjy+P5Nu4UAGTcw7k5wr6MiEaAtHoBm2CCE4IiuGI6cHsecaXEkW8JQZAmabmLziz14eVef+F6yJeSUmpZKR7l6YbpgVnTrLz1tDtZddwZWX35yww+9tw/F29uyozuF+x7ZUXYud1+EtyMfqFzsGvnMoWBmMopElFGd2JQZl0Q0iJnJUn8R73ui1IZl0xJ3WECuymRQ7bcC5V4ZZwRw91ctnNcJoHQPULCNxJ/N7xxT/9DS0+YwzRzHsHAanViEhUrr3aNenDA3iatXfBgdiSDa4kGEg4ooEKFg14IL78kSqxjk8G4GGpkjHz6AKTAylFLs2bMHGzduFP+bN28ebrjhBtxzzz3YtGkTdu7cieeeew4AcP311+Pmm2/G008/DUopHnroIQDArbfeissvvxybN2/GggULcM899wAA7rrrLixcuBBPPfUUPv3pT+O2224b91jrLbwbtnYjV9ArvBVKGW2J+3VCWBf5EdPiUBQZyZZQ2YJbKJoYTGswLQpVkSv0z5eeNgeKTBCPBJjssm0LhcxISKm50I3n966+/OSqBmrziz1QFFLzXI0sdmNZEMcDPk+tcWZYWuPM4LiPz/ueZnREGQULCGa0h7Fq2fFVw3q15rVWEytfiHf3DKMlymh2ZIkgGJDREg1gKKvXnONqOGFuEmFHoZMbzvZECLIEdO9L46db3mSUNwQNGS7vPR0NKVU9bkoZvQ5HvfLvibj3fBy+mPRw2dtvvw0AWLVqFYaHh/GZz3wGxx13HI488kgcccQRAIDly5dj8+bNOPbYY6FpGk488UQAwKWXXor169fj05/+NF566SXcfffd4vXPf/7zuP7667F161Y88MADAICLLroIa9euhWEYUFV1XOOtlYPoG8wDIJDl8ji5E91HsjWEom6xRcZp9vMuqjw8NZJlYTMQRiQZVGVkC+X6J6UwWCkG/tMtb9Zd6CYSnFrE/Vu95b5ApcpmrQqlZlSXNXr80Zo+GwnrjRamSo1oSEQDaIm5+b7ouK6Nt5rNK6XAw26fX9IYj5iXALYlFhDhOJ7Hsikr1XY3orqNdbNDnz4OH0y6kUmn01i0aBH+/u//HoZh4Morr8RVV12Fzs5O8Zmuri709fXh4MGDZa93dnair68PQ0NDiMViUBSl7HUAZd9RFAWxWAyDg4OYNm3aBP8S1vEuEQKCcqp9QggG0xqCqoJzR8mRbH6xBwcH81AVWXRg5zWD9TFQZqx4GMy7Q0229Iy7mmysSLaEkNWMMsXQak2rjezMmxm3n4jjN5LnGC2HNZZKv9HyP95zVZNSGGsBBT/nm+8OQ1VkRIMKiqYN07ShKjIIoZjeXlldNpY58uEDmAIjc9JJJ+Gkk04Sf69cuRLr16/HKaecIl6jDvOtbdtlPR/8df6vG96/3d+RpMajgh0dsYY+N7Mrir19WSd+TcpEuzhzbzgk43e/P4hrLj0BC4+vNHLndcZx3ulH44Z7t2EoXRDqgllHYCqgKgioMgKqDE038cxrvTjv9KPF9z+7ZD7ue2QHLNtmC41hAZS93tkZrzhfLby8qw+PbH0LfYN5TGuP4NKzj60YLz8XlEM7VzMw0edvZF7P64yjpSWCR7a+hYODeXR55q3Ra/Pyrj787Jm3oCisJDmrGfjZM2+hpSUijuU9FwXQ2RZBLFzyzhWZYCir150L/p77nAFVhmHZsIo2OlvDiIZVaLqJtkQY/3jdmYc0R41gqu+dangvjun9jEk3Mi+//DIMw8CiRYsAMCMwa9assgR9f38/urq6MH369LLXU6kUurq60N7ejkwmA8uyIMuy+DzAvKBUKoXp06fDNE3kcjm0trY2PL6Bgazok6mHSz52NO5/cheTDHZRjEiE5WS47G/RsPDzLbvrysyed9JM0XfAwmqsXDUeUV1NeAT7+7NlSoJHJiO47LxjK3bBRyYjDSsOuntXQirr5r5nw/9UeE1HJiO45tITKqrLxnKuZqAZ6oqNzuuRyQi+sfKEsu/292fQ2Rlv+Bg/37IbcBQyTYuyf0nlPeM+F5dEdjfsFg0LbbFAzblwz5P7nIloAINpJtU8mC4y7jvLxnknzaw7rxNx770XlTGnekyHo4GbdCOTyWSwfv16/OxnP4NhGHj00Udx66234utf/zreeecdzJ49G0888QQ+9alPYdasWQgGg3jllVdwyimnYOPGjTjrrLOgqioWLlyITZs2Yfny5Xjsscdw1llnAQAWL16Mxx57DNdeey02bdqEhQsXjjsfUw8nzE1i1bLjyx6y3lQOrfGgUF9kOvYWBoYL2NGdGpXaRXBOqTLCoVLlT6HISBspRQXtx6GGh8bSu7Lw+GkfGE32iQi7NXKM8eQ2DqUfynvOcFBBeyKEkWwRhmmNiRqo2aFPH4cHJt3InHPOOXj99dfxyU9+ErZt4/LLL8dJJ52E22+/HV/5yldQLBaxePFiLF26FABwxx134KabbkI2m8VHPvIRXHnllQCAW265BWvWrMG9996LGTNm4Lvf/S4A4Gtf+xrWrFmDZcuWIR6P44477mjab/E+ZHyHaduUiUGBlEnZ8u+Mdqwd3Sn87Jm3RKEAP1ZbvLIx7lDhJ3CnFuPJbRxqAYX3nOGgAkkiZUwWPnxMFAil46F4PHzRaLisGnjoaSTLRM64QmF7PAhZlsb0EL+TyuPnW3aje98ICGHxek7LXjSsCVsQuGEs4yyrcfypDiVUw/t9TO5wpdsrmWjFSfeYJuucYxnTewVTPabDMVzmi5ZNIHgPghCO8kjZjsU7WHj8NKy+/GS0xIKY3hERBgaYWE+j2b0rPupjtCbYw+WcPj648GllJhhc12SiyjubXSra7N4VH6NjKnIbfj7Fx2TBNzJNwKEmZpt1rFrwFxwfPnw0C76RaQIm0jvwPQ0fPny8n+EbmSZhIr0D39Pw4cPH+xV+4t+HDx8+fDQNvpHx4cOHDx9Ng29kfPjw4cNH0+AbGR8+fPjw0TT4RsaHDx8+fDQNvpHx4cOHDx9Ng29kfPjw4cNH0+AbGR8+fPjw0TT4zZgeSFJ1hc2pwHtpLBz+mBqDP6bG4I/p8IdP9e/Dhw8fPpoGP1zmw4cPHz6aBt/I+PDhw4ePpsE3Mj58+PDho2nwjYwPHz58+GgafCPjw4cPHz6aBt/I+PDhw4ePpsE3Mj58+PDho2nwjYwPHz58+GgafCPjw4cPHz6aBp9WZgrwgx/8AE899RQAYPHixVi9erV4b9euXVizZo34e3BwEC0tLXjiiSfw6KOP4l/+5V/Q0dEBADj77LPxjW98Y0LG9L3vfQ9PP/00CCFYuXIlvvzlL5e9v2vXLtx4443I5XJYuHAhbr31ViiKgt7eXlx//fUYGBjA0UcfjTvuuAPRaHRSxvTrX/8a3//+90EpxezZs/FP//RPaGlpmdJ5+sEPfoCHH34YiUQCAPCZz3wGV1xxxZTN01TdTxz//M//jKGhIdx+++1lr0/F/TTamKbifvpAgPqYVGzbto1+9rOfpcVikeq6Tq+88kq6ZcuWqp/N5/N02bJl9KWXXqKUUrp27Vr6y1/+csLH9OKLL9LLLruMGoZBC4UCPeecc2h3d3fZZ5YtW0Zfe+01Simlf/d3f0cfeOABSimlV199NX3iiScopZT+4Ac/oOvWrZuUMWUyGXrmmWfSAwcOUEopveuuu+i3v/1tSunUztM111xDX3311YrvTtU8uTFZ9xPH9u3b6WmnnUa/9a1vVbw32ffTaGOaivvpgwI/XDbJ6OzsxJo1axAIBKCqKubOnYve3t6qn73vvvtw6qmnYuHChQCAN954A48++iiWL1+Ov/3bv8XIyMiEjOnP/uzP8JOf/ASKomBgYACWZSESiYj39+3bB03TcOKJJwIALr30UmzevBmGYeCll17CBRdcUPb6ZIzJMAzccsstmDZtGgBg3rx52L9/P4CpmycA2LlzJ+677z4sX74ca9euRbFYnNJ5cmOy7icAGB4exp133olrr7224r2puJ9GG9NU3E8fFPhGZpLxoQ99SDxce/bswVNPPYXFixdXfC6TyeChhx7CX//1X4vXOjs78Zd/+Zd4/PHHMWPGDKxdu3bCxqWqKtavX49ly5Zh0aJF4mEDgIMHD6Kzs7NsHH19fRgaGkIsFoOiKGWvT8aY2tracP755wMANE3DD3/4Q3z84x8X45iKecrlcjj++ONx/fXX49FHH0U6ncY999wzpfPEMdn3080334xvfOMbImzoxlTdT/XGNFX30wcBvpGZIvzxj3/EqlWrsHr1ahx11FEV7z/++OP4+Mc/LuLAAHD33XfjlFNOASEEV111FX77299O6Ji++tWv4oUXXsD+/fvx0EMPiddt2wYhJfpzSikIIeJfN7x/N2tMHJlMBldffTXmz5+PSy65BMDUzVM0GsW//du/Ye7cuVAUBatWrcJzzz33npinybyffvGLX2DGjBlYtGhR1fen4n4abUwcU3E/He7wjcwU4JVXXsGXvvQl/M3f/I24kb349a9/jU984hPi70wmgx//+Mfib0opZFmekPF0d3dj165dAIBwOIwlS5bgD3/4g3h/+vTp6O/vF3+nUil0dXWhvb0dmUwGlmUBAPr7+9HV1TUpYwLYjvjyyy/HvHnzcNtttwGY2nnq7e3Fhg0bys6tKMqUzxMwuffTpk2bsG3bNlx88cVYv349nn32WfzjP/6jeH8q7qfRxgRM/v30QYFvZCYZ+/fvx1/91V/hjjvuwLJly6p+hlKK//3f/8VJJ50kXotEIvj3f/93vP766wCAn/70p8K9P1Ts3bsXN910E3Rdh67reOaZZ3DKKaeI92fNmoVgMIhXXnkFALBx40acddZZUFUVCxcuxKZNmwAAjz32GM4666xJGZNlWbj22mtx4YUX4sYbbxQ73qmcp1AohO985zt49913QSnFAw88gPPPP39K5wmY/PvpRz/6EZ544gls3LgRX/3qV3HuuefihhtuEO9Pxf002pim4n76wGBKyg0+wPj2t79NTzzxRLpixQrxvwcffJBeddVVdMeOHZRSSlOpFD3jjDMqvvvSSy/RT37yk3Tp0qX02muvpel0esLGtX79enrhhRfSiy66iK5fv55SSsvGtGvXLvqpT32KXnDBBfSb3/wmLRaLlFJK9+7dSz//+c/TCy+8kK5atYoODw9Pypi2bNlC582bVzaPN9xwA6V0audp8+bNdNmyZXTJkiV0zZo1Uz5PlE7N/cTx8MMPi0quqb6f6o1pqu6nDwJ8ZUwfPnz48NE0+OEyHz58+PDRNPhGxocPHz58NA2+kfHhw4cPH02Db2R8+PDhw0fT4BsZHz58+PDRNPhGxocPHz58NA0+1b+Pwxrz5s3DcccdB0kq7acWLFggOrrHiu9///sYGhrCzTffXPMze/fuxfnnn4/jjjtOvEYpxZVXXomVK1dWfP6ZZ57BCy+8gJtuumlcY/Lh470M38j4OOzxn//5n2hvb5/Uc4ZCIWzcuFH83dfXh4suuggLFizA/Pnzyz573nnn4bzzzpvU8fnwMVnwjYyPDyzmzZuHF154QRgg99/PPvss7r33XhiGgVAohG9961tltCxjxbRp03DkkUdiz549+P3vf48NGzagUCggFovhkksuwdNPP4377rsP/f39uOWWW/D2229DkiRcdtlluPLKK5HJZHDbbbfhzTffhGEYWLRoEVavXi0Yi334eK/Cv0N9HPb44he/WBYuu//++8vYiL3Ys2cP7rzzTvzkJz9BW1sb/vjHP+LLX/4ytmzZMu4xvPbaa+jp6cFHP/pRvPDCC3jrrbfw7LPPIhaL4ZFHHhGfu/XWW3HUUUfhnnvuQSaTwec+9zksXrwY//qv/4qPfOQjuP3222FZFtasWYMf/ehH+Iu/+Itxj8mHj8mAb2R8HPYYa7hs27ZtOHjwIL70pS+J1wgh6OnpafgYmqbh4osvBsDIF9va2vCd73wHM2bMAMC8plgsVvG97du34/rrrwcAxONxPPHEEwCArVu34o033hAsz5qmNTwWHz6mEr6R8eEDgK7r4r9t28aiRYtw1113idf279+Prq4u/OpXv2roeN6cjBe11CsVRSnTUHn33XfR1tYG27bxve99D3PnzgUApNPpCdek8eGjGfBLmH18YNHe3o433ngDAITHAACLFi3Ctm3b0N3dDQB47rnnsGLFiknxHhYtWoSHH34YANMy+eIXv4g9e/bgYx/7GH784x+DUgpd13Hdddfhpz/9adPH48PHocL3ZHx8YHHTTTdh7dq1SCQSOOOMM4Qk8LHHHou1a9fim9/8phAeu/feexGNRps+pptvvhn/8A//gOXLl4NSimuuuQYLFizAjTfeiNtuuw3Lly+HYRg444wzcNVVVzV9PD58HCp8qn8fPnz48NE0+J6MDx/jwNe//nX86U9/qvrenXfeiWOOOWaSR+TDx3sTvifjw4cPHz6aBj/x78OHDx8+mgbfyPjw4cOHj6bBNzI+fPjw4aNp8I2MDx8+fPhoGnwj48OHDx8+mob/D6cnYjCJt6kRAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 406.975x360 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.lmplot(x='Fuel_Price',y='Weekly_Sales',data=clean_data2,hue='Type')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 53,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<seaborn.axisgrid.FacetGrid at 0x2156a22ee50>"
-                        ]
-                    },
-                    "execution_count": 53,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAFqCAYAAADIoyd5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACi3UlEQVR4nOz9e5wcZZ3vgX+euvW955KemdxIgEEMwgbEYEDcBFBCIAQVwxEScFf0oJxd5eeucCBwQFRWjFlBXGDdVfydw+UnMWKSlSSCQEAIxASQbCQBMjAZkklmpufW09e6Pb8/nq7q6nvPTPdMz+R5v14wmZru6qrq7vo+39vnSyilFBwOh8Ph1ABhsg+Aw+FwONMXbmQ4HA6HUzO4keFwOBxOzeBGhsPhcDg1gxsZDofD4dQMbmQ4HA6HUzOkyT6AeqO/PwrTZFXdTU1eDA7GJ/mIasN0Pjdgep8fP7epS7nza2kJTODRTAzckymBJImTfQg1YzqfGzC9z4+f29Rlup9fIbiR4XA4HE7N4EaGw+FwODWjpkbmpz/9KS677DKsWLECv/rVrwAAO3fuxMqVK7Fs2TLcd9999mP379+PK6+8Epdccgluv/126LoOAOju7saaNWuwfPly3HjjjYjFYgCASCSCG264AZdeeinWrFmDvr4+AICqqrj55ptx6aWX4gtf+AI6OjpqeYocDofDKUHNjMyf//xnvPbaa9iyZQt++9vf4tFHH8WBAwewdu1aPPTQQ9i6dSv27duHF198EQBw8803484778Qf/vAHUEqxYcMGAMDdd9+N1atXY/v27TjjjDPw0EMPAQDuv/9+LFq0CNu2bcNVV12Fe+65BwDw6KOPwuPxYNu2bVi7di1uu+22Wp0ih8PhcMpQMyPzyU9+Ev/v//0/SJKE/v5+GIaBSCSC+fPn44QTToAkSVi5ciW2b9+OI0eOIJlM4qyzzgIAXHnlldi+fTs0TcPu3btxySWXZG0HgB07dmDlypUAgMsvvxwvvfQSNE3Djh07cMUVVwAAzjnnHAwMDKC7u7tWp8nhcDicEtS0hFmWZTzwwAN45JFHsHz5cvT29qKlpcX+e2trK3p6evK2t7S0oKenB4ODg/D7/ZAkKWs7gKznSJIEv9+PgYGBgvs6duwYZs+eXdExz5jhz/p9OpYUWkzncwOm9/nxc5u6TPfzy6XmfTLf+ta38D//5//EN77xDXR2doIQYv+NUgpCCEzTLLjd+ukk93fncwRByHuOtb1SnH0yLS0B9PWNVPzcqcR0Pjdgep8fP7epS7nzm44GqGbhso6ODuzfvx8A4PF4sGzZMuzatctO0ANAX18fWltbMXPmzKzt4XAYra2taG5uxsjICAzDyHo8wLygcDgMANB1HbFYDI2NjWhra0Nvb2/evjgcDocz8dTMyBw+fBh33HEHVFWFqqp47rnncPXVV+ODDz7AoUOHYBgGfv/732PJkiWYM2cOXC4XXn/9dQDA5s2bsWTJEsiyjEWLFmHr1q0AgE2bNmHJkiUAgKVLl2LTpk0AgK1bt2LRokWQZRlLly7F5s2bAQB79uyBy+WqOFTG4XA4nOpCajkZ82c/+xm2bdsGURSxbNkyfPOb38Srr76KH/7wh0ilUli6dCluu+02EEJw4MAB3HHHHYhGozj99NPxwx/+EIqi4MiRI7j11lvR39+PWbNm4Sc/+QkaGhowNDSEW2+9FR9++CECgQDWr1+PuXPnIpVK4c4778S+ffugKAp+8IMf4PTTT6/4mHm4bHowEee3tyOM7bu6EB5OItTgxvLF87CwPVTT1wSm93s3nc8NOD7DZTU1MlMRbmSmB7U+v70dYTz+7LsQRQGKJEDVTRiGiTUXn1pzQzOd37vpfG7A8WlkeMc/hzMGtu/qgigKcMkiCCFwySJEUcD2XV2TfWgcTl3BjQyHMwbCw0koUvbXR5EEhIeTk3REHE59wo0MhzMGQg1uqLqZtU3VTYQa3JN0RBxOfcKNDIczBpYvngfDMJHSDFBKkdIMGIaJ5YvnTfahcTh1BR9axuGMASu5PxnVZRzOVIIbGQ5njCxsD3GjwuGUgYfLOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs2QJvsAOBwnezvC2L6rC+HhJEINbixfPA8L20OTfVgcDmeMcCPDqRv2doTx+LPvQhQFeN0ShmIqHn/2XQDghobDmaLwcBmnbti+qwuiKMAliyCEwCWLEEUB23d1TfahcTicMcKNDKduCA8noUjZH0lFEhAeTk7SEXE4nPHCjQynbgg1uKHqZtY2VTcRanBP0hFxOJzxwo0Mp25YvngeDMNESjNAKUVKM2AYJpYvnjfZh8bhcMYIT/xz6gYruc+ryzic6QM3Mpy6YmF7iBsVDmcaUdNw2b/9279hxYoVWLFiBdatWwcAuO2227Bs2TJ87nOfw+c+9zk8++yzAID9+/fjyiuvxCWXXILbb78duq4DALq7u7FmzRosX74cN954I2KxGAAgEonghhtuwKWXXoo1a9agr68PAKCqKm6++WZceuml+MIXvoCOjo5aniKHw+FwSlAzI7Nz5068/PLL+N3vfodNmzbhr3/9K5599lns27cPjz32GDZv3ozNmzfj4osvBgDcfPPNuPPOO/GHP/wBlFJs2LABAHD33Xdj9erV2L59O8444ww89NBDAID7778fixYtwrZt23DVVVfhnnvuAQA8+uij8Hg82LZtG9auXYvbbrutVqfI4XA4nDLUzMi0tLTg1ltvhaIokGUZ7e3t6O7uRnd3N9auXYuVK1figQcegGmaOHLkCJLJJM466ywAwJVXXont27dD0zTs3r0bl1xySdZ2ANixYwdWrlwJALj88svx0ksvQdM07NixA1dccQUA4JxzzsHAwAC6u7trdZocDofDKUHNjMxHPvIR22h0dnZi27Zt+Nu//Vuce+65+Jd/+Rds2LABe/bswcaNG9Hb24uWlhb7uS0tLejp6cHg4CD8fj8kScraDiDrOZIkwe/3Y2BgoOC+jh07VqvT5HA4HE4Jap74f++99/D1r38dt9xyC04++WQ8+OCD9t+uu+46bNq0Ce3t7SCE2NsppSCE2D+d5P7ufI4gCHnPsbZXyowZ/qzfW1oCFT93qjGdzw2Y3ufHz23qMt3PL5eaGpnXX38d3/rWt7B27VqsWLEC77zzDjo7O+3wF6UUkiRh5syZduIeAMLhMFpbW9Hc3IyRkREYhgFRFNHX14fW1lYAQGtrK8LhMGbOnAld1xGLxdDY2Ii2tjb09vZi3rx5WfuqlP7+KEyTAmAfhr6+kWpdjrpiOp8bML3Pj5/b1KXc+U1HA1SzcNnRo0fxD//wD1i/fj1WrFgBgBmVf/mXf8Hw8DA0TcOTTz6Jiy++GHPmzIHL5cLrr78OANi8eTOWLFkCWZaxaNEibN26FQCwadMmLFmyBACwdOlSbNq0CQCwdetWLFq0CLIsY+nSpdi8eTMAYM+ePXC5XJg9e3atTpPD4XA4JSCUUlqLHf/gBz/Ab3/7W9ujAICrr74apmni8ccfh67rWLZsGb7zne8AAA4cOIA77rgD0WgUp59+On74wx9CURQcOXIEt956K/r7+zFr1iz85Cc/QUNDA4aGhnDrrbfiww8/RCAQwPr16zF37lykUinceeed2LdvHxRFwQ9+8AOcfvrpFR8392SmB9U6v3ocPTCd37vpfG7A8enJ1MzITFW4kZkeVOP8nKMHFEmAqpswDBNrLj51Ug3NdH7vpvO5AcenkeHaZRxOEfjoAQ5n/HAjw+EUgY8e4HDGD9cu43CQnXtxKyJAKYajKURiKhr8CrxuGQAfPcDhjBZuZOqMekw0T3ecuRdCgKP9MQAEPreEWFLDQCSVLrcX+egBDmeU8HBZHWHd7IZiataM+70d4ck+tGmNM/cyEtdACDM2Kd3EjAYPRIFgOKqh0adMetKfw5lqcE+mjnDe7ADAJYtIpbcfLze2yfDkwsNJeN3sq6AbJgRCQCmg6yY8LgluRUQ8qeOW1WfX9Dg4nOkI92TqiOM90TxZnpxz7LMkCjApQAFI6feC52E4nLHDPZk6ItTgxlBMtT0Z4Pi6wdXCk6vEM1q+eB4ef/ZdpAAEvDIGIkkABAGPxEdAczjjhHsydcTxPuO+2p5cpZ7RwvYQ1lx8Khp9CigFZs3wYVazBwDheRgOZ5xwT6aOqLcZ9xOdH6m2Jzcaz4iPfeZwagM3MnVGvdzsnGW9Ti8AQM2Ozxm2csq4jNWTcyb0LY6nHBeHUw/wcBmnIJMhqeIMW8WT+rhDVc6EvsXxlOPicOoB7slwCjJZXkA1Pblqe0YcDmf0cCNTZ9RLx/90qHSrtxwXh3M8wo1MHTEZeZBiTBcvoF5yXBzO8QrPydQR9SQtX+38CIfDOT7hnkwdUW/VUNwL4HA444V7MnUEr4bicDjTDe7J1BHTJQ8yFamXggsOZ7rBjUwdwauhJod6KrjgcKYb3MjUGTwPMvFYBReGYaJnJAVdNyEKBBtfOMjfCw5nnPCcDOe4JzychK4bGBhJwTBMCAQwKUV3f5wPjONwxgk3MpzjnlCDG5GYBgJAIASEEAAE0iSVj3M40wluZDjHPcsXz4NumKCU/W5SAKBo8CtcTJPDGSfcyHCOexa2h9AcdMM0KVTdhGma8HtkiKLAy8c5nHHCE/+c4569HWGomgFBICAEoBQYiaswKXBSmx//eN9LSKo63IqEZefMxRWfPnmyD5nDmTJwI8OZECarD6WS192+qwtejwyXIiIS19LVZQIopdh1oBcEBKJAkNIMbNnZCQDc0HA4FcLDZZyaU+kY5Ml6Xau6zDIwkiQg6JMRjWu2gSEk/RMEz+w+XNPj5nCmE9zIcGrOZAl/Vvq6blnA4Ihqly8bhonBERUUgECy9ykQIKnqNT1uDmc6wY0Mp+aEh5NQpOyP2kQIf1b8uoQAoAAy5csABSFWpVkGkwJuhUeZOZxK4UaGU3MmS/iz0tdNqgaag25IIoFJKSSRoDnohkcRQUFhmBSUpn+CYtk5c2t63BzOdIIbGU7NWb54HgzDREozQClFSjMmRPiz0tcNNbghigLamr2Y0+JHW7MXoihgXlsAV3zqRLhkEYZJ4ZJFXPGpE3nSn8MZBdzv5xSlWhVhkyX8Wenr5qpfj8Q1ROMaYgkNAHDDFR8reKxcuZnDKQ83MpyCVFuZeLKEP0u97paX38czuw8jqeqQJQF+t4R4giKhGvB5JAR9StHz5srNHE5l8HAZpyD1NAq6Fmx5+X1s2dmJlGZAFAh0g2IwpkIWCWY0uNHgd5U87+l+fTicasGNDKcgk1URNlE8s/twwR6YgRG1ovOe7teHw6kW3MhwCjLdR0EnVb1gDwwFKjrv6X59OJxqwY0MpyDVrgjb2xHGuifewC0P78S6J96Y9DktbkUq2APjkoWs847EVPQPJXEkHMs67smqmONwpho88c8pSDUrwpxJcoDi/e4IHti4F7NDPqy6oH1SEuXLzpmLLTs7YZjMgzFMCpMCssTyK6AUQyOpskUAvLqMwykNNzKcolSrIsw53ngwqoIAIISgdzAxaRVZVq/LM7sPI6HqoJT1+Wu6id7BBNwuCUGvzIQzZREA4JJFpNLnY10bblQ4nNLwcBmn5lhJ8kg8M31SFFh3/WRWZF3x6ZPxb99egjkhH0QBEAQCk7LcSiSmors/zpP7HM444Z4Mp+aEGtwYiqnQddNOtpsUkERhUm/aVjPl4b5Yekt2ksakQHgoAYPCVmf2KCJmNnsn/mA5nCkKNzKcmmN11FveC02PNw76XDWvyCrWlZ+dJypOPGXY/zZUAynVgEiAWx7eyfMwHE4FcCPDqRnOG7xbERHwSBiMqpBEgga/C4JA8iqynF34451EWaor39lMKRRQWy7FUEzFnBY/egYTePCpfXC7RMwJ+bjB4XAKwI0Mpyjj0ebKvcGruglBFHDF+SfiQNcQwsNJNPqUrH1aXfjVmkTpNCRAduI+PJyE180+/qOwLwAAw2TKzSNxFZQCqmZyWRkOpwjcyHAKMl5trmI3+ANdQ7hl9dkFn+PswgcAkbAb+jO7D4/JyDgNiYWVA7LyRC5ZTIfvRkffYAIAIAiAbph5lWccDofBq8s4BRmvNtdYZFeKdeGPdRJlqa58ZzMlKfL8UtD0f4bJqtIAXnnG4RSCezJ1Rr3Ix5fyAirB6SlYlEvyuxWJCVY67vrFJlFWcp2WL56HR57ej4HhJAyTQhQI3IqIqy86JauZMhJN2Ql+a0bmaKBpV4jLynA4+XBPpo6wQlRDMTUrRDUZEizj1eYai+zKsnPmVjSJclTXiVgWi+b8zsJ+t6w+G//27aX4/KdPhCIJ6SHM7PxnBBRYw5hzEQRi/41ScFkZDqcINTUy//Zv/4YVK1ZgxYoVWLduHQBg586dWLlyJZYtW4b77rvPfuz+/ftx5ZVX4pJLLsHtt98OXWchku7ubqxZswbLly/HjTfeiFiM9TREIhHccMMNuPTSS7FmzRr09fUBAFRVxc0334xLL70UX/jCF9DR0VHLU6wq9SQfP15troXtIay5+FQ0+hTEkzoafQrWXHxqSa/sik+fjCs+dSJEgUAzKEyTojngxomzglmPq/Q6bd/VBa9bwqyQD3NbA5gV8sHrlgpezxNnBeF2SVAkAYIARGIqEqoJSUSelWlpdOOEVj9amjyQJQECIRWdH4dzPFIzI7Nz5068/PLL+N3vfodNmzbhr3/9K37/+99j7dq1eOihh7B161bs27cPL774IgDg5ptvxp133ok//OEPoJRiw4YNAIC7774bq1evxvbt23HGGWfgoYceAgDcf//9WLRoEbZt24arrroK99xzDwDg0UcfhcfjwbZt27B27VrcdttttTrFqlNP8vFjMRKF9nHL6rOx7sZPYfniedi+q6usQOaJs4Jo8CuYOcOLE9r8kCQhz0up9DqN5npu3NGBkbgKTTdhmExeJpHSYZiALAoQBUAUCQhhf6OUQhAIGvwK/uHKM3DL6rO5geFwClCRkYlGowCAt99+G5s2bYKmaWWf09LSgltvvRWKokCWZbS3t6OzsxPz58/HCSecAEmSsHLlSmzfvh1HjhxBMpnEWWedBQC48sorsX37dmiaht27d+OSSy7J2g4AO3bswMqVKwEAl19+OV566SVomoYdO3bgiiuuAACcc845GBgYQHd39+iuyiQxXeXj93aE8cjT+/F+dwSDIym83x3BI0/vL2hoKvFSKr1O5R7nVIY+3BcDpbDDZVZi36SseswwAWpSuGQRqmaO2fByOMcbZRP/P/3pT9HV1YV//ud/xte+9jWccsop2L17t+05FOMjH/mI/e/Ozk5s27YN1157LVpaWuztra2t6OnpQW9vb9b2lpYW9PT0YHBwEH6/H5IkZW0HkPUcSZLg9/sxMDBQcF/Hjh3D7NmzK7kemDHDn/V7S0ugoudVgy8tW4CfP7UXhpkuidUMgLLttTiOUvvcs78Hv37uICSJrdajSQ2/fu4gGhq8WHRaW0X737O/B0/tOIi3P+iHYVAIhEnJUArEkjp+9/IH+My5J2U9ZyCqQiBA72ACmm5ClgQ0+BUMRlX7eCu9TqUedygczzo/p3eTm/i3GjVNyvpjfB4Zv7rzEvv8nnjuINqavbjyglMqvjbjZSI/lxPNdD43YPqfXy5ljcyLL76Ixx9/HE8++SRWrFiB22+/HV/84hcrfoH33nsPX//613HLLbdAFEV0dnbaf6OUghAC0zRBHAlZa7v100nu787nCIKQ9xxre6X090dhpu8qLS0B9PWNVPzc8TI/5MXVnzklr2pqfshb9eMod25PPnMAIIAoCNANyn4SA08+cwDzQ+W1u5x9NobBrqclPmnx4bGRvGNQRIKj/TEQIkBIh6b6BuOYNcNnP7aS69TSEij5uHVPvJF1fqMhltDw3Gsf2OfnlgX0Dcbx0Ma/TIhnM9Gfy4lkOp8bUP78pqMBqqiE2ePxYOfOnfjSl74EgCXXK+H111/Ht771LaxduxYrVqzAn//8ZztBDwB9fX1obW3FzJkzs7aHw2G0traiubkZIyMjMAwDoijajweYFxQOhzFz5kzouo5YLIbGxka0tbWht7cX8+bNy9oXZ3SEh5MgBOgZSUE3TEiigIBXrjg/lNuMWQiTsi5/Z6OllQcBmDFi0mIEuR2TxWT2rdLmgaiKZj9TFCjU/Oks0U6kRt+HU0pNgIfPOJwMZY1MU1MTvvvd72Lfvn346U9/ivXr11d00z569Cj+4R/+Affddx/OO+88AMCZZ56JDz74AIcOHcLcuXPx+9//Hl/84hcxZ84cuFwuvP766/jEJz6BzZs3Y8mSJZBlGYsWLcLWrVuxcuVKbNq0CUuWLAEALF26FJs2bcI3vvENbN26FYsWLYIsy1i6dCk2b96MRYsWYc+ePXC5XBWHyiab8XbZVxO3IjrUiQHdMJBUDcxt8VX0fGaMKAZHUiUf5+zm39sRxuBIihVzpe2KaQIBr4SkZhZ8fpY+miwgktDhdUsIeDLXr/NoxJaysbwZZx9PJKZCFAiMUQiYvfvhEGRJRNAnw+uWAfBmTA6nEGWNzI9+9CNs2LABP//5z+HxeEAIwY9+9KOyO/7lL3+JVCqFe++919529dVX495778U3v/lNpFIpLF26FMuXLwcArF+/HnfccQei0ShOP/10fPnLXwYA3HXXXbj11lvx8MMPY9asWfjJT34CALjppptw6623YsWKFQgEAli/fj0A4LrrrsOdd96JFStWQFEUu3R6KlBPq+OhaGHjUGx7Lm5ZwNGBBIpEN23iKR3rnngD4eEk4kkdhLAeFCH9RCsPMjuUb9xyjfKx/jgM04RbyRQNDKd0PP1qF2Y0urMM9/lnzMQr+44hBUDTjaJh2EIIBJAlAbphYiBtRL1ueVoUaXA41YZQWl656dixY3jnnXfw6U9/Gj09PVPGMxgLk5mTueXhnfC6pbycUjypY92Nn6rqaznPrVD3/E9/s7dg5zsB8MtbLyq7/zt/ucvOrRimWVQfjABom+GFIgk40he1K7zEdLMjBWCaFN9atTDP0K574o0sVYHDvawKUpYEzG31Q9NNHOuPQzcMzG3NxLpTmmGLc27f1YWOI8P2+OVyEAChRjcIIRiIJEHTc3Gagi4YhslzMuNkOp8bcHzmZMpmxHfs2IGrr74ad999N/r7+7FixQr88Y9/nIhjO+6YjBLmYuXF1v2WOP4DKpdcSaoGmoNuSCIp6SW4FBFDIyl0h2O2IZJEAaIowKRsiubsGd6CN+7cPhhJEkAIKzm20NL5JCdWWMvq41lx3vyiBkZOD1YTCLsGfq8Er1uGxyXB75FhmqxRNRJVcf4ZM3k+hsPJoayRefDBB7FhwwYEg0G0trbiiSeewAMPPDARx3bcMd4u+7Gw8YWDiCV1mJSm56pQxJJ6nlGxfrrkyir1Qg1uiKKAtmYvTmj1o7XJA+e9XpEEuGQBqfQgMN1gnoRJWUWZrhtMa8wlYdWFpxR9DadRDnpl0LRhsq6fKBA7Z2KRa7j3vNOHQhACGKaJ5gY35rb6IUsC4kkD8aSGREpHNKFBEFhYLuhX8Mq+Y5MiAcTh1DNlczKGYWQl+k877bRRxa85leMUbZwogcyeQVZFZuVACAATlDUlppPvtldDgEsrNHjWNMwUkJZqIWgOurPCSd9Yv6OoZ2SY7AZvmBo6j0byrsHejjCiCQ29A3FIooCgT4YkifC5JQR9CqIJHU1+Beee1spyL5oBRRKg6qZtuPPHL2djeVZ9gwk2etklIhLXEB5O2n8TBCDok3l1GYdThLJGxuPxoLu72zYsVsUWpzYUK82tHelxyI51A6WALBKsOG/+mKdUVmIwS1VzCQTpcc3A06924cRZQfu5zoT/jAY3hqMqBiIpzJ7hxfUrTsPC9lBW7PvEWcG84wBQ0fhlmj4WwzAxohtZuSVLHNOCV5dxOPmUNTL//M//jOuvvx59fX340pe+hM7OTvzsZz+biGPjTABtzV4c7Y/BpMQxhpiirdnHBCvHOPoYyDaYltfwy6f3wzAoJJHYBRaFMCkgEZIeXGZmeQhZVXiyCK9bRkoz4PcqBT2eQoZu3RNvZORrUDrXxAwNsZs2XQp7DvudIhLXeHUZh1OEskbm7LPPxoYNG/Dmm2/CNE2ceeaZaG5unohj40wAqy5oxyNbDyCZ0mGYJkRBgNutYNUF7VV7Dcvz0HQT8ZQOUCClURCBgJYp6TLT1VtODyF31k08qSESY6GzO3+5C6AUqsnUAyIxFV6PnNd35NxHuePQDcrUmNOkVCPr75SaXOqfwylCUSPzzDPPFNy+Z88eAMCyZctqc0TThC0vvz/mUNNEsrA9hOsvW1DTPNDGHR0YGEnZ8jIErBdGJFZff2Esr8rrVrI8BGcjZTypsV4VyvZ5tD8GgKCl0Y3eQTaszKWIILKYlTdx7kMUSntVBLCPveBxmtQuieb5GA4nm6JG5tFHHy36JELItDUyP9+8D4s/1jaum8WWl9/Hlp2d9rz6lGZgy85OAChraCZjMmYt80B7O8I44ihPBqyxxRRG0WcxRAHwuhVIIsnyEJxFBUNRNWO80gUMhADDMRUmpSAEdjgLyORNrl12Kv5jy9tIpPSyZdmSSGBSCkdldFaITZGFgtI1HA5njEZmOhNJaHZI5TNFGqPKGYJndh+2DQyAdF4hW0Kl2H4nUlamVgbN2u+RcAyxhF60EbMUc0NeJDWz4HFZ/964owNauoRZElnOxKAUosDKoCVRSJdDZ6yDlTfpPBphobsyCAQwKOCWJcRTOkSBeViUWkYN9jFwOJx8yuZkOjs78dhjjyEej4NSCtM0cejQIfz617+eiOObcBQpM78kV4YeqMwQJFXdNjAWAmHbSzEeWZnRhuf27O/JysVEYioe2XoA11+2YFyGJjf/YlZgYVgVGbWNESHA9752bsnnLGwPYfuuLiiSkO7xISCE7cMwAY9LQMCroH84ATGtzu0sX/6PLW9naaQVo8HvgiQSrLmYeT4pzYAsZt5bw6RwK8VFQDmc452KqsvOOOMMvPnmm1ixYgVeeOEFnH766RNxbJNGqVLUSgyBW5GQVHXQdHkwSXeLu5XSlzs3oV3uWCy2vPw+Nr3caf8eT+n2705D4/RcogkNSUcC2zBNqLqKjTs6xmVkrOsTiWsl8xxOCAHk9DgGIz0YrBLCw0kEfTIGo6rdTGqlTpIpA4aRgkuW0Bxg0z2dXpHtxZQ4RI8ioK3JYz9n2TlzsfnlzqzSawJg2TlzKzpeDud4pKyRicViuPvuu3HPPfdgyZIl+PKXv4xrr712Io5t0ihVilqJITizvRmvvt1r/241NJ7ZXroqL9TgRs9gAomUbsvre1wS2po8JZ+39bX8mfUAsOnlTrz838cQanBjwbxGvLLvmO2BFTNc3eHCjYmVYl0fVTMqDpPpBoUspsNQoBXftN2ygN6hJEyDZvX5AGxUMsDCaKsuPCXPcAqEeU+FypcVSYDbJRX06nIfO4ZIIIdzXFHWyDQ2NgIA5s+fj/feew8LFy6c1h3/ql66FNVZlZR5TrZRGoyqUCQCVc/cghSJYDBaeg7PgnmNePfwEAiIHetX9RSWnjmrzDEXzwkMjiQRial47/Aw3IoIw6RZ2l65OJ2PQjkboHSDZajBjWMD8VHnYTSDhbwWn9ZaURXe3o4wBkbUzLk7Xk+W2PRNQSB26NN5jEz6heY+DQDzqmaFfEhpBrbv6kLn0YgdhrSujVMvzTBp2Vwbh3M8U9bIzJ8/H/fccw++8IUv4Pbbb0c8Hoeuj37I01Qh6JFxcVr6ZM/+Hjz5zIGsG2quXIozzm9xJByDQdkq2lopG5RtL8WBriEEvQoSqgFdN5mUiSLiQNcQrhjj+YgCE5o0zIwmWSX3/0K5p0e2HgAoLdh3Yt3ELUM5GgiAE9r8UHUTf+0cxC0P78RwNAWAoK3JXdAT2bijAylNz8vnAMxzFAXmIQ1FU4jEVNzy8M4sj04SBWhGvjo0pcCHPSMIeGVEoikc6Mo/F8uwWYn/crk2Dud4pqza4Xe/+10sWrQIH/vYx3DVVVfhtddew/e+972JOLZJ4eufOwML20PY2xHGz5/ai6GYmndDXXPxqWj0sTh/o0/Jk3c3DApqUhgmhWawn9SkJXstACvHoGBmsxdzW/2Y2exF0KeUzclIYnHPUtVNGGbGc6nUwXDmnqzZLMmUjqRqZG2zPAWLA11DaPCNTnaICEyp2TBMRBNMG8wKnR0dSOCRp/fnCU/2DMSBdAWfpZRsIVgZ/XROzKTUfg+ffrULmm6iwa9AEEjBa2dSYDimIZ4qXmRtScoYJvOcOBxOYSrSLrvkkktAKcWZZ56JlStXIhCYfjMPLKw+me27uiBJBGI6Ie1M8N+y+uwyyfHMbBLrZlQ4OJPNWHMyHpeEaEIrGqIaTejKCvsVyj0ZpgkzvdJnMvyA3yNnlQiHh5MIeGUkUxoSamWlvZaBiMQ1+7pZ1XkmKJKqkRfysrwzw2S9MM5qPpNSCIAtAwMK2yia1EQsyTygcka/FM5n+t1lv0YcznFL0SVYT08PrrnmGrz44oswDANr1qzB3//932PZsmXYt2/fRB7jhGL1yRwJx6AbFD0DcRzpi6JnIA7DMCsUQCR5UvnE8f9iLJjXiKFoCsm09H1SNTAUTWHBvMaSz5sT8qHBp8CliHml06Pl038zE0Dh2TY03R9iGQKTMsPgnHtnPc8sc65OUpqBQ8dGbLkWAjYHRtVN6AbLIVnXfW9HGHf+cldWhRelGYNCgPQsGpbUFwigOEqMCSEs16WVawUtDyHsCzQYVbHuiTe4zD+HU4CiRubee+/F0qVL8clPfhJ/+MMfcPToUbz44ov41a9+ZY86no4MR1X7JtQ3mICeTkjrBsVAJFlRT4RJzYJVSCYtvbLf804fW3WnfyfpJxabd2KxfPE8yJKApoALc1ryxxTnUur2//J/H7P3mTvbxlkU4NzHcDSFdU+8gVse3oloQkM8oUHTTcgiKWr0BAJYtRN5eZH0NuuZJgXcimjniXoHEyi0WwIg4FPQFHBh/swAZEkAIQRBr4x4UsOxgbhtjCqsri4JpUwWR5ZEO5zKDQ2Hk01RI3Pw4EF84xvfgMfjwauvvorPfvaz8Hq9WLBgAfr6St/0pjKGaWIkoUHVLINA0yv1tB5+BbEngRS+rMW2W/QMxCEIBLLEcgxyeg4Lyz8UZ2F7KCtPVM6HKHUG/WmPYWF7COefMRORqIrDvVFE0pVxopCeM4NM/49uws5d6SZrDJIEZpiL9cosPq0V5Rrls55JqZ0nMimFJAp2PoWADVMLeGVcf9kCNKbnybQ2eaDIAgYiSfQNJTOeUpWLIwVCC+anOBxOiZyMKGZW7G+++SZuuukm+/fpXF0mWHdQAAGvhOGYZjdU+j0SkppZVo6FFvFYim3PwLrWs7bYSezSOPXHbnl455jnmlDAXo2/su8Ygn4FIYmFwBIpHWZOolvVzfRNPtOcCrA8y8BIEmaRU35tf2/FuSJCgOG4hqRmwuuWIImC7WHKIsvNUAokUjq27+rC8sXz8JlzT8Jzr32AR57ebzedWpV1AiEwKM3aNh6S6QUJnyfD4eRT1Mi43W4cO3YM0WgUnZ2d+OQnPwkA6OjomNaJf0v5lxAgEssk0ykFYgkdiiSWlWMhREAhfWFSxpNpa3Lj6EACJjJNgpQCM5tHN6OElrh7uxQRum6WHBj2+LPvwiWL0A2KkXjKLkJwKSKSqgHDpI7ZM2wypBNFEtA/lECDz4XBkVSRYyx/g3deA8OgCIVYj1LQp2AgkoRJ2ZhlVgRgojnotsNWDQ1ebN/VBa9HRiyZVl8A22FWPqfE61eKdbn5PBkOJ5+id71vfOMb+PznP4+rr74a1113HRoaGvDUU0/h7/7u73DDDTdM5DFOKJJAEPS57P4SJyZlqr+xhAqTZnpQYgkmx2IxVk9m1YWnwOeW0t3obMXtcxefcV+MSEwFQSYs5AwPWeXRxeoDCGGJ86P9cURiqayclKYbcMmsrNmSfwk1uOFxZxsZVjBAEPDKhV8kTbkbvPPvlhKzYZgQBIKmgIvJyNi9mAQjaSkbURTw1I6DCA8noUgCCMmIWhY632rA58lwOIUp6slccMEF2LJlCwYHB/HRj34UAOv+/9d//VcsXrwYABCPx+H1eifmSCeIoF9BUtWLdsVnVvEmdIcumTNvQogAgZiZBHb6MeU8mYXtIVy/4rQqKCMTiGI69Jcmt1LMpUhI5sjcEwIosshEJ00KQSC2MWK6YOyXeW1++/is5sbc5tS2JjdG4tooj7s4QV9m6qV1fVqbPDjcF4MosAIDqzijKeBC70DcVmco5tgFvTJmh3wFGy5HC58nw+EUpmSBf2trK1pbW+3fL7rooqy/r1mzBr/73e9qc2SThNXx/9Pf7C36mEI9MM5UiiQSOzSD9E9KSjdNWlRjtktbkxvd/XHojrsrAUAEtuJWJNbFn9L0tCtL7GR+0MvGCBPCnuTU96KgSGk0q0H1lX3HcP4ZM3Gga8jOR0Riakmpm7HQP5zA3o5w1vVZ98QbtgozANuzCQ8lIUkCZJEgntDyQoOWl5dI6bhl9dn42o9eqEgtuhAErE+Jz5PhcAozri6yUrH/qcrXP3cGTJNWFKt3PsZZqhv0KRhJ5K/igz6l7D7HOuPF+TyabprMPdZzF7RiMKoiPJzE7BY/Tp0TxBvvhZHSTLuwQRQFGIaJ2SEfognNlrgRBMKEKAEMjqQQ9MrwumWkwLr8b1l9tj2srdzFc+ZzKsUw80cedIdjME0zXaWWnSeaEXTZlW4WVtOmJY5pUmaoxmJgZJGMWtCTwzkeGZeRmc5CmaREtTJJL+3TRc0AYQl1m/TqP1MEnU5+lbmZjXVoWe7zcpWUrWP8sC+G732VhToPheN4aONf0BR0wzBMDEdVxBI6GrwKrr74VACsAMDtkmAYJgYimaqplGqgTzUAJNHgy3T8P7P7MEDLG5CKq8qQsVeGSbMqt/5zyz5EcsJx1uvKIoHfq9jDxOJJDbpB7aZNgWQUGd7vjlR2MGDGURIE6GmlgXoeq83h1AtcD6MIpW6EXpfExvamF8oel4Q5oUwT5HBcsw2Q8+dwmRzFWIeW5T5Pz5VLSeeEjvbHse6JNxAeTiKhGgBlN0tVNwHKvLeBEdYP48x/dBwZTg/+yveQhmMaQg3sdZ1KxaWo1G+wHicKzAOxKre2vPx+1iiFQs/rPBph10QS8uRjrGMcrUdFCIFOTVxx/oncsHA4FcKNTBGskEouBEBC1UEIgZwexZtQ9SzpFyNdkSXmTFCsRCBzLEPL2N8pBkdSWTpiFrZ2GqV4p2soO9mP7Jt+QtWzvKeF7SHc8vBOeN0SunqiBV/fauB0K1JFI41Hi2kCPreI5YvnYW9HGFteOVTy8ZaR1Q3DbsAUiFNDjiEKZFTVZYZJ4XNL41LF5nCON7h8bBFEobBBYMlxBZLEypclSUDQq2RVKLEEfyYkY/XelEv8F9ILq6T3wi0LGIikkEr3sJTCDvE5fkfOttzO9ULHlbtPoLoTIp0GWhAILjp7DgAWwhtLDkUShTy15LFkFOMp3Q5H7u0I23I6XLuMwylMWSNTqrt/upUvO5ElKW+Vmy64KivHPzvkQ9DHZsMzCRTWezM7VFpXrJBeWCW9F0nNzKp4K0Wxv1PHP3K9J+u4ylHNENLcFj/mzwxg/swAWpo8ONA1ZIcFx6MB6nyqblAYpjmq/VHKKvSsPFjuKAhuaDicbMoamQsvvBD33Xcfjhw5kve3xx9/vCYHVQ9YA8eyxCoJW1WX8zaWL54Hw2S6XZSyn4ZJyxqLQnph558xs2x12XA0BYFkNMXGgjWAS1HEvPOxtNEqwSVX3zm2jJ7VXFlJlV4ubMpotnCpVfI86imeullw3g7XLuNw8imbk9mwYQN+85vf4Nprr8Wpp56Ka665BkuXLp22lWXWPJmgT0G0QBlyU8CFeELDwHAShkkhCgRuRcTVF+V05dOcQFQFd7K9HeE8vbBX9h3DibOCZQwNgSBkmi8rCW3lbU/H0TyKaHtPzrJotyIWTZTPCGRu+rIkIKWNv0fm0LGR7NcIutDS6MFQTEWDnw1FGy7RaJlL7sOs6yURlpcZzTGLAhlz/ozDOd4ou+ycNWsWvvWtb+G5557DVVddhe9///v4zGc+g1/84hdQ1dIz66ci1jyZRFIDSSfvZZH9FAixw1hqWv9L1Vl4y4mlmTUr5MPcVj9mhXzweuSyq9yxro7bmtz2BMjR9i5ZjYnWksHvlmyvxQoHEQIc7S88OloWgeuWLwDAjGQ8WRvx1P5ICk1+xQ4nBn3KqNy2vDURBUyTQjPMURvFtmbvmPNnHM7xRkWxjY6ODqxbtw7f/e53cdppp+GOO+7AkSNHspSZpwuKxG7skbiOgFfKGqHsdYsYHEnl3ZRSmonHnnnX/t0K62Tvt7IqsbE8b9WFp0CRiH2sFtaNlc1uKex5Brwy5rUFMG9mAG3NXvi9TL7FafBG4hoIETJaaI79e9wKOo9GsO6JN/DgU/9dlTktxXirY8AeaTA0khpVaDD37E1aXM+sFKJAsOqC9jHnzzic442y4bJrrrkGH374Ib74xS9i48aNmDmTTU684IILcO6559b8ACcDS6pkJM7G9FplvvGkUfQm6jQEoQY3jg3E7W55SRLgUUTMbC5dKGFpbVn9LkDlq2NZlmCYTBkaYDfQRr8LgbRMTE9/4Zk0IwkNTUG3fd7WeTjDQZaOm537J2x1QgjTNnv61S7MaHSzDvsaklR1u6z65gdfHtVzq3Von1zQkhW6HL/OHIczNn7wgx9g9+7dAJgjMGfOHLjd7Lv85JNP2v+ebMoamdWrV2P58uWQ5WxFXUEQ8MILL9TswCYTVTchiSTdb0Ec3f+VhVUWzGvEu4eHQMBuwrpuIqIbuOCs2SWft3zxPDz+7Lt5YpPlVsfbd3UxuRSBwKQEkihAFAhSqmE3MR4rYmScK3mnQXMaPGtksfM5FIAkAImUAZOa7HGojnR+MZwlyP0jEx+qFQgbtWxRDZ05Dmes3HHHHfa/L7roIqxfvx5/8zd/M4lHVJiiRuZXv/qV/e/HHnss7+9f+cpX4POVH/U71VB1FvZQZBFNQRlDI5l5KgGvG31D5RO7B7qG0OBzIZFias6yJMDjKt/El6syXOnquDscY1pp6Zu/YRigYKGd3OR0IQ73RvMKGJYvnodHnt6PgeFkloFxQimgGSZkkd38a61k50+fy2SVCcuSyBP7nLomHo9j6dKl2LBhA0466SQAwN///d/j2muvxR//+Ee4XC4cOHAA/f39OP/883HHHXdAlmV0dHTgnnvuwdDQEAzDwHXXXYdVq1ZV5ZiK3oHefffdYn+a1lgqzNt3dSGa1NDmCHGlNMPh4WTjrLAKDycR8MpZpbaU0opuUJ1HI+jqiSKp6ogndXQejZQ1MiwvkPndqfdl9XCUJl1altcYVLqC0DApZEmA15onU0Mr41YEEIEZs8kqE/a4RJ7Y59Q1Xq8Xn//85/Gb3/wGt9xyC7q6utDZ2YkLL7wQf/zjH7F371489thjkGUZ119/PZ588klcffXV+Na3voV169bh9NNPx8jICL70pS/hlFNOwVlnnTXuYypqZH74wx8CABKJBDweT9bf/vKXv4z7hesVS4UZAH793EHoxMgKXV1+3nw8/WonnAVlzgorYOy5FUvFmIDNR0lpBlM1RulGx1LVUVaVWinmtgbS+zFsnbTtu7rgdUtoCrjyyomdtM8KoH8kxQxdyVcZOwIBNJ3Cne7BCQ8nx6TkPB58bgmyJPDEPqfuWb16Na699lp8+9vfxpNPPolVq1ZBFNk94Atf+IIdgfrc5z6H5557Dueeey66urqwdu1aex/JZBJvv/12bY2Mxf/6X/8L//mf/wlJkmAYBh544AH8+te/xq5du8b94vXMwvYQeiMpbNrRgaSq24q7J84KQpJE6KZhC2RKUvZNfKy5lWd2H7YNDACI6WbBZ3YfLmlkqpULKZb4L8U7h4dx7mlshECxvM94MSlAkJHtDzW4MTiSrH18Lg0hrD9q1QXtPAczhRnrGI2pxkknnYSPfvSjeO655/D73/8eGzZssP9mGRuARVcEQYBhGAgEAti8ebP9t3A4jEAgUJXjKVvC/JGPfAT/9E//hPfeew9XXXUV9u7dO+0GlRVib0cYz+/+EEG/grmtfgT9Cl7ZdwyPbj8AVTMhCun+GYFA1UxsfOGg/VyrQ77RpyCe1NHoU7Dm4lPLfqCTqp4ncSIQtr0Uwnh0VhzkJv4rGTxGKfDGe+GaD+0SBYJkWuySGeuJaQaWJYGVdnvkaXlDqneqpQ93vMkArV69GuvWrcPChQvR1tZmb9+2bRtUVUUqlcLvfvc7XHjhhTjppJPgdrttI3P06FFcfvnl2LdvX1WOpexSde3atfj+97+Pz3/+81i7di3WrFlTlReud7bv6oJmmIglNDvx73FJGBpR7cZMAOm5MRQ9g9n5lrFUHrkVCSnNgLOlxaRseymaAq6C+R5RYKuVcsbCeozT23J6Y+WoRod/OXSD2gZwYXsIskRgqNV1ZYI+BZGc/JWmmzjWH0fvQNyezMmZGMY6X6kQYx2jMVW58MILcccdd+Dqq6/O2u52u7F69WpEIhFccskl+OIXvwhBEPDQQw/hnnvuwS9+8Qvouo6bbroJn/jEJ6pyLBVVl82ePRtNTU1444037C7/r3zlK1U5gHqlOxxDLKmne0FYsj8SYw2AlgSLBQubjf+Gt+ycudiysxOGmZl1UsnkRbcsFMxRSKKAeFJHqMENTTPQH8k3GS458xhn+MBZ6dY3mCir7jwRNPlZIcXejjCSanUNm9cl4frLFuA/trxdcFyBSYFHnt6P61ecNi1vSvVINQ3DdJcBev7557N+37t3L2bMmIFPfepTWdvPO+88fPWrX817/oIFC/Doo4/W5Ngqri7727/924Lbpyu6QVnToaNr3qAEhFA2ulenWZMxZ80Yfzm3lXd5ZvfhrDxQOXXjpGbC55EQTWQGqfk9ElyyhHU3sg/Znb94zZ6fYvlgJqVoaXDje18r3FRreWP/uWVfySFhFud9rLWix42VtzoGANSmumzZOXOxsD2EZefMxaaXO/P+zsKWxrRd+dYj1TQM42l0nmr87//9v/HnP/8Z9913X11oTJatLrOIRCIIBoM1P6B6QRQJiM70wOzEOgFkgUAzqJ1ztgzNoo+2VOV1r/j0yaOWzHfLAgZHjDx1ggZvpoQ6qZloCigYSejQdROKTOBzy0hWEOp6/d3K4tb/84oz8Orbz5d/4BixclPVXn2GGtz2NT/QNVSwkMKk+SOgObWlmoZhrMU4U5Ef/ehHBbffe++9E3wkjLKJ/w8++ACXXXYZVqxYgZ6eHlx66aXo6OiYiGObVOaEfGjwKxBFNpxMFAUEPDIkUUSDT4FLESEKBC6F/e4cWjbhkMygZ7ZySf/uWMWEGtyIJ3WoGhtsllINO0xWjnI5Ha+LrVW2vPz+2M+hAqzclLsG4wSsxHLnsUjRojXnCOjpTL0MY6umPtxYi3E446ds4v/73/8+br/9dvz4xz9GW1sbrr32Wtx5553TepYMwD7gv37uIJoCYtbKxzApgj4FDf7MDbzSRstakVRZL0/CkafwKIJdjQWwfMaBrszvJgXiKcPOc5SiXIm0lTN6ZvfhUR/7aLBzU1UOAQxGU5gT8mEopiJVItfjVsSsG9x0LImtZrJ9vIxVAaPU/qb6+zMVKWtkhoaGcP755+PHP/4xAGDNmjVZddfTlYXtITQ0ePHkMweyPuDbd3VV5MJP5A2ImmaWgQGAhGrC68pse6tjIM9YEGTyHKWY0eAuakTP+1irHWoqV2o9XjKvY5R55OgwDFpR0+pFZ8+x38N6uhlXk3qrwuKGYepTvtsOQCqVshNIfX19MM3KKnui0Siuvvpq/Pu//zvmzp2L2267Da+//rqtIPCP//iPuPjii7F//37cfvvtiMViWLRoEe6++25IkoTu7m7cfPPN6O/vx0knnYT169fD5/MhEongO9/5Dj788EM0Nzfj/vvvR0tLC1RVxe233459+/bB7XZj/fr1aG9vH+OlARad1ob5oXzl5HKx3Ym+AUUdM1ychsS5PaHq9nbLD6Dp7eW4dtmpeHjTvqxSZUKAz51/Iq749Mm2Qa11AZoVtqnVzBqgtMe250Cvbejq7WZcLaZzFdZ09DynAmWD26tXr8ZXv/pV9Pf341//9V/xpS99Cddcc03ZHb/11lu45ppr0NnZaW/bt28fHnvsMWzevBmbN2/GxRdfDAC4+eabceedd+IPf/gDKKW2p3T33Xdj9erV2L59O8444ww89NBDAID7778fixYtwrZt23DVVVfhnnvuAQA8+uij8Hg82LZtG9auXYvbbrtt1BekHJXEdid6NK+mmxCFzPhlQliPjFPYktg1ZfYGe3slMXiXzMKGokCgSCw/deKsYFaTW5V6Qouy8YWDeGTrAaT06noylXKkP25fm7HO/ql3puswtuOtGbMWvPvuu/joRz+KP/zhD6N6Xlkjs2rVKtx0001YuXIldF3H97//faxevbrsjjds2IC77roLra2tAJgGWnd3N9auXYuVK1figQcegGmaOHLkCJLJpK2Rc+WVV2L79u3QNA27d+/GJZdckrUdAHbs2IGVK1cCAC6//HK89NJL0DQNO3bswBVXMJ3jc845BwMDA+ju7h7VBakGE30DYglxAlkUoEhCWhWZZDVxKjKzANT6L71kFwVa9stnTfps8CuQJAGGSZFUDWx84WCWQa2W8kAxjg4kMBJXYRQQKB0PhLC+qFIabQC7Zht3sKKXUIMbkZiKYwNxHO6N4thAHJGYOuVvxtN1GNtEL/ymI7/97W+xfPlyPPnkk6N6XkXhshNOOAGf/OQncf7556O3t7I+CMu7sAiHwzj33HNx1113IRAI4Otf/zo2btyIj3zkI2hpyZT/trS0oKenB4ODg/D7/ZAkKWs7APT29trPkSQJfr8fAwMDWdut5xw7dgyzZ5ee4zIaKgmFTXRNfiVNnCfODKKrZwQJlWmuCYQlsgFSNuzDjCPFYFQFgfUaFN39cfjjGhoDLgCs+VM3audl1KohlFIUHWeQS3c4Zj9pyDFbxlANaBXMDKp3qp1srxemcxgQAPbs78FTOw6iZyCOtmYvrrzgFCw6ra38EytE0zT813/9Fx5//HFcffXV6Orqwrx5lS08yhqZHTt24Lvf/S4EQcCvf/1rrFixAj/+8Y/x2c9+dlQHecIJJ+DBBx+0f7/uuuuwadMmtLe3ZzUMUcqSsNZPJ8Uaiyyht9znWNtHw4wZ/qzfW1qyReKe27gXLkW0vQRFFpFUdTz3Zjc+cy6b3/ClZQvw86f2wjDZMK+UZgCUbc/dXzX46hfOhNfnwuaX3kcipcPjkvC5JSfjmmUZZWjrmJobiH1Mus48Ep9byrpukkgwGFXtY53V4se7hwYggNjeikmZzL9B2b/dsoimoBtHrZvwNMWkwP975h0c+HA472+yJKDjWLQm73EutXyNhnAcsiJBEAXIioSGBu+EnJNFLV5rVosfg5EE3I6FX1LVMavFP6HnBlT//Pbs78HPn9oLSSIIeCQMRhL4+VN7gSsXVs3QvPjii5g9ezZOOukkfPazn8WTTz6Jm2++uaLnljUyDz74IDZs2IAbbrgBra2teOKJJ/C///f/HrWReeedd9DZ2WmHvyilkCQJM2fORF9fn/24cDiM1tZWNDc3Y2RkBIZhQBRF9PX12aG31tZWhMNhzJw5E7quIxaLobGxEW1tbejt7bUtrLWv0dDfH7Wl/ltaAujryw6hHO2LwuuWsla+AiE42he1Hzs/5MXVnzklbzU4P+TN21+1aA26cEKLz3691qAr67Vyj2lWix+f+fhsu1rOMExE4hp0nYl/tja67ed/5uOz8deOMDP+JoWRbkaVRALBYD03ukFhGLXXMKsHXnqThWCdSx4KQNXMrM9BrSj0uawWTk/dLQvoG4zjoY1/mbCeklqd22c+PhuPP/sudINmFex85uOza/5+OSl3fmMxQE/tOAhJyoTH3YqEJHQ8teNg1YzMb3/7W1x++eUAgMsuuwzf+c53cNNNN0FRyrdAlF3mG4aRdaM+7bTTxiRVQCnFv/zLv2B4eBiapuHJJ5/ExRdfjDlz5sDlcuH1118HAGzevBlLliyBLMtYtGgRtm7dCgDYtGkTlixZAgBYunQpNm3aBADYunUrFi1aBFmWsXTpUltJdM+ePXC5XFUNlQGVJ0YXtodwy+qzse7GT+GW1WfX9As6nqTm8sXzEE9oGIikbCNhmCYiCd1+/sL2EGaHfACBPbBNEgkoBXQTOGV2EJGoWtHU0LEy+eIYGcx0Qis3eEcppnxOZrrmLqZzM2bPQDyv/N4li+gdqM7ojf7+fvzpT3/CI488gosuugh33HEHIpEInn322YqeX9aT8Xg86O7utg2LdfMeLQsWLMANN9yAa665BrquY9myZbZlXL9+Pe644w5Eo1Gcfvrp+PKXvwwAuOuuu3Drrbfi4YcfxqxZs/CTn/wEAHDTTTfh1ltvxYoVKxAIBLB+/XoALAR35513YsWKFVAUBevWrRv1cZajHuUptu/qgm5QjMRTWYrRzrzK3o4wHtl6AMmUDsM0MRLXcOhoBNdftgBBn4KkatghsKBPgSCQrOevuqAdDz61DxBYTsaW2REJ9rwTxoxGN1Ia004rlDoRBGJ7iGOCAIRO2AiZkgjpcK5VRGFBCKZ8gnw65y6ma89NW7OXhQIdhT4pzUBrc377xVjYvHkzzj33XPziF7+wt/3sZz+z0yflIJTSgt/baDQKv9+PN998E7fddhv6+vpwyimnoLOzEz/72c/wyU9+sionUG+UC5cB9Vdv//954E8YSWgARZZoZ8Aj4/5vMWHTO3+5C0fCscxj0q7BnJAPSdWANycvQylFPKnbApsAcNMDf4KqmcyQSQKCXhmRmAbdMDC3NYCegTh0g8I0zSxDI4kEkiiMq4lSFEhdKEEDwIITGgrmZBac0IBb1lRHHr0UtQyXrXvijbyilZRmoNGn1HxmEFDbc6sG4/3u1yJc5szJOPOtX69STmblypX49re/jYsuusjeNjAwgAsvvBBPPfVU2V7Eop7Meeedh0984hO44IIL8KMf/QhDQ0MwTRNnnnkmmpubx33gU5l6WxGxclP2b7sZk7LtFkf741mPsYzN0f44PjK3oWw13N6OMAyDQjNM5u14ZXjdMvojqXTJNJvHMhBJMmNFqa36bBh03FVnikSQqPL8mLEgiwAIgdcl2pV6hAAeRay63E0lVHvBU21Pvd4WZONhPE3W1nUYiKpo9itVvQ6LTmsDrlyIp3YcRO9AHK1Vri77r//6r7xtzc3NeOuttyp6flEj8+KLL+K1117Dq6++isceewyCIGDp0qVQFAWf/OQnIcvy2I+aU1WcRQi0yHbLO8tqxqRs+4J5jfivnYdsT0EUmULz1RedAiDz5XIpIlIaU3EeGEmlm0AJvG72WfC4JDQH3eiPsNBKNT0PVZ98A6NIBCfPbmA3zEZPnuc30SGlWihLVLOEebpJ74xV5cF5HQKe2lyHRae1VbVkuZoUNTLNzc247LLLcNlllwEAjhw5gp07d+LHP/4xDh06hDfffHPCDvJ4YiwrP1EgoOn5N9bKGpRtt0g7FxkjRDM/nn/jCEwzM9LAMCg0R1e99eXyukXIkoBITIWmG1A1EyvOnYdX9h1DSmMinZpuglKKRr8CSSQID1cyW7MSJt/IGCay9OtMkyISU6EbJgRC0NrkmdDjqZW0TbU89ekmvTPWfFWhYoqpfB1GS9nE/4cffojnn38er7zyCt5++22cfvrp+B//439MxLEdd4x15dfW7MXR/hgIyUzIpNREmyPxNzvkw5E+1sNi52QooMgsV+IcKW1SZmisL4HdjDmSgq6zfExTwAWA4IpPn4wTZwVtw5hSDQS9Chr8rDikWkamQrm8mmJ5g8sXz8MjWw8gllDBxiswry0SUyd0RHO9J+nr/fhGS6km61KLw+l2HUZL0RLm++67DytXrsTf/d3f4f3338fq1avx3HPP4ec//3lFsjKc0TPW8tFVF7TD51HY9E7ThEAAn0fBqgvasx4T8CmQJQGiACiSiIBPgUsWYaS9GAtrP9aXgA1FY700AgEMw8TgiFpwroummzBM05ZbqRaT78ewY9j4wkEsbA8h6JEgpht9RVFAc9AFr0ee0FLfetcZq/fjGy3FJHcWzGss2UIw3a7DaCnqyfz85z/HRRddhBtuuMHWFePUlrGueBa2h3D9ZQtKhtkWtodw0cdn45ndh+3qsIs+PhsHuobwfnfEngAKME9GFITMl8AeiibYYTfABAjJ874GoymMxPWai2VOFj2D7L1IaiZmzvBOal6mHsvpnVTj+OqpcKBYvqpcWNB5HSSRTBs9uEopamS2b9+OF154Af/6r/+Kzs5OnH/++bjgggvw6U9/Gn6/v9jTOONgPJpn5eLoezvCeGXfMQT9CkKSGyaleGXfMZx/xkwc6hmBmjJh+QuEAF6vYn8JkqqB5qAbI3ENqqNirWcggY07OrK+YAIhMEBrLvtfCwhh0kWl+nmsRsx6mBlf7zpj4z2+eiwcKPQ9e+yZd0suDp3XYTCqoqnK1WX1TlEjc+KJJ+IrX/kKvvKVryASieCll17Cs88+ix/+8Ic4+eST8atf/Woij/O4oJYr09zVllsWoRsUew70QhYFqIIBSxVGIAQXfXx2nuBnwCtjYMRkBQI0o148o8Gdru2tnYjlRECQPteRVNGR01beql68iHorp89lPMc3VQoHRrPgcH47Cnlpn5lgHbWJoCIV5u7ubgwMDEBVVciyPGrRSU5l1HJlGh5OghCgZ4SpAsiSCL9HQv+IihmNbjQFM1+IlGbgQNcQrgD7IkQTGnoH4lneCQHg90hIpIDhqGqXMaNwb++4KTcCuhqYFOgdTJR8jJGuQKh3L2I6MFUS5uUWHFtefh9Pv9oFk7LvnaYZeGTrAYBSeD0yvG4JxwbiePB3+/D/3fYOHr17+eSeUJUpamQeffRR7Nq1C7t370ZDQwOWLFmCVatWYfHixXC7j4+E1WRQq5WpWxEdFWgEumFiIJIEQIrOvnF+OXKhAIZjGgDm0VglzDWyMXWR+AdgJ/sL0Xk0wo1OFamHkGQllFpw7O0I4+nXumBSClFgs5hG4iooAJEQNAXdiCc1W7Gj1iPMJ4OSzZhLlizBd77zHZx44okTeEicmkAtwRmaNgQEAIEkEqi6mfdFditi1pej1LwVSplIX60MTD3R1sRucLlacIMjSbzz4RAa/S4EvHJd5A+mOssXz8MjT+/HwHAShskUJNyKaDcJ1xPFFofbd3WxY0/XhwiEwKCsQtOq7Y3ENTanSSC2AO10oqiRcYqhcaY+Sc1EU0DBSIJ17Csy6+pPacy1H07pSKQMaAbr4g96pKwvR7mPPqVMLFObhl8SJ4sWMEXyjTs6EEuoIESwjTAFEE1oCKZLw+sxf1AJ9VTRlZHqSS+SJkG6ZzyEh5OQ08P8TJNmmqWRaZbWddPub5Ol6ZeKqCgnw5n6WKGHmc1s/oMsCYgmNIQaPFgwrxFPv9oF3TQBCuiUon9EZWrLhDCfh5RPtxAyEZmTyYEAEERi56q6w7F0jspk1yb9OE03caQvCkkUEPDKdZc/KEe1K7rGY7C27+qC1y2lG38ZKc2YUoY71MDCYSktsy0z+pydD5soa4IQak+ZnU5MP7PJKUhuI1lS1e3k5IGuISiyYItmWpiUzY9RdbMCAzP6YxJIfc2JKYYkChBFguaAC+HhJPZ2hLOKIHKvDct5UQxEkukR11OHas6TGc+cI4B5AcXyhVOF5YvnQTOovVAD2Gfe55Ywo8GDRp8CRWZ50oBXgdc1tT4vlcA9mTLUVehgHOQmJ63JmAvbQ/jl0/sRS2YSjmPJrYhj6L5UZBEel4RoXIXbJWIkPjlJz0L+l7WNgDXQBX0uCAJBo09J34gJDIMWfH5mekYF7l+dUc2KrvGWIFc78T8Z3+WF7SF4FBGptPSQLIlwyQISKR3d4RhOPaERX11xGoBMH810gxuZHOJJnSW7RYI9b/fg9692AiCY0eBGQjXw5PPvAZiayVxnctI518KoQh7FMCjIKBZhkkDQGHDBMEwEfQoGR6olpDl6cs9edAxYo2AhjaGRFNwuCVdfdAoee+ZdNAdc6I+kQE2a9XxZEmCaFJLEFHeTWh2Iro2Cat7Yx2uwqtmLNJmNnbNDPvuaqrqJvkFWJCNLon0cay4+FbesPntM82TqHR4uyyGh6ojEVAxGUtjw/LuIp9jMEEoBn0dCQ8CF197uQUpnSfK/dvbj357ai7se+TPu/81f8N/vVxYKqCckcfxBKwqUTfo7X4UC9ghcQkjdKAQI6RVntmeS7vR3dPuLIpPdcSkiJJGJZIoiweyQD3Nb/ZjZ7IUkiXVXbluOYvpcY7mxj1ezq5ojkydzrLTzmg5GknahZ9AnT5vx1qXgnkwOO/cdAyhF0KfgSF8UHllE3NRsjSpKKXrCcQxGUnjv8BC27TqUDvuwIVZPv9oFEIKPzm2CILL4vBVKqtfIyeyQD5GuoXHvRxRgqwYUwnn6Prdk6z7VU4ydEAJJYH1EBGnPhDJDbAlgWqW1SdWwS2tlmUCWJbtfqN50xCqlmk2m1fBEqtU3NpmNnc5r2juYgCwKCPpku4F5quWZRgs3Mjn86a3urK7vCGDXsIvpTLVHEfHy3qPYc6AHKd2EaQKaZoIQAlU3sPml9/G1lafbWlgCYU18VgLZktUXCIEgsL9PpgFavngeOo5EYOSMTR4toiCA0sr2EYlreGDjXpA6U9I0TApByITKVJ1Vj5lm9s1AN6hdtmyaFJJLsgVHp0P+rhrHXU+qCJPd2Gld0/s27kXfYLzuG0yrCaG0XtfXk8MdD7+CzqMRjMTVUd9wCckkwBe2hxD0KQj6ZAS9CvvPp8Dnke2xxATMaIkCIAkiRIkZMmZ4mPERiACrybya71TurPEtL7+Pp19jjWOyKMDjEjE0yiSkIgkwKZ2WDWUA4HWJmNcWQDShFZzfM2uGD9/76uKaH0e5OfFTmVqdmzMn4/SqRht+G2/xwKFwHA9t/EvR45iOORnuyeTw5eUfRUpljVOyW8Zv//gO/nygz/675dUEfQqGo6qtygswI2DdYN94ty931+z5BPB7ZGaA0oYn4JXtf1vbvW4WO7Y8IUkQIErME5IsDyhtjCrpYSnHFZ8+GQDwzO7DSKr6mKrFcuPv82cG8GHPyLjzLQJhYSvdoDApnTSvL54y0j1FhwAQe5yBQACDEvQMxCfnwDhlqYZXVY3igUWntWHNxafWhXc3UXAjUwRBIGjwu3CoZ4T1c5BMqSqlFIpEcN0lp+I3OzqgqjoMExAENsDqI3MbIIlsTHEkrqXHFbMbMKXASFzDSFzDEcSKvr4kEocRSntEaQMU8Cpo8CtoSHeWi6IASSDMCDm8IOe0S0qB/34/jG2v5Zcw7+0IY+MLB9HdH4ckCpiRTmzHU+MrKT7cGx23gREFFoZzKRLOnt+IN94LIzWJFVsHuobApmFmnxi7zPUV+qsH6qkFYLxhwFIl2dbf6+E86w1uZHKQJAGGaYKymVyIJXW4FCaLb5rUHu7Vnx4rzJqs2E1HIASyKGDRR1vx0XlN9j6tKp1ITEsbHhUjcRXDMRWRmIqRtCEaiWu2Z6QbFAMjKQyUKe11K6LDK5KZQXIYoUa/gqDfjQ97IvjjnsOQJBFzW/zQTANbXvkA3eEoXnu7F0MxDZJIoOkm+oaSVZG3qIbsv+W1JFM6dh3onfAxzE5RE4AlkNua3DgSjsMAtXtpAGBOyDOxB1fn1OM8mPFQrHigOxwreZ5OQ+vzyhiMpNL7oXi/O4IHNu7F7JAPqy5oP36l/o8nGn0KTI8MgKCp2cdWLcSRJ7FiJJTirx8MYE6LD6LAchFmWkX1z2/3YMH8JuthIITArUhwKxJam4rfiExKEUtottGJxJkRsjwiyzDFHY2TSdVAUk2UlKi3QnyszJZ5PYosAqDYvutDBPwKXLIAr5t5MKZJYZgmDIPCMCkMw4Ru/SyRb5HE6gr8Wbkrr1sadX5orBCSFjF09MnYxyMShBrcWDCvEYdf7rS3W4+xdM04jHqbBzNeryrU4EbPYAKJlM6my4oCPC4JukHhLeHhOA3QsXAsXblIEU3q9iK1dzCBx599Fw0NXiw6ra0GZz95cCOTQ6YdgpWmRhOaHZ5xdnZ7XCIopfB5ZAAUgkAgiwSyKCOpGpiRns9isvgaTDAjQk0K02QVSQalMB0VXQIltlcyO+Qreoy6YWYZohHbGGkZwxRXoaaPmyLjVeiGgRSQ1eEfiWt5ryEQAiIwOXJJFOCSBUhuCbIsgoA1X+qGCcNM/zQoZrf48EF3ZIxXPh+TUgggiMQmzsCwCrnChtIliVi+eB427uiwJ1LbngwB9rzTZ+e2OPU1D6YaXtWCeY149/AQSDofp+kmVD0FRRKKyt/kGlr2PSQYiWv2whUE6QZwAU/tOMiNzPGGM//tvPUkUgYI2I3eoExJVZIEeBSRNeKJ5cNNlpYRq05iCW0KZoTYT2o3AprppLdBKSSReSIzgm4WsMnRHLNIqjrzgGIqtrz8AWIptnIy0mE/XS9ebmxSChiAAaZdhgJRO+bZsRuzKBKYhokZDW5roABMExkjZNK0Z1ReB82CUsCYwCw/q1Cn0E0Kh8MKCualNQcULGwP4cGn/hsEgBW5S69J0B0unmM7HpnssmEn1fCqDnQNIehVkFCNrO+7qpkFx2WEGtx5hlaWmGK3YQLWo1kfFjNUvdOweIQbmRLs2d8D3cysVJ33O5csQhCAaMKw9a103UREN3DBWbMr2r+1P8tltl+ohH2yDZOZ9ozSYTrLKJmUeUmmQaHIIvxeGbTZiyv+9iQ8/WonCCEQCYFumkipBs7+SAh73ulDLKHBWRxWScUaM37MO4IGHEpG8x4jEEAQWEGCSxYgSVJWMQI7/nRYLh2SM8zJqSAzTGZUAVYBqOqmHRYJeGVbIsakKGicTcpKwbk3w6iXEdVAdbyq8HASQZ+CBn9m5UkpxdBIinX0I/88t+/qyjK0jX4XegcTtnK3FTUJ+lxQdROtzd7xn2ydwY1MCZ7acRA+t4SRBBsq5Mw3BH0yc3kd81ZkicVoLTn4WmAbJsJCWaUqmohjNR5qdKPRr+BPfzmKoZiK1mYvPrmgBSfPbsAZJ8/As7s/RM9gEgIB3Ony6f6hJPS091FJrsUli0hpRtY2kwKmYUI3kCV3nnucAmFNqrIkwCOyGS2Wl0bADJpmZIxQNYoKSmENkqIADMNASjMwJx3CFAVS9PWf2X2YG5k01SobrkbVVjW8qmL7mB3yYcG8Rrv8361IWHbOXPs4nYZWFAl8bgmyJGBwJAVJZFWsqmYgltSRTBlFXn3qwo1MCXoG4gj6FMiSgEhcg24Y9i3d65YxOJJiYooUmNPiB8BWNvUiEeH0BggITj9xBk4/cQaA7Ka3M09pwZmntGDfB/14/vXDGBxRMSPogkgIYgkNoigA6cZRq8LONGnWvwko1l53Du56ZNeo+1mssFjmxp3/RbPUE0SBGSK3KGSHMins17QKF8ZbhECdPymQSJd0l4qEJqbh+NzxMJ6y4dzpo5GYike2HsD1ly0Y9T6r4VUV28eCeY14Zd8xBP0KQhLTa3tl3zGcOCtYUP181dL2rKqzI+EYkikDfq+M5uD0myfDjUwJ2pq96BvMjpFa8XmAxVG1dGzWYjIlIoqt+gptL1QqecZJM3DGSTPs3295eCdSmo5oQncMWspuBLXkdgQi4D/+669o8CugcFTiUbBKtbT3YZrZ3ohlqJwGyeqid2KH1kwK5hAVXvERkpEA8kiiLQXkrDW2c11pY2SFGQvty55kSGEXIBAiIJORyXkO75WpGrnTR00KxBIqNu7oGLWRWdgeQufRSFFvo9J9APmeWbl8TzH1c2v7uifesKvWDh0r4u5PYbiRKcGVF5yC+554HbGkng7pwM55xBIqPC4Jqp6CR2GVZpMZcy5WPdN5NIJX9h3L297Q4MX8UOn4r1sWMDhiQHTMHi8VqhqJp/IEMp05Gcs4iaIAWSa2eKi1naa9GVkUkFL1dH+RmQ7ZZVfiFYNSVvnGxhcUb6oRHMZIkcV0uTSxDYoFSXtvmmHaPTpiCdVqReZGplowBYXqKCvs7QiX9TYqoZBn9tgz744r39MdjiGW1NLGtOJDmTJwI1OCRae1QZFFjMQ1ULAPuc8tQdNNDEc1tM8JYumZs+pCFLHYauqZ3YfhUkSMxFNZtf1P7TiIb69aWHqnhLAqswobIEWBNbI6ceZkymEZpNZGN5ob3BgYTkGWCGSZeVBi2kBZHo2zWEDXTRZyMzLFEKVgx5XWWSuhIGAZIlEgCHhlbH3tEJr8LtubtarPrJ6iWTN4Q2b1qJ6yQi17dsab72ELOMuYTr9FCjcyJdizvwcDkaR9ozEpG2DVFHCBUuCW1Wdjb0c4LTUyuRSrnkmoOlKanhZzZB5JJJbCh8fK73Oi+lMsLIMU9CnoGUxgaCRVsDQ71zsSBQJFESEKgl1SbVWwWaE6u4xaZ42lhcJ0BY/JzITokqqBjTs6Cj7OCh/2Dyex4YWDaPS70BRQ0BRwodHvRtAnO7wlklUizSlMW5MbRwcSMEEdkk7AzOaJH6BWivHme0SRALrVFzb94EamBE/tOAhJFGypFxYuIxiOqjh5dpAlJh1zRSIxFY88vR8XnT2nat5NpdU1xVZTVo5ASDd8WeXBkbiKvR3hkselG9Su+pqIii6LJr9S0nBX6h1ZqtjM+DBj5FIkeAR2TtZN3zIkusFKlnWHMbKsgCAQtDR6YJi0oLqCaVKYoBiOmQUHUAlpT8jSo2OSPy40+Jkhagq40BhwweeWIYA1wtpKDSC2EvfxxKoLT8mb2+N2iVh14Smj3lexbv22EgoclTLeKro5IR8+7I2yY5uGqw5uZErAqstkDKbVlglY8lk1gCPhGB7etA+qZqaFKNlNPJrQsGVnJ1qbvOPWaxpNl3Kx1ZRLJlDTZcjOfAk1qZ2zKWYQnSusSgxMtaZGOFWvx4Oliq0bpa2RILBBZaLIvCNFEiAqEiupFgnkdAFBo9+F1Refinse3Y1kymAeUVrTznnmsiTYRQ0WpkkxHFUxXEYeR5GFjCK3Q5m7waegwS+jye+GDgHxhNUx7jBE1vwigRUgkCnuLS1sD+H6FadVpYS5WLf+0jNnVe1Yx7qQtI+NECijGGE+VeBGpgRWdVlzwIVIXIOWHlAmCkBTwIWuHtZ8aCXF7QZGiqrEfkcTRy5V+XJsIO6ojGIrZEv08+nXujCjwV3QiM0J+XBsIM46nMvcqIHCDYpjYaI8JgvTpFBNiqxu1DSyyC6YIDB5mxlBF0yDwqVI8Nr5GuZ2WFVzVimbKAANXhmXnXcShmMZUVRbEij9XzSp2YZA1UyEh5Nlwzhet+QwRnLWmAhLHDXgkyELIjNCdkVgrlFCXYfwqjVA7UDXENwym15rpMVvPYo46p62WqhKO5UEjFKjZaco3MiU4MoLTrEHDLU1eXCsPw4DQHPQZY9jdlLsyznW2O9o48jFvpCPP/suCAFkgcC6BTb6XRiIJGGYtKgRs7wjt0vCsf7yFT1NAVfd9AhVA1uJAYCuU8STrJQ7njSgGdmlps7QnMcl2tM0U5qJj53UzLxBw/rPhJ6ulKPp7SMJS4m7sCjqSFxFwtGoF0/qiCd1HCtRaSUQFqILeOU8z8gyRkGvDLdLso2MIAj2JFdByEx2JQIBoSyMJ6RPeCp5TEfCMaR0k4VIwb4DKd3EkVFIAdVKVdqpJFAN9fN6gxuZEuQOGKIU8LpFROIaBiKlJfidjLV3phpdytaH/z+2vI2kZkCWBAS9MnweGb2DcRAQe7CYQICAV4aeXtE7vaNyRkYgwLobP4Xr732+ouMq1AtTb1BYeS0AJNMf1dbkxuFwTv+UIzRnhQ0NkyKlGpCtutT0ty2jWccMjEmB5gY3C7EVMEKWNp2qGxiJaYAo4PCxCDqODOO9w0OIpwwmZCoJSKq67VmblGI4xowU+orfTGVJyPaIvNYMo8xk14CXNSVbx25NdSUAMzzpKaECIRDETJ+UNQF2sr0mw2AX0VJRtzT8jFE07NaqQq3Q93w6wY1MGZzewZ2/eA3d/fGKbo4pzRi3XpMzz2IYJoajKktaEpRN2ueeww1XfCxr/GxS1e0uecCSbgGGYxpCDWLWcxe2h3DTA3/CSAG15gzsy2uJApaCeQgorOpZh1gd/0GfAoAlpO//zd7ij6fpHA0p3FOT0awjtuFyUsgIWXmxJr8bgaAbI9Ekjg7E4PcqCPpY5ZtumLhyyUcwry1YVJ17JJ7xkKzj0HQT/cNJ9Jd53zwuiYXhcj2j9O8BnwK/W86Mw7DOx/5fxjN0ek12c69AEE0w9XBn4YNVKTgej0kSCVIahUmJY4FDC17/YtSqQs35PR/N8UwVuJEZBUkt0wxY6B5pNWxSCkSi6pg6i3NjvuefMRN73ulD70ASkiigOeiCTjFqN72QvMXRcMw+Cee5FCpdzpUyz8VKfX9kTrDsl25OyIujAwnUo5UpNRMnkWRGttw11wym4uxxSbbe2WgoZ4RamrzYvb8XHpcMj0uyvYeUZuCvnYM465QWBH0yTOqz1b1zMU1WpOIcDRGJMcXuzDbNltIBmKxOIqXj2EDxYxcImOGzDI83M1DPaZjcipjXAwMAkiJjYCRZ0GMSBEAkrFLQ6S0VCt9ZY8mt6zmvzY9DPVEmBJv22j0uqeRIjVxqpSrt/G4OTtDcpImEG5kKcN74LXK/HrLI8h2myRQdx9JZXCjm+/yb3UimdICw5K1VcjscVfHgU/vQPidYcfIxV97ic9/ZjLTyiy2fQsDm1eRSamiYQAC3wj5Kb3WUuAOBzeFZdeEpeGBjcU9gsiBAetWc3wAoECAS17MeW8xEyiLrqUqoOhbMa6zJsX7YG4U33RjsPKZBLYmmtP5VIU/IMEzWhGqaaJRYCXWxUREA83KY91NgZpE1zyimQTMyCtXW38qG6LysOMFZTTe7LQBimvbvsiTYB2eYgFZMTij9v6wwntVPRQgWzGtCOJJC0Kewz3i6JP/MU0L2fNNcLbxcqqUq7dQsMwzmTc0O+Zjc07knjWpfUwFuZMrgvPE7EdNJUWvVqxnUri5r9Cl5cduNOzrKVqVs39UFTTeZGKduQhDY+ACafr2UaqBPZV8yq1x1PMlHtyIhkdIzQpDpf3hc+R8Ls1SMkADLzpkLAFkr30JY+QlZEuxhcPVC7hmK6cZOAI6qMUapUQgmhT1rpFaK3IVW1UnNQKNPqTgcRyns0nbbCOmZKagUrKR6RtCN5mDx1TqlFEnVyJrmmjvddSQdorM+Rppuoj+SRH+kXIhOzDJCAUeeyNrm98i2Th7NtZjpqsg33u1DPKkhqRowTROyJMLrlvDWwTA+fmoLANgFDiJIXkUeIQQL5jXjy5d8FH966yj6R5JobfRg6cdn44yTQrBetFwob8/+Hjz+7LvQdBPxlA5QIKVR9PDJmMcvzmSfNXAIYJVDgpD5RFk3JM0w877YhmGidyCJ1ubSvTNHwjHE04PFrFp+ex8592OTshXzaJKPTo9sVosfzQEFh3OMAgUwrzU/hFDqpnrFp07EFZ8+GXs7wiUDYIQAXo9csFmxXlCdngFhBsbSq5NkAbc8vBOhBjea/AoGRph35zxnQjIeoVzDKZDjWVU730dRyNHLcmXea2uSq1HEE7ILE0DgcUmsubHEPBTTpIgm0yG5dDjO8npGEulwXVzNmtqaSBlIpBLoKTVenAABj8wMUNr4BLxyOn/Efu+PJOF1SfB7FMd1oOgZiNsLKBMADEuAtTChBg++sPTk9Ouy73nvYDyv+CGvZDxdmffMrkNoCrowOJJCALK9UNU0A5oGrHt0Nzb8y+UljmDqwY1MGZzJPqtE12q+S0fGEGp0w+uWAQBHwzFEYhp8jg/zcFRNjzAuXZWSWwFTNmeRvltYycdSNfy5objBSAJHwoUrxrp688Mcs2d47cez2wpjTshrz08pZzwozRxrvXkxhTAMEzR9A6Zg3szgSAqRmApRJHArAht05lBDEAix5XsGIknMmjH6nEwlVGNWSzEsIySwoUXIrXnKK0wwAYNasj0Uusl6UZyVcQD7XAfTOZo5LYVfu7nZh57eEUeIzlHaHc82TtYijClYaIjENRxB8RDdcEyzdeiEtDq3V2HeTMZTkqFIxau8qP2/nOZjZqGKPs+6bh90D8OtiEgmdfs4ZIkAkNLafDzxf9zhVkQc64/DpBSSyMp/rX4JAGjwy7aBYb8r6B9OZlWX6YaZNyeiUFVKbgVMOaz8tKqbcCsifr55H5IaG2/cH0ni0LEIvv65M7CwPYTtu7qgG9QWypQlMXsFjszNoNBMlFUXnmLv37IyblnIkvgoW1VGssfS1jsUQFPAjUhMhemYT2OYFILBFh0tjR6Eh5OIxFjlH/MCrCtZwv2rY8o1HOaF40TAOc7V6hEyaeFQnGmYMIGiRQmyJKC50hBdOieUXcCQCdeNxDW7ghLIVxFPpgw8+fzBrH27FdFRpCDn9RcFfCxEJ1byJc06ZiDoc2EgkkBSN2EaJgRCoGUNQ1RK7GFqwo1MCfbs70EkpsIwWb5F002kNAMCIfC6JRiWiq8DURQwO+SD3yPbX1KJAHrOl6lQVcrskC9LX6kcpklxNByDWxFhmiYSauY5lAIJ1cSj2w/gx//w6Sw5cbbSzt5/tsEp/OWRZQmGyQZIiYIAWc7++JQzHkyGn4V06kFUtBKuXXYqfvbb/87zKU3KiiGuu+Sj2L6riwmppmP3pkkhSQICHske2VxtatUYWI39WkUkYq50fU4ozh4XTtMzhgw25kFKF04UM0IAu852iK6p+LGYlCKW0DAS1/B25wD2HgwjmtAgS8yQWJqDcUfYOKkaSKqJghp1mddnI7qd4blggXCdJ93o+k7XIP70Vjf6hpNIpHRIAoGBfHULXsJ8nPHUjoPwepiXMpLISH+YlKIp4MJIXMNwjDVlBn2KHRc/97SZWTfRRQta8fyb3RgYTto3aLdLwtUXZQv9LV88D49sPZAeqjWKFTAhiCYLu+r96byBng5rgJjQaSbkUYhC0YLtu7rgdUtoCmQ8spRmZIX8FsxrLGs8kqqBjS8cLPmYeuLB3+0rKnNjpPXfRFGALInMcFOKGQ1ueFwSUulEfC2oVWNgLSXxgexQnOC8oaZfr6XZC8E08ivjDBO6ns4FpUVeKcqraDPVA5abmR3y4bOLTij4ON1IV9HlVM+NxLN/Vx0hOlbMoJVUDZBEwgpsVD2jiycSqJoJQWDVb9Y+RQF2T9B0ghuZEvQMxGEaBmIpPWtwFwWrorJc25RqIJ7UEWpw26NYc8uQNc1aKZXpKHOGWiroI5kV8iGlGWVl+U1q5sSTiz9WEvOtTCWNaAe6hkr2maRfOa9bvp5xFl8U+3skrkHVDHvm0HA0BUEgNR1gV6vGwFpK4lcKpZlQnBW6GxxJobXJg0s+OQ+nndicGf1dQq5nNOs0SRTQFHCjKVC65yWp6vnNrTENR8JR9AzEmb6h43V1g/UjASznqjo8W9MAnMOaWHBh6oVXy8GNTAnamr14p3OgYP9EJK7B65YhiQRR3YB1Kfcc6M3KfUgiqzgTCcEsR+NXrhcApL0Fj4ymdCw6kdLRN5Qo+2Up1ygJWJUvZlZPTLH9Fko+ViKVHh5OotGvIDxcXHJnJF66xHmqMRxTs5LbJmWh0EafUtMBdrVqDKzVfseCM3TnUkT0DSfxf7cfwJqLT8XC9hBEa8FWTK6nSEECKvSCCuFWJLgVCa2Oz/07XYM40DWAgE+BLApQdQO6bmLJmbPRFHTj1398D1q6FcGi2Pev9AJtalJTNbZoNIrLL78chw8fBgDs3LkTK1euxLJly3DffffZj9u/fz+uvPJKXHLJJbj99tuh6+xG1N3djTVr1mD58uW48cYbEYsxtzQSieCGG27ApZdeijVr1qCvj0nDq6qKm2++GZdeeim+8IUvoKOj8ICpSrnyglOgG6Yj0ckQBUDXTSRSOgYiSZB0jmYopuJIfxyDIymkVAO6wbSrWO4me0VcaHUYHk5C1w0cG4jjcG8UwzGVqQCXQS2z2gaY224pRJdDKfCaC+Y1YjiWgpbW8tJ0E8OxVFazYajBnVdqPd2hNP+SyqKAW1afXdMJqcsXz4NhsBwhG1NtVMVzqtV+x4IzdEcIK9cXRaFoFSOlTi9IgCIL8CgS/G4ZDX4FoQYPWho9mNHAigqagi4EfQp8bhkuWYQkZvTWRsOf3upOyzVZxylBlkX89YMBu7k59zNC05WpJ7T4cOniebjgrNmYEWQzhaYbNTMyb731Fq655hp0dnYCAJLJJNauXYuHHnoIW7duxb59+/Diiy8CAG6++Wbceeed+MMf/gBKKTZs2AAAuPvuu7F69Wps374dZ5xxBh566CEAwP33349FixZh27ZtuOqqq3DPPfcAAB599FF4PB5s27YNa9euxW233Tauc1h0Whtmh3zpqZgsmcvKi9mHeGgkBYCgwa/YXwLLIFllvs4VrpNCq0O3LGBwRIVhmKxPRjOg5lYMOCCAfRMohlUAE/TKbPWU3p67inJ+r6LJfG/Dkko3KYVmsDCFWxazcjAL5jViKFq5cOh0wnn9JmJUwcL2ENZcfCokgeBoOIb+oSRcVVDwtfbb6FMQT+po9Cm25zDRhIeTeV76eEJ3bx0M48dPvIHbfv4q7nvyL3jn0CC8LgkBr4zmIKsUDDW4WfNpwI0GP0vge10SZDkziTXXCA2OpDIiqGlkUcDgSAp/equ76PEIBEhoBl57+xjmzwzgn6/+OG7/yifHdG71TM2MzIYNG3DXXXehtbUVALB3717Mnz8fJ5xwAiRJwsqVK7F9+3YcOXIEyWQSZ511FgDgyiuvxPbt26FpGnbv3o1LLrkkazsA7NixAytXrgQAXH755XjppZegaRp27NiBK65g/dXnnHMOBgYG0N1d/E2uhFUXtMOd1ocyTdP+gCmyAEqBpoCSVcLsJPdWczQcw+HeKI6GY4gntPzVoR2SS8vHlGuTAeybwNwWH5PSsHaV/s/WZiKkRKVO+lUJ89IK5SGcUulyeqpkrlT6nnf6pmLFblXIajI3Kf7xvpew5eX3a/66Kc3AjEYPZoW8tqbd3o7wuPa5sD2EW1afjXU3fqrmHlkpQg3uPC99rKE7K/Q2FFOzquasa2V5QQLJ9oJ8blY1Fgq60dLoQd9QHL976X38vz8cwJZXPsDR/hjmzwqAEIJYUsNAJInBaBLRhIamAGu6BFCwXpMJ0qoYiqp48rmDeKdrcNTnNRWoWU7G8i4sent70dKS6cBqbW1FT09P3vaWlhb09PRgcHAQfr8fkiRlbc/dlyRJ8Pv9GBgYKLivY8eOYfbs2RUf94wZ/uzjjqSyFGsBmtZEYnPlKVBwBoQVc3XGXknaiBDCpjA2NHjR0hKwn6MaFC1NXgxH1bIJZyEtzvTjm5YCABoavLj3//7ZbnKkAFyygK9+7m9wKBxHd3+8aKTM2XymmyY8LinruICMJyY65gBbSdZD4Tie2nEQh0toVR1vxFM6trzSCa/PhWuWLaj6/ltaAnhu4164FNHWjVNkEUlVx3NvdteNBtae/T14asdB9AzE0dbsxZUXnFJWNsX67H1p2QL8/Km9MEyTVblpBkDZ9tzPZzme27gXJgWi6e+WLLHCnNFcqz37e/D4M+9BkljU4khfFId7YzjtpCZ80D0CQSRo9MsAYV7Ppz8+B+90DeGDw0PQdBMGBZIpnfUKpRu6tfT3NakZeOql9zGjyYeZOfegqc6EJf6ZF5Cx55TSdE9B4e3WTyeFBoVZzxEEIe851vbR0N8ftWUmDoXjePLZd/NW55RaXfwEsQRF/3BmtZLJ2wi2pLielpqZOSMjuZHSDDz5zAHMD2W2NfsVDMVUO6l46NhI0eM00xn8m3/6IpYvnofOo5GCq75ndr6Pg92RktpjKS1T/kwIcPEn5qCvL/u1RcJezzBpRiqdUpiGYQ9242RjUuC3z7+Hz358TlX329ISQF/fCI725YtkCoTgaF807/2bDJyJe7csoG8wjoc2/qVk+M06NwCYH/Li6s+cktcYOj/kHfX5HeoedvSJMW99aCQJTTMq3teTzxxg4xsEAbrB7i0pzcArbx2FSxGRSOoYcRTF7Hm7h303jwzDpIAiEbhkF0SRTSbVTdPO1xoGa9re+uoHuLBImfVUZcLuDDNnzrQT9ADQ19eH1tbWvO3hcBitra1obm7GyMgIjLTAnfV4gHlB4TBzc3VdRywWQ2NjI9ra2tDb25u3r7Hy1I6DJePruZUgVl6dCEx4UNVNGCa7ATT6s/slCsWWc5Ouldy33++O4JGtB7D1ta78+BwFdu3vG5UBkESCE2cF87bPDvkQ9LnSjXJMOTboc4EQIauvgpNNLeVzqhlOqgWjTdzXEvZdzShpCGnZ5tFUcxXLESVVHQGvjLZmL+a0+NHW7EXAK6N3MIEzTpqBaz77EQQ8EoajGgZGkugbTODYQAyDkRTiSQ2mSeFSRAS8MiLTUOp/wozMmWeeiQ8++ACHDh2CYRj4/e9/jyVLlmDOnDlwuVx4/fXXAQCbN2/GkiVLIMsyFi1ahK1btwIANm3ahCVLlgAAli5dik2bNgEAtm7dikWLFkGWZSxduhSbN28GAOzZswcul2tUobJcekqMts1FkdgwMCEtqSGLrNuZ/ST2qNzDvVEcG4gjElPzbga5SddZM3wol8s1KRBLsCaxAjYGJqVlS5wlkeVZJJHANFGwWXL54nmQRILGgAuzQz40BpjBkURSUQk1p/rUUyVYIcabuC+XRxkNosi0ykzKGp3NdHnXaLTCihl1tyKVNfb+9Ljrj500Ays/NR9IRzhSmoGkqmM4mkLvYBLdoxgHPVWYsHCZy+XCvffei29+85tIpVJYunQpli9fDgBYv3497rjjDkSjUZx++un48pe/DAC46667cOutt+Lhhx/GrFmz8JOf/AQAcNNNN+HWW2/FihUrEAgEsH79egDAddddhzvvvBMrVqyAoihYt27duI65rdmL3goNjaqbWfkX3bCawkxIgsBG5KZVWXXdREQ3cMFZ+QbQOfNlb0cYjzy931YbyG3PtOacGLR042a5Emcj3UFt7a9nMP8msLA9hF1/PYZd+/tgUgqBECw+rQWDUXVaj46tZ6zPycYXDuJoOA6AllRBnmgq6a0qRa7envX8sagPzAn5cGwgjoTKelisUQwzR3G9iilfLztnLl7Zd6ygIvbejjAe2XoAyRSTYxqJazh0NIIZDW4MjiRBiACa1ngDkBbLnF7U3Mg8/3xm5vt5552HLVu25D1mwYIF2LhxY972OXPm4NFHH83b3tjYiH//93/P2+5yufCjH/1onEec4W/aZ+C/D1a+asoSZaWZn6phSVFQaCa7kXvdUsFZI05xwnhShyILaGn0YCCSBHPvMwbDEugrV9dvGGZJ/QDbgNG06KaQ/8gtL7+PXQd6QQiBLLDKt10HerF4QSv6I0kcn4XL9UFKNzGj0W3f4KqhYVYNFsxrxDsfDjkWXgZSmoGlZ86q6Pnd4RgijpHfumEgqZYu2S+GZSDcLmnMA8dKKV+fOCtYcPudv9yFWEJlYWVBSGupqZD9Lvg8CpIpHapDEcqchn1mvOO/BP/d0V/xYysRgREEAVI6aZ5I6XmucZ4c/0gSKZ2gOa1Ky5R+M49n8WRaUrHZ65Jw/hkzsenlzorPpZBI3zO7DwMUMEFhmJmZKW91DOCGKz6G7bu6cKx/6sjFTBS1zo/kDrqzVujj0Rorp8JcKXsO9AIOD5yA/WPPgV57PEQpYsnCk12KbS9FtUYjOCMNlWxnIXdnLojABEEkpuIfrvwbbN/VZRtiUSg8ZG6qw41MCUaTk7F0q0r1tjiTjgbNTzrmihPKksimYQ4l7ecpomB7RhYmBeaGvAU1wea1+vDKvmN5RlASCHTHwTr/phQIfSXUzHgDy+uhYKW6jz3zbt0km2uJIgn2JMlyELAJo9cuO7Wmx5Q76M4wTIwkTBhjjO1XU925ZzAJUSRZoo8mpQXDsYUodp3HqipRzBCMhtEbYAJCsr/nJF10YB3PP973EhIpHSalSGnTr9GMZ2xLUGl8mwCYPzOAE9pK1+6XSzrmJkpFgWTd/K3QmygALkWEKBC4FBGN6SmNLjn77XTJArp6YxBFASTH3dFLWMMGb35zqSX/X2id5XVLJScXThdmhXyY21pZf4bHJWHZOXNrHrKyB90R1sArpDtrjTFqYFW3IixfH4z9PjVvpGMpRGhrcoOmk/zWqBDdoAh6M+t7S7x2ujYycyNTClp6yWS7tulBVc5+k0KIogCTsp8Bj4w5oeypiaEGN0biGnoG4jjSF80aQ+vEMJlMzNxWP2Y2exH0KUiorMnLWSmmmxQJVc+qfKuEhJp/HorMnpwrf0bSM1QSqeklfDlegn4Fr+w7Nu7u+3KwzyDNygECdMxhl2pKubBFWv6x1VNxwmgYiwFedeEpUKT0fBzH9oRq2p8Na2zzNFT5B8CNTEn2vT9Q5hEkXZFFbJ2n8z5WuC/HowhoCrgwp8WHpoALsiTkJR1zRShLwQoDWGxa1U3maRRY0RIQe3JmJZJahACRWH7M+8SZQXhdYtYXgQB2aK8Skc5qIZDSw52sKrnJZKJ6Qor1L80OjW3sczV7b1Zd0A6XLMEwTDvR7pIlrLqgvaLn+92FKxaLba81YzHAC9tDWaPYmXQTQUrTsXEHE/CVRJLeLuRFI6YDPCdTgnLuq26YcMkCTpoVxC2rzwaAonpVM4JudPcnssp/c0MpB7qG4FEkJFI6yvXwUQoMRlIQRSH95WXGxBrdbK0aXbKAeFLHSJl5M879aoaJf7zvJSRVHW6FhX2s6pyg3wVFEnCsPw7NYDLqR/qiJRUFasHskA+9g3EYBgs3SKJgj14wTYrhmAqzQMjI65LsQoX3Dg+NKr5vjdSulImYw2K9L40B15irpnL398jT+9MD9ihEgcCtiHkD9ipFEglkSbD3NRoPqzHgRjSZn1tqLDPzpVaMdQzCcDQFUWB6f4QQGKYJ3QAO98Ww7ok37AmdrNS71mcx8Uw/sznBpDQTTY5u/md2H7Yn4Fn/EQCHw3F71rhJKV59uzfPIHWHY4gn9Ypjs7pJ0TuQwCmzg5g/M1hwRTsj6IamG3lRcKnMUj+lGekVl4EtOzvReTSS1Sga8LD1iWnSsl5XtTEpcKw/DsOgaGtyY9YMHwJeBW1NHpx/xkw2u4OioGICTYdAly+el7XCLMeMoMs+90qZqO57lySgfyiJo+EYJIGMXzXZdldpzu+jw5qPxHJZfswK+eD1yBV7d0nVQEujG25FTE+YFNHS6EayQDh3Ili+eB7iST0tdDvChG6TelmDblLWi6bqJps141j8DMVU9A8nWPEGIVB4nwzHibOM1yKp6iAE0IxMg2Mxm/H7Vw9llXIm1XxjUA6TUry2vxfnnsb6VXJXtEnNhKoZedVlpRL/QKYHRyQsB/TM7sP4t28vsW9e6554AwaF3dxWaghaLTBME81BN3QKGLqBa5exG+u6J96A1yPD55HzSqolkUDVKTa+cBDf+9q5uP6yBfjpb/ZWdM2vu+Sj9rlff+/zZR6NCem+dzb6mZSN9Xb2lYyFSsZsV8p4p2xanoMzhzOekdbVKM3WNB1aesaUSU2IWulFx96OMKjjE+b8jkgiy+sYJhPclUVhWg4t40ZmjFhhE0opkmrmgyZLQpZeVakbb+4HqpzycjEoBd54L4wbP39G3pfowaf+u6IGLwJAUVjJdC4CQdY5AuwGkhX6mODvxowGDzwu9vF1zqC3bmyKLNqHZBlY1qNQeQktwM79ivNPHPXNqNaTMQFg446OnEY/JjG0cUfHmF83PJwEIUDPSKbLPuCVxxT2CzW4x9VlX6zDfiyGuxql2RtfOAhVZ2E/6zNlLVqAwj0423d1IehVMFRAk8wy5EwfkRVEFFJ0n+pwI1MCn0dGPKGlq8cKP8aksKXWAUAWCVJjXEyO5T5tfdhTmlmwD8AwadH9NvoVRNOSNWzGuQs9A/G88FfuOQJswNrRgURG2mYMxz4eIjEVA5Fk3k3QWv06e30oMhEf5l2yK7J9V1dJD0wgwLdWLcy7puX6oYJe2c7R1ZL8Rj/WfzWa/q5c3IqIo/2xtFox6+UaiCQxa8boCwkWzGvEu4eHQFBeTqkQ1WqgtPYxXomansGkXegDsO+eCYqjA4miBiw8nLRFcoshCk799ukHNzIl+NySk/H/e+adgjch1u/CZoUvO2euvX2im6mcq/VClLohNvhdUGQRw9EUNJ2FIU5q8+PVt3vzKoxMamLdE29kvuT2gDUhfQOf2PO24vKW1MjcFnYTtFa/SVWHLBJoaW+R0rSnSGDfMMPDSVZWXsSDdCtSwRvQ7JCv6OwcAkxgOXfxRr8xQ63efGePy9hioQe6htDgc9naZbLEbuyF5JSKUY0GSoDlOzNS/8x4RmKpUUrUsDkwBjKhcKsx2dlE7ZJF27t2ywLCw+zzkBuyHhpJYTjKxG1FgakANAen3/hlbmRK8JETmuCWBSQ1M0tAks2TMO3Kq2yJDGpXklgUK++tZpmtz1P4raRlBG88LgmCQNDoU3DL6rOLVsfJkpC1QkuqBvweGSNxDSUmRE8Y1thn64b03JvdCA8lbCMDZKRNFn2UDbZzKyL6h4vfZIpVQi36aAuOhGMF77vjvsmPgqBXQv+ICutdtnqWZjaPvdggqZmQJYKkmrkuboV9B0ZLXkgV7JrWuuKuEIWk/gupbpSiwe+yj92pesG8NAODIyk7LBjwSAgPJ+FWssutnd9GzaBQJIKWRjc03bSjCtMNbmRK8NSOg2gIuNHqCL1Yicdi4ZC2Zi+O9sdySokLU2wI21ho9BdeAQkEoOnig1wlZ0ppXpz7v3Z2FtzPSFyHqlNbF8utiBgcSdp6bNXokyl3vUoRTWS8h4XtIXzm3JNw809fxIe90bRkB9t/1kqaUggCKTgziBAgWCTBfKBrCI3+zGhdJyYFmry1/1rt7Qgj4TAE1vvrkQlWXTi2cmMAoKaZZWAAIKma8LlG//5WM/Q2XkSRADorlLG/AwVUN0rhljODCK1PjJBeeA6OqJnQsWFicETFrGYPkqoBWRJYxWOBfQrpsuYGvwtul4SWpqnZqFqK6ZdlqiI9A/G8vgjDMNFxZBi3PLwT6554I6+je9UF7fB5FPZhM808b8X5a+4qb6yNWAQsR1GItmav3eilSGzAGCFMlsZqIHWWvJaKHjBdLA1HwrGcsEp1ypjHa3Rz35PucAxJVYeQPndBYAOmLGHSpGbCW6SxTyiQrNnbEca6J97Aux8OIZ7UUWzo6lBMK/jZqCYbd3Qgpenp3ovMdp9HGVd4KRIvHOortr0kOZ8R25echOX6nJAPAY9cVnWjFEnNRHPQlSXp1Bx0gYItVHSDQjPYT8NkoY9QgxtyCUOWUg2Eh5NIpJgyR6WjRaYS3JMpQVuzF32DcTvWmkjpGIgkIQqZBN8jWw8g6JGQ1Ew7MXn9ZQuykpWdxyJQNTNvBZQrRHnp4nnY/Epn1newktJglvgvnHpfdUF71jwLURDg9Sr49jVnZ41+rgSBsC+TYVAkNRNNAQUjCR16Otcx3rRMqSmklTA4kkQk/Z40NHjLhkjcsoCBSOGbp88tZYWInNVJssTCpWb6tJ33TdabQ0dVvTSW0tqegXg6XJOdHxiOjm/oglZklVFseyksIx5N6PYx+j3SqEJv1VKEtppMafozRk2WXxlNpZpVLedENywDmk//cAKrLmjHA7/dW3SfNH0s4eEEJEGYoqpupeFGpgRXXnAKHtr4F7uEcmgkBYCgwa+AENZZHkuoSKZ0zJzhtW8say4+NSuctu6JNyoq5bRyO8/sPpzVbf/8G0fK9j8UK39e2B7KM3oL5jXiqR0HcbQvOqovrlMXK9TgxuG+KDTNGHOIqxZYZbz/9+m3IYoEVKNQHUkjQXCESAgpeuxJ1ciSZnHqVjX4Xen5PgxRYKoLggAQItj9D87S6kLs7Qhj444O5hkCAIVtJK+/bEHJ98SkmdCiMz9A6ui9sIy4dQ+mFIgldDR4K+tzqaYiNICcJlMy6ibT3Pk4hmpA1YwsdXILtvCjWNgeqshxM01ANU0Ik62HVAO4kSnBotPasObiU+0bNKVAU0CB181UilmIiq3uLcG8QjeW0QxMuuLTJ+fN2jhxVhAPb9pXcl68WCx2g/xpm48/+y5cijjqL64kEnhcLrQ1edDkV3Cgq7AXUKlTIxAWk65WAxpbbLMQ5ZG+KNqaPIjGtax5JtQEGtK5llKd43rO++NsLPS4JDQH3RiIJKEbbJ6PaSf8KYI+lh8r1XhovQ8DI6msm5Cqm9CM8r0uoiOXRHO21wvJtPcOZD4TJkXFnkzu6ItKDHepfY23yXTPO30AcubjOKDI/uxTUNaMOYqPdx29fVWDG5kyOG/Q6554A0OO3IdusE530aFfUujGMt56/4XtIbvR8t0PhwquvoMVJputL65bkaDpZt4XVyySCAeAxoDLNo4P/W5fRa8HFA75uWSWDK3FJECTAoRSO7Fvl5oifRzUCpkUf/HZM7xZ70+ubpXHJSHU6IEkEPg9MjqOREAIu0ZWk2gkpkLVTNzy8M6899x6HwpJ8lMKHC0zAM6tiLb36rzh5VYzTSbO0B0tsr0U41UMqPa+egbiEAjJKhYwTArDUUzgbCnwKNKoBVLHGzKuR7iRGQW5HchWjiLomL9STK9qvPX+1vPv/OWugj0aHnf+DJhClPuyzWr2oLs/nmfIBJLdxV6qmiz3ayI7jLCms0a4piAbF3ykL1qTFhtaIG9klZZaK+nBAl3YFie0+rN+L9Z9fvVFrGjC8kwEgYBSikhMxVBUhSQSpEYMFgZ7ej+uX3FaljJBMcoJjs4O+dAzmLB7UKzmwrYmT+UXqQDFvNCxLLCL3TArvZGOVZCydvsioNTMkoyySsfz5uYAOLO9Ge8dieQNCCzFdCxh5tVlo2BheyhLJLK1yQOfW4IoCvY8mVrrVUViqv3hBjIf8mLVZbnkSrknUjqO9ccxHFWx7ok3sGhBa56wpCyyzvdbVp89akNJSGZYm3Vz8XtleyaHLNVm5U3BzlWSWO7Lmr0jSaJ9Yyn1vd+1vzerOmxhewjnnzETkaiKw71RRKIqzj9jpn09cj8b8aSeVXBgUopYUrclSApJ6ucefymWL54HSSRoDLjQFHAx5eloCtG4Oq6qtuZA4XxJse2lKCaRUql0yvLF82AYbNDXeL9f1dhX0Cux4h1Hjol5zYUf/2Evy3kq01C+fzRwT2aU5HoklVa/VKtKhuUA8l32SvMazo74lGqkE9gETQEFQzEVf/hzV57cuG4CnUcjFR+vVVarG6yvxjBZdZIoELhkAaIAHBuIQ9dNW5m62lCMT7bepEyrypnLev7NbjtEqhsmnn+zGyfOCmYZGuvfX//xDghCZvSwJUFi6aZZ70MxypWzL2wPofNoBNt2dWXl6nqHklke02i5bvkC/HzzvqwGZLcs4LrlC0a9r2L5oUrzRtWUlanGvjxuGRjJX8wVWyp098fxrQtPwYO/28f61TA9PZVycCMzTioJg1WzSma8TWXOjvgDH/SDECb2x0I7AlIqaxpz9gcZJsUzuw9nFSS4ZKFgIQIBMDcdaorEVKRUAwGvZH+pN75wMFvzrEazzqzCIc0wHaq5FKKRuU7lChScQpqjF6Nkpd4GyYRWQAHLcbOe88DGvQU9qnL34b0dYTz/xpG890A3TMSSNMtAjoaF7SF8/XP5QqtjC/WSrJtrxgOvPPhWLVmZauzLWVFYCZSy1/QoIlLa6BaD0wluZCaA0VTJbHn5/bwSZufNfU7INy5lWyDTEb/m/2zFSEID0uWvhpE/asBMh7niKT1Lu8wliyzcQ7Nv1BTAoWMjEAjg98jwuiWsu/FT9t/ZNECKWmue0bQnkkxlzolSIJky7BuwLJGs8uZcnL0hPQNxVqRATOgOo1FMjDLoU9AfSdmnZ61gnSoCC9tDGQm4HMopKGx84WDB8dwmBSQBo1KazqVaN3ZRJCACgQBkJcZH02VfT1hKCLmlysWwFjqzQz47H3To2EjNjq9e4UZmAqi0smXLy+9jy85OEJCsgWFApodmNOXQ5Ujl1Pg7vzDW6t+CEGR5YLmJ59wVmkmBSFzDjGB22CepGmgOupnmWa3cmDTd/fG8mwBNbwcshYHitwlnG4WtZp1jNIolsVmFWX4VlVV5BrD3u9glKHdpmBEp/NpOpelClFvIVItqLIjqCSu0W+myyMo9OYtGjkeO74zUBFHp3PRndh+2DQwh6Z8geGb3YfsxuQnmXFmYStjbEcbah1/JnnuT85jc2LFbFrLm1i9fPA9Gums6t+PZudKLJrKbSEMN7qqEDCqR4CmW2Le2l+o7ArKvgTNZ7Ty/YknsYh6Otd1aUIwV5mEW+ytF0Kdg3RNv5EntWK+bO/m0mDDqeFi+eB5kiY2QmNPiQ1PABVkSaloYU0u8LskutAGQVYCT26YmCBlFD+d3dmr6cOODezITQKXDl5KqnpcUpZSFqnJ7LSoxKoWKDQDYzZijwbKRTg/MOSUw65iRUazOVSLInTEyVvweGSmt+NrQrYhlx/SORgknNzxo9V665MLXUStiSK3t23Z1jatHqFSzuigIiKd0vN8dgWHSrPLpZ3YfBigrQjDMzI0yN+dWDaqZuK8Hlp0z1440CEJaKJNQNPuUrCmxhTw26zv7zZ/+CfGENi3lY4rBjcwEUOmXza1IbBYJodmhKmDUBQPO0byGadpyJUGvbDdjSmLxbntFErIMiGUsLA9s4wsHkdLyDYz1XICFknKbAw90DSHoVewv5FiJxNTiPR0EuPLCU7DxufcK5jas4xvNyOhq9qXs7QiX9aLKUaqPRtNN6AbS1W3Z5dMJVc8OkaaNZkKtzQycaibuJ5tisk8nzgpWHMKWRAJBJAWbcIFRK91MCbiRmSAq+bKd2d6MV9/uzbtzet2SLVsTUQ38x5a34XVLJVeGG3d0ZPXOGKYJVVcRS2iYkx7wVe4GK+ZIvhwNx+B2Sbj6olPws9/+d55kiIXzxu4c6AYUnjEyNghE0SHa6bjpfu78E3HNsgWIx1LY9HJn3jMvO5d9+XNHZZfC8kYbA65x58Iq6QIv10oiCgLMIvEyq5qLmpnKNoGkc1Q0+3EZiZRpeHerAYVknywq8djmzQziw2ORguOYBVJ5U/VUghuZOmIwqsLvkRBP6lk3cOsGmkjpiMRSoCAINbpLejZHikxuNEw2Q0aRxbzVsHNlbzVQ5pHe5nxusQ5xj0vCibOCWdurNba5rcmNI+E4m1KITGx8Tshr3wSKrTyt7YosVmxkqhn6qUjKpMySVhBo2YvnbBoslgazNrtkbmTGQ6UemyW663WJiKcyb6A1gflzS6pfgDHZcCNTR4SHk2gOujGjgX3hjw3EYRimXYUVianpGwdFdzhWck55KSfFMEwkVT1HWJFVW1mei2FmQnaEsIS91y3booKlQk3zZwYAFBEgrNLY5kULWnHEMRbBygMtWtCa9bhSK885IR8OdA0VfY3c2261Qj+hBndZQ1NOeqVU6fVYmNEwPjkaTmU4RXfZCBAKCmovgK5ZNvqm13qHG5k6IldfKeiVMRBJQUzrYVklx2waX/6ccmdpainWXHwqnnuzG0fDcRgmtRPwztCYdfO2lJIHIilE4po9VlYShbK9HIXKtKtVwmxNp8zNkYxmfvzyxfPw3uHhojf0YiOtx8vyxfNKGjeLdU+8UdRrqnbneCJZepQEp3oUWqxYRTpfvedZ/PL2iyfpyGoDL2GuI3L1lURRgM8tobXJg3hSt+PmJmV5D2twlm7QvNLUYrhkAQvbQ/iXG8/HN7/4Nwh6ZUiiULQc1qSwJ/2lVAP9wylWzqyIWSWcFs7fC5VphxrcEEUBbc1ezGnJFqEcDeHhJAJe2d5PW7MXAa88KlXdhe0hrPzU/KJ/LzbSerx0Ho2UfQylrC/JWfDh1CQTqpghJhjj5EtOVbAUQYZiKgI1WthMJtzI1BGFemCuX3EavvfVxVh346dQSEuSAtANA8/sPgxqslxKsfJZADgpHcqyXu/6Fafh5NnBisuJKViT5ZyQDw0+BUp6FK0sCSBgyfRSAoS5hnSsVNp7VI4rPn1y2tAyE26dQ0uju2wJdCkWnNBQdPvW1ypI/IsEgyMpHOmLYXAkBU03swoGFp/WMuZjy4WCFYZwJgenIsh4R5DXI9PPbE5xSsX9c4UrndtVPb0SLXHfJgC6erMLAsqNEChEJK7h+gLKA/GkjmC6cKFYYjw3gT5WKu09qkSY1Cn7YZHSDDT6Rq88bHHLmk9g3eOv48CHw/a2BSc04JY1n8D19z5f9vm6QaEb7A03VAOabmSF9RafPhNvvDf+UmiL41G4sV4oN/ZhqjN9z2waUkyx2KRMmbkSRePcfM1/btmHXfv7Rq2GXKja6uqLTqkoMe40pJXccHMRSGXVXpUKk1ZqsEbLLWs+Ma7nOzFNQNUyq4ztu7rQFHQjmdILlsOOFm5jJo9Cs26mE9zI1BmlVt6yKGSJNlrIogBCKMr101EAzhaV/9yyj/XljJFaN9oVU3p2K1JFr1+pMOlEd6YXex/L4bwW1urXJbug6WZBsUzO1MC5yKlOD1l9wY1MHVFu5V2sGks3zLSGVgXrUUfM97X9YzcwE4FLFtPzW4R05zpAqVnxF3E0I3cntjN9/CEua/Vrmiz/JYns/RcIKVv1x6kvnIucUtNapyrcyNQR5VbexUwIS9xWFvBwPm6scfiJyk3ODvlwuC+KeFKHni7d9rolzA75Knp+Ncf3VhNt7PUENtbqdziqwjBouiUV4IGvqYm1yGlpCZR/8BSDV5fVEeHhZNawMKD4yjuXSiu1qiIfUsX7WNBbWEYj6JWxYF4j4imdjWkWmTJ1PKVjwbzGivZdzfG99YZViagbZtG3w6kWXI7pF6Th1AvcyNQR4ynLrdQrcc4Z8bvHlmis5lr5+hWn5cn2u2QB1684zRbTlCQ2iVKSBAS9SkWNjEB1xiLUgmrd0Nl5ZGZNEuTsexTOzbkfay3/IA5nDPBwWR0xniqnSm/8lGZuQ19beXrR8b8TxcL2EG78fOFxv4898y6CPgUN/swxU0pH3XA52UYllxkVyMpUihUmK/QWVmpjFpzQgP95xRlVOR4OJxduZOqIWlU5OVWSac4tx+9VkEzpk5osLmYI6jWnMl6uXXYq/mPL24inxl8RppRQknYpoj3fJFWisbR/JIW9HeG6M8ac6QE3MnVGqZW31yUVvDF5XRKSql7UI7E2EwAeJfOWb9/VBa9bQlPAVZezx2vVvzLZLGwP4YYrPoaHfrdvVMbdX0ByxO+WkNIKy8Y7h2Z1HRspOnvHmnbKjQynFvCczBRi2TlzIQhszosssvHMgsC2NwcryNuAzayxcBYa1KOaRb3mVKrBwvYQgj4FAa+UlaAPeKWiEj9uJd/IqAYt+N7ljdMuchyUVl5cwuGMBe7JTCFKzUf501vdJZ9LCOBRxKw6/FCDG8cG4kiMQ6Or1tRjTqVauGUBAxE9a+5LLME8UoFkho9ZQqTD0fxx04bBemNER++Qlh4TndIM2wMsxXQIQXLqF25kphjF5qMMjBRv4hIFAkliDZ7OFeuCeY149/AQm1lOig+24tSGpGbmTRe1fmejkzOGg8n+5LsskkiQ0ihMSuyGVUFg3kmjT7Fze/1DyaIqA9MhBMmpX7iRmSaUsg8CYTeSwREVs5ozw6kOdA2hwcdmspRKDHNqw3A0VdBjYcoGgAlqGx9KgZnN+d7G7JAPPYOJnLk6LrQ1eXDL6rPtx930wJ9gJNloCCeiQKZNCJJTn3AjM8WoRFU4F0JIOiRjZiVfrJksQZ+CD3ujoBXWMtdj/mZqwnJqeR6LSeFzS0iqTHlZFAjcLhGrLjwlbw9WcURjwFWyOGJOyGeHRq2KM48iYmazlxsYTk2ZFCNz3XXXYWBgAJLEXv573/seYrEYfvjDHyKVSuHSSy/Ft7/9bQDA/v37cfvttyMWi2HRokW4++67IUkSuru7cfPNN6O/vx8nnXQS1q9fD5/Ph0gkgu985zv48MMP0dzcjPvvvx8tLdWbvTGZlNI2KyYmCbAblyQKCHizZ6Q4S4RHM9uFy8JXh7YmN44OJPI8ltkzvFh14SkVLSYqLXtfXmA0Aw+TcSaCCTcylFJ0dnbihRdesI1MMpnE8uXL8eijj2LWrFn4+te/jhdffBFLly7FzTffjB/84Ac466yzsHbtWmzYsAGrV6/G3XffjdWrV2PFihV48MEH8dBDD+Hmm2/G/fffj0WLFuE//uM/sGnTJtxzzz24//77J/o0a0IpbbNLF8/DZsfMe4ugV0ZTuvIsd0aKs0SYG46JZ9WFp+CRp/cX9FhGU/BQyWMnWmmaw7GY8BLm999/HwBw/fXX44orrsBjjz2GvXv3Yv78+TjhhBMgSRJWrlyJ7du348iRI0gmkzjrrLMAAFdeeSW2b98OTdOwe/duXHLJJVnbAWDHjh1YuXIlAODyyy/HSy+9BE2bHvPLS2mbXfHpk/G580+E18VKYF2yAI8iwOuRi+p2OUuEOROPczJpU8CFk2cHcf2K02p241/YHsItq8/Guhs/hVtWn80NDGdCmHBPJhKJ4LzzzsP/+T//B5qm4ctf/jK+9rWvZYW0Wltb0dPTg97e3qztLS0t6OnpweDgIPx+v+0JWdsBZD1HkiT4/X4MDAygra1tAs+yNpTrgM+tPKskf2NPxvzFazgcjld0HDwnUz2mc4k2hwNMgpH5+Mc/jo9//OP276tWrcIDDzyAT3wiM0WQUgpCCEzTzJp5bW23fjopNhubUgpBqNxhmzHDn/V7PUlvf2nZAvz8qb0wTJOFyjQDoGx7oeP8TEsAnzn3pKL7cz7nq59fiLt/8VpFx+F1y3V1XYoxFY5xrPBzm7pM9/PLZcKNzJ49e6BpGs477zwAzAjMmTMHfX199mP6+vrQ2tqKmTNnZm0Ph8NobW1Fc3MzRkZGYBgGRFG0Hw8wLygcDmPmzJnQdR2xWAyNjY0VH19/fxRmusqqpSWAvr76kVuZH/Li6s/kJ4Tnh7yjPs7cc5sf8pZ4dDZNfqWurksh6u29qyb83KYu5c5vOhqgCc/JjIyMYN26dUilUohGo/jd736Hf/qnf8IHH3yAQ4cOwTAM/P73v8eSJUswZ84cuFwuvP766wCAzZs3Y8mSJZBlGYsWLcLWrVsBAJs2bcKSJUsAAEuXLsWmTZsAAFu3bsWiRYsgy4VnlkxFJjOuLqWlbHiVAIfDqZQJ92QuvPBCvPXWW/j85z8P0zSxevVqfPzjH8e9996Lb37zm0ilUli6dCmWL18OAFi/fj3uuOMORKNRnH766fjyl78MALjrrrtw66234uGHH8asWbPwk5/8BABw00034dZbb8WKFSsQCASwfv36iT7FKYtTrbkQoigg4JGQLFIqzeFwOLkQOpoGieOAeg6XVZNC53b9vc8XfXxrkwcel2SXQTu7yeuR4+29my5M53MDeLiMc5wji8XLxtyKOK3GF3M4nImBGxmOTVuzF6IASKIARRIgiQIIWM/NdJPa53A4EwPXLuPYrLqgHY9sPYBkSodhmhAFAV6fgusvW8ANC4fDGRPck+HYLGwP4frLFqQ70N2sA50bGA6HMw64J8PJgnegczicasI9GQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRobD4XA4NYM3Y+YgCKTk79OJ6XxuwPQ+P35uU5fpfn65cKl/DofD4dQMHi7jcDgcTs3gRobD4XA4NYMbGQ6Hw+HUDG5kOBwOh1MzuJHhcDgcTs3gRub/3979x1Rd/XEcfyJcuAxahXXVST/XqCxDW79uV0SlYQZXFLbKH2TLpmwu1P6hzF0WqeE0SSjcWs4/yCaZOZiZaN5UQguzBiOyzK4mehWEuGoIXLjv/nDdvpBaxr18vuj78dc9H+7nntfhDt73nM/u+SillAoaLTJKKaWCRouMUkqpoNEio5RSKmi0yFzG8uXLeeWVV4yOEXBOp5P09HQmTZrEkiVLjI4TUGVlZaSkpJCSksLy5cuNjhMQ586dIzU1lYaGBgD27t2L3W4nOTmZgoICg9P1Te+xlZaWkpqait1u59VXX6Wzs9PghH3Te3x/+uCDD8jMzDQoVf/SInMJ+/btY/PmzUbHCLhjx46Rm5tLcXEx5eXl1NfXs3v3bqNjBcT58+dZunQpJSUllJWV8c0337B3716jY/VJTU0N06ZN48iRIwC0t7ezaNEiiouL2bp1K3V1dQP2/es9NpfLxdq1a9mwYQPl5eX4fD4+/PBDY0P2Qe/x/ennn3/mvffeMyaUAbTIXERraysFBQVkZWUZHSXgduzYwVNPPcXQoUMxmUwUFBQQHx9vdKyA6O7uxufzcf78ebq6uujq6iIiIsLoWH3y0UcfkZubi8ViAaC2tpbbbruNW265hbCwMOx2O9u2bTM45X/Te2zh4eHk5uYSHR1NSEgIcXFxnDhxwuCU/13v8QF0dnbicDjIzs42MFn/0l2YL8LhcLBw4ULcbrfRUQLu6NGjmEwmsrKycLvdjBs3jgULFhgdKyCio6OZP38+kyZNIjIykocffpgHH3zQ6Fh9snTp0h7txsZGbr75Zn/bYrFw6tSp/o4VEL3HNnz4cIYPHw5AS0sL69ev58033zQiWkD0Hh/AW2+9RUZGBrGxsQYkMobOZHrZuHEjw4YNw2q1Gh0lKLq7u9m3bx/Lli2jtLSU2traq2ZZ8ODBg2zatIkvvviCyspKBg0axNq1a42OFVA+n4+QkL+2iheRHu2rwalTp5g1axYZGRk8+uijRscJmKqqKtxuNxkZGUZH6VdaZHrZunUrVVVVpKWlUVhYiNPpZNmyZUbHCpibbroJq9VKTEwMZrOZJ554gtraWqNjBcSXX36J1Wpl8ODBhIeHk56eTnV1tdGxAmro0KE0NTX5201NTT2WYwa6w4cP8+yzzzJ16lTmzZtndJyA2rJlC4cOHSItLY3FixdTV1d31awiXI4ul/Wybt06/+NPPvmE6upqFi1aZGCiwBo/fjw5OTmcOXOGqKgoKisrSUpKMjpWQNxzzz2sWLGCtrY2IiMjcTqdjBw50uhYARUfH4/L5eLo0aPExsayZcuWq+aT8blz55g9ezYLFixgypQpRscJuP9d+vv666955513ePvtt40L1E+0yFxj4uPjefHFF5k+fTperxebzXbV/JMaM2YM9fX1pKenYzKZGDlyJHPmzDE6VkBFRESQn5/PSy+9REdHB4mJiTz55JNGxwqIjz/+mNOnT7Nu3Tr/h70JEyYwf/58g5OpvtA7YyqllAoavSajlFIqaLTIKKWUChotMkoppYJGi4xSSqmg0SKjlFIqaLTIqAHn7rvvpqWlpcexbdu2Gb6rbVFREXl5eYZmuJSNGzeyfv16o2Ooa5AWGaWuAQcOHKC9vd3oGOoapF/GVFedoqIijh8/TlNTE8ePH2fIkCGsWLHCv5lkXl4ebrcbr9dLSkoKWVlZNDQ0MGvWLGw2G3V1dXR3d5OdnU1paSm//PIL999/P6tWreLEiRNkZmaSkJBATU0NIoLD4eChhx7qkeHQoUPk5eXR2tpKSEgIL7zwAlOmTGHx4sUMHjyYhQsXAhfuf7N9+3aee+45Vq1axbBhw3C5XERGRjJnzhxKSkpwuVwkJyf7d55wOp2sWbMGr9eL2WwmJyeH0aNHX3LcNTU1OJ1OqqqqMJvNzJgxo9/fE3UNE6UGmLi4OGlubu5x7LPPPpOZM2eKiEhhYaEkJSXJ2bNnRURk7ty5snr1ahERyczMlJ07d4qISHt7u2RmZsqnn34qx44dk7i4OPn8889FRMThcMj48ePl7Nmz0t7eLjabTQ4cOOB/Xnl5uYiI7Nq1S2w2m3R2dkphYaG8/vrr4vV6JSkpSSoqKkRE5OTJk5KQkCDffvut1NfXi81mE6/XKyIi06dPlz179shXX30l9957r3z//fciIjJ79mx55plnpKOjQ5qbm+W+++6TkydPisvlktTUVGlpaRERkZ9++klsNpv8/vvvlx13Tk6OvP/++0F4N5S6PJ3JqAHnYrsO+3w+Bg36a/X3kUceITo6GoARI0bg8Xhoa2tj//79eDweVq9eDUBbWxsHDx7kgQcewGQyMWHCBABuvfVWRo8e7X8Ni8WCx+PBYrFw/fXXY7fbAUhMTCQ0NJQff/zR3/eRI0fo6OggOTkZgCFDhpCcnExlZSXZ2dnExsaya9cu7rjjDhobGxkzZgzV1dXExsYyYsQIf//XXXcd4eHhxMTEEBUVhcfjYf/+/TQ2NvL888/3+H38+uuvlxy3UkbSIqMGnBtvvJHW1lZiYmL8x5qbm7nhhhv8bbPZ7H8cEhKCiODz+RARNmzYQGRkJHDhviURERH89ttvmEymHgXMZDJdtP/Q0NAebZ/P1+NYd3f33wqhiNDV1QXAjBkz2LRpE7fffjtPP/20/7nh4eE9zgkL+/ufp8/nw2q19thY0e12Y7FY2LFjx0XHrZSR9MK/GnDGjh1LSUkJPp8PAI/Hw+bNm0lMTLzsedHR0YwaNcq/+eKZM2eYNm0aO3fuvKL+W1pa2LNnD3Dh+ojJZCIuLs7/8zvvvJOwsDC2b98OXLg/SkVFBY8//jgAEydO5IcffqCiouKKNye1Wq1UVVVx+PBhAHbv3s3kyZP/8aJ+aGiov8gp1Z90JqMGnNdee438/HxSU1P9M4i0tDSmTp36j+euXLmSN954A7vdTmdnJ6mpqUyePJmGhoZ/3X9ERARlZWWsXLkSs9nMu+++22MmYzKZKC4uZsmSJRQVFdHd3c28efN47LHHgAszlokTJ3L69Okes7F/46677iIvL4+XX34ZESEsLIw1a9YQFRV12fPGjh1Lfn4+AHPnzr2iPpXqC92FWakr0NDQgN1u57vvvvvPr9HW1sbMmTNxOByMGjUqcOGU+j+ky2VK9aPKykrGjRtHQkKCFhh1TdCZjFJKqaDRmYxSSqmg0SKjlFIqaLTIKKWUChotMkoppYJGi4xSSqmg0SKjlFIqaP4A4GwrZlKpkMgAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 406.975x360 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.lmplot(x='Unemployment',y='Weekly_Sales',data=clean_data2,hue='Type')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 54,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<seaborn.axisgrid.FacetGrid at 0x2156ca66a00>"
-                        ]
-                    },
-                    "execution_count": 54,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAFqCAYAAADIoyd5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADmMElEQVR4nOy9e5gdVZU2/u66nFtf0+lLLhAuQQzCAINBUDABRiAQgoo4gwH8eRtwvhll/EaQ24OiMCpGZVRwdEbmm+HySIyaMBIijhARkJgAQwwkINHQSTpJ3/v0udZt//7Ytevsqtp1+pykTyfp1Ps80Onqc+rsqrNrr73Wete7CKWUIkaMGDFixGgAlIM9gBgxYsSIMX0RG5kYMWLEiNEwxEYmRowYMWI0DLGRiREjRowYDUNsZGLEiBEjRsMQG5kYMWLEiNEwaAd7AIcahoZycJzDn9U9Y0YGIyOFgz2MhiK+xsMf0/36gPqusaurpcGjmXrEnsw0haapB3sIDUd8jYc/pvv1AUfGNVZDbGRixIgRI0bDEBuZGDFixIjRMDTUyPzLv/wLLr30UixduhT/8R//AQB4/vnnsWzZMlx00UX49re/7b1269atuOKKK3DxxRfjtttug2VZAIC+vj5cffXVWLJkCf7u7/4O+XweAJDNZnHdddfhkksuwdVXX42BgQEAgGEYuPHGG3HJJZfggx/8ILZv397IS4wRI0aMGFXQMCPz+9//Hi+88AIee+wx/PSnP8WDDz6Ibdu24dZbb8X999+PtWvXYsuWLfjNb34DALjxxhtxxx134Je//CUopVi5ciUA4M4778Ty5cuxbt06nHLKKbj//vsBAPfeey8WLlyIJ554Ah/+8Idx9913AwAefPBBpNNpPPHEE7j11ltxyy23NOoSY8SIESPGBGiYkXnXu96F//qv/4KmaRgaGoJt28hmszjmmGNw9NFHQ9M0LFu2DOvWrcPu3btRKpVw+umnAwCuuOIKrFu3DqZpYuPGjbj44ot9xwFg/fr1WLZsGQDgsssuwzPPPAPTNLF+/XpcfvnlAIAzzzwTw8PD6Ovra9RlxogRI0aMKmgohVnXdXznO9/BAw88gCVLlqC/vx9dXV3e37u7u7Fv377Q8a6uLuzbtw8jIyNobm6Gpmm+4wB879E0Dc3NzRgeHpaea+/evZgzZ05NY545s/mAr/tQwXSkQwYRX+Phj+l+fcCRcY1RaHidzGc/+1n87d/+LT796U9jx44dIIR4f6OUghACx3Gkx/lPEcHfxfcoihJ6Dz9eK6ZLnUxXVwsGBsYP9jAaivgaD39M9+sD6rvG6WiMGhYu2759O7Zu3QoASKfTuOiii7BhwwYvQQ8AAwMD6O7uxqxZs3zHBwcH0d3djY6ODoyPj8O2bd/rAeYFDQ4OAgAsy0I+n0d7ezt6enrQ398fOleMGDFixJh6NMzI7Nq1C7fffjsMw4BhGPj1r3+Nq666Cn/+85/x1ltvwbZt/OIXv8CiRYswd+5cJJNJvPjiiwCANWvWYNGiRdB1HQsXLsTatWsBAKtXr8aiRYsAAIsXL8bq1asBAGvXrsXChQuh6zoWL16MNWvWAAA2bdqEZDJZc6gsRowYMWJMLkgjO2N+97vfxRNPPAFVVXHRRRfhM5/5DH73u9/hq1/9KsrlMhYvXoxbbrkFhBBs27YNt99+O3K5HE4++WR89atfRSKRwO7du3HzzTdjaGgIs2fPxre+9S20tbVhdHQUN998M3bu3ImWlhasWLECRx11FMrlMu644w5s2bIFiUQCd911F04++eSaxzzZ4bLN2wexbkMvBsdK6GxLYclZ83Dq/M5JO38U4jDE9MB0v8bpfn1AHC5rqJE5HDGZRmbz9kE8/Ks3oKoKEpoCw3Jg2w6uvvDEhhua+OGdHpju1zjdrw+IjUxc8d9ArNvQC1VVkNRVEEKQ1FWoqoJ1G3oP9tBixIgRY0oQG5kGYnCshITmv8UJTcHgWOkgjShGjBgxphaxkWkgOttSMCzHd8ywHHS2pQ7SiGLEiBFjahEbmQZiyVnzYNsOyqYNSinKpg3bdrDkrHkHe2gxYsSIMSWIm5Y1EDy5fzDYZTFixIhxKCA2Mg3GqfM7Y6MSI0aMIxZxuCxGjBgxYjQMsZGJESNGjBgNQ2xkYsSIESNGwxAbmRgxYsSI0TDERiZGjBgxYjQMsZGJESNGjBgNQ2xkYsSIESNGwxAbmRgxYsSI0TDERiZGjBgxYjQMsZGJESNGjBgNQ2xkYsSIESNGwxAbmRgxYsSI0TDERiZGjBgxYjQMsZGJESNGjBgNQ2xkYsSIESNGwxAbmRgxYsSI0TDERiZGjBgxYjQMsZGJESNGjBgNQ2xkYsSIESNGwxAbmRgxYsSI0TDERiZGjBgxYjQMsZGJESNGjBgNQ2xkYsSIESNGwxAbmRgxYsSI0TDERiZGjBgxYjQMsZGJESNGjBgNQ2xkYsSIESNGwxAbmRgxYsSI0TDERiZGjBgxYjQMsZGJESNGjBgNQ2xkYsSIESNGwxAbmRgxYsSI0TDERiZGjBgxYjQMsZGJESNGjBgNg3awBxAjRowYRxI2bx/Eug29GBwrobMthSVnzcOp8zsP9rAahtjIxIgRI8YUYfP2QTz8qzegqgoyKQ2jeQMP/+oNAJi2hiYOl8WIESPGFGHdhl6oqoKkroIQgqSuQlUVrNvQe7CH1jDERiZGjBgxpgiDYyUkNP+ym9AUDI6VDtKIGo/YyMSIESPGFKGzLQXDcnzHDMtBZ1vqII2o8YiNTIwYMWJMEZacNQ+27aBs2qCUomzasG0HS86ad7CH1jDEif8YMWLEmCLw5H7MLosRI0aMGA3BqfM7p7VRCaKh4bLvfe97WLp0KZYuXYp77rkHAHDLLbfgoosuwvvf/368//3vx69+9SsAwNatW3HFFVfg4osvxm233QbLsgAAfX19uPrqq7FkyRL83d/9HfL5PAAgm83iuuuuwyWXXIKrr74aAwMDAADDMHDjjTfikksuwQc/+EFs3769kZcYI0aMGDGqoGFG5vnnn8ezzz6Ln//851i9ejVeffVV/OpXv8KWLVvw0EMPYc2aNVizZg0uvPBCAMCNN96IO+64A7/85S9BKcXKlSsBAHfeeSeWL1+OdevW4ZRTTsH9998PALj33nuxcOFCPPHEE/jwhz+Mu+++GwDw4IMPIp1O44knnsCtt96KW265pVGXGCNGjBgxJkDDjExXVxduvvlmJBIJ6LqO+fPno6+vD319fbj11luxbNkyfOc734HjONi9ezdKpRJOP/10AMAVV1yBdevWwTRNbNy4ERdffLHvOACsX78ey5YtAwBcdtlleOaZZ2CaJtavX4/LL78cAHDmmWdieHgYfX19jbrMGDFixIhRBQ0zMm9729s8o7Fjxw488cQTeO9734uzzz4b//zP/4yVK1di06ZNWLVqFfr7+9HV1eW9t6urC/v27cPIyAiam5uhaZrvOADfezRNQ3NzM4aHh6Xn2rt3b6MuM0aMGDFiVEHDE/9//OMfcf311+Omm27C8ccfj/vuu8/727XXXovVq1dj/vz5IIR4xymlIIR4P0UEfxffoyhK6D38eK2YObO55tce6ujqajnYQ2g44ms8/DHdrw84Mq4xCg01Mi+++CI++9nP4tZbb8XSpUvx+uuvY8eOHV74i1IKTdMwa9YsL3EPAIODg+ju7kZHRwfGx8dh2zZUVcXAwAC6u7sBAN3d3RgcHMSsWbNgWRby+Tza29vR09OD/v5+zJs3z3euWjE0lIPj0Em8CwcHXV0tGBgYP9jDaCjiazz8Md2vD6jvGqejMWpYuGzPnj34+7//e6xYsQJLly4FwIzKP//zP2NsbAymaeLRRx/FhRdeiLlz5yKZTOLFF18EAKxZswaLFi2CrutYuHAh1q5dCwBYvXo1Fi1aBABYvHgxVq9eDQBYu3YtFi5cCF3XsXjxYqxZswYAsGnTJiSTScyZM6dRlxkjRowYMaqAUEobsm2/66678NOf/tTzKADgqquuguM4ePjhh2FZFi666CJ8/vOfBwBs27YNt99+O3K5HE4++WR89atfRSKRwO7du3HzzTdjaGgIs2fPxre+9S20tbVhdHQUN998M3bu3ImWlhasWLECRx11FMrlMu644w5s2bIFiUQCd911F04++eSaxx17MocP4ms8/DHdrw8IX2M1qf/p6Mk0zMgcroiNzOGD+BoPf0z36wP81yhK/Sc0BYblwLYdXH3hiTh1fue0NDKxdlmMGDFiTBFiqf8YMWLEiNEwHIlS/7F2WYwYRxCOtNa/hxo621LYO1xA0bBhWQ40TUE6oWJWR+ZgD61hiD2ZGDGOEPB8wGje8LX+3bx98GAP7YjBgnntGMsbKBs2bIeibNgYyxtYMK/9YA+tYYiNTIwYRwiOxHzAoYZNr7N6QF4uTgLHpyPicFmMGEcIBsdKyKT8j/x0zwfsLxoVVtw3XIBCCFS1okpiOxT7hgsHfO5DFbEnEyPGEYIjsfXv/qCxYUWCoDIW+10ulzUdEBuZGDGOEByJrX/3B40MK/bMSMFxKAzL8f5zHIqeGdPX0MdGJkaMIwSnzu/E1ReeiPamBAolC+1NCa8IMEYFjaQZL1zQjWCtt0PZ8emKOCcTI8YRhCOt9e/+oLMthdG8gaSuescmK6y4rXcUmaSKomGDUhYqSydUbOsdxeUHfPZDE7EnEyNGjBgCGhlW3D2YR9lyoCoEukqgKgRly8HuwfwkjPzQROzJxIgRI4YA7uk1gl1m2xSggKKwRD8BY5fZ9uGvlxiF2MjEiBEjRgCNCitqKkHZpHAogULg5mcoNHX6sstiIxMjRowYATSqTmZOZxP2jRRRLFuwbAeaqiCdTKJnRnoSRn1oIs7JxIgRI4aARtbJLDlrHjSVoL0liTmdTWhvSUJTybSmkcdGJkaMGDEENLJO5kikkcfhshgxYsQQ0Gj5nSONRh57MjFixIghIJbfmVzEnkyMGDFiCFhy1jw8/Ks3UAZ8LZKj8iZxj57qiI1MjBgxYgiop06GkwRUVfGRBMTzHOmIjUyMmhHv2GIcKag1byKSBAAgqasou8fjZ4MhNjIxakK8Y4sRI4y4R8/EiBP/MWpC3FUxRowwYpLAxIiNTIya0Ej58xgxDlfEPXomRhwui1ETGil/HuPIA8/vDecMdDQnDtv8XiPFNKcLYiMToybUS+uMESMKYn6vJX1o5vdiksvkITYyMWpCvGOLMVmQ5fcOJUbW5u2DeGDtNpTKFmzHQTZv4IG12/CJSxeExrc/hJgjzYDFRiZGzTjS5DBiNAaHOiNr1frtyBcNEKJAVRQ4FMgXDaxavz00/+ulMB+JLM048R8jRowpxaHOyNo3XIDjALbjsLCw48Bx2PEg6iXEHIkszdjIxIgRY0pxqDOybIeCAqBus0rKmlnCdsLdK+s1mEciSzM2MjFixJhSiHL3ueKhJ3evC0aARBznqNdgHupeXCMQ52RixIgx5eD5va6uFgwMjB/s4fiQ1FVmCFwPhoD9T6Tvc9RLiDkSWZqxkYkRI0YkjjQmFMBaJO8ayKFQskApQAiQSWmY09kkfX09hJgjkaUZG5mDhMl4eGXnADAtitxiHHwciUwoAFgwrx1v7BoFIQS6AjgUKJQtLJjXPinnP9JYmrGROQiYjIdXdo4HHt8KEIJMSjtki9xiHD44UhWGt/WOojWTQNGwYVkONE1BOqFiW+8oLj/YgzsMESf+DwImg8YoO0fJsFEqW0cUPTJG43AkMqEAdt2tTQnM6sjgqO5mzOrIoLUpMe2vu1GIjcxBwGQ8vLJz2A6F7fiZK0fCohCjMTgSmVDAkXvdjUIcLjsImAyxSdk5VIXAT7qMH44Y+49GMqEOZYHMybruQ/kapxKxkTkImIxJLDtHKqEChKBs2tBUMulFbkci0+hIRqOYUIe6QOZkXLdf/4xiNFuK1D+b7oiNzEHAZExi2TmuuuAE79hIzsCMSdw9HalMoyMdjWBCNVogczI2Qwd63aL+maYS2E60/tl0R2xkGoyoCT8ZD2/UORpR5HakMo1iTD4aKZB5qGyGmM4ZgeJWciqEwqZEqn823REn/gP4wZot2Lx9cFLOxSf8aN7wTfjJOv9U4khlGsWYfDQysb5uQy8sm2J0vIy+wTxGx8uwbHoQGJYEhASOcOmAIwyxJxNAtmhO2s5nOu3+O9tS2DdSRLFswbIdaKqCdFJDz4z0pJx/qvM9cX7p4EHMJ0527rBvMI98yQQhChRCYNkU2XwZtu1ULV6e7HnQMyOFvqECLFoR1VQIMGfm5DwvhxNiIxNAQqvUlhzoZKsWFqhnkTsUFkSvCtoNAZiWA8MqY/Fpsw/43FMd4jhUQiqHAxox98R84mTnDi2bqY0prsOgEMCmBCXDDhcvr90GUIpMWp/0ebBwQTdWP7vDd8yh7PiRhtjISDBZYaAoqnJKV2pe5A6VBbGRVdBT7fEdrh7mwfD2GjX3GiWQqaoEsACHUhAwgUsQVkMW/M6Hx0pwKEXZcnxzejLmwabXByKPX37u8Qd07sMNsZGRYLLiw1FUZc2txK9lkTsYC6JsMeNV0G3NlZgypXRSjPFUd0o81DszynAwNhuHozGe29mEvcOF0GYoXzRDOUXTdtyeMQ7zeGwH40UH9mD+gMexZ6iS4PeMXeD4kYI48R+AYU1efFjsm1EoVfpmlAy75iT6VCfco8gKqYTasGTtVFdYH44V3Qejo+LhSPZYctY86JqCGS1JzO1qwoyWJHRNQU9HJvSd85VfIQSEECiEABSw7XBzsnrhuA3OeK6fBI4fSYg9mQBa0zounMQGSjKacWdbb80V/5OhDlAPonavoJQ1Z8LkV39PdY+Nw7Gnx8HwvqZ67k0GomrQAIS+c+5imJZT6RsDRkY4UBBS6agJ6j9+KORYpxKxkQng+vef0vDdRj2L3FQviFGLWaFk4ZqLTmzIw3Hq/E7s2JPFkxt3oWRYSCU0XHTmUQ178A7Hnh4HY8E/HI0xUL2QUvzOTcPCSM4Af9wpGFGgNaMf8Bg6WlPSDUBzWj8kcqxTiYYame9973t44oknAACLFy/GTTfdhOeffx5f/epXUS6Xcckll+Bzn/scAGDr1q247bbbkM/nsXDhQtx5553QNA19fX248cYbMTQ0hOOOOw4rVqxAU1MTstksPv/5z2Pnzp3o6OjAvffei66uLhiGgdtuuw1btmxBKpXCihUrMH/+/EZeZt2oZ5Gr9tpG7IiqLWaN6oOxefsgntuyF63NCXRqLJT13Ja9OHZ2a0MNzeH0UB+MBf9wNMZ1gbBaFk1RoBDG/qLUQajAZT+Q0ivn5FAIUDJsKApBtmBOOtngUEXDjMzzzz+PZ599Fj//+c9BCMGnPvUp/OIXv8CKFSvw4IMPYvbs2bj++uvxm9/8BosXL8aNN96Iu+66C6effjpuvfVWrFy5EsuXL8edd96J5cuXY+nSpbjvvvtw//3348Ybb8S9996LhQsX4oc//CFWr16Nu+++G/feey8efPBBpNNpPPHEE9i4cSNuueUWrFy5suZx/2DNFpz1jp6Gf+H1dtObKtbZwVjMDscE81TjYC34h5sxjsLm7YN44PGtKBk2bIcimzdgWA5aMzoMy/Fqv1oyKZQM+4A/r2Q66GhNYrxowbYdT6dtcKwMu2iCAJNONjhUUZORyeVyaG5uxmuvvYY33ngDS5cuha5Xdym7urpw8803I5FIAADmz5+PHTt24JhjjsHRRx8NAFi2bBnWrVuHE044AaVSCaeffjoA4IorrsB3vvMdfPjDH8bGjRtx3333ecevueYa3HjjjVi/fj0efvhhAMBll12GL3/5yzBNE+vXr8cNN9wAADjzzDMxPDyMvr4+zJkzp6YbMpnFmEDj4q+NWpgPxmJ2OLK9gKmPrTdywZ/ueYJVT7+JfMkCIXA9DOZi5IomdF318iem5WBWR6auc8vuHY8IzOpIQNcUmJaDsml75ALFLeQhcFt0TALZ4FDFhEbmX/7lX9Db24t/+qd/wqc+9SmccMIJ2LhxI+6+++6q73vb297m/XvHjh144okncM0116Crq8s73t3djX379qG/v993vKurC/v27cPIyAiam5uhaZrvOADfezRNQ3NzM4aHh6Xn2rt3b81GJpPSkUyo+PXLfWhry+Bn69/EvuECejoyuOK8E7DwpJ6azgMAm7buw49//SY0jaCtOYFcycSPf/0m2toydZ1HhuGcgZa0BiK49ppKsHe4iG+v2rzfYwaAv+pqwV+dfdwBja8ezO5qxki2iJQQoisZFmZ3NaOrq6Xqeyf6e6PQyO82CH6Nm7buO6D5GIWpvBYZpuI73DdagkIARamw5RzHhkOBsuu52IYNw7Bx6TnH1TymTVv34T/XvY5CiSlhjBdM/Oe613HJe47FUxt3wnYcaJSwPk8USKdUlMq2l//h4bSErh60udxoTGhkfvOb3+Dhhx/Go48+iqVLl+K2227Dhz70oZo/4I9//COuv/563HTTTVBVFTt27PD+RikFIQSO4/gWS36c/xQR/F18j6Iooffw47XCshwohGBH3xjuX/W/UFUFKV3BwEgB96/6X1xdB/Ps0Se3AQRQFQWWTdlPYuPRJ7fhmM76dktBdDQnQrmTbN5AvmRiYKSAlrS2X2M+GPirv5yDB9ZuQ/9wEbbjQFUUpJIarlw8v2qh3mQX8tWDRn63Ivg1iuHR/Z2PUZiqa5Fhyr5DSuFQgAgyLzJ+DwXwzIs70d2arMmz+9GaPyCbL4MQBapC3FBcGc+8tAtX/dUJIVWDdRt6sWsgh0LJgkmZocmkNMzqSGNgYHxaGpqaVt90Oo3nn38eZ599NgDAMIyaTv7iiy/iYx/7GP7pn/4JH/zgBzFr1iwMDFQqYQcGBtDd3R06Pjg4iO7ubnR0dGB8fBy2bfteDzAvaHCQCU1aloV8Po/29nb09PSgv78/dK56wPIQ9IDrEqrVGWzePoh7HnkJN33/edzzyEt1i2YuOWseoxSbNiilKJs2cgUTTSnt8Gy/7D38JPD7oYmpriFpZJ3M4VgPUy96OjJwKHXlkByYwZoZAbsHCzUL2+4bLoBSwHbYeW2HFXiKasviTF4wrx2FsgVCCHSV1ecUyhYWzGufxKs9tDChkZkxYwa+9KUvYcuWLXjPe96DFStW1LRo79mzB3//93+PFStWYOnSpQCA0047DX/+85/x1ltvwbZt/OIXv8CiRYswd+5cJJNJvPjiiwCANWvWYNGiRdB1HQsXLsTatWsBAKtXr8aiRYsAMLba6tWrAQBr167FwoULoes6Fi9ejDVr1gAANm3ahGQyWXOoDKgUY2oqOeAHr7MthWzewN7hAnb157B3uIBs3kAqoR6wOrOs0DOVVN2QWQE79mSxd7gAy7IP+cVi3YZeZNI6Znc24ajuZszubEImrTfUOB6okZ/qgs5GGoKDUZzK7/8n7/7Vft3/erHw7SyEzhd8ceEnwn/8b7UadIdyVpr7Xvd326HeMy42Ztu0rR/phAZKKUybglKKdELDtt7Rhlz3oYAJw2Vf//rXsXLlSvzgBz9AOp0GIQRf//rXJzzxj370I5TLZXzta1/zjl111VX42te+hs985jMol8tYvHgxlixZAgBYsWIFbr/9duRyOZx88sn46Ec/CgD44he/iJtvvhnf//73MXv2bHzrW98CANxwww24+eabsXTpUrS0tGDFihUAgGuvvRZ33HEHli5dikQigXvuuaeuG8KLMddtqL1gMgpBUUnLcpC1bKgE0BPaASftg4ngO/79BewZLrrJTQLbdjAybmB2x6Gt/BqV+N89mMc9j7w06cnoyWDmTTULrxq1/ECT9lN9LQejM+a23lG0Nfm193guhhdiioanVoNOIPe4HRo2VGUAe4aLAFgIX3NzMiXDQt+RzC7r7OzEFVdcgddffx22beMjH/kIOjsnngi33347br/9dunfHnvssdCxBQsWYNWqVaHjc+fOxYMPPhg63t7ejn/9138NHU8mkzUZwSiIxZgH+uCxiZ305PF1jcnjZwsmZmcSvtdOyq6U8EdFcf9JAEwO77+RkC2g2byBUtkOeXvAodGCYapZeFGGYMG89gM2mFN9Lbzny3ihjMHREjSVIJ3UGkpZl2nv9Q3kYLqsLtFUJHV2f2vZYFar25YZKsehUJSwSrR1JLPL1q9fjy996UtQFAU//vGPsXTpUnzjG9/A+973vqkY30HDZDx4g2MltGR0tDZVDAqlFLmCIZ3EKV05oJ17ybDR0ZrCeMGEZVNoKpk03n+9qGd3LVtA8yULzRm9IbUzk0WZjqIUN6JvSdR8nCwq+1TWw4g9X1QFE/Z8mYxxyTYyuqbAtP3PBiHAGW/rxJt92Zo2mKpCQG0KuDIyRHCJZM+4ojAhs6BKtDoJUjaHKiY0Mvfddx9WrlyJ6667Dt3d3XjkkUfwhS98YdobGeDAH7yoEEdPRwZl0/ZN4kLRBAiBRbHfO1LeWEyEZdNJayxWK+oNR8kW0ELRREtA3qPRLRgmIwchu/YHHt8KEIJMSjsgr0w2Hx968o3DrsbI3/Ol0pq4bNqhgskHHt+KTyw96YANzZKz5uGBtdswPFbyGIy2Q9GU0mA51Fd9P5IzcPWFtUko9XRksGco7zZJq6gGzGhJeVp/YmO22R1p5EpWSCW63tqcwwkTGhnbtn2J/pNOOimSRjzd0KhY91UXnAjAv6hqCoHl0Lp2pMHxzWhOeDkgVQFMi05aY7F6sD+76+ACes8jL02KIZB9h0vOmocHHt/qLjgUqkKQSqi46oIT6r/YAGTXPuwu+DNakt6xyfLKGq1p1gjPQuz5osAtjCRA2XRg2dRXMJkvWVj19JuT42UFGIwOpa7h14WX1Ne+4srz5uOBtdtQKlsV+n0qgWsuOtHT4+sfYTVgF515FI6d3cpUzZPaYaUHdyCY0Mik02n09fV5hoUztqY7JiM5PJHwo3iem77/fF07Utn4tu/OIqWrsCmTq5jMxmL1YDLCUZORjI76Ds85ZZaQp3LTvpO0cZJdu+1QIJAgnixvo5FJ+0ZJF4k9X7jkSjqhYixneKQVgJkCBxT7Rg78PnEG44zWivHdM5jHWM7wGRnDcjz2Zy3Xfer8Tnzi0gXS8CjX45ud0pAvWZ4eX61e0nTBhEbmn/7pn/CJT3wCAwMD+Ju/+Rvs2LED3/3ud6dibAcVkxHrrib8yD+DT7RUHcnGqPE51IHtqJg1M+NJWUxWY7F6MBm768nIiUV9h09u3IWEroAoBHAIiJuInSzPItg0iy2c/iTwZHkbjUzaN0q6iBvGVFJDk7sA2zbLV1BRcx88z3HgSXGZ8W9t0jGcLaNs2v6mgoQ9OwciYimra+L37qblZ0xroxLEhEbmjDPOwMqVK/Hyyy/DcRycdtpp6OjomIqxHVRMxm486iFdtX47yqbt2ykVSpbnzteyI5WNT1MVmPbBb8Y1WbvrenNiwdBO32Ae7S1+rzuhKSiULZQtIhUpPNDwkIy2bjsUmaQaWswmK0TSqKR9ozTlRMMoVsOvWr8duwfzcCxa6e9CgNkzmw7o8wD5xkfTVMyZmUFzJuH7vn/0+FZWMImJRSyjvL2yYUvn3uBYCY89+6dQdGM6t2SONDJPPvmk9PimTZsAABdddFFjRnSIgCfROf1YUxn9uJ4ketRDumcwj+ZMAuOFsu/cqqIgmzNq6qkie2gyKR25oomyafuSjVMd7z0YIpuyh71o2FALpo/dZ7iyQTKRQsO0Dzg8JKOttyY1NCXV0GJ2qO9mozzSA2VBAsCOPVn07suhZNoYzxvYsSeLhW/vwu7BvK9gkqBSSHkgiMyPSmR5bJvWLGIZtZG0bEsamaCOg8ee3+HmTdkz+tjzOwBg2hqaSCMjq03hIIRMeyMT3JEyOYr6kuhRD6lD4ekdKYRx5EdzZVDKHgBCCCzbwVMv7Y7sqSJ7aDSVYOnZ87Ctd9S3QzwYi9lUS8TLHvamlIZcwUQyofoWllRCQdm04VAiiBRSWDYOODwURVsvlCx8efkZk3zVjYVsjk0GC/KxZ/+ENc/t8PLwhbKFNc/tQEdzIlQwuT85xWreaC0bH00lKBo05FHJOmYyr45iZLzsjbklrUFViZRdlitZnoEBAJUAtsNCuLGROcKwrXcUrRn5hD+2xpBK1O6JCenBV5BluQ8cbwXrOExnKYpZU+2huRxh4cHJYAkdym6+POaegO1QtDf5PYh1G3olXmoSuYI5KVJCh1vL4ijI5tj+sCCDeGJDr2dgvDbFFBgaNzCvp9lXMFlvTnEiskItY2xtSmC8aEqPB5HSFUFlAz6VjSvPDwtkfmfVZs/AcLBmZlbN13i4YcKczI4dO/DQQw+hUCiAUgrHcfDWW2/hxz/+8VSM76BBViFMKcXuwXxdzBMgbAh+9PhW5IombCvsfge1lfqGCpEGotaHZjJYQo89+6cpd/PrMYxRi/vczibcJPEgHv7VG2hvSfqMf8+MVF3kCxkO15bFUQjOsXpZkDKUTZY35E+WKOkyXjClIepa58KkkBUohUIIiFIZG/X+F0BAZYO9hKls8HsnbvhSCY3lYwU741B2fLqiJnbZKaecgpdffhlLly7F008/jZNPPnkqxnZQwDtjRi1ats1CH8WyBceV6q4mieHFng0LhZKFHXuySGhKzSLDDsUBG4jJePCe3LirLjf/QD2naoaRX9NwzkCHu0OsZ3GPMv4AQgV7qaRWV/3MwchHTSUmw1ML6oSJGMuXQyHqBUe3SefChlf34pXtwz7PejLICiXTwYyWBMaLli8EVjLDys1+lY2Ju2tedOZReOz5HV4kw6EABcVFZx5V8/gON0xoZPL5PO68807cfffdWLRoET760Y/immuumYqxHRTwzpjnnDILz23ZG1q0LNuGIXggDgXyJQtv7c2GzhW5+xeesGoPHEc9BoIv7uICPCkPnmHV7OZPhudUCzNPFFe8+sIT66o/kHmBm7cPwjQtmLbjquk6UM36wxhTnY+qB/Ua/+DrF8xrlz4X9XhqHS0JDI0bcFNhHlSFfc9Fw4btSu6lEype2T6M1uaEby4M5Mr43Wv9UBX/s9XREu2N1ir3I3a15CibNtol4TL+2h6hYj/qtUDF6z9Uw86NwIRGpr29HQBwzDHH4I9//CNOPfXUaV3xn9CYrPe23lGcMKcVG7YOsMpkQnDWSV3YsJX1vRHvAAVQNsOmImr3b1NaiUXXNKba8gRR6raphHrAYaBUQkOxbAGE+jSa0snwFJoMz6kaM29me7oh9Qernn4ThsUUALjxNyw6eRXnDUKU4YgyELUa/83bB33V7Nm8gb6hAi74yznY1ju6357atUsW4L6fbYYpbPZ1lVHwS4btk80vGax7ZWe7f64WXU8h+Gxl8wZSSS3kjZ59UndY7mftNoBSZNJ6qFi3VkO6P+HRY2e3Yl5Ps3f/eN3cdMWERuaYY47B3XffjQ9+8IO47bbbUCgUYFnTN0kFsMnSu28cb+yyWXMhhcChwIZt/Z7qalAenErMRdTu30YlvDuRJ0MgF9qTGYioAjBQ6jFd9nf3edr8DvzutX5vsHz8p80P10wNjpVACLBvvCyEEPRJSaADBJZlY2S87FWLt6S1ums3ZAvzvpHSpFScN0rkMeqzZF7jjj3ZkEF5/IVeNKd1ZFK1Gf9V67cjXzRcIUuFee1FA8/+Ye8BExnSqQRI2arI+iQ1FEqm93zx58JxNzSDo0UUXQNUyX34oRDAtB2kJA3wNm3rD4W5KQBdVTwVAH4/tvWO4pxTZkUqdYioNzzaKBWFQxkTGpkvfelLeOaZZ/COd7wDH/7wh/Hcc8/hy1/+8lSM7aBgYLSIXMFAyWAtoYM7JaCinipO5bQkcReV5BMRfFb4A8Q9BV1TUChZNeUJonb/hZKFay46MCmLnf25kEEk7vHwdauCaCCjaA9nS3UV1UXtEFszGkbGK/IjIpun1sV98/ZBqRCjI1p+F/VWnNe7iByoQZpI1UCsWrdsB4WSv26oWtiUdXf0y9JbDptn2byx3yKW6zb0IpPSMKMl6SlTlE0b2by84y6lQKFs+36XwaEAAQnJx5RNG7sHC765y5/DYLM23sdoKFuSKnVEGZqpzI8ebqhJu+ziiy8GpRSnnXYali1bhpaW6deHmsO2HWQLBhwK6FFeSOA9FPId/UVnHoU1z+3wscgIAVIJBbqmIFe0QjszMVRDASgKIlsTBxeoamExGQGhnkm9b6QEVSXeLh9gAoPSXb6nDUKFBSFi+xmBqB3iqvXbMZo3EOyZUzRqL6Rc9fSbyJeskBAj+x5oqH6mp6N24yj2ShEZUrJFZDJ2tZEbC4mqAaXhRbV62JSEDGxwcbYdCstmVHt+/RMZzKgxA2IyHL7fuecRfF5sh/oS6AldgW07IS868AQBkEcQgq3Xgf03BI3Kjx5uiDQy+/btwz/+4z/i05/+NM4991xce+21+OMf/whN0/Bv//ZvOOWUU6ZynFMGSikySQ2Fku02NPJPRYUQpBKKz3Xn8uBBHDu7FZoCX+xZU4DOtjQsh6KjtaIesGcwzzwVVfHV5RimI92ZSaVp3EI5wF8ANqM5IS1+A+qhH9OadaXqYedUQ5S0vaxnzui4gZntqZoWhqiwmONQNGcSIUXdK8+bX/OYxV4p3IvjvVKCmIxdbVRYUSEETrDPCQBQ1Cxv0zMjhV2DBUQFdMWQVt9QoWaZfr+aBvWalmkK85REcKOmKsSXC+bti5O66gtpbXp9ALsH8vxSYdu21wGTHwt65CHtsklovR6ZH9UVZF01iiNe6v9rX/saFi9ejHe961345S9/iT179uA3v/kNent78bWvfQ3/7//9vykc5tSBumwxLj0SBCEUne3p0ISXTcBVT78Jy65MagLAsoFiyYSiKr5QUCqhAoT1GxEnvONQ6YQXE+AAvJ+maSObM3zy4r7iN1R2hE9s6K3ZyPC+GbXs8uth51SDLJQksnnEUAsgv0/yhUFuMFWFSBV169m9+nulVDoflk07JMXSSLVqTQUMC6EcmqYiVJwadX1Hdze7RkaOYPhJ5h3KSBOimobYkiKT1JAvWt65va+HMI+FokI6IQAySQ3f+9wi37l/+0qfb1ziv4PeEAELR8uKdQ+01XVUfrRo2BgVNqS2wYzgeafPibzPhzsijcybb76Jb3/72wCA3/3ud3jf+96HTCaDBQsWYGBgYMoGONXgk9COCO04tPZEfN9QQTrhR3IGPnvlqb7JynMsss6HUQnw4KJq2w6GsmUvnFA0LPzy971e8Zs4BgC+4xMhqm+GbJdfjXFTV94kwGx6YO02XPCXczzmj+it9XRkav5eqhnMA6Ufi71SKgadomzSUCvpepW3ZYgKK/7wsddg2ZZkUdWkxakyvPTHwdovHKiZNLGtdxRpl61oWJVas7JhY2ZbMuQBj+XKvmgAZ2XO624KGe5swQoRA4iwy1NAoCiV8NoZb+sMRSEmo9V11Aaif7ggzDkGhQCbtvVPWxpzpJFR1crEf/nll3HDDTd4v093dpmIYAyXUtTM1Irq/+3Q6GSh7Jhswsuq0/kOWKSAFo36QlRAdDI6apcvk5uR1azwa6kpbxLBbNr0+oB3blGuI+o+yb6XagazntbJsteKvVL4QkmpjYQkLAZCYFv2AasDyOaSphKvxYDYsRGgNYtbBivzgepMSMehsAPehqqEX9c3mEfJsKAoCnSFEWpYvRWBpqkhD5gQBUB4Hv9xdxZdM9K+uWQ7jtRrVxWCZe85xjdPT5vfgTf7sqH5ePWFJ0rZZdt6R2sOb0aFMSllGxGtltzmNEGkkUmlUti7dy9yuRx27NiBd73rXQCA7du3T+vEf8Xdj/g7MClNh+rtAx+1YIsLVB15dQBywb96tZ+iCk4vf8+xoR3zPY+8VPNDKmM22ZRg33BBKtfBUcv3cur8Tpx8TLtbA8U8jZOPaQcQNoJRrZNlFGFeY/HW3iwM0y3oNG2AAh2t/lDhZLH+APlcmtPZFNJn01QNZdMJeVT8ngRRS6GwCB/92PU2OprDDQ6j2i+rCkGhaIY6llpCPkscky3RUIsar6YSXH7u8T5vIWo+rnr6TZQtJ8QuKxm2192UIyq8KXpDosfdyJ45hyoijcynP/1pfOADH4BlWbj22mvR1taGn/3sZ/jWt76FO+64YyrHOKVQ3ASjAupjuXB0tE5OV1BZYZhpWqxYU5I4jVp4xMVl71B0/FyGYA0PP189yeiogtO1L/SGCvbqy0GEmU3EXZSiUGuo67Fn/4QN2/pDNVBv7Bpj916k/Vo2VEUJtU5+cuOuUBV6GcCzf9iLkun4vEkAKJatUAfGzrbUAYfnoujYF5wxF31DBTgOdTUHKYqWg5aMXvN329GaxFC2XLOhkTHDUroSMoIOdQASbr+sKJB2LBWNF/8pGxOXawoWOhMCJASPgiO64LcgJZHYEfL9svDmqfM7pe2XN70+UHNuc7og0sicd955eOyxxzAyMoK3v/3tAFj1/ze/+U2cddZZAIBCoYBMZnqxIhRC0JTScMEZc/HLjTu9CmRGPVbx3lNn1xzy4R6GDMGFfGCkANthu5797W9e787TlAh0VjMEsh2zrOCUUgrDOrAcRM+MFPYMF+GIdUkUmNWRklJD61moowzjULYMVfXTfm0HcJxwLUXJsNCppULH9w0VoCiE5WZcmJaDfNFCc+bAmpbJ7v+qp99ErlgpYuSU4t9u3gPTsn0SOZSyRHdwzFFEg2svfjt+8NirvmfAl+uAf751tEryKQUz9LzYNrvnpk1hueoX6YQKgHj1Mxxi/YyMGSaCzS0Fhun4yDagQFtGD70+uuBXTiLRBPn+ib5HsSuu2H75nFNm4amXzQNiMB5uqFon093dje7ubu/3Cy64wPf3q6++Gj//+c8bM7KDhHndzTjrHT04dX4njp3dKk3E17rTv/TseVj97I7QZ2SSajhp765jssRpVGgt+PDWC4fSmmttUroiNa6aqrDQBhHPy8Z/IDmIK88/wbdDZ1XhKhYu6JZSQ4Haa0uqKTEEm1UBNOQ8MTagJm9KhUoLBw5NJTDtcMuBqLxOFBFCdv+Hxkqh0K5DXYOpAKpSyclYtoPh8bLUo5Lh1PmduP7yk33j69037hVGih+rKvJ8SqFkhyrtWWU+e4+qujkZ00ZSU6SLO7+fwcgCD8+Kc6k5rWPU5r2ahFyURAorKsHf05GRqkHP6WzCgnntNSkBrNvQ67VwHhwtQlUrrUIOlMF4uOGA9KVpvUmAwwDXv/8UOO5TG1WnUWvIJ0oMb1vvaCheLgN1GTCycEhrUyJk7HRN8RKf/IHOpFjND3VDEkE1geDCVSiaMG1WkCbGxWWfVwbrsTGULYXaFrQ2+XeO9eYgTp3fiU8sPamqkQ9qlwG15WSqKzH4izH52hRczC468yipvlVCkxvdTDLM6qqnGDOqyDMqdwjA82As4Tpsm9bVBjr4DNzxow0oDuYBKngKBJjRkozIp4QFZfmYdU2BZVPoGvHYZTLDPaezCfuG83ACWmdL331MKCTrr6Oqroocle/csSfr5RmDatDcO5lICWD3YF5o4Ux8LZwPZQHVRuCAjMx0FsqMQr1S58FkIwDg2T+Fum5y8KZl/OFVFSKtP8iXLMzt8sdxW5t0DGfL6O7IoMl10W3bwV8c18FyECJ9k1Cp4SiVLRglx93pV+Li2bwh7VleKJqhglMAUBS/4dyfHEQ9Rr6ePj9RcuszW5NwKHzGvyWTRFNKQ3NaDxkvmafLF6jguU+b3xFiddXjFfcN5lkjLSoUGQZvegCiARIZV7XWyUgR0WuFOg4sm/qa7mmq4hkYGUNNrHWirr6eLBx1XE8rdg/mfcPgj0zQcHe29daliixTwhAp1qZToVjL1KC5MnhwHogtnFmON7qF83TH9O2U0yAsOWuetOfI2Sd110wN3dY7ilRA0pxXO/MpyA0Nk7ggoTCabVO5Sz8zg+ZMItR+uacjTDN+9g97Q+GJYpkVNs7ubPaOld0CT9kuk6nkEmiqUAHuUIyOl5EvmiG9tVoVg6vJsHOKMBfITCfUuqRAojzMY2e34oG123zJctuhuPK8+TVrVvHfg1TZV3eMhLxRAFLDLfOKy6bty4dQ73/1QVHCCzNQu4ZalJrDyLhR0X5zURTaQMjyKfuGC76K/zmdTZ7xDdb8KMSf57Idiic2hMkl9agiRzEjdZXpvCmKAs3dKJQMFu4L5uFs20H/cAndHRnf5oZSVkjtOEILZ8gZndMdsZEJgDctq7q7C2iJmaaFp17uC9FcAXmeYPdgHmXL8emUWe4OJ5lQfXITYzlDSnkEgNFc2fu35e5sF592LC4/9/gQvVfmUW3rHQ15ZabtQFfDcXE1IulpOxQOpaCR5TjEG3QU7XfHniyeernPV3j5w8deg6aSkAz7CXNafdXiluUga9lI6eE8V7Wktux+bN4+GPpu6+aFS859x7+/gGyh0s7XdigMi4XWapUYqadwthooRWgzBNRev8QlYQgqtTCcEcnhGZNgvUpgLKbl+Cr+F582W2q4Swbz5E1baDMBSAtcq/UVCtZzlU1LSgCp3Gv/PVcICW20xnIGNMnmhm8eRdV2hQCtEgLCdEdsZALgTcsAuYFYt6E3pCW2ZzAPu2yFaK5R1FDRlQYqCWZC4FtgKGXeimxHpLpFbEEWTT2VwzKvjAC+xDBQaWMs22V+Z9XmyHWYuPEiohAoComk/T6xoReW7fgKLwtlC5pKQjLsr2wfRltT0tO9miieX0/1vOy7LZv2ASvkRkmzGJYDq2B4YVNuMM87fU6IQbc/CMqowM2H/Kkv61NRaE1rkV4gp+HyhXled5O0eyWHjGYsmx66SqCoTMySG9dtvaO4XPZaTfEVhorzTTZmWV8hmdfCVdVFEohHAJEi3DLDsp1QWQPPy7EIheI9q1EEhOmOCY2MZVnQNPnLpht9Gag0LYtaWGS9UtgCGTxPNO2XFWcF1X7DMCwH7U06hrk3A9eguDsunl/xJDMI6q8cDuzcExqB7ciTw7JdZrV9vm07HhV4vMjCBzLab9lkXp1YeAlUvDvxtSXDQlPaPx81lcCqg14ahSj69u7BfM2hUAChHXM1VAymA11jIc9N2/o9j48z6EQEw04ymRJW9Ed9Ff+8qNGh8Kko5IsmZrQkMDJe9oXAduzNCl4jW5i37RxDUlcAQnzeF9fjks2HppTm7+PibrBmBXIyUV5nc1pH2SyHzh9k8VXzXOW09fBoqxEpABLykjQCBCsBmEAp0N4SFnKNass8nTGhkTn//PNxxRVX4K//+q8xd+5c398efvjhhg3sYKLaZJX1SnEooIDHmCv5kaaUJtXf4gl3MZ/C3HcntLinUzraQUK5l5Hxskd75rs7mwKUOLjnkZdqqiGJ2rlzkc2JaJpA9WiSmEeyHQqCcLjBsBwv9DIRDIstxMPZkuv1wNer5srz5h8QNVRG6sjmDZTKds1V8rIdczW0ZHRffxdKqa8YkDPoNJV4Rle85Z1tKRim7ad6J1RccMZcXwhSdYkYvAYIqKgo2A4VevTA69HDO8IGF2bDcjCvp8U35mw+sBFy/0YIMLMt5SMJ7R0qwLL996WaACUhBK0Z3asHUsSTS84hgyzkxo11sF2ACL9HRkMbLc4QlNGgc0UT1HsngWk501ptOQoTGpmVK1fiJz/5Ca655hqceOKJ+MhHPoLFixdPW2YZb1oWORmkvVLYBDXdHQwPIVi2g5zACHIcB6ZtQFcJNJWgvSXpm5jve+csKSVTthCNjFdCFOJj4VBgNG/UVEMi88qSuoLxgonujkyIpgmEE/GZJG/LXAnL8PvCFwRe1Zx0e30EH8iOlgRG86av8JK/j7VAqCyezWnd3TVTUCoEC2l4AQBqb00clTTOlywkEwpGxyfuDwPUvmPmkBldWTFgJqn58joAu9fn/sUsKctNJCDwcZuW40ue83MwUPAePez7c1ULCA3lQoIbC04zzuaNkLFrbUqErjGdVJEvMm9ZlFyJEqBMJVRomuLbDGXzBsZyZfTuG68US+uKtJkfEB1yUxUSahfAvVAx1EgAqVcqVvaL5wAgbDb8oVCZ1t90FccEajAys2fPxmc/+1n8wz/8A5566il85StfwZe//GUsX74cH/3oR5FI7F+8+FAFb1oWJb0tY9cQMPomkyEJhxAAfzJ0NGfgMx/6Cyn9NUin9PfeqCxy1cJso+NlDI6WPNZO1IKYSqih3hslw4ZC4AudpBOqtH/Nw796A6fN78ALW/tDMiq6SmA7rEaD1+sc1dUszesAwP0/3+JTR1AVIKmx6m2REktRuf9i++WS6dTc0z6KgCBLGmdzZeRLVog6LOsPA8gLPaOw4Og29A0XQ0xFmaJ0ybChKoCm+Ykh23pHcfm5x0uNa7Cmo2RYrAYsQD9WFaZykSua3vfVnNaRLZgQL1M0LkGP+6oLTgRQm8aerilY+u552NY76mNBrtvQGyrcTCc1JLXw5qRs2CGKdtFwIpvxNac0lM1wSK+9Scc3/v7c0Osfe35HSLGZG4/gfX7qpd1uyJzAsh089dJutDYlpLnD377Sh5G8EWK0AfX0djq8UFPif/v27fjJT36CX/ziFzj99NNxxRVX4Le//S1uuOEGfP/732/0GKcUmqqgrSkZmYSU9UrZ2Z8Lqc2KVMVgMtSRWIcNr+71alnEyXfi3DZporWakbFs6oWSeMMs2c69WDJ9Dxz/t0PD+ZRs3kB3RyaUaN3Zn4Ou+uVzFACWw0ItuvuQFsoWFsxrjxTZDMrvcDkXVa3kFMqmBc1R0JTWMasj4esno5EwQyqqp30UAUGWNP67b64PqfqCIjIMJiv0VN38CEC8ENRZJ3XhrJNneVRmkc228O1doXYGlu2gKa35Chs1lUTm/WQ1OG3NSYzly6w4UFBR0DUFozmDyeG415gvRSutJzQiDadu3h5uDRC107/83ONxOeBjQf5gzRafajjvUeM4Di5+1zzfOUpl+fjWviDvkUQUBamEgpJw/lRCAQnUcwFssd83XMCGrQMwHf59dUvPG9VlldextTYlfHmnnfty7D4HGG1PbtxVt5G56667sHHjRgBsjZ47dy5SKebtPfroo96/DzYmNDIf+chHsHPnTnzoQx/CqlWrMGvWLABM2+zss89u+ACnGqwhGSJzMrKQClwxTQgL88h4xYuR2YLggvj6zlG2WybUoz8SAG/syqK1KRGiuY5KOnFyBNVtSxGtiUfzZkiPisN2ArFrCilFmHlCzMvwJZipW8/jXks19tCTG3dJ2+vysBm/JpuyvASvLOcLdpQige1QjBeMQHGlHqk7JvvOxUJZGjguW9yjCj0vP+fY0CJyzyMvSXNi23pHQ+0MTMPyvi9xjrU36dLvVqYY3JLRYdsstBVsaT08XgYcfxV/FAyLoqPNX/UOoKrXWEuVfNlkd1j8aAoWPQieo+AameBro7QCU7qCkXGWgOebBdOioI4jpXS/+tYo0ypzjfGrb41i8/ZBaZdV1rIboeelVtkhhfBWB/Xh9ttv9/59wQUXYMWKFfiLv/iLus/TaExoZJYvX44lS5ZA1/20VkVR8PTTTzdsYAcTE+k5BXdmzSkd40UTtk19DykT1Kska/ncSuhKaEH0Fnoh7MTf2dqUQFtzZWZSSqsamaBqAJywICfj8leWzSBjyVWh8S32sofGcamaQfkSAL46oLLlYPdgXu5RGZa/0DDCQyOEeYGm7XjCj4RQqDbBWN4ILapchBGgHkljOFuCrinSQtaeGenQ+AghIBJJHkBeW3L1hSfi8vccKy30lHXGBGiI1TU4Vgq1M7jjRxswnDNChiBXsjCjtXbF4DmdTaFizIo3FXHfxXnh/gx+XpR3WM1rDDMVw8QGwA3pBeZvLWP1/4F4EYRKVpU1EBwv+ok5CU2R9jJatX57aMy244TCdvxXHuIT805JnUnpBGWHJmIh1opCoYDFixdj5cqVOO644wAAH/vYx3DNNdfgf/7nf5BMJrFt2zYMDQ3hnHPOwe233w5d17F9+3bcfffdGB0dhW3buPbaa3HllVdOypgir+w//uM/vH8/9NBDob9//OMfR1PT9JOnNiy7KvVVFuveN1yQuisJTYGWUv2Kq0kNlIYTu9XHJEsOVxAyEMJPBcwoWZYdWswmgnhO3ZWQCWpTiQVnYkIVCLPLyhEeVTWGmr/DpGvsPMozCz8ZJtNaC94nXoEu9iNRCLsWWQhywdFt+MGaLZ5U/1C25BkWUWiSUmaYompLblp+hs9rieryqSuQeiezO9KhOpmhsaL0/vCiThH1KgZbtnuPBR6Fn1VVHdVUqaOO97m0cJEFyensUZ8hQlWI25LZj5kRm8OxvAGiAFxQWwwNByndWQchSj3vZRTchKiKAkeSn0vqirS5XpTskCzfsz/IZDL4wAc+gJ/85Ce46aab0Nvbix07duD888/H//zP/2Dz5s146KGHoOs6PvGJT+DRRx/FVVddhc9+9rO45557cPLJJ2N8fBx/8zd/gxNOOAGnn376AY8pcqV54403DvjkhyNa0zouvPDEqrRf2a6KQtjlEr6jkveMl7VUrgbZYsElzSnCi4AwDFCwHb2MogqEe4BEwbKZkQxqU4m5oeA5guwyO8KjqoZg/qAS/65oQrGwXLhQzmf8UDGCxbKN1kw4BPn7bf3SRDc3bqI0OyQbhaiQW1SXT4UokLG6SqYTUpouGU7kHItSDJaRLGTzmlL5bjy4eeEgBNg7XPDdu1RCk6oXyNSqxwsm63UfYEHqEUZGU8IbraSueGrQ3rjA2HYy2Daj0Ce0igvBN2tBYwK3MDp4zQ4Ne6+WxMAAzEjJmuvJZIcmm122fPlyXHPNNfjc5z6HRx99FFdeeaXX6fiDH/yg5xy8//3vx69//WucffbZ6O3txa233uqdo1Qq4bXXXmuskfnqV78KACgWi0in076//e///u8Bf/ChClGFWRbakYU4gswq/pBS6kQKQobzOnLoqiJtBbtvuIDfvdZf0zV5/P9AqCWpswVJXBjKEcViTG7DCiXiI54xAG6RpLfwJZErGNKFOQqqQnD8nFbf/b/vZ39gC6KwCHAjEGSGjWRLnlEUF2bHqT8EyYtuNVXBBX85RyrJExVmjeryadoOutrDisGj42U0uewuLhPveRWBOaYQGiEvJJdokdFno9obR208KGWUXFGl4MS5bXhj91hIveCsBd149a1RH4POdihSCTXEgiwbNloyGnJFy/Mgm9MagLBXZtoUCVWBIUzAZJW8X60F0CJNO9jLSFVISAmbCu8TczLVklpS0dxJxHHHHYe3v/3t+PWvf41f/OIXWLlypfc3bmwANucVRYFt22hpacGaNWu8vw0ODk5aB+QJYzb/5//8H1gWS0rZto1vf/vbuP766yflww9l8BDHn/qyGBkv4U99WTywdhsopRgaK8Nw6wEMYVHmE5RPNPbwhnHq/E6cc8osZHMGdvXnkM0ZaE5rrCeHSrw6GlUhaG3SvfDcUd3NaG1O4Lkte7FzII+mlBaqkgdYOIhL/ytCZ8EgVIVA11jXx7ldTaGcRvgxCVblE+/foWsHE3+c09mE9pYkNJV41FwRhhXWSuNoSoX3QExdl3reEf/Z05HBqfM7cdPyM3DP370HNy0/QwhvsffyFgj8c4PjqIbg/V8wrx2FkoU9g3ns6h/HnsE8CiUrIsxKpDtjAubZ9XRkMLerGT0dGagq83RYjs/xZOKjIF4fB6VMXigIXihaNm0fg3F/ks66xhZYXWNszN7+PNqakqHjOwfyME2LtY9w4P5kDKyywVhzZcPG6HgZDgWa0gnM62nBMbNaMK+nBU3pBOZ2NuHqC09Ee1MChZKF9qYEC5sG7kvJsNG7bxybtw/inkdewk3ffx73PPISNm8fxJzOJrQ2sXnoUOo1B2T30BVEpYzsMrMl4T5bxPXGGcVbVYBsvgzLruT4OFSFPbeqQkAUEqpHmmosX74c99xzD0499VT09PR4x5944gkYhoFyuYyf//znOP/883HcccchlUp5RmbPnj247LLLsGXLlkkZy4SB+be97W34v//3/+Izn/kMvvCFL6CtrW3aNSoTwQUyo0IcYmIP8P9bTHRTAKpKItWFg9x6lTKZGEsofEvpLORg0XCidd9wAbM7m3xFsb17x0MMm4pRCKvYymQyxN2/uDNjixkNVUwDcMNX/pxFUldDkvIASzIH8zpJnYRaBQAsrBKstBc7CzKqNvE6C4bb/Fa8NjFpn4goCo0KD/H7Lt7/Tdv6hdVd2P4i7AG3NrEC0uDOuKMlIR0HzzeIMvETBzT94a09w+EczpMbd4VYf/y7rRc9AY29sVwZne2pUNHwrv4ciKsawMcXVC6ofHw45BklafTJrz8lHVexLM/7nXPKLAxlS74C6ELRRMmwBRIJqx27dskCAOGanx8+9hoYiYR9lrixU1VlQpHTqcT555+P22+/HVdddZXveCqVwvLly5HNZnHxxRfjQx/6EBRFwf3334+7774b//7v/w7LsnDDDTfgne9856SMZUIjc+utt+IrX/kKPvCBD+DWW2/F1VdfPSkffKiCC2QOjZXYAx4IcTiU1aCIlEWvejgw0ZpTmrThmK6SkCovh2/HSwjGCmbIw2AhprBEiyIRzRTXQTGJDgLpbuuMt3Viw7b+UCFaUiMexRSohGs0BWgR9Ld4aKxnRlrapEvWwz1XkofoKMKLu9hZUEyoAuF4edl0oChu/gYV45/QValS730/2yw1dkGIfeCD9ONV67ejf6ToGfrBsRJUhWl1BTcQUYvZA49vxXjBrKoUEAQRfvKcWRAii4/Pjf2wLyFU7RTqbp5EEkj0pxKcMKcVG7YO+OqJ5Hkk+RnY5i6c9xNp4fxen31SN556aTdgwNv0cK9aFmpUVQLHoHAsv1gtwJq2BQ1jVJvwWtsq1IOnnvIb3c2bN2PmzJl4z3ve4zv+7ne/G5/85CdD71+wYAEefPDBAxpDFGpil82ZMwczZszASy+9BMNgceuPf/zjDRnQwQYXyOQPh4iKAWCuMYdls8Qp5RRJVzW5aNjSQq1qi4cY2imVbehamDVlWA56ZqSQLVq+WDelhFF6A8qvmqpAVQiKQq/2dEJFWyZcYzGULeGsBd14ZftwqPdMWZLUzqRY7YXj1tU4bgJ+wbx2aZOuaj3cJ/5u/Il18S7KCBkJt1OobJcpW0R0TYNph0NHwVAXr42ybccnydOS0bF3KHyPuBS+Nx5Fga6zR082joSugsIMnacagol6RQlvIAgIqOtNIfD6elFrp1Am1ImqdTccjkNZQTIh0BUWqtqwrR89HX8K5TCqjT2KkBG81/c88hLzFl0XnKuFRylktGV05AqmzwMjADpak1KvXdYmXNbW4oG12/CJSxdMWrfML3zhC/j973+Pb3/724eE/FfN7LL3vve90uPTDYOjRd/DEQxxaCpx47fEF/OvPNOVHfpojjO6Krs4p47HmsKNYUtCCGefMgu//H2v5+o7lGX1W5t0lE3Hp/yaKxiegYF7HUXDRtGwoetqaNc3kjPwvc8t8o3l8d+9FSqYJGAV2U1pXRgx27E/9dLuUC+YsmFLm3RVQ5DF1JzWpQ9vybCR1BUfISOZUJArOq7xp8z4U/h2meLCoKrhpDD3VIOLaltz0hPqFGtwqmF2Z4Xyz1sIAGFPpprRFb1UEJfK69ZnicE7kQZdodtSOHZ9hiVYrEsI8Paj2tDbnw+xo2QaaqvWb8eeofyECXfw8TvwFSSDyqvhm1Kq1AMmkFP+ZYQMf4vkirqFHejCyVEyw08vBUAICXnt9zzykrRN+BMbetkmhXKPk+kZympw9hdf//rXpce/9rWvTcr568WE7DKObDaL1tbWhg/oYMNy2GIxo0Wibptk6ra/3LgTJcP2FR+2NSd98eiyaWM8z6Q6gkyoekBpmDW15Kx5WPX0mzAsGop1jxdMJIQHjKtEA4EFCkxDLdjCOVqBmnlJwQXHcWjIO9kzmEfJcDBeNH2ekyzEN1HCPchiUgmgJ7TQw2uYBnJuCJICcAwbZd9aXcmb8GLaYpmJIA6NldC7L4d0QsG4JIk+syUR2qmuevpNl1lXezOxnfvGPVp3S0ZHoWiG6nLe2puF6SpHiAad3/dkQvV5TvmiiUJA0ZgCOLq7OVSb41CChOZXIk4n1BAVmENXgaXvPjbU5fPNvmxkBb9soRTHoUpkXIJj5ys5v+aCREKmvSWFXClsDGa2pWquD5L1darWIlkUpZ3ouMhCFTX2RIq2541RYM+QvOfQdMCEOZk///nP+Pu//3uMj49j1apV+NjHPobvfe97mD9//lSM7yCALcMpXcE1F4UXdwDQNdbulz80pu2EtMsSmuJO3iBtktYdppAJZ+4bKYW8JOKyrYIdB+EmwIPFdo4jD8XJdn2tGQ1DolQOZa0FCMLeSNBwUAoUyjZ0FbBtLbQANFfZleqa4uu1ki2YaFcVN0zFvTXdqxnyPtP9qZCwB/H475gHKL62ULZQinIgJDvVf11TP/OGExEcCozlzdDOnos8Amzh09zEP6XUa4kQ7F0PELQ3h2t+XvrjYKgRnEMp4DCWX7C7afD+sXuv4djZrZjX0+w9Azv7c5FFqEDYKzt1fmeoVuyNnaP7RTYQUTJsCf1bB6WQUv5lxk9Oa6aRLZJ5nkv8a1T+K6Ur2DNc9J7RoNQUf2/w3NMRExqZr3zlK7jtttvwjW98Az09Pbjmmmtwxx13TNteMqqiYEZLAqWIymNZXmHPYB7ZvImmdMWTMSwHszvSyBYtf8V/KoE5HWls2zlW03gIIO1Dzpvs2ajsSvk0dSiFbUXvVEWpGNmuT5ZPSad0kPGKii1/0BK6EjJUUbAdIl0Anv3DXnnyP/Csc/qprJ8MBaSEjOCzm9AUn4EREalqLamf2d92yL6FRfAwg3+nvHhVoV4tUjqphcJ2qkt3F8EWz3AjOOoarKC45VMv7WZGjPpDcZQ6oZxd/3ABHa1J3/fNG7tFtXAOIpOUbyqqIRj6SyVUWA4NGV1NIXjq5T6vkaBlO3jq5T6pVtqcziaJwjkjrcggauoFj0tfLBTash1e9JyZviamBiMzOjqKc845B9/4xjcAAFdffbWvuGc6wrIpmlOqlBkGIJRXaGtmoRTW+6QiH/OJS+XsoVVPv1nzWHgRYDBODUTLuQRzL1EgJByKWzCvHU+9tFt63S1u46hKoZwOCiCbM7zQU7U0o0OpVCwxKgxBKXw1Ccy4EPA+Mr5+Mu5PkZAhC8VNFJ4Dwou+7dCQ0a0W9tQUQPYxwYK9aptXT//MtJHSVU92JGigN23rF3bMfjWHIOWc5wGC9z+hq6AC25GHcBwaZmppKlNsFltdpBPMs5d5OLIWEfUaGCDMHCwUTW91F42uadKadce42G2wr1OUpNSMliSGsuG5GmR/AszT6mgNd8YcGJXn7ZJ67TJThxtqUmUrl8seS2FgYACOU9suLpfL4aqrrsK//uu/4qijjsItt9yCF1980VMQ+Id/+AdceOGF2Lp1K2677Tbk83ksXLgQd955JzRNQ19fH2688UYMDQ3huOOOw4oVK9DU1IRsNovPf/7z2LlzJzo6OnDvvfeiq6sLhmHgtttuw5YtW5BKpbBixYq6w3q8n4ztUBQkzDBNDecV+ELIUIn9A3L20HdWbY78/ExS8y0iq5/d4Z7Pd1ofqu2CqueASGh8d/z7C14HQoAtsJaXIyAhOfh0UvXFzCfakU0k1Cm5AuEamMhhR2sy1E+GLaz+0AdfzIPGfyLIRiPrjBkFHkYUzR8AX9GpLVRRBl+X1BWvKpxLkvAOjEEDQb0khl+aRhaKg/s5wfs/MCLPB5gSXbR0UsVY3vQ6W9qGDcO0XUMTZtsNjVbUC7hRqhfMI/FX2qeTGpqSKpoziQAN/Q9Mn4wIgq2Uqy74wed9rXTidEL1NiDihqpsWPiHbz/je255S5AeocU0L4J1XHdI9BprlZg6HFGTCvMnP/lJDA0N4Zvf/CYef/xxfOpTn5rwxK+88gpuv/127Nixwzu2ZcsWPPTQQ+ju7va99sYbb8Rdd92F008/HbfeeitWrlyJ5cuX484778Ty5cuxdOlS3Hfffbj//vtx44034t5778XChQvxwx/+EKtXr8bdd9+Ne++9Fw8++CDS6TSeeOIJbNy4EbfcckvdXhfvJzM6Xvb0isTdp2mFC8ZyBRMtGR1tzX5qblScOmrhJ0CI1bXmuR2Rr5+IrRM8dzDmrpBwGGL3YCG0yFZEBMOLWb5o+c450XDqkZUB/C0HmtMaSmXHqwVipFxGEZaFJhMJZrC592I7Dig16s6JKSS8MFeDz6sMXIsoirjg6Da8vmvMF4IhBLhEUmORK5pSAz00WkRzWmc7ZlohFeSKlnSHEVzkGa06+jqCG6pcqSKxLy60pkWlbDvHYeoFIoOrXijEn1y33OZ6hZKC4XHDl6v0RDMDm7KojUwUWUGGkulgZlsy0LCQIldixkMMZ5+1oBtD2VJIhXl2Rxr5si1VAD/U8cYbb2DZsmX4zne+g4svvrjm9024rbjyyitxww03YNmyZbAsC1/5ylewfPnyCU+8cuVKfPGLX/QMSrFYRF9fH2699VZvoI7jYPfu3SiVSp4Q2xVXXIF169bBNE1s3LjRuxh+HADWr1+PZcuWAQAuu+wyPPPMMzBNE+vXr8fllzPlojPPPBPDw8Po6+ur+WZwaCphCb3KZtMX3w9KXKSSqo9ZBlTi1DJpmqiYkiy2Wy38RAhBQlO8/6rBW8SE31NJze0rU9mlV1t8m9M6HMdxJf4dL1wmnjdqvGyRIcjmDewdLmBXfw57hwsT18hUkhTIFVgr5LF82W11TWFaDsbyZSxc0I1PXLoAx89pxYyWFI6f0wqF0JARNqtQeAkqmwnxWoI1J/UoaIvnprTC7DprQTduuvqdeP85xyLjdjrNJDW8/5xjcezsVu974TTtvsE8iiUT+4YL2D2Qw77hAqtPokCuaEJRFJdsorieqPwqTcup+f5TuDk70wal1F0oA4kkvvlyqfSWzeaHZfP2zQB1mICpadMJC0yD84dvImQom05IIieqLESv8zuTSdN0tqWgaazO6qjuZszqyHi5OdUlaTC2J8Er24e9dSJXZOvE1ReeiCvPP6FqXdkn7/5VXeOcSvz0pz/FkiVL8Oijj9b1vprCZUcffTTe9a534ZxzzkF/f22ijHfffbfv98HBQZx99tn44he/iJaWFlx//fVYtWoV3va2t6Grq8t7XVdXF/bt24eRkRE0NzdD0zTfcQDo7+/33qNpGpqbmzE8POw7zt+zd+9ezJkjb6Usg2HaGBwt+Xa7vpCHpkiLumRiiYbb0TAYH45a5WQPQvVw18SCf+F3VGCYNprSek19OgAgmxfi9jTwu+T1vt0uAXSNIFtgrWdFWjJfwynClF3BxgAASmUL1KlIo/DPkbUh/uTX5NIjQNgL5L93tfkZSzxcuG+44Nt51usNUQA9HWnP+32zL4vN2welYomyGgtFIRjLm67ytZCjAs//1O4hBGnh4r0Ihu1mtiSlJBVKK4ZT/I6CYUKfl4aJ5jPcWqWKpXAo9WmEhV7vTh7eYTLKiNXaEhtwdQsl+dgLzpiLp17a7ZNFYsKZ/vcrhDUhk6kwy1QvLJvilxt3uozVemZVBZu27sPP1r+JfcMF9HRkcMV5J2DhST0Tv7FGmKaJ//7v/8bDDz+Mq666Cr29vZg3T567CmJCI7N+/Xp86UtfgqIo+PGPf4ylS5fiG9/4Bt73vvfVNcijjz4a9913n/f7tddei9WrV2P+/Pm+qlRKqUfbDFarRlWvcjXR4Hv48XpA3f/EBLv4taeTOrq6/Oqkf3PRAvzgZ5thOyy0UHa3y5brujtOJT7MWWCyRS6V1ELnrjbl2ltSKJQsmBaj+BJCYVrhd2i8+l84RsB2gk0preaqYBrx70gIKw7zEghmCGNO6CyRmyuyeD1nQ3EatgyywxTAH3eN4n9e3o01z/wJxbKFdFKrOkZFIdAVMUfiuMWaFZl3QpjqA7XYTp01QXNg5g3oGvG1Qq7lVjS7RasJXUXJsPDrl/vwV2cfF3rtcM6AQoD+kaL33XLPRPSyKAis/ViUKIXXVrg5o6NQsgB3roqhYdt2qrIgg5/MaNeVe2o5rM+PorjGJrCBkMGh1N+VdYKpKc5dzsQLfh4hAFGU0LMVhZ//50bkSxbT+3MNSb5k4blXWedPQpjiAxHkisRx2JQinfKvE/zfv161Ga1NOrqF8NiOPVlYNoXu9gGqF5u27sMPfrYZmkZYfjJbxA9+thm44tRJMzS/+c1vMGfOHBx33HF43/veh0cffRQ33nhjTe+d0Mjcd999WLlyJa677jp0d3fjkUcewRe+8IW6jczrr7+OHTt2eOEvSik0TcOsWbMwMDDgvW5wcBDd3d3o6OjA+Pg4bNuGqqoYGBjwQm/d3d0YHBzErFmzYFkW8vk82tvb0dPTg/7+fs/C8nPVA0LgSbLIoKkEv37hz6E8y1V/dULo2Hd/+gevSZK36xPCb75dHwVaUpq346kFCmHMNr47HhorIZVQYJi2V/SXSWnIl6zQgsB/3ztUQLFsea+vhiBFWCHR94m9nvh2tIZpo3tG2lts2X2gMEwbSV11RS8nLtiTwXaAR375uvd7vlhdloW6i1lFtYGiJa1jZLzSzMwwHVcOhoAofmmasRqlcLzPg99wKoRgz0BOOpcSKsGeobxH0zYtB467eCoq8cbRltYxODZRhigMRSHQXIVhdp8I2pqD+nOalwcRp0V1x9p/T0V3VJz3HAlN8TaUthtSEzlF4vMS/ZGVF3ieras56M09sLkqu9eyfExff95n4LjRHRwpoWdmxhcaHxgpoFC2YQlkCwqKC98513uWRU9mz0AOmZTmmwvcUyPC/+vBz9a/CU0jXnfNVEJDCRZ+tv7NSTMyP/3pT3HZZZcBAC699FJ8/vOfxw033IBEIjHBO2swMrZt+xbqk046ab/0cCil+Od//mecffbZyGQyePTRR/HBD34Qc+fORTKZxIsvvoh3vvOdWLNmDRYtWgRd17Fw4UKsXbsWy5Ytw+rVq7FoEUuKL168GKtXr8anP/1prF27FgsXLoSu61i8eDHWrFmDhQsXYtOmTUgmk3WFygCW+K+Wwh4dL0W23Q0W7HE1XUjOpihwk6QV5eIJt20BBOnHhaKJ9pYk035yGS2UUuSKOe89wTBgvlRJ3E+8KfZThG1XriXqbomaYS1pDWM5U9rYaq6kwda23tG67kU90FUgnUqE6pda0xpUVfEWW11T4Jg2Y9Whstjobg+hKKMrq9aX6Z+ldEUuoKpV5mCFps2OzAoVY9YPW/SswcKYmkpCVN5qCNKxAYLWpkSo5qRQMiNrihxKWdM5vuPaDwQp6Z1tKVi2E5pjzSlN2p1UrhlGQ3prPOwXzMd1tqexZzDH2hg4XNSzG5efe7xUILOzLYVdAzkUSv6N3X5ePgDGnAt2uk3qKvoljLr9wdDQEH7729/i1VdfxX/913+xWqtsFr/61a+wdOnSCd8/oZFJp9Po6+vzDAtfvOvFggULcN111+EjH/kILMvCRRdd5FnGFStW4Pbbb0cul8PJJ5+Mj370owCAL37xi7j55pvx/e9/H7Nnz8a3vvUtAMANN9yAm2++GUuXLkVLSwtWrFgBgIXg7rjjDixduhSJRAL33HNP3ePkVb9RsCK6O8pE9SLapACAwKGvNKsayxuheoyofItCwsyYqNwQC1UhFA7hk1yWC/HlU8Bi5UHNNn6ffDF3YYzBBbE1QzGcMyqMH5f+et7pc0LX8rf3PL3f8emJ0NPRhCvPmx/a1T705Btoyei+nerugRwz1sFcSMCL4woI/N9UOM7+wanUlRYHuqZIBVQpDdO000mCfNEKFWNOFH6SgQbGKauXWnLWPHxn1R9YjxXJOYLtqBMRhiqq2yXAniPv+hJq1aZxURDnaTqp4dy/mIXntuxFKqn5xlEyHYwXWD6Uh7CjNMN6OjISvTXKutFKunyCKOjuSPnybY89+yc8t2VvSGNvZkuSMf9c8ClOUTG69aKnI4ORbNHzZAD2vHVPUruBNWvW4Oyzz8a///u/e8e++93veumTiUAolU/RXC6H5uZmvPzyy7jlllswMDCAE044ATt27MB3v/tdvOtd75qUCzjU8Km7n0Q2b6DEFYuFv/EbNa+nOZT7KZQs3PN3flntf/j2MyiWLcaw4btZytz57o60b7KO5crIFy3MbE/5Ho7xAmu9G0RLRse/fPa9vmO8lkJVFTS5YTLOZJEVkQGArhLftYgtabkR4iwyQoh/95/UkC8akSGzWTP98iWUMn2uYI3A3M7wot83mPe1Q5hMzGxJ4Bt/f27o+D2PvBSqAOehR031h/4IqDQ/xLqByld9cfefSqgwTMcnDQS4OQmbor2Fh6+o1znStGwUSrZPBh+AtENqlFSPDAlNwb9+/rzw/Xj4RWlOhm9axJDsUV3N0nbP9/1sCxy3vXOwKHTWzIxvnkYVKvLPlN3VY2ZV8h5l00Z7U0I6ju/+9A/epkU8l6oQ/NtN5/vOuXn7IH742Gu+AuN0UvOUplVVqYSoR0toSmuh8oVszkAyoYa+w7GcwUJ8wlzgK3DCzb39/B5Zb89oiDkZnhO2LIrrJykns2zZMnzuc5/DBRdc4B0bHh7G+eefj5/97GcT1iJGejLvfve78c53vhPnnXcevv71r2N0dBSO4+C0005DR0fHAQ/8UAWnYWqKnO5KIFd5TSXUkBeiqgSKuziJ8WFdJRgeK4Vc/aaU5lMRTidUKERBe7MWcv9lTZHE4jKx18qGV/dKFyLuzchyjcGiy9kdaSxc0I0nN+7ytSF+6qXdbDcHv+eTToablt33sz9Im6f1SSRJxhtkYACmMi3DgnnteGPXqJeTMS22OKYSCkuyC6G/obGytPZoIiYUfw/P96gSAVVCgLE8yw1xDbqSUfbOIcrgn7WgG0nd7y0kdQVmlXHwsfJXRHqMhCARIDjw9ymEQHfDhYWyhQXz2iM+ic2KYJiVUor2poRvnt77k+giZdkIgznEKEl/IKw7xq8jSjNMU1nImX9Hmkpw7OzWkNJ0vmjCdhz07hv31XMVDQtFw/IMqm3DpYJXogfidVDKQvWl/QiBLjypB7jiVPxs/ZvoHy6ge5LZZf/93/8dOtbR0YFXXnmlpvdHGpnf/OY3eOGFF/C73/0ODz30EBRFweLFi5FIJPCud70Luq5HvfWwh2mxxmSZpBrqwdLRkkS2YPpojKrKZkn/SNEXW2/L6F4fF9FAWLaDnKTlbaFkeXLzXHY8oRLomhZy/6OkL2S0yft/LhdzZCGfKNok8RVdFg1bKgnTmtF9eQyxuCyYo3LNmk/qhD9gwRCkF4Ij4R2w5tJcedJ4IpprEFFr6rbeUaR09p2LnSP5TtRjXTmVzULQozVtGhmClLd8CIcguRho0WAFfJqmwHblgWyHQlyGNmwdCHnFZdPGXkHVV+YFiCHOKMLH4FgJs2b6u6/uHSqgbNouC6zyXGza1u/t8sVcZVtzEiPjJek1vrFzDA6lGBgpYkbzXm9+1woSGDgXd5W1cahHd2zdhl5k0nqoId26Db24afkZPgN2433PYmjcT+0fL/ifbW8OuB8eVGLgv7Y2JzBb0nK8Fiw8qWdSKcuTicgr6ujowKWXXopLL70UALB79248//zz+MY3voG33noLL7/88pQNcirB55ztAE1pHa3N/hjzwgXdeOplXuDJdmllw/YUdvnuiFNPdU0JGYixiJ003yHycdgOBSGKNF5eT4c9/uAGQ38OZQWAQd2xSk+aSr5odNxAc0YPSXskdSItLpMZwdYm3Re243kMblRFSRIOUYqFGxPbpkwYNHBN9UB273YP5lEy/X13uJGh1PG8G8MqQ1dZaEP0Ar1aE8IUlDn4/Rfb/IJyJQF2/y1UwjKqypLobc0VAsdbe+WsQ4fSqioKwZ17EBTwhXpEdLalsHe44NskcbKB6JWVLQd9Q2wHHcxVapJrBICyQCNzKMXvXuvHUZ0Z7BoMJ6uj2J62Tb2W4/zenX1StzTBP6MliWF37onzZkZLMhSBGBwrIRNY7LmXFJw3Issw8h5HOYrC6wlhqgaDo+G22Yc7JjSbO3fuxFNPPYXnnnsOr732Gk4++WT89V//9VSM7aBDtriv29DL6jkUwnZnCoHjblyEHC8ANmkuP+fYkKihp0cmAY9zi7LjMvdfzL+IO8cde7LY1jvqY7RETX72edQ3boUw6RBxcWc9aShGx8veay3bRtmwUTYsaJoqnIEAhGDHnmzo3rGeMmEoCvHF4y2hP4rYMprScK6Bj0dBPeWIkLK6SmXbTzkXzq9pfgqzSoCRvOGxyYJSMbakhiZI421KacyLFLLXFBRtmUTNytYAMJwt+dhKmZQWGn81UMeRGt1g+NASvAyxloV/iEy7LG/YMC0r9GzI0DdUxAfODT8vjz33FgAa2iQFfxbKFp56aTfyJTNUAD2jJYWWJj+jUFUJTJuGdOlSCVXKghQb5vHXW1ziSPC4o1iGPDzd1sRkgMRnnVJ2/xSZa3WYIzLx/+1vfxtPPfUU8vk83vve9+L888/Hu9/97v1ilh1O+ORdT6J/pIikruD7/3Re6O//+J3fepOYTxDLlnsKANDVnvIlCidKcIoJd55QDYed5EyybN5ArmhiZlvKl1AtG7aXRK9mcESIhZHUjVPJwkwEQM/MTGgc2bzhUbg5m8q0bI/EIO4mq40nIcTFUwkVCV2VkgfqZVgxGRD4DJgYNgzeJzHBzIke5/5FuG3BsbNbfY3ISOBE4pg1RYFDnRCVfUZLCvmSWSGf7Mf1sR47tpTZFaQfE0LQ0ZoMzdOkriJfsnyh0FIVVW8Z6jb+N18QOvbJrz8VYj1yiF4bD/1yHTHxuEKApe8+xvd9pZOqrzMswMJipmFhJF9RpuDPwIymhNcwj4N7UrJxyAquNVVBU1qX3lNeN7Tqa5fVcccOfUR6Mj/4wQ9wwQUX4LrrrvN0xY4UcJFCGSw3n+BQx9cZE6gsIOJDYFqOT4GWJfOj8wKkxoTq4Bij0Yo7R8tmbZe5282poa0ZHZZNQ2wZWcdBjuDOPYpeGnzAAGDcVbF2PMUDFj4UF1jpzZKgIm5JcfzsFmzvy3rkAV8hX52rsMjqEnMksp40sjF1tqVCDb14UjiZ0OCgsgs2XH0t/h3xXf6AK18UVAweGiv5DOdElxbcSYMChRLrRS9uFrgRDapB8+8nOE9Hx8uY3dnko3RHhe2iwA2MbAMmg8yjSrtCp6JXILsnCgFshPMsPPcYzClG9cYZGrWQSWpMmcKpbPiyBQuzM/7iw9YmHWN5Uyp+GmTmORQ4fnYL3tg95iOXiH9XSZ27icMAkUZm3bp1ePrpp/HNb34TO3bswDnnnIPzzjsP5557Lpqbm6dyjFMKhRCc7RZTycDpmBziZBfXTv5LUIF2vMjkVBwnXEiWSaqwKXwP+rbeUcgIjamEit2DeYG9YnsPb9ndGVm2DdNiIaHrLn9H6OGtxuYR2WuU0qo1DLLWB0A4pOH9O2LxnGgh2rZzDATwsdMAefJWBPOGRNq1yXJHoL4dPQBfxTkfhKIgVJ+yYF67NFw5XjBg2tT3nTPGIoUmRL9890hyP9SAIa2WEOc1UOLvtsPyDWJhKXXp2D6D72IsL9SQuPVLBOHv1ve5mHCP4KHW18nu6WnzO7BhWz8UECjuJkC2qXCE++jAH2bVNaXm3jgOZRsyRVGguYajWGYZpfGCGSK5pBMKiobjETIWHN0GkErHUrEWqLc/j9aMv5MpLJvl8arQ3w9nRBqZY489Fh//+Mfx8Y9/HNlsFs888wx+9atf4atf/SqOP/54/Md//MdUjnPKMLM95YkXypLoClFA4Eh57npgMSsbjCMf7CGuEAVLzj7K57pT6qCzPR1iK7Fe4WEUS6ZvUQpOTT4ux2FyLvVImgdRbYFTFaBQ9LPtvDEIr6spN4DwwhU8B180HFSqxavt9FUFOH5Oa6jokt9XggrDJ51QvDCXNx4CnDi3Db39eV9YbFvvqLQo1zCpq3lW+c75FZUE418yooUpgTDjKyr5HWyQJrKVgoWlI9kSsgXTZ/wJAUggFMoNX9R3G/SceK5hMiC7pyM5o9LEzf0O5nU34fVdY765SQjw7nd049UdI16+TVUIUkl2vqjeOJzU4QmGgre38CsjKEqFWs69EE4tF/H6rjGkdAVdMzI+8galFLv6c+hsb0Zbc+ULLpRMDI2V0N6eRNN+sssOZdR0RX19fRgeHoZhGNB1vW7RycMJYzkDpuVIK/gBlz4rkYRJ6irm9bT4FrMHHt+KsmlKKMJh131orITxgulbFHhYRoaoWg/hIzxE7Y5E2ZsggtXp735Ht7TW5l0LuvHqW6PChwpGssrwQsaE+BfIamhKaSgZlaLEVFLFuLB4iqAUoZxWSn9TCG0w8N/bAxpemkq8ni8AC2GufaEXyYSKpK746ppa0hqou4OuRR272iaB9UWhVcNDQEVlIAhdVULJa8uyobrikWLeLxfRE8jhVsgbIfGS2cGK/5pdlQkgY8oNjpVCatWbtw/irUDuK6UrOOvkWQAYtZtvQE4+dgZGckao0Na0HWhqJYzJqeNjubKUZuzY1PNO+D21hRyV6DmVTCeink4LHVdVBXM6m9Cc1id+rg9DRBqZBx98EBs2bMDGjRvR1taGRYsW4corr8RZZ52FVEq+8E0H2I6D8aIJezAv/Xu1vuDBxSyhqwDCRYWG5aA1sGNrSmnI5g2vuIt7Q1ddcIJ0HGIi1Dvm/hQTu4qQewhi2XuOkTLddM2/sFSLR72xcxSZlOZrQburPxdpvGSLu6ooWPrueb6dKs8XBc+iEIJPLD0pVHB638/+wIxpIDchk3gvmQ6SOgtxcPCCxuDunxfZiTAsB6blgCvC8RDTkGEjoTPaeqFkeU3EohC1LusqKwT2XhcIyYrv5zTroPdHCA21VeCekKYGw0DyMfHCQaIQwCEgCkFKVVE2HZdBVdF9y+WNyAR/S4YZslpIDLKFWVb7kiuaaGtJoTuQtH9w3TaWtCf+otUT57aFvBDboWjN+OthqMuilIEAHrWcQ8xRBe8db24oNi276MyjQu0CUgkVJx87A69sH96vYsxDHVWLMRctWoTPf/7zOPbYY6dwSAcXihvgtiO2iPX0BY9qCGXZ4doGsbrYW0qqPI2K64XIQkxiwpgC6OmQF6jxnaGPcZNQQgyasmnjBYkXAwBD4wbm9fiToRGERQDhnb1DgRlNeiiJnisY0pqJE49qlRaccr2poIfZ1hyug6CU+gwMABQNR9paO+pSwr4pAyFw9cfk11sLTDs6PCY7nSJhU1k281LE5LX3elL5adPg7PF/1ljerzVHCAvRaarqU35Y9/teqfwRwDYRCV31dv+m6a8r4+G3ma2pUNfZqPxX/3CB7fwDnuTwOG+85y9afWNXlhW4liv3QyFAvmSibDm+nIxMww9g323QO6yGc05h7MP+kSJSuuqxD0ECdXamjd+91s/IIdMwSBRpZEQxtCMJYn2KDPX0Bbdkq4QLWSgjoSmY3dnkvYZXGcvOPXtmBrsH8hPWQjgUOLq7WVoX8omlJ4XCEDd9/3lpyKLaZwQX5roXVkpDi8jQWCkUbtK4FLIEV54331eEpyoKNE2DYdqhOohImX4abq1dDTKKaslwBUlRM4FOinq6FFNQn/QLT47nS5aUVCDWHoEIMifUv+hTGjaylDIjSIgDQggs28FTL+2uGpINelQOZZ4jp42zvImGay46ETv2ZEO08G29oyH2G6VAtmC66g/MaxgZj+7s6lCKkuFP5ltcuiHQxI0QRr32PEWekyEIXUsUFAIvJD7bLSd4bstebHp9IOT597reEO+uOd0w/bJMBwhNIWhtSlbtuV1rEj1YIyFCFsrIpOTxaBkWvr3LY5eJSLkFj6Io34tvDLrqAX6131VPvxm6DlmVd1QRJUehZLnu/8S9YGQL82jeRMoVE/QXowaEKQHsHsxLJdRPnd+JT1y6wB9SKRjIlayQHlzUgmg5ld0nX+SqIZi0578HPYt6pFJE8MWeL/4yKASgTsCo8d8jcj5iC4Z0QkW+aCKT0lhey11UWzKMmhsFlg+rzKWo8Kjt0BDLrTWpQQHzJi3H9rwhAFLpolzBgBFk7PHz29RnGKuD+Lw4Dl3z52SyeQNUvOkUoASgIGgT2hl4rSAkl05cxe7xQhmDoyXvWRwdL/g2ku7ppzViIxOAQ6NlUeqFQhTYkkg1AdDW5H/wYDsoB8IN1bSYtvWOsglv+OsxKKWYNbPJx2gZGS97el/88x1Q7BsJy2TMaE6EqryzVnScWAFgmpYnmeJQ/zWEE/wEiYBYou3QyL42vi6JYEw57pU5lGI0W/K8sqDxv+E7v0WhbIUo5OLYOHiOO7jIVaslisJkbUZr8YR42En23sjzujeYujUybc1Jr8AVgOclVINch02OYJ4rXzQwlDWgqwoImEfx1Mt9aN3WL2WXlasw9gQ7MPFqTQJeHNh31ROg62fzhntdlXMr7t+C17J3qADDYk33RFozK0gugzees2yKbL4MIByS3V9v93BBbGRkmGCVkC36QDiEZjvyHSwFQuG4ZncnKavHkIW6KFjIQYSmEBimg73DBR8339vVCh/J8jU0dG7bocgkNVg29e3uSmUzlMcAWGjGsKhPy0rs9OfbZborgawnTRS8xLa7sWSaatwrI1W9MtumcCRkAPF78C04CFNoq0FGYuA1MbUsG1HsM/F4TbVEQg6BG8tqH8/rZByHQlMVONQKez11rHoTFYsGF9VRt6eQQ9lzYDvM8OSLJuZ2+Xf5LFTLOmbW2l9IToQgSGqKT/CWkxr2DRd8BoLl5qhv/lJUQqjitaSTKhyHhnK0qkJYK3TiwLIr34mukVBIlhdGs9Dh9DM30zDNdGDonpFBJqVh3YZe6d+5ZpgY53/g8a14YO22UOy/GrNoOFtiNTSuW50rmlAVtjPq3ZfD3qECZrYksWlbP3JFk01ehxXl5YomiiUTQ2NlGK6BMAybqRuDeR+eF1Iw0JLRwRZ39tl8cScEoXPbDkXJsNHTkcHcrmb0dGTQktGlBgZgISa+4LO2t8RbCJMJFZpKkEyoaG9OIp3U0NqUhKYy46CpLDRZDbzQkC8KgOTzCLBvJBxWpNTx4upAxVAxYUo29fkjndSZ1lUwH1UNrU0JJBMqVIVdY2tTAk3p2vdtM5oTePc7uj2vQCEE735HN048qi3yPVT4zzsmhO3E36PA5WNUVUHZtHwU5loRnEtRcz2dYI3Jyq6XXTZtd97z75N4Px0nXHRqWI6UISiCBP5NFLclgsrClkRhhJGSabMWBa5X71BGSzbdxn6m5WAsX4YTsTlUFRK6Fl1TsPDtncjmDOzqzyGbM3DOKbOgKJDPPYVpIrY3JVAoWWhvSuC6y9+BD5x7LPOG9i+yekgj9mQkqJYLWbehN7TbHR4rwaasV724I4qqYag4/ZVCQtsBgkGpoCyFGPsPbur8iw6FYVXqIFozOkBIqN3weN7w7eL5v4M5i4lyCsHqef7u4O5usdv0KXi8Gq1V9JAoANjy1rhEIscRufGlTBFZlFwxbQczmhJ1sYdkCtu5QnSdg0gtb05rIIqCv738FPxtQNLh7765vurn1grP6MD//QbbL+8PbNvxKUenEwpGckYo3zazNeX1IeJ5LoJK6MsbqxsOCxZ/phJqVasZ1GFTFRLSKOPkgWCImtgsnByUUMrmTRBQeMQ7Unlmg6K5C+a1u8QHPxEiilquEPmc4gScrq4W6d8PZ8RGJoDB0SJyRTMy8S+TAbdsx42NVzyTbL5clf6aSam+2gEOaThEOB4M78g+Qtw95UuWr7ZEDOf9iysrIzs3K8as1OtUgy8B7v67JaOHmpadOr8z1PRpyVnzcP/P/+BjR4kIJqn5IuFQApVQbyfd09EUeq9oLMVrcwDMCCw46aQGohBkx0s1s4dkKt3VpHrm9YS7OMpCr1zUUgwzVnNOgnpr3DNIaAQl0wlZmWAIshpSCdUniplQFRi22A0HMC0LmVTK9zH8Z9Gw8dTLfe4iDOEnZQs5KvOvoyWBouGEwnmWRNGYz7NgUWhPR0aqKffsH/aG8im7+lmlU1BCaSznZ6nx+0RpeD78dvMeaQttUd1c3CTZjjOhevqPbrtwgm/l8EJsZAIomzZGxstYfNps6d8721Ih9WMxJs9/Vqs/AIBCyZbmMaIQ3I0C0Wf3vZbC6wEShFhrE4SYyFerJP4BeW4iEUEBl0FTVRhWOGRDCNPfEj2F806fh6de7kPJbWurKgSpVAJXnhduAasQAig0tADbTjgZTSnFnsF8SBgxysuaMzNTt1RPUEXh7JO6pQuONybvfxOBddD0FjMKtDfpMB3Adireq+iR1hr5D6ouGxJutWlXBFuDGBkvMy9DkN738k3CWAgBTJuibFpQ1YrhKJuW+35/jx5uiIJFoQvf3iW9p6mEGq60VwhsilBOhnjukT+X59CwttpQtgxVqXgoBIwIITL+RGNjWjQUCckaNh5/oRcz21JoqSPcerhg+l3RJEAhwKZt/dJdNy/GFBN3fBEKKQ1XBQWgCIsYReX/4fHIEszVPBrxd8OU7544bVUGcYdoTFCF3JT2V3QndBY60RNaaLcm655IqcPEIBF4MClF/3ARYk/7y8893vtexIp/2WLfMyOFvqFCKC6e1MMJXMOt3wgKI0bVOi1c0C09Xk1KJrhD3/T6gEdzFRe5anI/MnCZHVGrK53Sobv0YQ4uSy8DX0jF+VsttyPzuGWttW2HQiVy6nDKpZNX6L1lKAoJbdYIWD8jsUcPIcC7T+rGSM4I93uSMNRkNVCqApgmhRloSKcqgIPwfDQtR0oMsR3mTXr3I2BExftEabgQu1Bi0lNJXY3rZI4E6JoCRSHYM1yULsxXX3hiqJaiOa15TaMAbj6q7xY7WlMYL5iVTpAU0qTfUZ0Z7BstwhEeMFUl0FXGlBEXhmqejZQaakTnD2QPuuz87Nr9XlnJYEYj+HlPbtyFZEINLaqEKEhq1Mf8UQm7H6oCnzxIT8efcPm5x4cq/oEw6+/o7uaQaoBDgTPe1olX3xr11fakvMUd0gUxmVBD6th49k+h2D+Jcn3c70DcofcNWr4FyXYbwdWzzhACaSj0oSffCIV1q83HhKZ4YToKICn8XvtgwoWefIwyGG7lv+O4xZmS1xLX4iXd0J+oUwYAvftyKBkWCiULO/ZkI7taFkoWrrnIH97UFIKR8bJPBSCd1EAp2ygFa8XyRSus1OE2PgtuMKPbEYQpzJbtQCXEY4VON8RGJgDTcimykC/Mq55+E2XL8dVSDIwUQSnThBLjw9WealVVfPz8PYN5EOr4JmYqwfrNB0Nplk3RmmFdFcWFoRpkVfyGy0KbaNNMCLu2oL7YRWcehU2vD6BYziPklVHqC0MwhprlaWWJi6om0eqyaCWRCzCjYzvMUHFPRizGBBBqu2s7FAmNLQJ8cUonVOzsz6FYMrzPtB0HlBpQVQU2DddSBKGpBDv2ZvH6zlHv+yqULax5bkdVBzZouJ3AKuSFj2jYs4gciyIvDu5s6w2FdUUEzxk0KBMZmOC4CAFa0npoYS64hZqi9D6HyFAby5uehx6U6VcVEtIpGxwt+gRbC2ULq5/dgZmtyUj9syCGxoooGZX8kkNZYXE6qbJn2GE+DHVYyLVnRip0bl1TYAptNijYXFUV4lH1iVJhQSY0FipVVYKUrsK0KTpaUwAINBUTFjMfjoiNTATYIhhuJzs0bmBmeyrgMjOGiqoQ4bWpqh0wg667ZbMHIZPSK2OgFDv35VgFeSAMMTJentA4iJA9eN7EF87N4/bBtsezOuRNup79w96QV0YpC/cQgaI9LHSzFO8x4DcwkPydQyFsMeEeZktaDLmxWgsx9s/CNUJoh7JEtEwTzbRZ/qkl0OuD9+kxDPaTC2GKYxPvU61fSWjHHrheAvjYTVEn1jVNSh6QhXX5ecVcA8H+y/SLBubsk7rxZl82xLa79Ox5+OXGnb4un9WQkHgsuqaGNkli8a6IkfEykroSOocs/xWk5Stu7sd2gLRKQHUVFKoXznvPX8zCptcHoGkKEhorvmxrTqJrhptrcsOguqogVzThUBbmcxz2LIMCuq7gwoVH4fk/7MVItoy2pgQIqCd1JOYJpwtiIxMBAoT6zpcMFhYKTnhNZdX1qhJu3CWDpoTlSzpaWZtmEYaQ3BShEKDeSIZMeDCVUFA2bV9xJPdGxEr7lK5g4QJ5kjqVUJErmr5F1vFWLbHXS1TArQJZnF8Ek5yJkutgCeaojqXezypDsJ0wLXnfUCF8jgBqXaODhhuQJ4cp5Iw9IOwtUyrPt1194Ykh9ptlOb7KflDXkO0HMknN59Fefu7xuOfhF320+wVHtzFByBrB5p8CcBaX+3trRo9snsZJAdxAKK7+Vzqp+I7/75tDyKQ0lA0bJcOCrqronpGuvAeuF+UahhktSeiq4j4HrCbmtR0juOCMo/DcH/ZgYKSI9mZW62KawHjJgmE4UDWCpqSKsbzlFoGyuh3qwAvDZfMm3j5vBkybCXP+ee84HEphWrT+EOVhAEKrSeYegfjkXU+if6QY+XeFAN0d/p72Q2NF5IqWr+6CgkJX5XHtdEKBrmu+uhVVJdA1FZmUfyeYzRtevPdAdp//+OFTQ7vddRt6Q20LNJWgWLbd/EQlX9Ga1mBRfxV8VD9026FIJRRQEJ9C7uCYXEKdQ2ZkZPeU0WAVT6mY0oqMPT9P8PZUCzlVu09/3DUGQM5QqxcJQWmba8xx+Zbg+KIouyxZXslnlQ0brc2J0PfS3pQItZ547Nk/Yc1zO3xGq1qNUhQUAvz7Fy7wHfu3x7ZI+w2lE4qnzsydMqJUFv/K78QNyxKPdMLroWY0J6EogOp6NJZNMZIte2NnfWNoxUg41HfMdmhFSscdF/Nymbcju/6mlOZtSiqKAw5mtqYwmivDdAtK+WZsstDZlsR/3LFk8k54CCD2ZOqEQ8NeQdlwpK2TCyVLGgYxbQrDCoR2TBuZpBaqLdnw6l7fw1tPSIYjoSmRdNtg24Kh0RJaMjramiuspLJpY99ICbM7M7738n7oMh02x4Hv9VE0ahHByBBfaEyHs8u68cr2Ya9iHCBQCA3RxUMGpsbwUPSmnlWJc9iO6HtMfC7+ymCHzlVPv+mGVcLXTBQCBRXpHL6YOcJP2226JQvrDo6V8FiAmJBJaSG9u3RClbbWFj0EwJ9b6GhJ+D1FCmztHUV7S9IzFop7sxVC0MrvBzcKjlO5HtcoUMoMuWU5sMAXf3bd43kDbzuqHbsGcm4OT4kMl00Wos6/T9iA7o/PoasKEgkVuso6ZuqqgoHRIkzejnsabvljIzMBZItFMNSlqZC2Ts7mw9LjFPAWyWB715HxMrra/UWgIzkj1GI3+PtEuPRsudinrG1BvmiG4sIsPEileR0gLBrI28kGddhqIRmIf1aVSoxcVQhe3THCBDiJqwIM9nNCuniN4SGKcB0E3M8gAb21iTyjWtaKkumgozXp6zHfktYwljPQ5CbRuQZdQhOT8a45JgRJXcFYrgxFUZHSVVAQFEommtMJ/M9Lu6BpCtr0BMsrWQ7SCSYpY1MKTWHXyQ0CA7uyiocAwTNg83q8aOLz9z3HwscqQXtzknlkvABxPzZCE+G1t0a8fzc6pETAGJyKa1TZNVGoCtNR01QWiiOEddKVQddY/RfvnaMQIJnQcOV58/H2eTN8r/3GIy8xMdaS5Rmb6YQ4XBbAJ+96krHFhGPigqKrCtJJ1VeXYDkOdDcvwydUOqnVtNsKLlazZmZ8C/PoeCkyMR6FTFJDybS9Rkliv5iJcM8jL0k6f2poSmmMjRNIqM5sSyNfskKvVxWCQsnyM9G29aNvqBCSHpnRzCq9i2XL583IQkiaawDEBZhLgQTZWjJMFB4KttdVCVvUguHDQtGINPR8vaZgTCNKWDMqXVPhUBbySyWZ3M9YvoxS2VVQpEA6qaA5nYBhOSBu/q9k2sgXTSR1FQn3HNSN4RfLphsyFA0BC/Hwm0fdxf9wfdITGmNiDmdLMC0HqYSKpK5iQCL9FNXsrR70zEhhyVnH4Lev9GFkvIwZLUm897Q5eOzZP8O0HeSLVmh+Bj1dSoHmjI6SacOxHSiqgpSuoqsthU8tO9n3ef/yk1cwMFoEIQQzWhJxuGy6Q1UJFJVAAesuGEzKJnUSkpFwHKAsiOo51O9uV0toB38PUqbrNTAEwPc+t2jCGpKoAsYF89p9Uv+8QK2nPYVdA0LFOGXdJJtTGnYNVFpVc4KE4vaSZ6+z8MuNO3HxmUfjqZd2+wsHE27hYIKiS5DyeUsoHBST4Twkl3INX75kuV4SjfSSFDcDqxC2YJkuRZ24jApPtp4AlsXyUWpC9Y63ZhR0d2SQdT2Mk46dgfUv97mLtzs6YfeuKQSWK6MPVDyBkstKKxs2xotmaDMDAONFoH+0eu5qKsGLIwnYzt2rB3GNtaK4tFtKD3gXTgAkdIKyWTlPUid476mz8dvNfd5x5lFbOH1+B7b1jqFsMqn9c0+dhbldzXjoydfd74WdU1FYrse0KoQQNiXYLzzvxz81ldBw0rEdOOnYDt/4fv3iLozlDbQEPH1CKsXL3OtxKFtLUu484qQXy6FoSum+GqKu9rSXp4opzEcAVEVBS1pHc1qX7tyLhlOJOYPPleoP1/4+evUoAouf9Q/ffsbnyRw7uzVSviRoaLb1jrKWAValfW1CIyGxTu/1O8d8YbBK5IW4VdDE06p64bV9+NSyd+B/Nu3EcLaMmW0pvG/hUVj51HZYloXxgukxclqbEvCcbAIQSkAJQCjFMT3NeGNnFvkie/28nmaU3QXcV23t7uDFUA+vmXFAAYvWvMsfyfHrL+LN3dmJv4hJhFgzM+nnFv7B7z0hivc9zmhNQFVZDoFR0cuVMaGSyM8kNcyf3YJXd4x4fzzluBnY8ucR91yVkBz/TDG8TAjQ3pyEaTtuiIkpBSQSGv64exTtLWnvdfxcJcPGtz57ru8cv3l5N7pmZHzfJ6WU1Vnxe8g9PbjfO614zk0pFaqbJ1n/8i4MZ8voaEni/DPmshwrIR6hgFY+AKpOYNjc01WRzRmAyeu8Knm1suHgrb1Z/HJjL4bGSpjZmsLuoTxAKcaL1mHrbVZDHC4L4Ob7fov+4QKSmiJlU+0bKtTV+VAMnYj/jkKQPTQyXtnVislWIhwk3t9cho5bV+M4jD45oznpSfhbNgvtpVMautvTeNtRbXj65T4Ypo1kQnUlZIiw6BD33BSs7l8ABUDYlVF3pXYAL5HL4/oAvEX+2Nkt2Ddc8EJQzWkdg6NMxZoKrz1UobkJ27JhSz0nvpgFIRpfb4F2w2iEMDl6Ai6hwuL3hml7lFz/efzfj3e82t8ki7y44HrG2ZdXofj/lrwdz7yyB8PZEma0JLGjLwtPfEJ4b0Ij+NglC/DUS7sx5C7Mf/XOo/D9Na9WcjXwf7fccKkKQTKposXdAHH1DAIgnVKRK1jCeKn3b0qZ5y165z987DWUTdv3fHryNgHpIl5mEKSFz2hJMe/EbYnAQ9fV6t6CYe5cwWAhzwALMqmraErrvnP3Dxd8Ruu/v/n+yM85HBEbmQC+/p+/x7sWdOPHv/4j0inNlSTnPVIo9gwVQEBBFJXF20G85mSKsL3jD3nKpXDyRSCpKzBMOuGuTlwsQl8QZaQBCrj8e7foy33yxKQtX9zFLIfjHePxa2FnJuzyGrV7PhRAvP/BCw2Kiz3AwmyKQqCpBDctPwOaRqAoCggIfvvKbvx2897K4u4ae55E931/PmNbWdCdgFF1KEVw0eehF4B/g9TnNdpuAzevQt2dMN73L3xALR6biFRCwf3/9zzfsb+952lPV02cmwoBZral6lqYF8xr9+nP/fCxV1Eo26FzV0NwcR8cKwkGAz7KeSap+qSLZPeC5/062lKhDebeoXARr3gt0eUBFX02GeV8V3/Od08fm2ZGJg6XBfCRv3obTMvB7M4mDI2VkC8x5o+isiTsrI40S0DaFJa783G4krG7k/cUwSmFaWkwTQs2ZRM4rygwzUpoR1zQhR/TFrw5GF+YbcdBsRydeNJVFs9WFSbxUzJt6AqgKAoUt30vAaMxi4s9K7Lz/y7+HRCERimF5VRowuJu3qEU6aSKe3+yGSXDQkJTccEZc7DlT0Molkz3+/a/3gvVTfCdJjQS2eKgVrh7IM9QOg6bUxF9t+qCfBEmUmVrx5HLMEWOm3+GcIzX03gbL0z8PMg+jyf+uYG3KQtbFYR5Jl4b/xz+etN2pDJM1RCsSQIq5QFi7tBSw8XcnoGJMHyHO2IjE8DjL7yFobES+gbz2OPuXMTJrmuMRVYrylaQ4ji9Knp5qE5xDYciLubuT0X4fXZHxquy5qvJwEgxZAQ8r8rLmVCcenwHtr41irJpe0lWx6GwHfZ06hpbSLjxduzKe7mXJ3oBYiwerpdZknQAzeYryeFCycJPn/lTZBFfzffN3W0HF9Jad/AcTWkdpxw7Axu2DvjqiWSFkfXCMJ0QYaQ1o2F4vELNZ14au556FmYHwJ/6srAditFsCQ+s3Vbx7OoYY+++cc/YNac135vF81AnmnauC+PkGw05Xb92nDq/Ezv2ZPHkxl3oHyl6+dFtvaPYO1youTHedEBsZALYtK0/VPEvTsx6DIwMfHEkIN4CWu/CAgAnzGnBvtEiVFcryXJYFXQUkjqBaVf0mRK64rV/lhmDkEcA8XWEM279uRchTCP+Dvd1js1EM0um4/1d1wgTKaTyJLxY8f/Uy7tx4tw27B7Mh64vnVDQ3pJBU7rC/Hlr73jodeycfporN2hcGBWkskvnY7EdGupcWi+CSs6jOQO66s+5cHJCrcgXTbz61igrynQZe6++NcpqiA5wvBThuqFcyQrNVQomjilbmDNJLaRozGtHHAp33Fx3Dp7V5/d/opBtJZcEjBdY8XNrRveKXBUCNKd1T1lBhqBydEIjUhmmerB5+yCe27IXrc0JzHY9mee27MUJc1p97E2xMd509GKA2MiEkEnpOKZHxa4B1mCK79Qr+Qp3oQa8nXi1+UcAd5GuxMS728M8/D/tkS+IQQOguF7AifNm4LwzjsILr+5FNm9iRmsSCZW4XQTdqms3acwVjEWpDR5SCSbovaQ94DMWmaSCXNFyF4fKk19tF54I7BC9sKKAcvSzDyCswvynPeNI6n65nqSuYGZrWCE3yng7gmim58mAGZngol/vDjbqc3WVSDswOpRdmze2OhcahwLZfMVbth0HhmWgNVN9Ya0VwX43UYWQuYIJEBJqn3CR23Jb1IPbO1Rg+S73IeKqDQQs3AzBcABAc0pFrlSjiSdAJq1jRmtFdbls2lXvhajTl06omNfT4uVVau16+g/ffibU7tm0HGQLJgbdzWA6oeKV7cMhhQxqykkk0wWxkQmgvSWBt/ZkvTqPIEuFh0nEh0GEzCgEjzWnEzjl+A78xfxOKGDH7n5ok//1rudAXevG/00phWVTvPTGIN5x7AwkdBUgjMprWg7yZduVJvcbkwOFYdpeiIeD5zSidLbEBXp/vLUgFAKXseOPoxuWg5LpYCxfhhmR4xA/n6LSspifhCeHg4v+/qCz3a9KbdlOiHFmWKzafyRX9nrYcH22WpQRJkKuaOLd7+jGhq0D4E3failWDWLUZTdSsNYMUWDPAz+/ewMpxbGzW0PN/1h41P/+avmI9uYkcqXopLsPFCgUTdfY+XXioqC43rpDgZJpY8G89rq7nnJGW9m08djzO6AprOsmcc9v2w7Giw5sm6KzPeVTyOjdJ99gThfERiaAYplx4VVFQUJnXoDiUogqNOGKPlMohOQt7AFpDsGLGMuXsfb5Hdj4+qCX9LNtx5Ms4ewv/tBFhVT+c93rHptn70gRY3mzro6K9YB5cMTXFsB2KDTCdp8KKg+qLVktJhpVcEEEpV6xJIfHsgrG3Slr/xsF/r2ITCNZcpidivoW/XpBSFiBO5VQUTadkMzOtRe/3Yvbi7vgx57bUf8HB+BQ4M2+LLo70j4Pol7QiH/LoKoKFIWFQll7CgXrNvR6/X442psTGBkvwxK+yGr3W9aaoep4vWfF3UEELVoAuqZ4XkU6qWFb7ygur/kTGVgdTCXEZ7gGjkcTFLDnRSEE4wXTp5DBb0NCU3zP+XRBbGQC0FzKalNKR0InKJbZQ0Mdyrr3UeJWtTue4QgahSDEacNf8vT/7ql5TLZDPVor38WzVrd+Ns/+GJimlIZi2fLi19VO4VAKx6rkkUBYLP6CM+b6FkrDtOrSVgOAv738FPyt8GQ/9uyfsPrZHZNiNMW4vSyfwJHUFVxylr8xW6FcnxAjAdtE+BUTKE6c24be/rzPmPDdclD2Z82zO+q9RCmCoa4DQS2eqFjTxZUfSmUT9/38D56HGbUZqOVrlj1HMmRSmq/tdNm0fSHFIHoCYcyoMepqld5Hkg0Q2zASqJ4aBYWuKaH5wcHVFKYbYiMTwOBYCQMjJbfPt0ANpUC+RJkb7FAQwmUkCBxJPEp0//mivD8TKJSkdhfKpB6mQu4PRPmb/VnPZU2WRAMzGWGyyUQ1Y0oIQo3ZtvWORp4rSBLgmePWjB7SP9veN46Z7Smvm+pzW/bi2NmtUk9msjCaK3t5xGqhLt/1uBADXxT7/x0GG4OJSCZUn/6cTA1aRK1jkKlSqwrxZH7E55EQYO9wwUfIEHNnIubPbcef92SleSnZvWv1ci+8TibpqUiLLZ/rvb7DDbGRCYAv4rYDtLf4E3TpJFPIrUig+ydJsFqfKbRWkujcC6lnMef9z4OJblVRohs58f9Jdu4HAoIKY4mC1TqM5Q2sFnbewZ1/LZ8vixCsfaF3/wYpATcqXLi0WLahkPD3Qmm4hbN0vBAW3tAOlqK1KYG25spF7R0qwKFOqKbjwXXbvF48Yjy/nnqJKIOpupshcbyyaxBRy2saBe1AE2ECZM0GO9uYcRd7OFGw/KbltiG3LAdZy8Z5p8+Rnpd3GxULTvcNFby5IN6vhMYiIsE6mRJ1UDYdKIoCzf3uHHcXqakKDtDhPCQRG5kAeNye0vDE19zCQErhDxu57wu63aWyiZJJ/a70BM+SLH9gOWwnxCex5VAQ4mAsV5a2taUAyCQbGD5+MeHOaKMHzmACwgKevnbB/PP389yKQqC67y+ZNiilUBRAIX45EdNyYNn+Pj8c4v2nFNFhPBqusTBtBwr8O+aWNKs3IYTpqPF4ft2bEBo2BgT+8UUZD74Z0RQFpoQiWc3YBaVY9kf5mAmbsqT4yLjRUKNWMix86rJ3+OZYrmj6FMTFnMyxVQRlxeOaQjA4VvLETwG22Tx2VoWh5lc1eA0AlW5SNVdmZ7ohNjIB8KJCABjOltywWKVPPafS8qkgbGBDbvfMtjT2jRR8jCdNJdBVxVd9LEI0SHy+OS5NRQzLWJQywT9pLNj/sE5GzQSAkGYb14Q6UKgKwQOPb/XUmavFz/cHopgpC3USpJOsqZzlejiZlIZ8kXlhwT4/1D2Hx1ZKqhgvmJELYqFk+ai81KFw2IezjYO7qHKDxccmyxnVdH11fi+6pvhoxroCjOZN3/VyQxoMCfLxsg2Qe45UAuOS3kkTwbYpLFQ+I5mQF8MC1Q1eLeDfrYhs3kB7S9IX8qWUYvdgPlJQNoiju5p8KuQAE+4UGWqiIrqqEsAK1OZMc0xD5+zAoCkErU1JtwqYTQNR+0uMTwd32T63u2BgdLwEO7AzsW3q6qHJQYSfIkcmmLzm9TAJTfH+46clws90UvUN9ICCEgQC2YEe4MkqsGyKfMlymWWVmh2gEpby4twZHcEIoa4CLRk98vx8veXJV01lYT1CiMfcK7i9bDy5FFTutUJYV8sZLUkcP6cVn1h6UuTiwD7CP0M49duyGSvQsittAHzvk6AWslFwOgV/F39tyejutaTYtVy6AERRMKMlAVVVXIl69jvAFkXdDQ/pbntuVSGhc2jVWcJSiBs1SgHTosgkVd/8zSTZiUVjXAsIws/QA49vxZ/6shgZL+NPfVnkSmbIE2fMP+qRagghSOpMmXnV02/i4V+9gdG84RmfDVvlygq/faVPenxuZxNSugrHYXPBcSh4atW0WMuK6YbYkwmgtTnBNKp0FQmdIufKb3PZCl5VLC58HEEqpE9B2X29Q4GcZFcFMIuvC1XhLWkNQ2OVOoXguUTpenGnN6+nxZO/4crRHAcyhVvSeqh171iuvh2sLLRDwcODFY+j0oHDj5OPnYFX3xoFKVuCZ6GhUIoO27EwBM+VseRrJqVUbUPsG6NkZatWdxIsBuyVKA9MdM9Ej6IadLcOR7xbBP7QG/+LQoC2jB7S2eps68Vo3sCsjsqOntOtbYfCAfWNp70pbNAVRd4trJ7duu1QaYfZ3n25Gs9QQTBHQoBQHyhQYCxXRjKh+qjlmkRfLKEp2DNYQHNG9zH2HInxowCGx+XeuNeviRDoLuXfcigSGgFRlLqVBQ4HxEYmgFzexDmnzMKmbf3YM1yEqlRi8QW36licuFEPUDCfU8uD5gA+Zks5UAAZNG7iZlhcjEJ6ThEDrWcBOKozg7Ll+Cq3bduBvh8ij2LeiQ/AcShsCAZT9j4AL/1xEDNaU5jRkvQZ0mohtvaWpG/Mlkqk+TZxPOIiZTsVna1s3sADj2/FnJlpaf0G82RtVgfiGrD9MexRc0y8dylX6SA4Dgq2YZG2di6YuOeRl3y5Bp7QDsqoXHr2PKx9oddXVKsqjDHG7gcjRzywdlukEkBwsZ8IMmkaLgLqONXPQ9zx8TCydw/dAQQ3MlC40UxUUVCuEHkcSmtm7EWNc1vvKFoz/u6rjmGDEAWzOjI+HbXpgtjIBNDcpOO5LXu9SntAEbwE/4MUnEhcC4znbyaCLKkdLNjjCynfRYpMqMiQjRBaGy9E13lQsHxIrb1xzjllVohu++TGXTAtSxq3j/rMICNLTHYThN8vGtey6XiLOKe/tqSrT2OxCHHB0W3IFU3sGS5WyBVujkRX2XfNF0xxGPy+2A6FYTnIR3hOhIAlsYVz7w8qCgAVqApwVHeL93vZtCMLFR3KjKPo1RTLNoplK2QwP7H0JMxsSfoa0y04us133Ry2wwqWVbVCjsgXq+fQ6um/JKvWn9PZhFzR9C3MZYMt8EECQial42RXMJQX9p51Uhc2vT7A5pjw0HG1iqBnt2NPFq/vHPXmoWXbFVHWwIbPO1fgWFKXG4vBsZKEfZiHYdnYO1yIPZkjAQmNxV+HRotI6qovQc/7UQDwdjP+ySYWZE68fwv+VSHhXdWPHt8Ky6GoZIjcsNsELJSaE6WktiTk7sECsi/3wbIdt6rdwVMv98GhrA0Cj39ThCveOXRVzmJSVQKbKyZL3hc8NjjmL/rjC04t2LZzDKmEEqqZABjttFpdh4iotYAt7OFz1wvuhXBDahh26GwT1UmN5sq+hZKDb1och8K0HHx/9R98LY8Bdp+iuqEy785PjqiGWovYWRpUzKIQgBAsfHtXSP9saKyEpCvyKoZCm5JqSOngzb4s2pqTGBkvwaGVujeAoqejKTSOTa8PMM8HwndI/c3oqs1TQoBLAioHHJ1tKYzmDZ+3pmuKu3lyYgrzkYCB0SIsi7GczEADpULZZklQnRVTiSEfVWEJUzE0IS6GtaCjNRXaVc3tbApJg6cTKsbyRrTCgOBVcBp0FFSCmsJdFFwp17+D1VQllKuxIsIIpmugRAMNAs/ATBV4EzlfsSypXjhYD4gCTy9uf69L01TM6kh4nuyewTxMy/GFQtMTaHJFzQ8a+MkNjMyzrnbuiTxq8bViXicKmZTuSbE4lHge0LbeUVx94Yk+6vDZJ3XjuS17Q03SIFHCKAPQCNCUTvjqZFKpBBa+vSsUPtw3HO5+yxl7fM4Gw73ppObz8IMqDhxLzpqHB9Zu87EPbVdNhKlDTHAzD0M01MjkcjlcddVV+Nd//VccddRReP755/HVr34V5XIZl1xyCT73uc8BALZu3YrbbrsN+XweCxcuxJ133glN09DX14cbb7wRQ0NDOO6447BixQo0NTUhm83i85//PHbu3ImOjg7ce++96OrqgmEYuO2227BlyxakUimsWLEC8+fPr2vMtsNCJ07ErsW2HRSp40vcOZQildQwsy3tva4cpT9RBfmiIY2XP/D4Vtb1EGB0WCdawgaAG/ZhrQRsTwVSjnryKUyDzb+D5UwpcXwcskWLyeEEHt4D4aZKUEsOIBj2mMwhUMdv6Pfn3FxqXlNZkSblqX0h1BhFg58I9RiTahDfG3XPO9tSyJdMaT1XELmiS6MWygay+bI0hCQT3lxy1jw89OQbyKT8y1pCU1AoWbjgL+fgyY27PM/n5GPaPUMlUpU5/Vsk1fBhs0Z4/hDd7JlN+PInz6rjxnk+D4CKbJSiEGjTULusYe2XX3nlFdx+++3485//jHXr1qGzsxNLlizBgw8+iNmzZ+P666/HRz/6USxevBiXXXYZ7rrrLpx++um49dZbccopp2D58uW4/vrrcfnll2Pp0qW47777UCgUcOONN+LLX/4yZs2aheuuuw6rV6/G+vXrce+99+JHP/oR3nrrLXz5y1/Gxo0b8Y1vfAMrV66sa9zXffV/0D+c9+LZsgepvTkRkg0xLYqZ7SnfrmporBRK2k8Ezujh8WiuC1Z0KbYEbNdUq6bWgdYXTATerjYqzh687mCfdQqEaN6y94tBlMlEPUnpqfo8XWUhIp9gqBCC21/1iFrGxjHRaX3fC2GhLtm+6t3v6MarO0a8GihVIVVzMrJnLqEraG1KhLyWqy88MaSUfM8jL4XCUWXThkaAsuX4zjE0VkJzWvfVyZRNG4OjRWnItzmlQlFVvzeU1HDBX87Btt7RUOHmY8/+ieUwTdvXtCw4Pu6dcoHMVV+7rOq9P9zQsAjgypUr8cUvfhHd3d0AgM2bN+OYY47B0UcfDU3TsGzZMqxbtw67d+9GqVTC6aefDgC44oorsG7dOpimiY0bN+Liiy/2HQeA9evXY9myZQCAyy67DM888wxM08T69etx+eVMZfHMM8/E8PAw+vrkfPUo2LbjJe38+43K761NCczqyOCo7mbM6sigsz2NVFJFe1MChZKF9qYErr7wRMyZmfFqFio7+eqfL9aK5EsWfvG7t1AM+NDB36uhln0REf4Lvi94PDze6EQuZ4nxsJ1CCJKuETVt5mUlJ8grJBMqNJUgmVDRLogeHiiC3+lU7R+jPk/8XVUJNmzrByEsT8QZhpTCV7PCwznidzTR9yWDON+r+70VJBIqVIUgkVDR1pQAIYp0HC/9cdBVZ670OBKvOZjTCX42BSNimJaDkfEydg/kMTJehmk5WPX0m7jnkZdw0/efxz2PvITN2wex5Kx5KJQs7BnMY1f/OPYM5lEoWb4wGq99sR0aor4nNCXkvfBxtrekcMFfzvGUk0VvSKydefhXb+DfHtuCx57fwQycAk8yaMfeLCw3yb+rP4e9wxXiBs8TTTc0zMjcfffdWLhwofd7f38/urq6vN+7u7uxb9++0PGuri7s27cPIyMjaG5uhqZpvuPBc2mahubmZgwPD0vPtXfv3rrHXihHs8g0BciXTPSPFLB7IIf+kQLyJRMdbSnoCQ2KqkBPaGhry+CTHzgVrU0JJHVWxJZ0d2TVIBbs2Q776YV2uMGqYx7WtNOVWJmE7i4iem2LOwtz+MMhIsvNocDJx89wdZsIEhqLuUdRXznKpg3LpiibNgzTRle7fCy6Vt/SKlvMphIU8IUNxc8vm45XcW9Ylep9CmbQ+X9MXgjo6WCbHE1lagQ9HemaDY1CmCGXoWrkhlI3J8HGxuX9xZWZf7/ZvOF5MUG5m1pVDnJFE47NzuHYjBm3e7CAP+8Zx8h4GX/eM47/XPc6+rNlt28ThJYcrDatKaVB1xTvv4TGiAPiMX4dPR0ZpJIaNJV5Kz0dGeSKFtb/bx9sh81h23Hw+239cCjrvpnQVTSndSQTKjZsGwh9h5Sy73Zk3PBdS4Wc4Uz4PByOmDIug+M4oSIrQkjkcf5TRFSvBaZFpYTew4/vL1oymq/6uCWjQdMUjIyXYZgOCFgf9OFsGf3DBQyMFJDSFQyMFHD/qv/F2FgBH7tkAY6b3Yr25iSOm92Kj12yYL/GUs8DWSt8RotWjEJrRsdxs1swoyWJ42a34P9b8vaJx0cr/0Vhz2AB6aQK6j541KFICxXeUeflPwtlyytODSKqWdmhjKgw4UT3UXxdSlcAQtA9I4O5Xc3onpGZkM4lzummtIZsXk7HjiSWeGOk3gbCtisLKf+7HcjPHYhIBNt8MeNqur2XKFgzPduhMEwbo7kyfvrUH5FKapg1swlzu5oxa2YTUkkNhmkjX7JgWo73XyqhQiEEuaIJw7SRK5ooGzZ62lkhbfeMNOZ2NaF7Bsu1FstMIYATABgZABgbL/nOqxAizZtWvtcK0eXwm7X1Y8rYZbNmzcLAwID3+8DAALq7u0PHBwcH0d3djY6ODoyPj8O2baiq6r0eYF7Q4OAgZs2aBcuykM/n0d7ejp6eHvT392PevHm+c+0vWOOySgW+qiiwCdDWpPtE9Uy74s6LDLB1G3px0/Iz6uqwN5XoaEliJFuGAyGcB+ATS0+alDGLyW+CcC+RauoHHMEWzo1qysYx1TmaA0XJcKBLaku0CLo44DfcMk2viUCBEAOs6o0jE9Pk97dJHM8L8UhT2XSk1fqMJu/4Ck51TcHSd88L5VMASItTTbcrq+0I7DIg1DtpopbdHa3+zqm2XQkrNzJ/erAwZUbmtNNOw5///Ge89dZbOOqoo/CLX/wCH/rQhzB37lwkk0m8+OKLeOc734k1a9Zg0aJF0HUdCxcuxNq1a7Fs2TKsXr0aixYtAgAsXrwYq1evxqc//WmsXbsWCxcuhK7rWLx4MdasWYOFCxdi06ZNSCaTmDNHLtsdBXGnlS0wGXZRBjylq6Fq8cqOtCKAOF50YA/6hfMONYzmyiHhTAfAuhfeCrF29gdBvbVq4AnkICPLtB0fHbvRqOcZl9Gxp3qRoN5A+G8sVmQLPY5kizs/tr82Wyw8zuZZFXywgJR/XzKavKYQqJriK6itl/LPr0O8HkCuGjC3swkL5rWHiokvP/d4aRdMWZ+f/37+LX+4T7ikPYN5HxmgGlRV8Sm2v+XKDnFW6HTDlBmZZDKJr33ta/jMZz6DcrmMxYsXY8mSJQCAFStW4Pbbb0cul8PJJ5+Mj370owCAL37xi7j55pvx/e9/H7Nnz8a3vvUtAMANN9yAm2++GUuXLkVLSwtWrFgBALj22mtxxx13YOnSpUgkErjnnnvqHiefN5pK0JJJhGTACyWT7cgpZ0ZVKDVeuMDd2FVjTU0GFOJnG9W7wIktiDkoWCFewlXq5bIhwZ42kw1RPke8DtFQTaUK+kQejaYS6JqCkmF7a3sqoaK4n7TiA0GxZMJ0b47tOKDU9N/DwOuDHub+GBqxGBOUhbJTCaYH58neJFSWDymF74miwJNR4dJAtSD4vciGHvRYbNvBgnksQd/anAg1jgt67Zu3D+Kpl3a7hcdM9+6pl3ZjYiJuJf4c9bwkdSWk0s0xkQd0uKJhFObDFZ+860n0jxSRSapSsb6d+3JVFx/xIcgkVXzvc4tDr7nxvmcxFCGgVw/UAGffmkRJCn4dfIce1XNkqhHVAveozkxdveAPFKwplRqilpfK1qS0VWgkxHCSQ+mk9DDh+mJiJ1kKCpVEzxsfXT+poViyDniOtWR0fHLpSSFPfN2GXim1ub0pESqAvuPfX/Bkh/hzEMwxBXHMLL/cj2lYQkM63h6E4qwFE1O6//ub7z+ge3CoIa74DyCpq5jRwpR6ZW43UN2D4P8kwv+DuHbJAvxgzRaUTGe/vRBAbO/KYrvWJG6ig7HuQ8HAAOH4N8fR3c3oHy0d8G4w6rsN7v4ZBZtpePFFtWxah0VSR7xHkxWcoQAyCc3XVjid1HztvWWoRPooFr69Ey+81h+qk5lbxwbCMG2vj4uIh558A4Qg1JY5mCcEgH0jpZCYpuOOqpboQUJTYFkKLn/PsdI6GUUhIO6kIVMRAz7IiI1MAMx7YV5B0K1NJTWPGqlNIPjH4t1OqOMjL9S6/v2n+I6/sXO07rCF7VX/h/uTTAYOhbUyGMqjtCLqKaoabNg6gO6OtLTIrR5EKVuLYTu+uPDvWFRA4J0q+XgPdZvj2xQJhpSHg6tBvDZKWdfRYBfSapjd2eQLl+0cyCOVUHybr5TOfq8FBEyXTYZUQsWeoTyCTQjTSQ3/8O1nfLkXgIZUwb3cD/F3VLXc1gAiDMtBZ1uK5XvOPd7XtOzX3/kt62WEsIAqL8acboiNjASG5aCtKSHIx1dirR2tKYnQnvuq4ENKwz3jH1i7DZ+4dEFot3XDd35bfyvjgDzFdIRsoZM16TIdOqFgJIdoBMRjiRrzTv4maAKll4+njjBm0AjVY5T2l5EVmqf8MyU5sWoQE/xcvYgXWxJUDy8BwL7hAiybuvlPHUOjZcxsT6M7ENLaN1SoSS2cgiXP5YOtmHx+fbbjZzcWyhbWPLcDKV3xclzid9uS0UEI8VX8Z5KaJ/0j5oCiyDK2zaj7DvwMtemM2MgEYFg2a1xElJBbqygEKV0JCe3xXaCqTNwzPl80sGr9dgD+XuEJtf7ZFmyO9ZakOdbBRD1CnfXAoYyxJP6uEIKhsRKKZcv9vbJYBmnQCiGh8B9F9C54IgSX0qaUjtz/3963R8lRnPf+qh/z2tmHVqv3A2FhHoFghIVlESwhHDBGIIjBDofY2Ecmie8hJnFucIhN8IFz7GDCsR0F2yc3BjsJJLbRvQbCQ8aXR87FgJCMg2IigRFIi5DY1e5qNbvz6lfdP6qrp7qrenZmpRVoXL9zOKsZZrqrerrr++r7ft/vq7pRa+d2vjvV+p6Utp/ONklciHnju6nQzPgFlBM3KAKPxnJ5zeD5FKYBoTWGulkYO2+8QV8a0oqda26ArpzFijoVv4uYe6k5gZIp11uwcdW6k5TMS1W0Qg2a2taC5Wjezfve6UEbmQR68jYuvPBk3P3ITmlbO1EN4AdUSixOVl2Ua16iyVEW4xN1EEKiG9oggE8JDoxWpB7iaZ30miH5QE7Xs20XrXrbyYr/o4Finum2+QFgGjRKqC6cHY/bi+eL1WgQxoya1Z2VmlLxTqbJEF07IGAdGMWw0VRtGdqB2OWzu5DDwXF136Jmv5FIC+cfSqNjt8pgNIhczT/1xaOgtEExMQ2CUtmRFMd54jz6VpPjOikhulzGxKGJGgzDgBU+J4FwUPGQFKwLrGiQinkbNTdQ5nsAKN/jofKxSQf9xUxokIh0TQkQqmCYU4YYj0doI5PAH19+BovH+pQtDonQgu9T6UbbsXsE//DQy0wtlwJ+4CtlVgD22vdZH49SxZW6J7bq/RuESMSEnq4MDk86sTHnMmbUNyR5Y7ejIGBFDJl4HF8VsFMdc6rzrP6tuZIgpMowGYRg1anss47Hm1LNxbZXDsofDiG2YMhnTJSrnrIzZqtjbQbLNOAFARAIC/ZRxLxE51TWUyVQKgMvmdMVu6azijZGJ5yY8QcQyrDI6tgBqDIHocJ0imRNM14nU666ytq0Ys6OQsnJPFdyl+r5VJkHVYXLmqFcc2MGqVxzp5SEErFj9wjueWQnao7POmqWarjnkZ0IaMCiIsI8KNj9t3ReEWOTR846fbehA1vkHB1Q2liUgcaCTKn8kO05UIqkzPlna46PQs4KvfgwOR/KcFCwQs96SGMUm27FvP9mfWAMyuoBXB+UMm0v2zJw+XnLcMqSPszrL+CUJX344w2n46OrlqrnAkTif4BsEEUEAZDLGLHP5jJG1EGRIm6A2sWq0+fj5CW9GOjN4eQlvaljKddcvLx3HJbJPF/LJHh573hTGi4NEwY0YIarp8vGWKkmdTI9GvFxr9mPJiCtc+JUEH9v3w/w0VVLkbFN+AGTXPGDABnbxMpT5kTNu5bOK2Jufx7jKfIxAMCr8vl9CsLG2JXPhM5OcNSLYef3F7BsQQ/m9xdgWSYIMZDPWFEIj1KKfMhYY/mQcKjCOEQtt4BSBDTAfT97VRKsPFxxMaubKTkHlBm45uAGSXhS2mCRbH7qNSZX4wXwfNZNdbLqIgjYLkkcR9Yy4LispfXY4WqbV/HdD72TSeAfHvwVVv3WvFBVNogtmmxBlm/Ox7ftU/ZJcb0AGYtIbBnPb+QEmoU1mt3ShBhSIyceC94AxBgtgCzFbhlAQLmAYPOEKsCUAHq7c1JS9uB4+kPRatjJMhB5fbwtcLPOk7x5mmWS6PXUaJA3orhZzKttbxGJjqgge5hG/F7g17QRGGKad9NBsnMqANiWGWqHsRyhbZnYvmsYlTCEy0M+aZuNgAJ9icZz+YyJ+f2FqMaEn3PX4PjU1yRE0/sXoQR/mDT3/QCUBqi5QYxYUXU8BAHgVdzoeGnzoJTl1VRNy3zfg5VnjeA4muUwZ3VnMFH1Yk0IW2W5AcCBsarU5oPvBG3LiHX5HD5UQUAbHUs7DdrIJFCqumHjosYPLm5rAXk7XnW8GKUZYA+1E4rwxUAI/ODI465+IIftAHUcePNTr0k1NJ4PGAaLibfStRBgealkncHYhHPEygMAy2PwEGEwxQHY7jCA58fppWlYMNBosVt3fYyO15SLSLuyJqZJYgaaFzZSSpXN4Gjib9rCn/ZbGIRIhYN3/OuLKOQszBKUsuuuj7dGKrFjTBXNSi58nCGVvMc23v5k0+O0+tNnbAOlSQfDh6pRDcljWwej3Xu0MLfZYdQPAM/zYzqC3XnGAEsqAQCNXZEYog6CRmdSDl642Sp4SQF3RAhtPCNJ53BotNLWHI83aCOTQMYyYZoGXI8qE3SeTyVaMqVhX3si8+odN2A1HWDHckJPzTQaPUKmuzAnjR2XzuAxbh4qGBmvKVlMQQAQQltmfbGQUrzOQAzDJdkyyfi5QRq965OLu2XGi9+aPXKRh0jayysBPIZPlYtIM4i7EID9fpTG2wpT/rsG8c8nd8NTeuRpY7dlczpyuKbsBNnu7ZS2Kz5S8KS2SD/mkvYZi90TXLZluuy+JA5NOI2cps+k9Rf05yVmmOt4GC+7UmV/f09GKU2TRktW5YCMsK2B9AwYpG3DfbxDGxkFMmFfCdOUE3SeH0i97oE4m0Zc+IihrhxGKDdBouMKng+EYwqIJdoJJIbaI88NoitvoZBjfH4eKmgWjmvVuLEEc5jbEENMwtHTxkvAqr/7uzPwKKTFPTJObcb8p2OYHS/AvP4C6q4vLSJNz5X4e86pc/Gfu0djbYVzGRNdORujpVrqRW91yIWsGdMBy2dM9HdnpfbcA7057Ds4iUqtERZLGp1jheTOLHpN4gy/RjiM5cR4gz6V8zUd6nvArH+cSk3kxV1MzjfkbUx86iOnYOvLb8dIE6tOm5PKIEs+h/f97FX0FTM4NFGP5sKvx4L+vHSMToc2Mgo4XoBCWN0vxrSZQKYn0ZI5+EMlfja5ePKYfVfOit3cjWCcDBVnPwioFHsOaIBq3UdvsfHdVgoUVYaNP/z8Afv1WyXUXQ+TVS9aAIp5CxMVtWyIQYCTl/RJ+YN7Ht0lqSjM7k0vcJ0OkruHZKHc1RecrFTZfeCZPVMeky9av36rBNs04Js0+g1t05A6LU4XSUlB1/NRqnrwKGKL2ezubKygsJX2CSqoFkoO0Uu3m7QQyNgGak4Qe+37rGeNmO/xQlFZgzDVBgMN54sKi3K7u9RmKJUd5Y5jo0LnbM+BUtiZlMA2CAIKbN01jHn9r2PDee+JHXfL1kFlDihrARU7rl6QtQ1cte4kaWzJZm6dBm1kEuDFmO9b3i/caI0kpIqWzLFkXkMkj1KKmlNWFqgtGujCVecvj93cB8erGC3JOYGszdrsJtVt3XDBFHMkRFFkOF0tr+/95brY61u+9zwOTfix0F+l5qeG+nIZS8of7Ng9Iny4EQw/77fn48lf7o8VuKaBLUitwzYNZbJcpcjbTGnaTlBlRw/XMG92IVYMW3d9DI9VJRLIdH6DmtPY81LKSBu25yNrs9wLX8xe2Xe47WMnYRlQLpSbn96NuuvHjE/a1bcMxAwMn0MxZ0r5nrdHKxJTjd8WybU2oOzYrV5CRhqTSTh111ca0pMW9mBwaBI1x0Ol5kXOB0EjxGeGu6nHt+2TjExauPLQRB22bcEPvIYTYrPPJY1dIWe1r/ZxHEEbmQR4MeaWrYPoKWQkxk2lxgr4vMTKair0i2Z1ZzFaqsVCLQTAylPmSFv3W+7eCtOoS/UOtmWgUvdgEAIjNHY110dXzpZaDlCwHcSBkXK0C8llzCkX5qSNMFRWNKrcMwTDkn5U1/MlTahdg+OSSkHd9bFrcBwbLzk19uC9caAEx5XZfc3mYYT5ECq8zmVNZbJctagWcxbqrsxUI5D72lDIu8QozGqQKZt0TQUxLMpvtWQbAd6Pvl0kd2U0pdL+wEgZs/vyseuUNivRtxE/4foU1yXyPZ4XhDtXwCS8HooqHap8xgRAYAbx1sS2ScI8aCO0lrNZLsr1qVSAq2KdHZys47n/Ho4ka+quj4ee3YMgYMcXYRCg5sg7xIHenKTuzHbMFD1FG7O6szF9NpXhLlc718AA2shI4MWY9z7+qrJgzzCAQBGNyFqmFJbJ2QZ6u2RDtWtwHHjm9Vi4hlJWWFkRFpJC1kTdCdArqC3zvjYTFSe2wCSTyVGYjhBkMwaqTuve9KyiLcX+a44vdfRrVnHOHnQ/9vBmLAPFvC0xf0YO1ySje93Xn4RlEqnVQjMJFJVTUMzLc0nzPscn1GGmZL7ND71rlUp3IWshYxvK8NB0kPyN3x6rxOY3HWQzZowhOD5RT1Ecl42PWI8kGhPxVxH/7XoB9hwoxXYL71vej5f3BqjVvVBahiCXy8B1PdS9OFGm7gUwQOGHYWbugLk+RVfOwkBfI8dRd32UJh3kbDnM7Sg6ZlbD+rTkjgWgSumiXEZeLi9etRT3PLJT0Zm0DcPduZEyANrIpCJnG3hrpEEtDBwfo44Pw1AnOPMZOSxz7+Ovoqcrg95ifKHc+3YJr+4bj7bk9bBPOUcUjqr7MAgT5hOrjSmlkQSKCkl125IXoCtnSA9ete4r6cKjEw4mqnFRz568hcmaF5EFKKbW+gooY65x9k7dDeB6auZPMoRghwVqFPHr0vx8iBVeOm6AUuDAC2gsRJKzDeWi6rgyozBtAchlLSUD6aJzFuPnv3pbCg+lITVZngLPC2LV8M12S6r/Z5pEUg2Y119AqexIC+W8WTnpOonHTjuHCEqBB3++J7qOlbqH53cO44OnzcWhSQeHJh3MCqn2/+uh/0bgezIbjxDks2asjQAA1B0vZnS78xYAiqrjS2HuWcWsNBfVb2sQhO3I2b0r9sa56JzFSkanqjNpT8Fu2XB3uI3RRiaJr9z9Ala8dzbbsgvv83/7AdvRWIn6iPGyizmz4sca6M3h7bGK5F3XXcpkPGIeVONsyfOm9bUBpi5+YyEVVuSWfPBiCtKJ7zOmT0PUk1KKcs2VJD/ExysJZQKXyCG3mhtI8XJVYRoPB6oW4ULWlPI9NcdDT1dGCouBEPiezC6jtGHSIsZbCupOgOsuTaf9irvUtFwPP4cYvprKq7UtI7ajZYWr8pfyGQOEGLGmarZlwDINqVXwBSsW4slf7g+/2VgoV546Fz//1dtSbQn/VCsQd4F8npQCL/56BN/9n+fHiobF2jTx+yy/6Um6Y14AwA9iDotpEOWONp8xUffiToGqxiqgzAG76JzFEjFk2YIemdH5/CCKeVuqxQKlkRMiFpw2M9ydCm1kEnA8FtoBTadTJntN8LxIUsripIU90Y5FXJgDCtgtanRQqm4nGz2waO5NsofJQE/Bkh688VAnSeWVJkU9JysuuvKMMce9yULIkGuns2JSobiYt3F4sq6I/auR5uV7PkU2Y8AwmLyIYRBQH0q2XaXm4ZMXyQZi0+b/Ag1j+cnrkYSfIh+zY/eIRCp4e7SiLPpjIp+Q8nBiXkkEQVy7jFKKyYqLnu6MJPbZlTUZlVqwYEwqSZwdG9D2Vw4qCzp3DY5L9TOeFygbfU2F5DVVGV1XUcDamGu8d494ZNFh8QMooweq3/zEeUVs3TUcKnPHdyy8F4wIVS7PDygqCV2z5D0m7tYAxuRTGe5OhTYyCRgGAQGBTylMQmIJQD8MxYgLnViIKOYa8hkTL+0eU+ZTDk86Usw3DaahLpTb/NRr2D9aiVGb+eGYp9poa2uapG1BSFWiu1qPe5PVuhd54vw4U4VPRBYNpew1IXISXfToW0mgu16AUpkTJ0hYec8ICCJ4QymVWkLGJqg5tCUv3TCIsldQT96SFiI+n6SYI0BRzDPxR250uws2KjUPXaHMCxeQ9DxfYt05HvOM616Avu5szAmpOj7qIX2Wn9/1gYD6WDw33ip4aKwS88QBNtaRwzUpn7J0bte0jIzqmt7xry/GlCmaKT2onjlAVqVOyy+l/ebz+l+XdixJ48KhyuXZppxzS54vKfEExGnhI+NVZZ1cp0AbGQUMArDbhiZqN2hquIaC7ThibQF8ioG+nJRPqdVd1L0gFvNNH4shPeh7DpRw1bqTpEIy0yTwPD8yEAGlMF0PhZytrIJWsXnERYn/9SNDIrctoJSiWLBYbUYLVkYVgjSJHBJM+07z48bHZ4TzUTWUeugZeXEZ6Mm13ObXD6hUlFuuMqbQojnxBds2SUiEQOxesk0DpYobIxWUKi5m9+QYWyproSvHWhhXah5AqVzzc6G65uffn90raWexcfNmYY3EP0AwVqpJBZ1Z25TyKbvePCxdi+nWNo2XnZgyRdZmeTiRMcajBCokd3Y8v6QqtE2r1l+2oAdL5xWjBX/Zgp7U8aqYZPmsiXJV/l0uXrVUKfHEDY9o7B565vXoOndifobQZNXXbzg+d/v/xdthJ75c1orVbuSyTI6cqyknkfRUKYXUEphrIJ26tC+2MFTq6QV0hoEo5Ma39BvOXQYgHvs3CEXVCSLRSz5OwnM+tGEHQID+7iyT/DCNhljfWCV1wTBNxvoRQ3V+yA4SpTnaCZ8BYdisEG8EN50wgmp8Bihsy0q01wUeenaPdE2LOZvlnVrsapns1sjbYfcletWYBkHN8cOiu8a9FPg+Jmsy82x2dwYfet9CqT/8sgU9yoZZPE8gLnKc9afK2Yk5IADIZgypxgWIOx1J30G81/l9ZhAaE2G1TaC3mFPufAwC2LYZ7dTyGRMmAcYm46zJqSSX5s8uxOb9BxeeDKC1JmJitX7yGGmfF3evYk5r1+C4XHgsSP3zcoKN609THjtyelwfD/7thvQJH4fQO5kEgoCCguKSD56gfKj//n//V+qDx5PVfBHPZ8xUDaQzlw/EtuWfu/Pp1IVVVRj22NZB9HRl5Nh/eG6P0mjhT66TPBnregEuOHtRzFAFtDF+0ZsEmER5Mq/DF9N4Mr89IxPwbHB0VacHtiNqnNs0ABBDKro8POkor+lExUVPVzx81QyqXkGEAIfL9ciAuV4ABxQnL+rF4HA5MjwXrFiIR54bVOrjHZp0orzOgnAn8/Nfva0cQ1rFOYdqc0kTf1UGBogbGP6Xf0cMpxIwg7t+9TJpR/XMf72NOX1x6jtbePnOn0Q7f9tknWeTquViYWrsekNWpT5z+QAr+lUgyQybrDjwfIqJSj2Wz9qydTBVt811PSFSEMB0PSxb0COF2G753vOC6GtDOmfzU68pj81zQHPmdEv/73iHNjIJZCwTG85dFt00yRuCycurF9HYw0uB/p6cVNmf5lX1hA8LIC8KycXOICxxqoz9CwOZavtdrrn46bY3I/2talhsRghrvsXBPVWVUm8QmOjpysQWEduU63Km8kiPRivppPKxHwCWDWkBdrxAWWznA1L4qhmYRFZcINMKmUeiMTYJk6HhOz7PD/DkL/ezgkFCYgrefDfEF7+R8RpjM5oEjzw/iNlhhTgPMdUdH31Cwh5gDg0/ZDDFPZBEK/kvPneCxj3WlbWUKgo520C5rq4T8gMac4acAOgtZkDR2AXmshaqjpquTwEpjAyoJXL2HChF4rH8/aGxCiP4mI08XqlcT9Wx2/zUa3A8Ghe89Sj+5aevYE5f/BkfOlQDQho0n6NBEL7/mwVtZBK49bMfiGS6VcjYJlw/nQEkotokBKZCb+hF87h4d8FGqeyGaq5xhWcCWdJcRNqinozPi1XkorSHWDFNKZQqtrzXyHjZkWLjZrmOSj2I6Z9t3TmcGoqTJXIa3n2r8XlA/v/J3WHGMti1S6hmqwxLs9+XAJL+XC7LWHFJkgX33INQlTcIWL2QGTosSdkhQoDxyXo0X98H+NKUJJfwhljJRPfC2QUMjVcRKBhbqhBaszmnXQfxfSdsppbM61BqYXyyHl1XMUmeNFQAlcgbpXLz9gt1N17wO6uYhW2bkmPx+LZ96CnG6ez8+ibzjGnh3qFDtVj/JQLApwFGS3XYthkzan7Q6IvD72GfAjB+87IT2si0iUUDXVLtC+9smVwQD03UlQykjZecKu1meFKxrzsuucKTwRz8gczahpTM5+APrhj2UoVlxMRwdPzwL88p8ZDFVetOSu1vnqx4Ng0WJhLVdn/x6khsMU8i2UZARUAwmEo/inmrqVCneBpK44nufNZCsRC281UYlmSoMG0388HfmotVp89Xsv4OjFVjv0tMqVv46/nMwxXfJwAIITFHRxxCklximwSVqisVUp6+bBbeSikCbXWZMw1mlMXwVdr1qLtx2Rcu1FmuMUKImAdShe4a78vkkmYj9gMKbrYIgLFSHUvmFWOfyVgGao6HASsX/3J46KQETVIiShxtsnyBX4+kUaPxr0VIOiC/CdBGpk1cvGopqxpPVHSbBmIUU97ASsVA2vz0bokR9L7l/Rgt1aT8TZBSj9FISMdzIabBOiV6PoVlklANmrWBFVczOsW9bptGo9OiPcVtkqh4VknYTJXIZ9MM4CFu9GKLU8CUfS3TRNam0Rwt0wTgRZ8XvwewnQTAvOia42OgNweal73uctWLLfqAmjl16pJe/OGGM/DQM6/L4RqlxhtfPhvgh8xnZEn/Skp4iY1H8KIDyq6bouL8F6+OHLFQZ9aWixLF4s7kXFSgVCZIqMYRHYPIi36r7DX+EdXOLpexJAYdATMojCIe7wiqQm8xGw9phyc0E/FsrimnUk/PpDAoRSba3V++cOrJHkfQRiYB3n45LfHH31c1P0qGmBhkz2z/SBkPjpRTpTZEz/jv7t+hHIcfQEqoFrKs0LGvOxtRX30/wNnvHcDzO4cljzn5EIhIVjCnJUO3bB1kmlIGYXTvFotMkyDCQiKOhzPG+DW1TRKT1PF8hMwtdk1a8dLHSjUsnlvE7N7GWCmlKFcnpXoMHk6Z299gMY1O1PGPD/2KqXQjLq6Ys01J442X6qg8eZVWVzMkadB+AGUhZansSHknDtFw83GpmHkBDaQ8C2dBquaShjTV8iQMQpTkknLVRc4ymhpfESqyzdK5XTH6Nf+dTQLMStQYpdGdc7aR8szEXyU17EQGncqAiSw3Jo3TWei8GR0hePtlDlXSvtXmR5xdIoLRiYXXaCyg2145iJMW9cY+3+whNk1DyoX0FGwUC5lYlfGWrYNKoc5q3VNWXpuGXEuRVoC3f6Qs0H7T49lJiAsUDxFlFF63GLYr5sPdRuK68MWxVQRU7e1mQk0zHquPFmODSOGQrTsPKqSBGFOrpxj/Xd46OMlCYxAW93DAQUJJeKpVWyw+zGezmKw4SiFGHg5V2hlhIMW8hVrdh20ZavXjBLkkVkuVOFwaeLM7FcTv2hYLE9LQAtCQBJHPWlHIuBXDpipe/l8P/beSNUkpUJp0Yoy4NAez5gboSoRqczYjucQKoDNmTMNOdPhUBmzL1kFU6160y+o0aCOTAG+/vPmp11CquJHhKJUd3PPITmxcfxoA2fhwKrDne7BMExecvQjbdw3jwFhVYiBxJEM7nk8laZpmD5XKY7s65PiLVcZpQp1cVkY6bgAQn0Jss7xgdpey6ZPn85CNSvIjHTEjQdg7qqZlyf41Mb010thteAHaqtdRXbusLTPlHNdHEFDJ6AaUStJABgHcgErHLmQteD6F5wex+opqzWF1JXzRbmGBSVb2z+svYKLiSrIys3tzGJuoSQW/RHFN81lT2U4iaxmSAeOLqgi+21MtkK22mYjCT4rQX7nqSJ9PQ8YylLnDmuNJqt5+EMDzKQb64oy4ZQt6lIYmZxtST6W6GwgOTmPMyxb0RCUQosOnOu7g0ES0S+vEjI02MgpkLAP7hidBCIkSuJzn/i9bdsEwjRgV8p5HdkaLiEhRvWDFQjz54lvSDod7ZaoHJukxpyVbC1mz5b7saUKdzSAWIRoEqNZcJTXU9ULV3DYWShV6uuIFjJRyqnhcm4pDlXsp5MyYl9kMqmunYsrxXUg9FEz1fZ+1jCbyTiGgQCFrSce++gLWDVHlXftBQ9k6SchIQqX0vedAKVZY6noBHK+uLNa1TIKJqgvfj7PZXE/dTqLu+JIBc8MdmbgjEFluSVDCDI04R9U9wpyCIDX01yp6ujJKZyiXsRgTTfi9uEJ48plLrZNR5NsCyvKCqvDyF685O1VWRgSvUxJ3uJ0EbWQSODhexWTYq4XJ+jcSrQEoxiYczJtdiN2YXHuIVXc3EvzbXzmo3OE88eJbqZ3wktLlpmGgkDGkJPXiOcVUtlcSpy7tUwp1NoMY2qEUGC+7oZcfL1zzAwKCqfW+ClkDlbrwMIVgsX8WBhK99OGxCnq7bNTdQNm/hgIgidh4pRb3MtN2MgZB6rVLihf64THEfBYokLUJ6i6VaqZ4uEV1bFXNFXNi4gKZfFEWw3YgwOzevNSALa253q7BcVy8amlMMmVwSL3QOV6AeYp2EnXHkwpL/YCipxCvaaKUYnBoMrVtQXIHwY2RRE+n6kZw7aCS4gzxTrfJnV0xkQPhmm0qqHoqccHcVsPLKnDNNtFZ6yRoI5OA7wcoVZyGxyWsiDw0k6zp4ItZMsF/YLSiLFBrpuTjhB4z71/T352BYRooFjItJSdFeQouR7JrcFzpqTbrSZNsN8xChnINQ5rXTQiwdF5ciLFSb/TnieVkCPA7Z8yPed39PTlYloG+7rgkTyaUuk+ydgyDhNe1ufIADxepvN0zlw9IrD8eCkruNhy3vdVAdb6FA10YOlRNhLqyKFdZbRQx4vJA1ZqrbMBmW6yKno/NtgzsHylL9Hkn7EVjWbL8UVrvk6QBg+dHbD3xs0a46xfzan4oYZ6s8+IwDaNB2KDsfKpx2KYRtRVPho+TUk41J0A2I1fxH5p0sOrUudi68yDcgIWCi3kLXfkMRHBxSxV4mYG40913cBK+z5iOyfByq+h0NWZtZBKglKKQteB6QbiYxQUybdOQajpUICTU9VJIfvDktaoeI+YxhwdKC4slF65ZxQye++/haAyVuocHntmDQtbEQF9e8lTTepEAMo2UfScut95sZ0+pLEwpPkziWW3TwJMvvhWGG1liu1x1Iuq0eIxLPrgUP31hMFa7kbUN2BZLSouSMA1POr5T6C1mm1aFJ9lUXO2Aww9Ye1+Vdtnj2/ZJckSnLu2Tqs3v+9mr+J0z5mO0VJPyLNmMiaxtsMZxITMpYxEcmnRgZ6zYMQC5xmisVINBDAQ0iNHn2e8q/7YZiyhzVCr1bk71lrrAZgzUXV96XiyD5cvE+wJgYcYgCOD5jd15X1cGpaoX1vw0cle5rIkCMWOFymINljiXIMUZqjseRks25vbno3FXqi4THkVrYpq8fCEm00/5cyDqGabEBFMgqn10IrSRSYAYrNFTxjLQlY+LNuZyGdgGCx3FbyqGJIWZGZr4rqe7YIMibOU8RQjBIECp7CrDL0mxPu6pqlB1fKWHuGB2gZEbhDn6AUUuY8ILaCz8wtsTcEwlWQPIulJbX347ZgQ5DAOCzlPYUdMDTDOQmD/LFvTAti34gRfluWyb1SyNlmqx3BDfhRgEsd8wZxvwqByLV1WFmyaB71NJly48C1yfxn6vquOlNrYq5OLn2zU4Lu3g+M5zvOxgfn8m6nB6YKQMYhCMT8Q9dNYfnt114iLn+kHUrhiISxOp6kKSgq0XnbM4Iq6IhaUVjxmE5O+ya3BcuSurOz4yoDHmmkkaRI2MyXYylbqH3z6xHy/vORTNgf+QvV0ZeAGNFSpHjdcScymV3dh8eVSBs/6SMkwWYeKsU+U1AXX5QrnqRg6BGOauKVibaai7zTucHu/QRiYBI1xFCDGw8ZJTpR3EvY+/ilndmdhNlc8STFQYO0dM8Gdsk3koUZiNJY0tk0i6Vxy2GfeYAaoMtWx+erdU6MkRLYS0YfAqNdlD3HjJqQAged1PvvhW1FqZ00gNQxbaFK9ZMpxkGoaUP9j89G7l92tOEDO6BEyuY7LqYf7sQizUKDbYEltMjxyqKCVhClkTi+d2S78hIZCMv6oqvJizcLjsSjVGTFGZRuPlsiGM+BEP1/g+63VzeLIekwyqVF3sHynHdnBPvvgWLjh7EZ785f5YFb/rMQl8DxTJcGV3ntVH8WMX8zZKYZ8eEVFoKkER5jutZFg3CHdsCITcENi9xKV/RJLL/tEKoyDTsDI+oDBNRv/2KaLnxQ/zgZbFro3Yf6mnmInle3iXyeT9a5kGchkThbwd3y3bBI4bxHTs+M5Hle+p1DzclrhP20FvwYZHgfn9jSgBV1pvFY7b6MLbKjvzeII2MgkEoR5LmrQEj8smb6reQkbyiP5lyy554aNALmPCICTGOjMIjZLgYrihpyurlKbhHqzKU1UiGghJvJbh+kG8J41PkCI8IB8qNGzzZslx7aGxijLExPMCYvyNG7SkVtf4RF3ZYMsL1Mau7lLJ2OUyu3FgtCyFmGzLkKrCAbbrTHrMkxU1rZbSpO6YH0voErDf9nDZZVXnCgbj/3tpf3RR+aLDsk2yhw5QZSM4y4DkyASBeJ+EF5wQbH/lYKxOg4evqnVfabjZfRFvz/3/dhxQ3mMZk0jyR14AWAbB/P5C5ChQSrFveBJmFRgai0sGAUS4NUj0m5y+bBZe2j0m7b7eGqlIxBVuiFTNzFqFWDTJd6m8zw/QWshNhVjIvQO3M9rIJGAaBrrzNoo5Sxm3/50z5kt9z8X6FBHjZTWDrFr38fkrf1veQfxyvxSeI4SgXK1L0jR+2LpXDNdwUMSZV5bJKvFJaL1IWKG/+anXUKp6MQP2yuA4C2mISrOuWmpdPF/y30vmFqUkNdshxo9EhEVPVScjEiEc14dBiECrbUjnEECpaOwHgTyOMJEutlBmX6Os+VoIPo6sSTA30fa4VHbQU1DvIFQLs+p1QAGrCYNxVk8uWoT3vj0RFZGK1y7pK/CXuYwJwzBijgw1WJMtz6eROoNpMAUKsY6G647FfqfE2JPGbqxUR193Ntb+2jQNTNZcJGm/QiIjAmsTjpgGHTOYHiwDGJhViO1wDk/Wsf2VEczuy0m7L0PR0rqnK5PadqNVqNoqAMxgFvN2SyE3FQxCAIOGY235a8cNtJFJoLeYQd3xACJXO/M4eqv1KVzkUHyeaPh+Gs2V0Z3FniN7kdyxcA/WVyRUxfOwcbOHe6LqRlIyXFyxVGYepmjA+E7ASix8IpILjiqe/MKug5gzKx8z0D0Fi8nvIJ67mt2dwWRNrT4ghqkQ7qziqr5sJ9mVZ7paoqEKAiZA+fr+UmwX6LgN/S3xb92Va0AohRRf51pYpmkgY5uN5mRm63Rbcf4qBmMytCOG58TPArKxIYTN5fqPnRa7TweHJlCte00ZgmlrXPL9ZD8ZCqSyDwd647TfrhwTKOWh47rrh8KfBnzILDIvkK9Hte7D8wNpp1uuehLNuLuQA6Xq2qh2jAFLztPYObvzFjwQ3PbZVS0fJ4l5s3LYP1rpSAMDaCMjoSdv48ILT8a9j78q9fPmHPpW61OMcGEQFzL+fhI7do/gyV/ulwo6edgsmWBuhhh5wAgVfWnjvAScIRVWZNPm1fr85lcJ/omvxTn6AZWS1F05G65PpeLUk5f0KQkBUByX79JEA8FCkBbz3IWdYBCGz5KhnYB/XzgI/yeveE9ey6RsCK+7SBZBtgo+dh4uFJG15dBOGgsQEIwNGoYrUKxYvLhV5bCkIRmCjFiQwt+GnZSPTSDXKxmGgYUDXSjm7Vg1/KbNO2AaiDz6KMQWyBTretiCM6lKTQOqlFvq68q0/NymIWcbEhHi0ISDBf35aR8TAFaeOhcPPLPniI7xboY2Mgn88eVnIAgoBnoHpX7ePIarSsQDckX3gv48S4YmFmbVTalK5JerThT/5uAJ5mYQ6w+csF0ABaS+JUBcbkRcl5K5oYHeHBzXjxuIjBnTlIqOE/5brB3gzaA2rj9NWfmetpiJBpOHcniYhxBWG+MHFIcn67j+Y/EQ5K/3HQar04jTrkVmXPJ1s92hmMd4c3hSWQSZJtWjQtryfuL8boxO1FEHIk+/XRAiN++qu0FkRKNzT+mwkEixmKJhMGJGXnghyeYTKncK9epY+74FUSdIXg3Pq/LtRK1N1pYp1vy3TKpS2yGZ4EjCYk0vqhT6C444W79rcBx9xUwkptlp0EYmBSpOvO8HOHVpn/Tw3vPIToAQFHKWlL+RZGUyJq5ad5J0vqGxClSeIH9oAdFjjC+SSLzHGXIGodExkPxcSniNQ5SVydoGPnmRunf6ps07UpWck3PxfHWYsOp4cW9cPJiwheHtCZLPNBGtpvhVSiUjKl4j0ahxA6YCgaxKPXSohgUDhZb14FQI0Fikxcr3weFyJLE/fKiKnODoKH9vA7Emeuy1XKOVsQwl7bfZmJON2QhhFf9xJQYb4xN1ZGwzDFmy65vPWqzGKKQwcxkXrkiQ7GR/0TmL8dCze2JV+RQUH10lt0IvTdZRdXyJWp61ZVmfdsNiaVBV/HcXclJxarsYOVyLtAVtq/WQ6/ECbWRSoOLEc32r5MM7FhZScc0lMX+j8tzVN3x6Unx2b1bi4Y8cZqGZqcK4UzlZkaQH0j3ruhtgz4ESNpz3HmnsC2cX8NaIupK/1WZQXJhGtRuK/aWMbVSt+whAw1AfCyP2dlkxJexS2WmaayAGgSGciwKpW8Tkuyw/oO5IKSoSJJGsTvcDKkmuUEpRqXsRpXhBqOBbczylMbcMVuehksdP5jF6umyMHK7DTFCY08QtbdOQ7t/JqhvWrMRDV73FLMYmaiCEwA53S1XHg2UQ+DROJKl7Ad4aKUvn4y3Pk/U6G857D3bsHol9tpBjLQGS6DkKYbE0DPTmMHSoGnvP8ynmzTqycBlnrIr3UidBG5kmUN2sqlwNrwBX6Re1esPPm5VTKjZnbQOWZUqU6axtwHEb1fPJxV1cgAG1xwxAagGg6vJJwB58vgiIuGrdSVKbAy8IkM9YUkFnWjOorE1QddT6Z7GwDJgB5/Rv3to5lzUBQjBZbRiWZjkMAij7lhyeZC2RxSJZ7imLcDymflx3fWmne8kHl0q7V17jkgxBpolsGgLphBBWZ9JbzOLwZD22+8rZBj7ygaWRpPxU6sxx+ngj9DermMF42Y0l8Sll96SqrYVqh5+zDWX4sBQeN5kP9FMM+obz3iPdZyrq8NhEjYXLEv2GZjJ7ntQAFEN/R4KLVy2NusuqcmnHO7SRaRMqr4MQgAbxHES7+kWqxTqXNROFeY1Cyo+uWipRnpl6ccBE+4QFuFFN31jNgrBgzrYMqcsnEC5kaISYqo6nHPeZywckb5dXj4v0Y5MQXLxqqTKfdcL8Hrw5PBkLtXAbkZRzKZWdKPciJo3//n//Vzw01uRaZ2xD2bekvyeL8UlHKpIlAAbfnoiMXT5r4Y82/BYAdb8hlayMip5++gl9kmgjBVNcaChFsN1Od8FGMW9j4UDXlOdLU2euBezY7PdvUJjzOUtJyFCFddN2+GntJA6Xw7xiIh/YThtiNXWYhYPF0F+7lfbtYtfgeKoYaTL01zbCZ7MDbYw2Mu1ClathCzoATF+/SLVY82Sl+8KgUBwZwHQ9LFvQg42KxQWAtADzvvPJXdLC2QVcte6k2DGGxiqRgQlnES4O6YtC0tt96JnXow6KCL9fqXvY+vLbeHnvuFRYesGKhRgt1dDdlYkZuyQjmOde+PnEpHGSLt7M0ARBABB+6zc8+g+duUDahRCTQsy787nsOVDCsgU9LV0PAEpDcObyAczrf12Wc3nlYFQsahqIOS3JwtK086nUmQOHETeYltvUhIxm8irJ/5dGlEkTf+xpoyJ+5HBNih7YpgHP92O743Yr7duFmDvhoJQese5YvLvskY7y3QdtZNqEypOrVF1kjlC/iB87+fDe8r3n4Xg0XhzpUWx+6jXcdt0HUyXlkz0sVLukq9adJJ3z+m88jaojh4iyduue5+Pb9ikr+5/fGdKUw91REARwfdYSIZmsTWtpPb9fXaGdRhcH4qE/UMAPiLJviSqH9saBEkxKpbk8tnUQ2YwlGcyNl5ya+puo3leFh7bvGo5mQUWedRtOi2pBHByaCOcfZ9ulETLaQRpRppi3MT7pgBiYdlhLFT3IZ01MVIKGhlm4w+e9e2YCqnG0qxqggthdto1Sq+MG2shMA8kH8o5/fVEpNXM0vKqhQ7VYqIuAFUcOHWrde0rbJamUnFlCVa73mN3T+oNUc7zYogw06h04IkNAgQOjlZZbWqtCOACUdHEO04hXfweUKnWsVDm0677+pHIujF0lU843P727rcVaFT6suUGkj8dVmNt1WlQLYlqNC5PZPzI0C6Mltf7anYsyehBQZGwjzO2Q+MRmCGmG9Ejp0V44B84K7TRoI3MUcPGqpbjn0V1S3uToeFWyrhfzytt7oNKUnJMJ1fFJJ5SViS/M7dQCqLoQxgochb9sRyPPpZlhVPXMURIQ/CBsrEYlZeBWdayazYWHL8VdAaOitwbV9b/vZ68ilwnzaOFVYslytR5cGlQLorijE3d2hMyc+8wZWQSNa9TuXFQGzDIIvIBKBZqpXS2PAtIM6ZGezzQJ4DUIO52Gd8TIfOpTn8LY2Bgsi53+tttuQ7lcxt/8zd+gXq/jox/9KL7whS8AAHbu3Ikvf/nLKJfLWLlyJW699VZYloX9+/fjxhtvxOjoKE488UTceeed6OrqQqlUwl/8xV/gzTffRH9/P771rW9hzpw5Mz8phTjg0cC8/gIOjJalPh3z+lsnFaRhy9ZBSTGYhqEhyyTTrgVIq3fgkOjEKfZLZRgfeub1KKFtGWxheejZPdhw7jIlAYH3cRE9z7XnLFbqz6k80mZzUdXgtGP7Vdc/n7UQ+C4Olx0QEKZP59G2WUyqBfHwRA1O2D5ZpG6nUcvbQZrBPGlhz1FhZCXvhS9+99lURY6ZxEzQoxcNdEXt0TuxGPOYG05KKfbs2YMHH3ww+u+UU07Bl770JXznO9/Bo48+il/96lf4j//4DwDAjTfeiFtuuQU//elPQSnFj3/8YwDArbfeimuuuQZbtmzBGWecge985zsAgG9961tYuXIlHnvsMXz84x/HV7/61Rmf05atgyjkbSwY6MLiuUUsGOhCIW9jy9bBIz72VecvR1c+E/VEMQjQlc/gqvOXH/Gx94+UUSrXY6y4gLKcw7z+AhbNKWJefwGmabQVd95w3nuw4dxlTOI99DY3nLsMs3uyys+LuZGp8Pi2feHiS8JQFQEBwePb9uHM5QP44jVn447/cS6+eM3Z2HDee/AHF56Mvq4MKjUPfV0Z/MGFJ6e+n5ozUcxFDLeJdiUZWmsG1fUvlesYL7vIZyxQSuF4TDo/n7Gwa3C85WMDkK7HCfN70J23YZosvMfCcDYWDRwdhyVJuzZNg8n3FzKMeECZvH9PIdP2XJIY6M1JhIKjkR95J3DxqqWwLQOzurM4YX731F84znDMdzKvv/46AGDjxo0YHx/HJz7xCZx88sk44YQTsGTJEgDAZZddhi1btuCkk05CrVbDWWedBQD42Mc+hk2bNuHjH/84tm3bhm9/+9vR+5/85Cdx44034umnn8Z9990HALj00ktx2223wXVd2LY9Y3NSsV+Olld15vIBZV+bo+FNxWPBiORDQOWulu3GndMS2okqDQCsArxVpOV7ao6X2lK5nUR8q3OJ9dwR5pJrYy6q6+9TErYR9mAYBuxQHqjmeNivKGBsBzyElqypORqSK2nPQM3xMNBXPOqMrJnKj7wTEHedh9pQjDhecMyNTKlUwurVq/HXf/3XcF0X1157La677rpYSGvu3LkYGhrC8PBw7P05c+ZgaGgIhw4dQrFYjMJt/H0Ase9YloVisYixsTHMmzdvxuY0U6wTjpmqYBZjwTx8YpgEtkmkrpZHRZbDDZTqBe0kgdNyJLZlSBX/9zyyExvXn3bEY1cZr4UDXYpOkFZb1d+q6y9GWwPK2hOLLLAjwUzlFID0ZyCXsY64j4sKMzmXdwIiLb/TcMyNzIoVK7BixYro9VVXXYVNmzbh/e9/f/QepRSEEARBIElucFFEkgjkJ1+L3zGM1qOCs2cXW/4sx+9fdCr+4f/sgB+wh4l182Pvv5M3zVTnXrawF/sPTqBS8+B6AWyLxdMXzunG1/7H7xz18SyYU8ShUjXWRrfmeJjVk2/5Ol1x/nL86GevwqcUJmikBJPLmJissu6kpsE6j5ZrHn7yzBv48AdPnPaYt+8cwg+feA2WRdBbzGCy5uKHT7yGC85Zgie3vYmuvBX95p5H2/rN067/WCkhvy8w5o70fvrwnO4juh5pSHsGrjh/OZ7c9mbTZ2O6c5qpucwEpprj9p1D+D9Pv4ahsQru/vKFx2hUxwbH3Mhs374druti9erVAJgRWLRoEQ4ePBh95uDBg5g7dy7mz58fe39kZARz585Ff38/JiYm4Ps+TNOMPg+wXdDIyAjmz58Pz/NQLpfR19fX8vhGRyeVbKdmOGGggKs/fJLkVZ0wUIjVqhxLJOtkVPjwioW472evoreYjYUcPrxi4YyMm5/P8+m0z/e7KxahUq5L7LJHnhsMe+Owz3Hvf/9w+Yjm8qPHdzHdNcOA51P2l/h4cefQEf/madc/Y4WSQQkWGIB37H6aCmnPwJnLBzC3J5t6nVq5T493TDVHkTTRne88wu8xn9HExAQ2bdqEH/7wh3BdFz/5yU9w66234s/+7M+wd+9eLF68GA8//DCuvPJKLFq0CNlsFr/4xS/w/ve/Hw8++CDWrFkD27axcuVKPProo7jsssvwwAMPYM2aNQCAtWvX4oEHHsDnPvc5PProo1i5cuWM5mM4ZiqkNZM41iGHM5cPYM+BklTh3u75eI5EfHgfeW7vUaF6JzFymNUpDQm9cdrVpUtD2vW/+5Gd8AIaSdkHlB41FthM4mjkv34TkSRNdBqOuZFZt24dXnrpJVxxxRUIggDXXHMNVqxYgdtvvx2f//znUa/XsXbtWlx88cUAgDvvvBM333wzJicncfrpp+Paa68FAHzlK1/BTTfdhO9+97tYsGABvvGNbwAA/vRP/xQ33XQT1q9fj+7ubtx5553HeorHFY7lArBj90ikLiy2zF22oOeIxzBTVO9cxowkXqarS9cMquufpLSaZnOBUY3jGyrSRCeBUNqJkmzTx3TCZe9GvBvDEFwZIVlA19eVUWpyTQVxjjt2j+CeR3fFRSizVqrMS6u45XvPR90QRVmUBf153HbdB6d93GYQwyddodS/7wepNOvjGe/G+/RoY6o5is+FbRn45hfOP2ZjOxboxAJTjXcpRg7XUuVcjhSc6v2ehT2Y1Z3Dexb2HLGBARBJvIi1JbO6MzOq9nvm8oGojmey2ryOR+P4x8WrlrJunq6PTvT5O3ePpvGuw/FI9eZjngldumZQKU1rdCZ0nYyGxlHC8VhAdzyOWeP4g66T0dA4CjgeC+iOxzFraLyboI2MxjHF8UhnPR7HrKHxboFO/GtoaGhozBi0kdHQ0NDQmDFoI6OhoaGhMWPQRkZDQ0NDY8agjYyGhoaGxoxBGxkNDQ0NjRmDNjIaGhoaGjMGbWQ0NDQ0NGYMuhgzAcPonH4OnTSXNOg5Hv/o9PkBvxlzTIOW+tfQ0NDQmDHocJmGhoaGxoxBGxkNDQ0NjRmDNjIaGhoaGjMGbWQ0NDQ0NGYM2shoaGhoaMwYtJHR0NDQ0JgxaCOjoaGhoTFj0EZGQ0NDQ2PGoI2MhoaGhsaMQRuZDsLk5CQuvfRS7Nu3DwDw7LPP4rLLLsNFF12Eb37zm+/w6I4Md911F9avX4/169fjjjvuANBZ8wOAv/u7v8Mll1yC9evX4/vf/z6Azpsjx9e//nXcdNNNADprjp/61Kewfv16XH755bj88svx0ksvddT8pgWq0RH4z//8T3rppZfS008/nb755pu0Wq3StWvX0sHBQeq6Lt24cSN9+umn3+lhTgs///nP6e///u/Ter1OHceh1157Lf33f//3jpkfpZRu3bqVXn311dR1XVqtVum6devozp07O2qOHM8++yxdtWoV/cu//MuOuk+DIKDnnXcedV03eq+T5jdd6J1Mh+DHP/4xvvKVr2Du3LkAgB07duCEE07AkiVLYFkWLrvsMmzZsuUdHuX0MGfOHNx0003IZDKwbRvLly/Hnj17OmZ+APCBD3wA//zP/wzLsjA6Ogrf91EqlTpqjgAwPj6Ob37zm/jc5z4HoLPu09dffx0AsHHjRmzYsAH33ntvR81vutBGpkPw1a9+FStXroxeDw8PY86cOdHruXPnYmho6J0Y2hHjve99L8466ywAwJ49e/DYY4+BENIx8+OwbRubNm3C+vXrsXr16o76DTluueUWfOELX0BPTw+AzrpPS6USVq9ejW9/+9v4wQ9+gB/+8IfYv39/x8xvutBGpkMRBAEIaciLU0pjr49H/PrXv8bGjRvxxS9+EUuWLOm4+QHADTfcgOeeew4HDhzAnj17OmqO999/PxYsWIDVq1dH73XSfbpixQrccccd6O7uRn9/P6666ips2rSpY+Y3Xeh+Mh2K+fPn4+DBg9HrgwcPRqG04xG/+MUvcMMNN+BLX/oS1q9fjxdeeKGj5rd79244joPTTjsN+XweF110EbZs2QLTNKPPHO9zfPTRR3Hw4EFcfvnlOHz4MCqVCt56662OmeP27dvhum5kRCmlWLRoUUfdp9OB3sl0KN73vvfhjTfewN69e+H7Ph5++GGsWbPmnR7WtHDgwAFcf/31uPPOO7F+/XoAnTU/ANi3bx9uvvlmOI4Dx3HwxBNP4Oqrr+6oOX7/+9/Hww8/jAcffBA33HADLrjgAnzve9/rmDlOTEzgjjvuQL1ex+TkJH7yk5/gz//8zztmftOF3sl0KLLZLG6//XZ8/vOfR71ex9q1a3HxxRe/08OaFu6++27U63Xcfvvt0XtXX311x8wPANauXYsdO3bgiiuugGmauOiii7B+/Xr09/d3zBxV6KT7dN26dXjppZdwxRVXIAgCXHPNNVixYkXHzG+60J0xNTQ0NDRmDDpcpqGhoaExY9BGRkNDQ0NjxqCNjIaGhobGjEEbGQ0NDQ2NGYM2MhoaGhoaMwZtZDQ0EvjsZz+Lf/qnf4pev/HGGzjllFPwjW98I3pvdHQUZ5xxBiYmJto+/k033YS77777qIxVQ+PdDm1kNDQSWLNmDbZu3Rq9fuqpp7Bu3To88cQT0XvPP/88zj77bHR3d78TQ9TQOG6gjYyGRgJr1qzB9u3bEQQBAGZk/uiP/gjlchmDg4MAgOeeew7nn38+XnzxRVxzzTX4vd/7PVx55ZV46qmnouPcf//9+NjHPoYrrrgCn/nMZ7B7927pXF/72tfw6U9/GuVy+dhMTkPjGENX/GtoJHDiiSeip6cHr7zyChYuXIg33ngDZ511FtasWYMnn3wSn/nMZ/Dcc8/hyiuvjEJfixcvxtDQED7xiU/glFNOwb59+/DAAw/gvvvuQz6fxzPPPIM/+ZM/wWOPPQaA6VrddtttGB4exj/+4z8ik8m8w7PW0JgZaCOjoaEAD5nNnj0b5557LgzDwLp163Dffffhd3/3d0EIQalUwsGDB3H99ddH3yOE4JVXXsG2bduwd+9eXH311dH/K5VKGB8fBwD84Ac/wOjoKB544AFtYDQ6GtrIaGgosGbNGmzevBnZbBYf/vCHAQCrV6/GzTffHIXKfN/H8uXLcf/990ffGxoaQn9/P7Zu3YrLL78cN954IwAmaT88PIze3l4AwDnnnIOzzz4bf/VXf4Uf/ehHsG372E9SQ+MYQOdkNDQUWLVqFXbu3IkXXngBH/rQhwAAuVwOp59+Ou69916sXbsWZ511Fvbu3Ytt27YBAHbu3ImPfOQjGBoawnnnnYdHHnkEw8PDAIB/+7d/w6c//eno+GeccQY++clPoru7G3fdddexn6CGxjGC3sloaCiQz+exbNkyuK4bY5CtXbsWf/u3f4tVq1Yhk8lg06ZNkbw7pRR33HEHFi9ejMWLF+MP//APsXHjRhBCUCwWcdddd8UaVhFC8LWvfQ1XXHEF1q5di7PPPvudmKqGxoxCqzBraGhoaMwYdLhMQ0NDQ2PGoI2MhoaGhsaMQRsZDQ0NDY0ZgzYyGhoaGhozBm1kNDQ0NDRmDNrIaGhoaGjMGLSR0dDQ0NCYMWgjo6GhoaExY/j/97wOde4ZgYMAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 406.975x360 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.lmplot(x='Week',y='Weekly_Sales',data=clean_data2,hue='Type')"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 55,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "C:\\Users\\eebal\\Anaconda3\\lib\\site-packages\\seaborn\\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
-                        "  warnings.warn(msg, FutureWarning)\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:xlabel='Weekly_Sales', ylabel='Density'>"
-                        ]
-                    },
-                    "execution_count": 55,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEUCAYAAAAr20GQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5d0lEQVR4nO3deXhU5dn48e9smSRkTyYJIQmELUEIm+yVIFWILAFBXKoC/cGLtpVibV8VAZdqwZbaUpf2vSra0iq8gr4CohVBUFFACCh7gISQkH3fl8ks5/cHOBIhIYFMzszk/lxyyVnnfphk7jnPc879aBRFURBCCNHladUOQAghhGuQhCCEEAKQhCCEEOISSQhCCCEASQhCCCEukYQghBAC8ICEUFtby/Tp08nNzb2u4/Py8hg2bBgzZ85k5syZLFy4sIMjFEII96BXO4AbcfToUVasWEFWVtZ1n+PEiROkpKTw/PPPd1xgQgjhhtz6CmHTpk08++yzhIeHO9Zt2bKFWbNmMXPmTJYtW4bZbG71HMePH+fs2bPMnDmTefPmcebMGWeHLYQQLsmtE8LKlSsZMWKEYzk9PZ1NmzbxzjvvsHXrVkJDQ3nzzTdbPYfRaGTGjBls3ryZhQsX8sgjj9DU1OTs0IUQwuW4dZfRDx04cIDs7GzuueceACwWCzfddBOFhYWOdZfbtm0bv/zlLx3LEyZM4E9/+hOZmZkkJCR0WtxCCOEKPCoh2Gw2pkyZwooVKwCoq6vDZrMREBDAnj17rnrMW2+9xfTp0wkODgZAURT0eo/6ZxFCiDZx6y6jHxo9ejQ7d+6krKwMRVF47rnn+Ne//tXqMampqbz33nsAHDx4ELvdTu/evTsjXCGEcCke9VU4ISGBxYsXM3/+fOx2OwMGDOChhx5q9Zjly5ezdOlStm7ditFo5E9/+hNarUflSSGEaBONlL8WQggBHtZlJIQQ4vpJQhBCCAFIQhBCCHGJWw8qV1TUYbe7xxBIaKgfZWW1aofRYTypPZ7UFpD2uDK126LVaggO7tbidrdOCHa74jYJAXCrWNvCk9rjSW0BaY8rc+W2SJeREEIIQBKCEEKISyQhCCGEACQhCCGEuEQSghBCCEASghBCiEskIQghhADc/DkE4RxWO5gt1ha3Gw3yYyOEJ5LfbHEFs8VKalpRi9tHDojoxGiEEJ1FuoyEEEIAkhCEEEJcIglBCCEEIAlBCCHEJZIQhBBCAJIQhBBCXCIJQQghBCAJQQghxCWSEIQQQgCSEIQQQlwiCUEIIQQgCUEIIcQlkhCEEEIAkhCEEEJcIglBCCEEIAlBCCHEJZIQhBBCAJIQhBBCXCIJQQghBCAJQQghxCVOTQi1tbVMnz6d3NzcK7alpaUxe/ZskpOTWb58OVar1ZmhiE5ktUOd2driH6td7QiFEFejd9aJjx49yooVK8jKyrrq9scff5zf/e53DB06lGXLlrFp0ybuv/9+Z4UjbpCiKBSU1ZOeU8ne4wVEhHZjeN8whvQNRadt/r3CbLGSmlbU4rlGDohAb3Taj54Q4jo57Qph06ZNPPvss4SHh1+xLS8vj8bGRoYOHQrA7Nmz2b59u7NCETfIrijsP1nEp4dyKapoQKvRcCa7gtfeP85v/3mInOJatUMUQnQAp31NW7lyZYvbiouLMZlMjmWTyURRUcvfKIV6FEVh//FCzuVXM6h3CEP6hjJmYHdiugeyfW8mGz5N54V/pfL/pg5g7MBItcMVQtwAVa7b7XY7Go3GsawoSrPltgoN9evIsJzOZPJXO4Q2Ucrr8ffzBuDshQrO5VczYkAEoy994Pv6GtHptExL6sstw2P4w78PsXbbKSx2mD2xL0pFg+P4q/H1NWIK8e2UtrSVu7w3bSXtcV2u3BZVEkJkZCQlJSWO5dLS0qt2LV1LWVktdrvSkaE5jcnkT0lJjdphtEm92UpNbSMNZit7vs0jLNCbhNhAamobL26vN0OIr6M9i2cN4o0PT7Huo1PkFFYzY3ycY9+rnr/eTInN1iltaQt3em/aQtrjutRui1arafWLtCoJoUePHhiNRg4fPszNN9/M1q1bSUpKUiMU0Ypj58qwWG2MS4xB28oVnEGv5eGZAwnyM7LzUA61DRb6xQS2eowQwvV06nMIixYt4vjx4wC89NJLvPjii9xxxx3U19czb968zgxFXEN9o5X03Cr69AgkyM94zf21Gg0/ub0fM37UiwOnith/vBC74h5Xb0KIi5x+hbB7927H39euXev4e0JCAu+9956zX15cp1NZ5Sh2hUG9Q9p13J3je2OxKXz8dTYKMC4xUq4UhHATcjO4uEKD2crZnEp6dffH39er3cdPHduTgtJajmSUoddpGH1TxHXdNCCE6FySEMQVvjlTgtWmMKBn8HWfY3DfMCw2hZPny/H1NjC4T2gHRiiEcAZJCOIK+04UEOTnRWhgy7eOtsXw/mE0mK0cSS/Fx6inX3RgB0UohHAGKW4nmrlQVMOFolr6RQfdcDePRqNh3KBIosJ8+fpkIfmldR0UpRDCGSQhiGa+Ol6AXqehd1RAh5xPq9UwYWgPArt5sedoPrUNlg45rxCi40lCEA52u0Lq6WJu6hWC0UvXYec16LXcOqwHih32HMnH5iYPEwrR1UhCEA7puZVU1TYxPN507Z3bKaCbF2MGRVBa1cjO1Asdfn4hxI2ThCAcDqQV42XQMqi3c+4IiuseQK9Ifz7++gIXijyjFIEQnkQSggDAZrdz+EwxQ/qEYTS03l2k0WooLq9vcQKc1nqERt8UQTdvPf/aftpt6lAJ0VXIbacCgPScKmrqLYxMuHaRQbPFRlp2cYsF7Ib0b7nLyeilY1ZSb/69/Qx7juZz67Ae1x2zEKJjyRWCAODb9FL0Og0D49pXquJ6jEgIJyE2iP/74hx1jXLXkRCuQhKCQFEUvk0vYUDPEHw6YWpLjUbDfbf1o77Ryn++znb66wkh2kYSgiCvpI7SqkaG9QvrtNeMjfBn9MAIPj2US0WNudNeVwjRMkkIgm/TL05WNKRv5yUEgFnje2O3K2z96nynvq4Q4uokIQi+TS8lrnsAwf7XnvegI5mCfJg4rAdfHsunoEzKWgihNkkIXVxFjZmswppO7S663PRxvfAy6Hj/i0xVXl8I8T1JCF3ckUvdRZ2ZEDRajeOZBZ1ey4+HR3P4bAlp2RXUma1Y7Z0WihDiMvIcQhf3bXop4UE+RIV167TXNFtsHD1b4lgO9DPgZdCyYedZbhsRzcgBEeg74W4nIURzcoXQhTWYraRlVzCsf5iqM5p56XUMigshr7SOkooG1eIQoquThNCFHc8sw2ZXGNav44vZtVd8bDDeXjq+zShVOxQhuixJCF3YkfRS/HwM9O2h/kxmBr2WQb1DKCyrJz23Uu1whOiSJCF0UVabnWPnyhjSNxStVr3uosv1jwnCx6jno31ZKIoUvhOis0lC6KLO5lRSb7a6RHfRd/Q6LYm9QziXV82prAq1wxGiy5GE0AVZ7ZB6uhiDTkuvqIB2la92tn4xgQT7G9n8ZaZcJQjRyeTevi6ooclC6uliIkJ9OXaVQdzWylc7m06rJXl0LO98ms7Rc2UM7eRyGkJ0ZXKF0AVlF9ZQ32ilV6Sf2qFc1ZibIggP8uH/vjiHzS5PqQnRWSQhdEFH0kvRaiDa5JoJQafTMufWPuSV1PHl0QK1wxGiy5CE0MUoisKR9BK6h3XD6xpTZarp5ngT/WOCeH9PJvUyiY4QncKpCWHbtm1MnTqVyZMns379+iu2nzx5krvuuosZM2bw8MMPU11d7cxwBJBVWEN5tZmeEf5qh9IqjUbDT27rR12jhfc+P6d2OEJ0CU5LCEVFRaxZs4YNGzawZcsWNm7cSEZGRrN9Vq5cyZIlS/jggw+Ii4vjzTffdFY44pJDZ4rRajXEhLtmd9Hlekb6M2lEDJ8fyedsTqXa4Qjh8ZyWEPbt28eYMWMICgrC19eX5ORktm/f3mwfu91OXd3FOvgNDQ14e3s7KxzBxe6iw6dLiI8Jwujlut1Fl1dDnTwqlpAAI298eIqymsYOqYZqtdPsNtvi8vpmy1JtVXRVTrvttLi4GJPp+9sXw8PDOXbsWLN9li5dyoIFC1i1ahU+Pj5s2rSpXa8RGur633IvZzKp202TmVdFcWUDU8b1ws/Xq8X9DAY9/n4tJ2eD4eKPTUv7tOX41rbb0XDmsiuCCcOi2fLFOd7Ylsbto2IZHh+OKcS3xeOvpbi8ntOZZS1uv9HzuwK1f9Y6mie1x5Xb4rSEYLfbm1XQVBSl2XJjYyPLly9n3bp1DB48mH/+8588+eSTvP76621+jbKyWuxqPkXVDiaTPyUlNarGsPPr82g1GhJig0jLKm9xP4vFSk1tY6vbgRb3acvx7dnu76NncN9QjmaUEdjNQEJMICU2W4vHX0u9+Qfn9/Nutlxfb76h86vNFX7WOpIntUfttmi1mla/SDutyygyMpKSku9r3peUlBAeHu5YPnv2LEajkcGDBwNw7733cvDgQWeF0+UpisLXJ4tI6BmEn49B7XDaLbFPKDHhfqSmFXP8XMvf7oUQ189pCWHcuHHs37+f8vJyGhoa2LFjB0lJSY7tPXv2pLCwkMzMi1Mn7tq1i8TERGeF0+Wl51ZRWtXIuEGRaodyXbQaDbcM7k5IgDf/+OgU31w2wY4QomM4rcsoIiKCxx57jHnz5mGxWJgzZw6DBw9m0aJFLFmyhMTERF588UV+9atfoSgKoaGhrFq1ylnhdHn7ThRgNOgY3t+EzT162a5g0Gu5fWQ0B04V8bfNJ7jnx32ZNCJa1cl9hPAkTq1llJKSQkpKSrN1a9eudfx9woQJTJgwwZkhCKDJYiP1dDEj4k14e+mpM1vVDum6GQ06HpmdyIYdZ3lnVzqnsyu4f1I/wgJ91A5NCLcnTyp3AYfPlNBgtjEusbvaoXQIby89i2cnct9t/TiVXc6KtQfYuDudihqz2qEJ4dak2mkX8NmRPCJCfEmIDVI7lA6j0WiYPDKGm/ub+L8959iRmsOO1BwG9gph7KBIhvczufSzFkK4IkkIHi63uJaM3CrumdjXI/vaQwO9eShlIHfeEsdXxwvYf6KItdtO4WXQktg7lJvjTQzpE4aPUX7UhbgW+S3xcJ8fyUOv0/KjRPe8u6itwoN9mZ3UhzvH9yY9p5KDp4v55kwJh8+U4KXXMnJAOJNGxBDr4jWchFCTJAQPVt9oYe/xQkYNCMe/lSeTPYlWoyE+Npj42GAemNSfjNwq9p8s5OtTRew9XsjN8SZmjo9TO0whXJIkBA/2xZF8zBYbk0fGqB1Kp7LawXzpaeoe4X7MCe/L1LE9+eybPHYfzuVEZjkjEkz06RGocqRCuBZJCB7KarPz6eFcBvQM7nLdJGaLldS0oivWhwf7MG1cT46dK2fv8UIqaszcHK/edKFCuBq57dRD7T958QMveVTXujq4Fn9fLx6+cyDxsUGcyqrgwKliFMVNn9QTooPJFYIburxL5Gp0Wi3b9mbRM9KfxN6hnRiZe9DptIwaEI5ep+Xk+XL8u3kxsFew2mEJoTpJCG6opS4Rx/YmG6VVjcxNjvfIW007gkajYXj/MJosNg6fLsbPW0/PyK7VtSbED0lC8DA2m51PDl6gb49ABsWFqB2OU3w3gU5L2loRXaPRMOqmcKrrLew9XkCwv5GAbl3jbiwhrkYSgoc5m1NFZW0Ti1IGeuzVgdli42gr1U6H9G/7QLFOq+WOMT3ZsOMM+04UypiL6NJkUNmDWKx2jmeW0T8miAE9pU+8rfx8vRiZEE5xRQOnL1SqHY4QqmlTQvjlL3/Jvn37nB2LuEFnLlTQ2GRj2rieaofidvr0CCAqzJcj6aXU1DepHY4QqmhTQpg0aRJ/+9vfSE5O5s0336SystLJYYn2arLYOHG+nB6mbvSOkgeu2kuj0TAyIRyrzc62vVlqhyOEKtqUEGbMmMHbb7/N3/72N8rKypgzZw6PP/44x44dc3Z8oo3SsitostgZ2jfMMeja0h83mYa60wX6GRnQM5ivTxRyocgz5vAVoj3aPKhst9vJzs4mKysLm81GaGgozz33HLfeeitLlixxZoziGsxNNk5lVRAb4UdooHeHDrp2NYl9QjlfUMOWL8+zZM5gtcMRolO1KSGsWbOG999/n5iYGO6//35efvllDAYD9fX1TJw4URKCyk5mlWOx2hnSN0ztUNye0aDjtpuj+XBfFufyq+gj3W+iC2lTQigvL2ft2rUkJCQ0W+/r68uf/vQnpwQm2qbBbOV0dgW9uvsT7G9UOxyPcOuwHnxxJI+tX57n1/cOVTscITpNm8YQbDbbFcngu6uCW265peOjEm12Kqscm01hSB+5OugoRi8dyaNiOXG+nOxCGUsQXUerVwjPPvssRUVFHD58mPLycsd6q9VKTk6O04MTrTM32ThzoZKe3f0J9JMnbDvSrUOj+HBfFh8fyOZnMwepHY4QnaLVhDBnzhzS09M5c+YMycnJjvU6nY6hQ4c6OzZxDacvVGC1KVLAzgl8vQ3cOqwHnxy8wOwJDYQH+agdkhBO12pCSExMJDExkR/96EdERER0VkyiDSxWO2nZFUSH+8nYgZNMGhHDztQcdhy8wIOT49UORwinazUhPProo7z88sv813/911W3b9u2zSlBiWs7m1NJk8VOYm/PLGDnCoL9jYwdFMlXxwqYcUscAV1kGlLRdbWaEBYtWgTA008/3SnBiLaxWO2cyionMtQXk3RlONWU0bHsPVbArkO5zErqrXY4QjhVq3cZDRp0cTBt1KhRdO/enVGjRlFfX09qaioDBgzolADFlQ6cKqTBbGOwjB04XffQbgztF8Zn3+ZhttjUDkcIp2rTbafPPPMMa9eu5dy5c6xYsYLc3FyWLVvm7NjEVSiKwp4j+YQEGIkIkauDzjB5ZAy1DRa+PlmodihCOFWbEsKJEyd47rnn2LlzJ7NmzeLFF18kLy/vmsdt27aNqVOnMnnyZNavX3/F9szMTObOncuMGTNYuHAhVVVV7W9BF3M2p5KCsnriY4M8dr4DV9M/JojYCD92HsqV+ZeFR2tTQlAUBa1Wy969exkzZgwAjY2NrR5TVFTEmjVr2LBhA1u2bGHjxo1kZGQ0O+fPf/5zFi1axAcffMCAAQN4/fXXb6ApXcNn3+bhY9QT1z1A7VA81g+LA9Y32Uga2oP80jq+SS/Falc7QiGco02lK2JjY1m0aBG5ubmMGjWK3/zmN8THt34b3r59+xgzZgxBQUEAJCcns337dhYvXgzAyZMn8fX1JSkpCYCf/exnVFdX30BTPF91fROHz5QwfkgUep3MbeQsVysOqCh2vL10bPkyk4SeweiNMtmg8Dxt+ql+8cUX2blzJzfffDMGg4ERI0Zw5513tnpMcXExJtP3VTXDw8Oblcu+cOECYWFhLFu2jLS0NHr37i13M13DgVNF2OwKYwdFkldSq3Y4XYpOqyU+NoijGWUUldfTW67QhAdqU0Lw9fVlxIgRVFVVcfLkSQYPHkxmZiYDBw5s8Ri73d6sj1tRlGbLVquVgwcP8vbbb5OYmMhf/vIXfv/73/P73/++zcGHhvq1eV9XYDL539DxqaeL6d0jkL6xIVQ3tDzJvMGgx9/P26nbgRb36YzX7+jtly+3dPzwhAiOZ5az90Qhowf3aPH8ruBGf9ZcjSe1x5Xb0qaE8PLLL/OPf/yD0NDvb3PUaDTs2rWrxWMiIyM5dOiQY7mkpITw8HDHsslkomfPniQmJgIwffr0dpfRLiurxe4ms72YTP6UlLStUJrVDmZL8w/8gtI6MnKrmD2hN7V1ZmpqWx7DsVisTt8OtLhPZ7x+R2739/Nuttza8XHd/dl7NJ/Z4+Po5m1o8TXU1J6fNXfgSe1Ruy1arabVL9JtSghbt25lx44d7SpfMW7cOF599VXKy8vx8fFhx44dvPDCC47tw4YNo7y8nNOnT5OQkMDu3btbveLoSswWK6lpRc3WHT5TgkYDOq0Gq11GNdUyoGcw5/Kq2XM0nymjZe5q4VnalBC6d+/e7lpGERERPPbYY8ybNw+LxcKcOXMYPHgwixYtYsmSJSQmJvLXv/6VFStW0NDQQGRkJKtXr76uRng6RVG4UFRDZIgvPjKYqaqQAG/6xQSy63Auk0fGoNPK4L7wHG36dBk7diyrV6/mtttuw9v7+77Va32jT0lJISUlpdm6tWvXOv4+ZMgQ3nvvvfbE2yVV1JipqbcwKE7qFrmCicOief2Dkxw+U8KoAVL0UXiONiWE999/H4Dt27c71l1rDEF0nOzCGjQaiIlwr0F0TzUwLoTwIB92HsqRhCA8SpsSwu7du50dh2iBoihkFdYQEeKLt5d0F7kCrVbD7SOi2fBpusy7LDxKmzpA6+rqeP7555k/fz6VlZU888wz1NXVOTs2AVTVNVFTbyFWrg5cyo8Su+Nj1PHpoVy1QxGiw7QpIfzud7/D39+fsrIyjEYjtbW1PPPMM86OTQB5JRcTb7RJEoIr8THqGT84ikOniymvbr2MixDuok0JIS0tjcceewy9Xo+Pjw8vvfQSaWlpzo5NALkltQT5eeHn45r3vHdlt90cjV1R+Ozbaxd6FMIdtCkhaH9wa53NZrtineh4TRYbxRUNcnXgokxBPgzvZ+JzmStBeIg2faqPHDmSP/7xjzQ2NvLll1+yePFiRo8e7ezYurz8snoUBXqEd1M7FNGCSSNjqGu0sl/mShAeoE0J4b//+7/x9fXF39+fv/zlLyQkJPDEE084O7YuL6+kFi+DFlOgTITjqvpFB9Izwp+dqTkyV4Jwe9dMCDt37mTu3Lm88cYb5Obm4u/vz/DhwzEajZ0RX5elKAoFZfVEhvii1cpEOK5Ko9EwaWQ0BWX1nMwqVzscIW5Iqze2f/zxx6xZs4YlS5aQkJCARqPh+PHjrFy5ErPZzOTJkzsrzi6npt5CfaOV7r2lu8jVfDeBznduigslwNeLjw9cIO7SMwlGgx69DLMJN9NqQvj3v//NunXriIqKcqzr06cPQ4YMYdmyZZIQnKig7OLtpt1DfVWORPzQ1SbQ6d0jgCPppXxyIJuQAG9GDoiQSXSE22n1O0xdXV2zZPCduLg4zGaz04ISUFBWTzdvPf6+crupO4iPDcKg03I8U7qNhPtqNSHodLoWt8kAmvPY7QqF5fVEhvo2m1RIuC6jQUd8zyCyC2uoqpUvS8I9SS+nC8ovraPJYpfuIjdzU69gdFqNXCUIt9VqJ+eZM2cYPnz4FesVRaGpqclpQXV1GXlVAEQES0JwJ95eevrHBHH6QgWllQ10i3DdqRKFuJpWE8LOnTs7Kw5xmXO5Vfj5GOgm5SrczsC4EM5cqOTTQ7ksnDZA7XCEaJdWE0KPHq49kbgnUhSFjLwqwoPlYTR35Outp290AAdOFTJrfBwhAd7XPkgIFyFjCC6msLye2gYLESGSENzVoLhQ7HaF7QcvqB2KEO0iCcHFnM2pBGT8wJ35+RoYOSCCPUfyqaqTsTbhPiQhuJizOVX4+xrk+QM3N3lUDBarnR1ylSDciCQEF5NZUE1c9wB5/sDNhQf7MnJAOLu/zaO2waJ2OEK0iSQEF1LXaKGovJ6ekXK7oieYPrYX5iYbnx7KUTsUIdpEEoILySqoAZCE4CGiw/0Y1i+MTw/l0nBZMTwhXJUkBBeSWVANQKw80OT2vquIevuIGOrNVrYfvECd2er4Y7WrHaEQV5JyjC7kfH413UN98ZEqmW7v8oqoUWHd2HEwBz8fA4ZLNbGlGqpwRXKF4CIURXEMKAvPMrhPCGaLjfTcSrVDEaJVkhBcREWNmeq6JkkIHig82JeIEB9Onq/AZpO+IuG6nJoQtm3bxtSpU5k8eTLr169vcb/PP/+cH//4x84MxeVl5l8cP+gdJQnBEw3uE0qD2eooXCiEK3JaQigqKmLNmjVs2LCBLVu2sHHjRjIyMq7Yr7S0lD/84Q/OCsNtnC+oRq/TEG3yUzsU4QSRIb6EBXpzIrMcu13mEhGuyWkJYd++fYwZM4agoCB8fX1JTk5m+/btV+y3YsUKFi9e7Kww3Mb5gmpiwv0dg47Cs2g0Ggb3CaWu0UpWYY3a4QhxVU779CkuLsZkMjmWw8PDKSoqarbPv//9b2666SaGDBnirDDcgt2ucL6wht4yfuDRepi6EdDNi7SsCplxULgkp933Zrfbm5VfUBSl2fLZs2fZsWMH69ato7Cw8LpeIzTUvbpXTKarP1+QXViNucnG4PhwTCZ/lPJ6/P1aLptsMOhV3w60uI8rxNfe7Zcv3+j5W9tnWH8TX3ybR355Az8aEtLqOW5ESz9r7sqT2uPKbXFaQoiMjOTQoUOO5ZKSEsLDwx3L27dvp6SkhLvuuguLxUJxcTH3338/GzZsaPNrlJXVuk1/rMnkT0nJ1bsKDp8sACDMz0BJSQ31Zis1tY0tnstiUX870OI+rhBfe7b7+3k3W77R87e2T1SoL14GLR/vy6K/k24gaO1nzR15UnvUbotWq2n1i7TTuozGjRvH/v37KS8vp6GhgR07dpCUlOTYvmTJEj755BO2bt3K66+/Tnh4eLuSgSc5X1CDj1FPRIiUvPZ0Br2W/tFBHDtXSnZxTbOnl+VJZqE2p10hRERE8NhjjzFv3jwsFgtz5sxh8ODBLFq0iCVLlpCYmOisl3Y75/Orievuj1YqnHYJCT2DOJVdwaZdGYwcEH7VfeRJZqEGp/7EpaSkkJKS0mzd2rVrr9gvOjqa3bt3OzMUl9VksZFbUssdo2PVDkV0El9vA0P6hXEio4wh/ULx0uvUDkkIQJ5UVt2F4lpsdkXuMOpikoZEYbHZHQ8kCuEKJCGowGrH0Vd85kIlABGhvo51bjJOLm5ATIQfIQFG0nOq5BZU4TKkk1IFZouV1LSLz2R8c7YYX2+9Yy5lgCH9TS0cKTyFRqOhf3QQX58qorSqEVOQj9ohCSFXCGorrWokLLD1e9qFZ4qLCkCv0zT7MiCEmiQhqMjcZKOm3iIJoYsy6LXEdQ8gq6CGJotN7XCEkISgptKqiw8uhQVKd0FX1T8mCJtd4ZwMLgsXIAlBRWVVDQCEBBpVjkSoJTTQm9AAb9JzKmVwWahOEoKKSqsaCfTzkvvQu7j+MYFU1jZRUtmgdiiii5OEoBJFUWRAWQDQq/vFweX0XJk8R6hLEoJK6hqtNDbZJCEIx+BydqEMLgt1SUJQiQwoi8v1iw7EalPIKvCMqp7CPUlCUElpZQNarYYgfxlQFhcHl4P9jdJtJFQlCUElpVWNhPgb0Wmlwqm4+ORy3+hAyqobKa9ufa4FIZxFEoIKbHaF8upGwoJk/EB8r3f3ALRaGVwW6pGEoILCsjqsNkXGD0QzRi8dPSP8yMyvpskqg8ui80lCUEF24cWBQ7nDSPxQv+ggLFY7R9NL1Q5FdEGSEFSQXViDl16Lv69B7VCEi4kI8cHf18C+E4VqhyK6IEkIKsguqiE00BuNTJkpfuC7weWM3CoKy+vVDkd0MZIQOpm5yUZBaR1hUv9etKBvj0C0GvjyaL7aoYguRhJCJ8suqsGuyPiBaJmPUc+g3qHsPV6A1WZXOxzRhUhC6GTn8i/eUigJQbRm7KBIqustHM0oUzsU0YVIQuhk5/KqMQV542OU2UtFywb0CiHY38ge6TYSnUgSQidSFIWMvCp6dQ9QOxTh4nRaDbckdudEZpk8uSw6jSSETlRS1Uh1XRO9JSGINhg/uDsAn32bp3IkoquQhNCJzuVdHD/oFSUJQVxbWJAPw/qb+PzbPMxSFlt0AkkInSgjrwqjl46o0G5qhyLcxOSRMdQ1WuVBNdEpJCF0onN5VfSJuljATIi26BcdSK9If3ak5mCXOZeFkzk1IWzbto2pU6cyefJk1q9ff8X2Tz/9lJkzZzJjxgx+8YtfUFXluVUeG8xWcopr6RMVqHYowo1oNBomj4qhqLyeY+fkFlThXE5LCEVFRaxZs4YNGzawZcsWNm7cSEZGhmN7bW0tzz33HK+//joffPAB8fHxvPrqq84KR3XpORUoCvSNloQg2mdEfDjB/kZ2puaoHYrwcE5LCPv27WPMmDEEBQXh6+tLcnIy27dvd2y3WCw8++yzREREABAfH09BQYGzwlFdWlY5AL1lQFm0k16n5fYR0aRlVzgq5QrhDE5LCMXFxZhMJsdyeHg4RUVFjuXg4GAmTZoEQGNjI6+//jq33367s8JR3emsCqLCutHNWyqcivabMCQKby8dH+3PUjsU4cGc9ris3W5vVs1TUZSrVvesqanhkUceISEhgVmzZrXrNUJD/W44zs5gtyucyS5nbGIUJpM/Snk9/n4tl64wGPQuvx1ocR9XiK+92y9fvtHzd8Q5fH2NmEJ8m62bmdSHjZ+epdZiJ+4aY1Emk3+r292NJ7XHldvitIQQGRnJoUOHHMslJSWEh4c326e4uJiFCxcyZswYli1b1u7XKCurxW53/TsvCsrqqKm30CPEh5KSGurNVmpqW3761GJx/e1Ai/u4Qnzt2e7v591s+UbP3xHnaGhsIivX3Gzd8H6hbN2j442tx1k8ewj6Fq7vTSZ/Sko8p2vJk9qjdlu0Wk2rX6SdlhDGjRvHq6++Snl5OT4+PuzYsYMXXnjBsd1ms/Gzn/2MKVOm8Itf/MJZYbiE7+bIlQFl0VZmi42jZ0uuWB8fG8TRjDJOXyhnUK8QFSITnsxpCSEiIoLHHnuMefPmYbFYmDNnDoMHD2bRokUsWbKEwsJCTp06hc1m45NPPgFg0KBBrFy50lkhqeZ0dgXB/kYif9AFIER73dQrhLM5lWz+IpOBPYNlkiXRoZxacjMlJYWUlJRm69auXQtAYmIip0+fdubLuwRFUUi7UMGQvib55RU3zKDXMrRvGPtPFpF6uphRAyLUDkl4EHlS2ckKy+upqm0isW+Y2qEID9EnOpBoUzfe2ZVOg9mqdjjCg0hCcLLT2RUADO4nCUF0DK1Gw7239aOqtoktX55XOxzhQSQhOFnahUqC/Y10l4J2ogP16h7AhGE9+PRwjqOKrhA3ShKCE9ntCqezK0iIlcE/0fHuvrUPIf5G3vgoTcpjiw4hCcGJzhdWU9tgIbG33B4oOp6PUc+CqQMoKq9n4650tcMRHkASghMdP1eGBhgYJwlBOMeAXiFMGR3L50fy2Xvcc2uBic4hM7070fHMcuKiAvD39VI7FOFhNFoNdZfuMEoe05OM/Cr+vf0MYUE+KDodNjstPsksREvkR8ZJquubyCqoZnDvULVDER7IbLGRmlZEaloR35wpZmjfMAx6LX99/zj7judjtsjtqKL9JCE4ycnMchQgsY8kBOF8PkY9E4ZGUd9o4ZOvs7Ha7GqHJNyQJAQnOXy2hCA/L3pGum5lQ+FZTME+jBkYSW5xLet3nJEpN0W7SUJwgsYmK8czy7i5fzhaud1UdKK+0YGMGRTJodMlvPtZxrUPEOIyMqjsBMfOlWGx2hmRYLr2zkJ0sOHx4Rj1Wj45mEOArxdTxvRUOyThJiQhOMGhMyUE+BroFx2kdiiiC9JoNMye0IcGs5V3Pz+HTqth8qhYtcMSbkASQgdrMFs5dq6UcYO6o9VKd5FQh1ar4b+m34TdrvDO7gzQaJg8MkbtsISLk4TQwQ6mFdFksXNzvMlxnziAUl5P/aVlN5jkTbg5jVaD2WrnweR4rDaFd3alY7ba+PHwaACMBr08pyCuIAmhg315rIDuob4UV9RTUtngWH/5NI1D+svYgnCuy2dcG9Q7hPKaRjZ/kUlGbhVD+4Yy6qZI9Eb59RfNyXeEDpRXUktmfjVjBkVKMTvhMrRaDUlDougbHcjxc2UcOFXkFnORi84nCaED7f42D71Ow8iEcLVDEaIZrVbD2IERDIoL4WxOFf/4KA1zk1RIFc1JQugg1XVNfHWsgLEDI6V2kXBJGo2G4fEmRiSYOJZRyotvH6asqlHtsIQLkYTQQT49nIvVaueO0XJ7n3BtN/UK4eE7B1FS1cAL/0olI1cm2BEXSULoAHWNFj77Jpdh/U0yM5pwCwPjQlg+dwTeRj1/2PAN2/ZlybiCkITQET74Kot6s5UZP+qldihCtFlUWDeemT+CEQnhbN6Tye83fNPszjjR9UhCuEEFZXXs/iaXpCFRxEZIITvhXny9DTw8YyCLUm4ir6SWp988wLa952mSKTm7JLkR+QbY7Hb++fFpvAxa7hzfW+1whGizyyfYARjcN4yl4X5s3pPJ5i/Ps+doAXfd2ptRCRHyxH0XIgnhBny0L5uM3CoWpdxEYDe5s0i4j8sfXLvc4D6hhAf5cOJ8Oa9/cIr3v8hk0sgYxg/ujreXfFx4OnmHr9PhM8Vs3XuesQMjGDswUu1whOgwkaG+TBvXi7MXKvnk4AX+99N0Nu/JZFg/E6MGhDMwLgS9TnqbPZEkhOtw7Fwpf//gJH2iApmXnKB2OEJ0OJ1eS0KvYBJ6BXO+oJp9xws4klHK/pOFeHvp6BcdRHxsEP2iA+kR1g1fb4PaIYsOIAmhHeyKwo6DObz7eQYxJj8evXswRi+d2mEJ0eF+2KXUPyaIPj0CKSitI6e4luLKeo5nljm2B3TzIjLYh4BuXvj5euHnY8Dfx4CfjwEfbz2+Rj2+l/3faNBJeRcX5NSEsG3bNv7nf/4Hq9XK/PnzeeCBB5ptT0tLY/ny5dTV1TFixAh++9vfote7Xo5SFIWMvCo27c7gXH41N/c3sXD6AOlTFV2KTqshOtyP6HA/Rg6IwGa1k5lfTUF5HQVl9RSX15NXWkdNfSV1DRZae6pBr9MSEmAkxN9ISIA3IQHehAZ6ExboTViQDyH+3hh0kjA6m9M+0YqKilizZg3vv/8+Xl5e3HfffYwePZq+ffs69nn88cf53e9+x9ChQ1m2bBmbNm3i/vvvd1ZI7dJgtpJfWsfpCxUcOl1CdlENAb4GFk4bwDgpXie6OI1Wg06vpV9sEP1ig67YrtPqqK5rpK7RSoP5+z/1l/5fXWchM6+SkqpGsgpraPxBXSVvLx3hQT6YgnzoGRVINy8t/r5e+PtevOrw8/XC16hHr9PI72IHclpC2LdvH2PGjCEoKAiA5ORktm/fzuLFiwHIy8ujsbGRoUOHAjB79mxeeeWVdiWE67kdrsFsI/V0EWaLDZtdwWZTsNkVmixWGhpt1JktVFSbqag1O47pEebHHaNjGR5vwmi4dheRXqe9ok/Vx6jHZjW0uP1ax7va9svb44rxtWf7D9tyo+d3Rozt2e5j1Dv99W12hbTz5S1uHxAXQlZhTbN1XgYdXgYdQX5GfjwipNnxNrudugYLdY1Wahss+Br1VNU1UV7dyNcnC7Ba7Vd9Ha0GDHodBoMOL70GL4MOg06H0UuLQadFr9Wi1WnQ6zTotBp0Oi06rRa9VoP28iuQS5czigIKCpf+AwXsKNgVBewXu43tysXPDKtNwW5XUBQFu8Kl/1/aFw0o32/XaDRotRqMRgM2qw2dRnMxqWo1aLUX60zptRf30Wg16C7tr9Vq0GouXp1pNReTn16v5eb+Jnyuo3z5tT4znZYQiouLMZm+r/sfHh7OsWPHWtxuMpkoKipq12sEB19fmYjoqMDrOq5dr9G99dfoHR0s2z14uyvE4O7bRedz2r1jdru92aXcd1myrduFEEJ0LqclhMjISEpKvr9LoaSkhPDw8Ba3l5aWNtsuhBCiczktIYwbN479+/dTXl5OQ0MDO3bsICkpybG9R48eGI1GDh8+DMDWrVubbRdCCNG5NIqiOK3m7bZt2/j73/+OxWJhzpw5LFq0iEWLFrFkyRISExM5ffo0K1asoLa2loEDB/Liiy/i5SUlIIQQQg1OTQhCCCHchxQkEUIIAUhCEEIIcYkkBCGEEIAkBCGEEJdIQminuXPnMm3aNGbOnMnMmTM5evQo+/btIyUlhcmTJ7NmzRrHvmlpacyePZvk5GSWL1+O1Xpxhqr8/HweeOAB7rjjDn7+859TV1cHQHV1NQ899BBTpkzhgQceaPacRkeqra1l+vTp5ObmAjg9/qamJh5//HGmTJnCrFmzOHfunFPb89RTTzF58mTHe7Rz5063ac9rr73GtGnTmDZtGqtXrwbc+/25Wnvc9f15+eWXmTp1KtOmTeOf//wn4N7vzVUpos3sdrtyyy23KBaLxbGuoaFBmTBhgnLhwgXFYrEoCxYsUD7//HNFURRl2rRpyrfffqsoiqI89dRTyvr16xVFUZSHHnpI+fDDDxVFUZTXXntNWb16taIoivLb3/5W+fvf/64oiqJs3rxZefTRRzu8DUeOHFGmT5+uDBw4UMnJyemU+N944w3l6aefVhRFUQ4ePKjcfffdTmuPoijK9OnTlaKioiv2dfX27N27V7n33nsVs9msNDU1KfPmzVO2bdvmtu/P1dqzY8cOt3x/Dhw4oNx3332KxWJRGhoalIkTJyppaWlu+960RBJCO2RkZCi33HKLMnfuXCUlJUV56623lAMHDijz5s1z7LN582Zl6dKlSm5urnLbbbc51qempipz585VmpqalGHDhjmSSn5+vvLjH/9YURRFmThxopKfn68oiqJYLBZl2LBhSlNTU4e2YdmyZUpqaqoyceJEJScnp1Pif/DBB5XU1FTHuW677TYlLy/PKe2pr69Xhg8frixcuFCZPn268vLLLys2m80t2nP27FnHh4iiXPyQePXVV932/blae9atW+e27893v4u5ublKUlKS2//uXI10GbVDdXU1Y8eO5a9//Svr1q3jnXfeIT8//4oifkVFRS0W76uoqMDPz88x78PlRf0uP0av1+Pn50d5ecsVJa/HypUrGTFihGP5akUIOzr+q52rsLDQKe0pLS1lzJgxrFq1ik2bNnHo0CHee+89t2hPv379HNV/s7Ky+Pjjj9FoNG77/lytPePHj3fb98dgMPDKK68wbdo0xo4d6/a/O1cjCaEdhg0bxurVq/H39yckJIQ5c+bwyiuvXLVIX0vF+5SrFPFrqaifoihotc59i1qKsyPj/+ExzmxXTEwMf/3rXwkPD8fHx4e5c+fyxRdfuFV70tPTWbBgAU888QQxMTFu//5c3p7evXu79fuzZMkS9u/fT0FBAVlZWW7/3vyQJIR2OHToEPv373csK4pCjx49rlrEr6XifSEhIdTU1GCz2ZrtDxe/YZSWlgJgtVqpq6tzzCfhLC0VIezI+CMiIiguLr7iXM5w5swZPvnkE8eyoijo9Xq3ac/hw4f56U9/ym9+8xtmzZrl9u/PD9vjru/PuXPnSEtLA8DHx4fJkydz4MABt35vrkYSQjvU1NSwevVqzGYztbW1bN68mV//+tecP3+e7OxsbDYbH374IUlJSS0W7zMYDIwYMYL//Oc/AGzZssVR1G/ChAls2bIFgP/85z+MGDECg8G5k5cPGTLE6fFPmDCBrVu3AheTqtFoJCoqyintURSFVatWUVVVhcViYePGjUyaNMkt2lNQUMAjjzzCSy+9xLRp0wD3fn+u1h53fX9yc3NZsWIFTU1NNDU1sWvXLu677z63fW9a5LTRCQ+1Zs0a5Y477lAmT56srFu3TlEURdm3b5+SkpKiTJ48WVm5cqVit9sVRVGUtLQ05a677lKSk5OVX//614rZbFYU5eKg1IMPPqhMmTJFWbBggVJZWakoiqJUVFQoDz/8sDJ16lTl3nvvddw14wzfDcJ2RvyNjY3KE088oUydOlW58847lRMnTji1PW+//bYyZcoUZdKkScof//hHxz6u3p4XXnhBGTp0qDJjxgzHnw0bNrjt+9NSe9z1/XnllVeUKVOmKNOnT1deeeUVRVE843fnclLcTgghBCBdRkIIIS6RhCCEEAKQhCCEEOISSQhCCCEASQhCCCEukYQg3NrChQv517/+5Vg+f/488fHx/PnPf3asKysrY9CgQdTU1LT7/EuXLuXNN99s8/q2+vzzz7n33nuZMWMG06ZN49FHH21TSYK5c+eyffv2635dIVojCUG4taSkJA4cOOBY/uyzz5g4cSK7du1yrPv6668ZPnw4/v7+aoR4haKiIp588kn+/Oc/88EHH/DRRx+RkJDAr371K7VDE12cJATh1pKSkjh06BB2ux24mBAeeugh6urquHDhAgD79+/n1ltv5ZtvvuH+++9n1qxZ3HXXXXz22WeO87z77rvMnj2bO++8k5/+9KdXrTu/atUq5s+f76hhD/DBBx9w3333OZbz8/O55ZZbaGpqajHmiooKLBYL9fX1jnXz58/n4YcfBqC+vp4nnniCe++9l+TkZGbPnk1mZuYV52mpPSUlJSxYsIBZs2Yxa9Ys/vKXv7Tln1II9GoHIMSNiIuLIyAggDNnzhAVFcX58+cZOnQoSUlJ7N69m5/+9Kfs37+fu+66y9HNEx0dTVFREffccw/x8fHk5uayZcsW1q9fj4+PD1999RWLFy/m448/Bi6WW3j++ecpLi5m7dq1eHl5OV7/jjvu4Pe//z3p6en069ePd999l1mzZjXb54cSEhK45557mDVrFrGxsQwfPpyxY8eSnJwMwJ49ewgICGDjxo0APPPMM6xfv56nn37acY6qqiqeeuqpq7Zn8+bNREdH849//IP6+nqWL19OTU2Ny1whCdclCUG4ve+6jUJDQxk3bhxarZaJEyeyfv16br/9djQaDdXV1ZSUlPDII484jtNoNJw5c4bU1FSys7ObfdOvrq6msrISgHXr1lFWVsaWLVuu+KD38vLi7rvv5t133+XJJ59k8+bNvPXWW9eMeenSpTz88MMcPHiQ1NRUVq9ezVtvvcX69eu54447iImJ4a233iI7O5uDBw8ybNiwZscfOXKkxfaMHz+ehx56iIKCAsaNG8dvfvMbSQaiTSQhCLeXlJTEe++9h9Fo5LbbbgNg7NixrFixwtFdZLPZ6NOnD++++67juKKiIkJCQjhw4AAzZ87k8ccfBy6WBC8uLiYwMBCAkSNHMnz4cJ566ik2btx4RcHB++67jzlz5jBq1Cj69etHTExMq/Hu2rWLyspK7rrrLpKTk0lOTuaxxx5jwoQJnDp1iuPHj7Np0yYeeOABUlJSCAoKckwP+p3W2mMwGNi1axf79+/n66+/5u6772bt2rUMGjTo+v+RRZcgYwjC7Y0ePZq0tDQOHjzI+PHjAfD29mbgwIG8/fbbTJgwgaFDh5KdnU1qaipwcc7b5ORkioqKuOWWW/joo48cZYb/93//l/nz5zvOP2jQIB588EH8/f157bXXrnj97t27M3ToUFatWsVPfvKTa8bbrVs3/vznP5ORkeFYl5OTg06nIzY2lq+++opZs2Zx9913ExcXx+7dux0lk7/TWnteeukl/va3v3H77bezfPly+vbtS3p6ejv/VUVXJFcIwu35+PjQq1cvLBZLs66RCRMm8Mc//pHRo0fj5eXFK6+84ihfrigKq1evJjo6mujoaBYtWsSCBQvQaDT4+fnx2muvNZuYRKPRsGrVKu68804mTJhwRQyzZ8/mhRdeuOq2HxozZgxPP/00Tz75JDU1Neh0OkwmE2vXriUwMJAFCxbwzDPP8N577wEXP/zPnj3b7BwhISEttmf+/PksXbqU6dOn4+XlRXx8vKP8tBCtkWqnQtwgu93O888/T1RUFA899JDa4Qhx3eQKQYgbUFtby8SJExk+fDhLly51rL///vub3Z56ufXr1+Pn59dZIQrRZnKFIIQQApBBZSGEEJdIQhBCCAFIQhBCCHGJJAQhhBCAJAQhhBCXSEIQQggBwP8Htb41lWjeVM4AAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.distplot(clean_data2['Weekly_Sales'])"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 3.1. Test auf Korrelation"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 56,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:>"
-                        ]
-                    },
-                    "execution_count": 56,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAE/CAYAAAAT0Vc7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABm7ElEQVR4nO3dd1QUVxsH4N8KAipBbGgsMbGBDbusUj4BG0hbwK4Yk2hUiho1wYiIvYAlIrHEmsSGKMWKsUNsYEMjWKKCWCjSO+zO9weHiSsos8yyLMv7eOYcdnbuO3dXlrv3zp33ChiGYUAIIYQomXo1XQFCCCGkItRAEUIIUUrUQBFCCFFK1EARQghRStRAEUIIUUrUQBFCCFFK1EARQgiRSU5ODmxsbJCYmFjuudjYWDg6OmLEiBFYtGgRSkpKqnweaqAIIYRwdu/ePYwfPx4vXryo8PkFCxbA29sb4eHhYBgGgYGBVT4XNVCEEEI4CwwMxJIlS6Cnp1fuuVevXqGgoAC9e/cGADg6OuLMmTNVPpd6lUsSQghRCVlZWcjKyiq3X0dHBzo6OlL7Vq5c+dE4ycnJaNGiBfu4RYsWSEpKqnK9qIFSoOLUZ7xjZDAtKj/oEz5vY8C7DqM/H8Cr/N/Z//Kug5NOd94xXkhyecfgS13AfxCjhJHwjtGsnibvGPuToniV39TMlHcdtpU85x3DQJPfZ0xeDsaH8I7B9W/OvoMnsWXLlnL73dzc4O7uzvl8EokEAoGAfcwwjNRjWVEDRQghqkoi5nTYlClTIBKJyu3/sPdUmVatWiElJYV9nJqaWuFQIFfUQBFCiKri2LuuaCivKtq0aQNNTU3cunUL/fr1Q2hoKMzMzKocT+UnSZw5cwaOjo6ws7ODra0tdu7cCQDYvHkzoqOja7h2hBBSjSQSbhtP06ZNw/379wEAfn5+WL16NUaOHIm8vDy4uLhUOa5K96CSkpKwdu1aHDt2DE2aNEFubi4mT56Mr776ClFRUTAyMqrpKhJCSLVhxFW/B6kyFy5cYH/+7bff2J8NDAwQFBQkl3OodAOVnp6O4uJiFBQUAAAaNWqENWvW4OzZs3jw4AG8vLywZcsWaGhowNvbGxkZGWjYsCEWLVoEQ0NDeHp6IiMjA/Hx8ViwYAGaN2+O1atXo6CgAE2aNMHSpUvRrl27Gn6VhBDyEXKYQFOTVLqBMjAwgKWlJYYOHYquXbvCyMgItra2cHNzw40bN+Dm5gZ9fX04Oztj+vTpGD58OO7evYvZs2cjPDwcAKCrq4tt27ahqKgIzs7O2LZtG1q3bo2IiAgsXrwYe/furdkXSQghH8NxkoSyUukGCgCWLl2KWbNmITIyEpGRkRgzZgz8/PzY53Nzc5GQkIDhw4cDAHr37o3GjRvj2bPS6ZmGhoYAgBcvXuDly5eYOXMmWzYnJ0eBr4QQQmREPSjldenSJeTl5cHa2hpOTk5wcnJCYGCg1PhoRSveMwwDsbj0m4eWlhaA0vn9bdu2RWhoKABALBYjNTVVAa+CEEKqSA4TIGqSSs/i09LSwvr169mEhgzDIDY2Fl27doWamhrEYjG0tbXRtm1bnD17FgBw9+5dpKamonPnzlKxOnTogMzMTHbm39GjRzF//nzFviBCCJEBIy7htCkrle5BCYVCuLm5YcaMGSguLgYAmJqawtXVFX/88QeWLFmCtWvXwtfXFz4+PvD390f9+vXh7+8PDQ0NqVgaGhr45ZdfsHLlShQWFkJbWxtr166tiZdFCCHc1PIhPgFT0RgXqRaU6qgUpTr6D6U6+g+lOpImj1RHhXGXOR2nafA/3ueqDirdgyKEkDqtlvegqIEihBBVVcsnSVADpUB8h+fk4c2ruJquAlFRq2u6AgAca7oCyoZ6UIQQQpQRIy6u6SrwQg0UIYSoKupB1R6JiYkYOXIkOnbsCAAoKChA3759MW/ePDRv3lzmeAsXLoSbmxvatGkj76oSQgh/tfwalErfqFsRPT09hIaGIjQ0FGfOnEHz5s3h4eFRpVg3btyoMBMFIYQoBUbCbVNSdaoH9SGBQAB3d3cYGxsjLi4OV65cwenTpyEWi2FiYoIFCxbg1atXmDlzJjp06ICnT5+idevW8PX1RWBgIJKTkzF9+nTs378fTZo0qemXQwgh0mp5stg614P6kIaGBtq3b4+4uDg8ePAAQUFBCAkJQVJSEsLCwgAAjx8/xoQJE3Dy5El07NgRW7ZswfTp06Gnp4cdO3ZQ40QIUU7iEm6bkqrTPagyAoEAv//+O9LS0uDoWDpRtaCgAK1bt0a/fv3w5ZdfsosbOjg4UA4+QkjtoMTDd1zU+QaqqKgIz58/Z9eKmjp1KgAgKysLampqSE9Ph7r6f28TwzBQU1OrqeoSQgh3NEmi9pJIJPD390evXr3g5OSE0NBQ5ObmoqSkBK6uruyihc+fP0dsbCyA0izmZmZmAMBmRCeEEKUkkXDblFSd60ElJyfD3t4eQGkD1bVrV2zYsAGNGzdGXFwcxowZA7FYDFNTU4hEIrx69QqNGzfG5s2bkZCQAH19faxYsQIAMGTIEEyfPh07d+6kpd8JIUqHYWr3F2jKZl6JxMREuLi44MKFC7xjpaRky6FGhJC6oEWLz3jHyL+0m9NxDYZ8w/tc1aHO9aBqkjyWuuCbS09XkMK7Dh79PXmVv1OUzLsOgzVa8Y6hx/D/9Y8XFPEq31QOH0FNRsA7Rr6A//fUeCafV/knxe941+F4J/5XLVYktOQdo6Ecrp6se3GQdwxlnqHHBTVQlWjbtq1cek+EEKJwNIuPEEKIUlLiCRBcUANFCCGqqpb3oGQeKJ06dSrOnTvHPl67di369OmDoqL/xuJNTEyQmJgoU1wLC4tyZY4dOwZPz6pd7zhz5gwcHR1hZ2cHW1tb7Ny5s9IykydPxo0bN6p0PkIIUTrVMM38+PHjsLa2xvDhw7F///5yz//zzz9wcnKCnZ0dvv/+e2RlZVW5+jI3UEKhELdu3WIfX716Fb1792b3xcfHo2HDhmjbtm2VK8VXUlIS1q5di127diEsLAyHDh3CqVOncP78+RqrEyGEKJycG6ikpCRs3LgRBw4cQEhICA4fPoynT59KHbNy5Up4eHggLCwMX331FXbt2lXl6svcQA0aNAh37txhK6uhoYERI0YgMjISABAdHQ1jY2OEhIRAJBLB3t4eP//8MwoLCwEAV65cgbOzMxwcHODm5ob09HSp+M+fP8fw4cNx9+5ddt+1a9cwbtw49vGxY8ewZMmSj9YxPT0dxcXFKCgoAAA0atQIa9asQadOnQAAp0+fxpgxY2BnZ4eRI0fi9u3b5WLs2LEDIpEIdnZ2WLduHRiGQU5ODqZPnw5HR0c4OjpSg0cIUW4cc/FlZWUhMTGx3PZh7+fq1asQCoXQ1dVFw4YNMWLECJw5c0bqGIlEgtzcXABAfn4+tLS0qlx9mRuo7t27IyEhAYWFhYiMjISxsTGMjY2lGig9PT0EBgbi0KFDCA0NRbNmzbBr1y6kpaVh/fr12LVrF0JCQmBiYgI/Pz829tu3b+Hm5oZVq1ahd+/e7H6hUIiUlBQkJCQAAEJCQticeRUxMDCApaUlhg4dCmdnZ/j6+kIikaB9+/aQSCQ4dOgQtm3bhrCwMHz33XfYsWOHVPkrV65UmDj2r7/+Qps2bXDs2DGsXLkS0dHRsr59hBCiOByX29i3bx8sLS3Lbfv27ZMKl5ycjBYtWrCP9fT0kJSUJHWMp6cnvLy8YGJigqtXr0p1LmQl8yQJNTU19OrVC/fv30dkZCQmTpyIdu3aoaCgAJmZmbhz5w66du2K+Ph4jBkzBgBQXFyMbt264d69e3jz5g1cXFwAlLa0jRs3ZmPPnj0bPXv2RP/+/aXOKRAIIBKJEBYWBkdHR7x79w69evX6ZD2XLl2KWbNmITIyEpGRkRgzZgz8/PwwfPhwBAQE4MKFC3j+/Dlu3ryJevWk2+lr164hJiamXOJYJycnbNiwAUlJSRgyZAhcXV1lffsIIURxOA7fTZkyBSKRqNx+HR2dD8JJIBD8d98dwzBSjwsKCrBo0SLs3bsXhoaG2LNnD3766adynQCuqjSLTygU4vbt24iJiYGvry+A0qG/8+fPo0mTJmAYBlZWVvDy8gIA5ObmQiwW4+bNm+jbty+2bdsGACgsLGS7ggCwaNEiBAQE4NKlSxgyZIjUOUUiEb777jtoaGiwqYo+5tKlS8jLy4O1tTWcnJzg5OSEwMBABAUFwdjYGM7OzrCzs8OAAQOgr69f7kKfWCzGlClTyiWObdSoEU6fPo2IiAhcvHgRu3fvxqlTp8o1cIQQohQ4zuLT0dEp1xhVpFWrVlIjRykpKdDT02MfP378GJqamjA0NAQAjB07Fr/88ouMlf5Plf6yDho0CKGhoejSpQub6dvY2Bh79uyBsbExjIyM8Ndff+Hdu3dgGAY+Pj7Yt28fevXqhbt37+L58+cAgF9//RXr1q1j4xoaGsLHxwfLli1DXl6e1DnbtGmDVq1a4dChQ5U2UFpaWli/fj07K5BhGMTGxqJr16548eIFBAIBZsyYwdbzw4SvQqGwwsSxf/75J/z9/WFlZYUlS5YgLS0NOTk5VXkLCSGk+sl5ksTgwYNx7do1pKWlIT8/H2fPnmWTZwNA+/bt8fbtWzx79gwAcP78efTs2bPK1a9SD6pLly7IyMjAhAkT2H1CoRBz5szB4MGDYWBgADc3N0yZMoVNyDp9+nRoampi1apVmDNnDiQSCVq2bMn2wMoMGDAARkZG2LRpEwwMpFMDWVtb4+zZs2jZ8tOpSIRCIdzc3DBjxgwUFxcDAExNTeHq6go1NTV07doVVlZWEAgEMDExkZqVCJROea8ocWxubi5++OEH2NraQk1NDQsWLOD0rYMQQmqEnFdbaNmyJebOnQsXFxcUFxfD2dkZhoaGmDZtGjw8PNCzZ0+sXr0ac+bMAcMwaNasGVatWlXl89WaZLElJSX48ccfMXLkSAwfPrymq1Ml6hpteMegXHylKBfffygX338oF5+0/IMfn+38vgbjl/I+V3WoFZkkGIaBqakpBg8ejKFDhwIonS24fPnyCo/fsWNHpb0sQghReZTqqPoJBAJcu3ZNal///v0RGhpaQzWqmtGfD6jpKvDu/QDA5ug1vMr37DaWdx1u10vlHaO5WkPeMURF/IZ4m8kh2/R+LX69OADIkRTzjqEh4LfStH795rzrMDee/x/krnL4sxgp4d8blItanuqoVjRQhBBCqoB6UIQQQpRS7Zhi8FHUQBFCiKoqqd0LFirlHab6+vqffL6irOOenp44duzYJ8uVZUw/f/58hTeP3bhxA5MnT5a9woQQoow4pjpSVnWyB1WWZ4oQQlQZI6ndQ3xK2YMq8/btW0yaNAmOjo5wdnaWynD+KRcvXoS9vT1sbW0xa9YspKZKz/h6f52pyMhIjBo1Co6OjggMDGSPuXnzJsaPHw+RSARLS0ucO3cOOTk5MDIyYrNHJCYmwtraWj4vlhBC5K0a1oNSJKXuQQUFBWHIkCH47rvvcOXKFdy6dYvNcu7l5YWGDf+bJvzmzRsMHDgQ7969g7e3Nw4ePIi2bdti586dWLZsGTZv3lwuflFRETw9PbFv3z507NgRixYtYp/7888/sWLFCnTs2BHXrl3DqlWrMHToUAwZMgRnzpyBs7MzQkJC4ODgUN1vAyGEVI0SD99xodQ9qEGDBmH37t2YN28eMjIyMGnSJPa5FStWIDQ0lN0sLCwAADExMTA0NGQXTBw7diyuX79eYfxHjx5BT08PHTt2BACpbL6+vr548uQJAgICsGfPHjaprZOTE3v/1YkTJyrNC0gIITVGwnDblJRSN1D9+vXDyZMnYWJiglOnTmHGjBmVlpF80F1lGAYlH5nJIhAI8H6mJzW1/240nDBhAmJiYtCjRw+p8w4YMADJyck4e/Ys2rZtSxkrCCHKq6SE26aklLqBWrduHcLCwiASieDt7Y2HDx9WWqZXr164d+8em8n88OHDMDIyqvBYfX19pKamIi6uNL/dyZMnAQAZGRl48eIFZs+eDTMzM5w/f57NeC4QCODg4IAVK1Z8ctFEQgipcQzDbVNSSn0NavLkyZg3bx6OHTsGNTU1rF27ttIyzZs3x7Jly+Dm5obi4mK0bt0aK1eurPDY+vXrY8OGDViwYAHU1dXRrVs3AICuri6cnZ0xatQoqKurQygUoqCgAHl5eWjYsCFGjRqF3bt3s3kBCSFEKSnxBAguak02c2UhkUhw8OBBPH/+nF2Qkavx7R14n39z9B+8ynsP+FYOdaj5XHytNBpXflAl5JKLr1hFcvExNZ+Lr74cBnTEkEcuvka8Y8gjF9/Zl2d4x8jz+47TcQ3n7+R9ruqg1D0oZeTm5oY3b95g165dMpf9O/vfaqiRbOSx1IU8Gpj7Dw/zKu/TX7YvBxV5znN5CABYWHCPV3mDRvyXYNFg+DUMANCsnhbvGKICTV7lz2rxb6y1wf+90C/kHQKpmvy/QMlFLZ/FRw2UjH799dearkKtx7dxIoRww5TId8FCRaMGihBCVJUSTyHnghooQghRVTTEJ23p0qW4ffs2iouLkZCQwN4E6+LiAicnJ3mfrsqys7Ph6emJgICAmq4KIYRUD+pBSVuyZAmA0jx1Li4uSrvqbWZmJmJjY2u6GoQQUn1q+TRzhQzxxcfHw8fHBxkZGdDS0sLixYvRrVs3eHp6okGDBnj48CGysrLwww8/IDQ0FHFxcRg6dCi7hMalS5fw7t07pKSkwNzcHJ6enhAIBNixYwdOnz4NsVgMExMTLFiwAK9evcJ3332HJk2aQEtLC/7+/vj555+RlJSE5ORkDBo0CCtXrsSKFSuQnJwMV1dXLFy4EC4uLrhw4QIAwN/fHwDg7u4OoVCIHj16ICUlBUFBQdizZ0+5cwoEAkW8jYQQIhvqQVXup59+gre3N7p164anT5/C1dUV4eHhAIDk5GQcPnwYwcHBWLhwIcLDw6GpqQkzMzO4uroCAG7duoXQ0FDo6OjAxcUFf/31F7S0tPDgwQMEBQVBIBBgwYIFCAsLQ79+/fD8+XPs3LkTbdu2xYkTJ9C1a1ds3rwZRUVFGDVqFP755x94eXnBxcUFAQEBbNaJiqSnp2PatGkwMjLClStXKjwn5eMjhCglMc3i+6Tc3Fw8ePAACxcuZPfl5eUhPT0dAGBmZgYAaN26NTp37oxmzZoBKM3mkJmZCaB0/abmzZsDAKytrXH9+nVoamoiJiaGTTdUUFCA1q1bo1+/fmjWrBmbLNbGxgYxMTHYu3cvnj17hoyMDOTl5UFXV5fza+jVqxcA4Nq1axWekxBClBFDQ3yfJpFIoKGhIXUt6u3bt2wDUb9+/f8qo15xdd5P4iqRSKCmpgaxWIwpU6Zg6tSpAICsrCyoqakhPT0dWlr/3XT4xx9/IDw8HGPGjMHgwYPx+PFjfJg848OksSUlJVJ1KYv3sXMSQohSquVDfNWeLPazzz7Dl19+yTZQf//9NyZOnChTjIiICGRnZ6OwsBAnT56EmZkZhEIhQkNDkZubi5KSEqlhw/f9/fffGDt2LOzs7FBYWIi4uDhIJBKoq6uzWc51dHSQkZGBtLQ0FBUVISIiosJ6cD0nIYQohWpYbuP48eOwtrbG8OHDsX///nLPP3v2DJMnT4adnR2+/fZbdiSsKhRyDcrX1xc+Pj7YuXMn6tevj40bN8o0saBp06aYNm0a0tPTYWdnB1NTUwBAXFwcxowZA7FYDFNTU4hEIrx69Uqq7JQpU+Dj44MdO3ZAW1sbffr0QWJiIvr374/WrVtj8uTJ+OOPP/Ddd9/B2dkZrVq1Qs+ePSush4WFRYXnJIQQpSTn+6CSkpKwceNGHDt2DBoaGhg3bhyMjIzQqVOn0tMxDGbOnIlFixbBzMwMfn5+2LFjBxYsWFCl8yl9sthjx47h5s2bWLOGX4JSZfBF04obPlncenSVV3nbXra865BRksurvDxSHSlLLr7I7Ke8ysslFx/PJK0A5eJ7X79C/gNLf2vyfy2bX/D/nOT8YMfpOO0NYZyOCw4ORlRUFFatWgUACAgIAMMwcHNzAwA8ePAAixcvRnBwcOn5c3KQlZVV5Wv1lEmCEEJUFFPCrQeVlZWFrKyscvt1dHSgo/Nfxv7k5GS0aNGCfaynp4eYmBj2cUJCApo3b46ff/4ZsbGx6NChAxYvXlzl+it9A+Xo6KgyCwM66XSv6SpgsEYr3jFu10vlVV4evR+f6BW8Y9zs8SPvGJo6XXiVL5HDAMZACf9lQz7jv9oGluAZr/KtxPwzgHdQ+4x3jD/ql/9DLasjawfyjiEXHGfx7du3D1u2bCm3383NDe7u7u+Fk0hdnmEYRupxSUkJbt68iT///BM9e/bEpk2bsGbNmiqPgCl9A0UIIaSKOE6AmDJlSoXX09/vPQFAq1atEB0dzT5OSUmBnp4e+7hFixZo3749ex3fxsYGHh4eVak5ACVf8p0QQggPHGfx6ejooG3btuW2DxuowYMH49q1a0hLS0N+fj7Onj3L3ssKAH369EFaWhri4uIAABcuXED37lUfOaIeFCGEqCh5z4Fr2bIl5s6dCxcXFxQXF8PZ2RmGhoaYNm0aPDw80LNnTwQEBMDLywv5+flo1aoV1q1bV+XzUQNFCCGqiuMkCVnY2trC1lZ6NvBvv/3G/tyrVy8EBQXJ5Vw11kAlJiZi5MiR7HIcZbZt24bPP/+ccxwu09A9PT1x/fp1NG5cehG2qKgIEydOxKRJk8od+8svv6BHjx6wtLTkXAdCCFFGTC3PJFGjPSg9PT2FLcfh4eHBzgZMTU3FsGHDMGjQoHIN5OzZsxVSH0IIqXbUQMmXp6cnBg4cyDYm+vr6ePToEXJzc7Fs2TI8efIEYrEY06ZNg42NTZXO0bx5c3z11Vd4+vQp7t27h+DgYGRkZMDc3BzJycns+ffu3YuDBw9CTU0N5ubmWLBgAVJTU+Ht7Y23b99CIBBg3rx5GDx4sDzfAkIIkY/anSu2Zhuo5ORkqaUqPhzXfN/WrVvRvXt3rF27Fjk5ORg3bhybZVxWcXFxSEhIQPfu3XHz5k0kJSXh1KlTUFdXh6enJwAgJiYGBw4cwNGjR9GgQQN89913ePDgAXbt2gUnJydYWloiOTkZEyZMQEhICLS1tatUF0IIqS40xMdDRUN8ZQ3Eh65evYqCggIcPXoUQOmSHU+ePOF8rs2bN2Pfvn2QSCTQ0tLCsmXL0LZtW9y8eRPdunUrl0k9KioK5ubm+Oyz0hv/9u7dy9bj2bNn2Lx5M4DSG9NevnyJrl27cq4LIYQoBDVQ8vX+0hfFxf/d3i6RSODr68vOqU9NTUXjxo1x/PhxTnHfvwb1ofeX5yijrq4udYd0UlISGjRoAIlEgn379rHLhSQnJ7NrWBFCiDJhSmp3A6V0N+rq6uri6dPSBJznzp1j9wuFQhw8eBBAaaNgZ2eHN2/eVFs9+vfvj8uXL7NLa8ybNw8PHjyAUCjEgQMHAABPnz6Fra0t8vP5Jx0lhBC5k3DclJTS9aDGjx+POXPmwNbWFkKhkE1M6ObmBh8fH9jY2EAsFmPBggX44osvpNJuyFP37t0xadIkjBs3DhKJBMOGDcPgwYPRsWNHeHt7s9fL1q1bR9efCCFKqbZfg1L65TZUydwvx/GO8XPUb5Uf9AmrB0zjXYfbJfySxRqr61V+UCWUJVnsTi1+Hx+lSRYrh2/RG8U8k8XWV45ksS8l/JaTAYAjvvyTxTYYu4R3jDT7/3E6rmnoZd7nqg5K14Oqqnnz5rFDg++zsLBQmnubXsjhF58vPYb/f3lzNX5/EOWxDpM8GpeBD6qegoWtR19vXuUjBPwzZ3+316zygyoRPzOEd4yBRfzWtrpVyH/Ivpsa/0YuXcz/97Po1BXeMRqM5R1C3usVKpzKNFDr16+v6SoQQohSYfivm1ijVKaBIoQQ8gHqQRFCCFFGtX2Ir1qnmScmJkJfXx/e3tLj9LGxsdDX18exY8c4x7GwsCi339/fH8bGxrC3t4ednR1sbGzw559/yqXun5KUlAQTE5NqPw8hhPDBSLhtyqrae1C6urqIiIiAWCyGmpoaAODUqVNo2rSpXOKPGzeOXZI4LS0NU6ZMgaamJkaPHi2X+B+6fPkyVq1ahZSUlGqJTwgh8qLMjQ8X1X6jbqNGjdC1a1dERUWx+/7++282weqff/6J0aNHw8bGBiKRCM+elU5VtbCwwJw5czBixAikpaWxZcPDw2FnZye1r0zTpk0xc+ZM9kba1NRUfP/997C1tYVIJMKVK1eQlpYGU1NTtoypqSlOnToFANi+fTt27twJf39/eHl5YfLkybCwsMDWrVvZ44OCguDv7y/Hd4gQQqoJI+C2KSmFZJKwsrJCeHg4gNIkrPr6+qhfvz5ycnJw7tw5/PHHHzhx4gSGDBmC/fv3s+XMzMwQHh7O9rYiIyMREBCA3bt3f7QH1qVLF7aRW758OYRCIY4fP47Nmzfj559/hkQiweeff47Hjx/j33//hVgsxs2bNwEAERERMDc3BwA8evQIu3btwpEjR7Bjxw5kZZVOB/b390eXLl2q540ihBA5kpQIOG3KSiENlIWFBa5cuQKJRILTp0/DysoKAKCtrY3169fj5MmTWL9+PS5evIi8vDy23PvZytPT0+Hu7g4HBwc0b978o+cSCARsbr3r16/D2dkZANCuXTv06tUL9+7dg5mZGa5du4br16/DxcUFt27dQnZ2NlJTU9n1oYyMjKChoYFmzZpBV1cX2dnZcn9fCCGkOtX2a1AKaaAaNWoEAwMD3Lp1C9evX2eH9968eYOxY8ciOzsbZmZmEIlEeD+xhaamJvuzQCDAr7/+il27diEpKemj53r06BHbyHyYJINhGIjFYgwZMgTXrl3DjRs3MGzYMNSrVw/Hjx+Xmvjw4bkp4QYhpLZhGAGnTVkpLFmslZUV1q9fjx49erBLWzRs2BDt27fH119/jZ49e+LcuXMQi8UVltfV1cWgQYMwfvx4rFhRcZqb5ORkbNu2DRMnTgRQmmA2KCgIAPDy5Uvcvn0bvXv3Rvfu3fH8+XO8ePECHTt2hJGREbZu3coO7xFCiCqo7T0ohd0HZW5ujkWLFkmlHapfvz4kEgmsra3BMAwGDBhQ6RpP06dPh52dHZvp/NChQzh37hzbyxk7dixGjRoFAFi0aBG8vb3Z6ewrVqyAnl5pHrh+/fqxWciFQiGOHDmCAQMGyP11E0JITWEkyts74oKSxSqQ6IuPrxjM1Y5bB3iV39V/Ju86RINf/jgNqPGug2sh/xjyyMW3RQly8e3fbcM7hjxy8a0vasSrvDxy8f1Psy3vGDeLk3nHODWUf8PQeN953jES+ltyOu6LaP7nqg6USaKOiRcU8Y4hKtLhVX5hwT3eddDU4T+Tkm+iVwBwu72MV/mr/ebyrsOKby/xjiGALu8YBUwBr/Kt6vP7vQKAHFR8iUAWrdX5Z0T/9RL/GAt5RwAkJUq35J9MqIEihBAVVdvHx6iBIoQQFVXbr0HV7v4fIYSQj6qOaebHjx+HtbU1hg8fLpVY4UOXLl2qMIeqLChZrAzEYjGWLFkCGxsbjBo1Cnv37q22cxFCCF/ynmaelJSEjRs34sCBAwgJCcHhw4crXCg2NTUVa9eu5V1/ShYrg2PHjiEjIwNhYWEoKCiAs7MzBgwYgO7du8v9XIQQwpdYwq0PkpWVxaZze5+Ojg50dP6bvHL16lUIhULo6uoCAEaMGIEzZ87Azc1NqpyXlxfc3Nx4LyRb7Q1UWRaJqKgoCIVCAOWTxYaGhiI/Px/169fH+vXr0aFDB1hYWMDQ0BCxsbHw9fVl44WHhyMgIKDC3ktZstjffvsNo0ePRmpqKhYtWoTXr19DXV0dc+fORY8ePWBvb4+IiAgApcliFy5cCGtra2zfvh1qamrIz89HUlIS4uPj8erVK4wePRozZ85E586d0atXL9SrVw8NGzZEu3bt8ObNG2qgCCFKies1qH379mHLli3l9ru5ubEdAKA0GUKLFi3Yx3p6eoiJiZEq8/vvv6Nbt25SqeqqipLFypAstnfv3myi2Nu3byMmJoZu7iWEKC2G4bZNmTIF58+fL7dNmTJFKp5EIoFAIHgvPiP1+PHjxzh79ixmzZoll/orZBafhYUFNm3aJJUs9tSpU1LJYl+8eIGIiAh07dqVLVdRslh3d3eZksWWpUWqKFmsuro6XFxccPLkSU7JYsu6ulFRUZg7dy78/PzQuHFjub9fhBAiD1x7UB8O5X1Mq1atEB0dzT5OSUlhs/MAwJkzZ5CSkgInJycUFxcjOTkZEyZMYJdAkhUli5UxWezZs2cxe/ZsrF+/HsbGxjzeFUIIqV4SRsBp42rw4MG4du0a0tLSkJ+fj7Nnz8LMzIx93sPDA+Hh4QgNDcWOHTugp6dX5cYJoGSxMiWLjYmJgY+PD3bv3g0jI6OqvhWEEKIQ8p5m3rJlS8ydOxcuLi5wcHCAjY0NDA0NMW3aNNy/f1/u9adkseCeLHbr1q0Qi8X46aef2H0eHh6wtOSW74oQQhRJXA036tra2sLWVjqv6G+//VbuuLZt2+LChQu8zkXJYhVIGZLFeg/4lncdTIo0eJWXRy4+Sznk4jOUNOAdg28uvglyyMXXRcAvSSsAyOPPWDzPXHzveJYHgDb1+L8XGQz/fJV9IYdcfPH87+m884U9p+P6JITyPld1oFRHhBCiomp794MaKAVSF9R8ZqmmcvgvbyYu4VXeoFEb3nUokcMnTx5LXfDNRn7g1kbedRjfbw7vGLoCfr1iACgBv5XvGgr4/24W8awDABhCm3eM+8jlHUMeZJkAoYyogSKEEBWlzMu5c0ENFCGEqCjqQRFCCFFK4lreQFE2cxmIxWJ4e3vDxsYGtra2OH78eLWdixBC+KqO5TYUibKZyyAsLAw5OTk4ceIE0tLSYGVlBXNzc2hr87+oSggh8sZ/ykjNqvZpZY0aNULXrl0RFRXF7vswm/no0aNhY2MDkUjEJnq1sLDAnDlzMGLECKSlpbFlw8PDYWdnJ7WvTFk287LUGqmpqfj+++9ha2sLkUiEK1euIC0tDaampmwZU1NTnDp1CgCwfft27Ny5E/7+/vDy8sLkyZNhYWGBrVu3AgBEIhHWrVsHoDRrRf369VG/fn15vl2EECI3DAScNmVF2cxlyGYOAOrq6li0aBGcnZ0xZswYqZx9hBCiTCQMt01ZKaSBsrCwwJUrV6SymQOQyma+fv16XLx4EXl5eWy5irKZOzg4yJTN3NnZGUDF2cyvX78OFxcX3Lp1i1M28zIrV65EREQEzp49i8jISPm9UYQQIkdi1OO0KSvKZi5DNvMHDx7gxYsXAIAmTZrA1NQUjx49qvobQwgh1UjCcVNWlM1chmzm9+7dg6+vLyQSCXJychAZGYm+fftW9S0hhJBqVduvQVE2c3DPZj5u3Dg8evQItra2qFevHiZOnIg+ffpU7Q0hhJBqpsy9Iy4om7kCjW7PLbPwp/waze8+r00DvuddB9N8fr/2GzQyeNehZb2GvGPkgl9OQQBQ4/ntU5Vy8eUy/N7PYjn8OW0k4D+rthOjxTtGLPIqP6gSB+KDecc41XIcp+Oskw7xPld1oEwSClTC1Pz3GU053JS3X4vfcgQajBrvOgyU8G+gvttrVvlBlVjx7SVe5eXRuBy8tYl3jLPdF/GOcUiL3+/3q5Lsyg+qRL/6LXjHCC6K5x1jr2YT3jHkQZmH77igBooQQlRUiYAaKEIIIUqotl+/oQaKEEJUVM1fVOCHksVWkYeHB/z9/RVyLkIIqQqJQMBpU1aULLYKgoKCcOPGDXTu3LnazkEIIXzV9iE+ShYrQ7JYAEhISEBwcDDGjh0rx3eJEELkjzJJcKAqyWJLSkqwaNEiLF26lLKYE0KUXolAwGlTVpQsVoZksf7+/hg2bBg6deok9/eIEELkjeG4KStKFitDstjw8HAEBQXB3t4ehw4dwqFDh7Bz505+bw4hhFQTiYDbpqwoWawMyWLPnDmDsLAwhIaGYty4cRg3bhy+++67qr4lhBBSrarjGtTx48dhbW2N4cOHS12SKXPu3Dl2ZvWsWbOQmZlZ5forrIEyNzdHbGwsrK2t2X3vJ4sViUT46quvkJiY+Mk406dPx5MnT6SSxdrb28PBwQHTpk0rlyz2+vXrsLW1xaxZs9hksQKBAP369WN7WkKhEDk5OZUmiyWEkNpE3kN8SUlJ2LhxIw4cOICQkBAcPnwYT58+ZZ/PycmBj48PduzYgbCwMOjr6/O6HYeSxSqQ6Atb3jF23DrAq/zW/jN41+EJ8nmVT2cKeddhBMM/15ky5OJ7xOTwroPy5OLj9/8aX1L1b9pl5JGL73Lhp78kcyGPXHyGL47zjvFb20mcjhv78Fd21fD36ejoQEdHh30cHByMqKgorFq1CgAQEBAAhmHg5uYGoHSuQHR0NIYNGwagdNTp+PHjCAgIqFL9KZMEIYSoKK7Dd/v27cOWLVvK7Xdzc2PvMwVKL6O0aPHflwA9PT3ExMSwj5s0acI2TgUFBdixYwcmT55ctcqDGiiFalZPs/KDqlm+gH+HOUdSzKt8s3r8lzP4jF8VAADxM0N4xxBAl1d5eSxzIY/ez/B/VvKOcaU/v3o8EBfwrkNmff5LqAg1W/OOoaObzjuGPHBdvGDKlCkQiUTl9r/fewIAiUQCwXvT0hmGkXpcJjs7G66urjAwMKgwLlfUQBFCiIri2oP6cCjvY1q1aoXo6Gj2cUpKCrsIbJnk5GR8++23EAqF+Pnnn2WpbjkKmyRBCCFEseQ9i2/w4MG4du0a0tLSkJ+fj7Nnz8LM7L9ruWKxGDNmzICVlRUWLVpUYe9KFtSDIoQQFSXvGXAtW7bE3Llz4eLiguLiYjg7O8PQ0BDTpk2Dh4cH3r59i4cPH0IsFrPZg3r06IGVK6s2hFytDVRiYiIsLS0xduxYLFu2jN0fGxsLBwcHrF69Go6OjpziuLi44MKFC1L7/f39cejQITRv3hwMw0AikWDcuHGYNInbzJWqsLS0hLa2Nvt427Zt+Pzzz6vtfIQQUlUl1XATrq2tLWxtpWck//bbbwCAnj17Ii4uTm7nomzmMkhPT0f9+vURGhoq99iEECJvypwIlgvKZi5DNvP79++DYRiMGzcOIpEIp0+flvO7RQgh8kO5+DhQlWzmRUVFMDU1xd69e+Hv7481a9bg33//rbb3jRBC+KBcfByoSjbzoUOHwsvLC1paWmjbti2GDRuGyMhIub9fhBAiD7QeFAeqks384sWLuH//vlTMssS3hBCibGiIjyNVyGb+6tUrBAQEQCKRIDU1FRcuXMCQIUOq+I4QQkj1KgHDaVNWCvv6b25ujkWLFmH27NnsvvezmTMMgwEDBuDJkyefjDN9+nTY2dlJZTM/d+4c28v5MJu5t7c3jh07BgBsNnMA6NevH/LzS5OeCoVCHDlypNJs5uPGjcOjR49gY2MDiUSC+fPno02bNlV7QwghpJopb9PDDWUzV6DvvnTmHWN11B5e5TcM+J53HeIk2bzK69Tjn3/OvLgB7xjCRuVngsrqzyJdXuXfooh3HUT59XnHkEcuPi+eufjOFiTwrkMfLf73JGrJYWDpRznk4vvy7l+8Y/i0n8jtuPjy6zopA7qAQgghKkqZZ+hxQQ2UAu1Piqr8oEqs5lk+nuG3lhMAaAjUeJUXFfDP6r4Ez3jHGFjEf3i2gOGXgbtEDnOoDmnxj8E3EzkArIjm1wsL+MKSdx06aX58hi9XBXLoQf2S0Yx3jI28IwCSWj7IRw0UIYSoqIqnnNUe1EARQoiKoh6UCsjJycH69esRFRUFNTU16OjowNPTE40bN8bIkSPRsWNHCAQCFBcXQ09PD6tXr0arVq3g6emJgQMHckp4Swghila7mydaDwoSiQTTpk1D48aNERISgtDQULi6umLatGnIyMiAnp4eQkNDERISgpMnT0JfXx/r1q2r6WoTQkilKJNELXfjxg28efMGHh4e7A3EQqEQq1evhkRS/r/OyMio0nu1CCFEGUjAcNqUVZ1voB4+fAgDAwPUqyf9Vvzvf/8rl5C2uLgY4eHh6N27twJrSAghVVPbUx3V+WtQ9erVk8q796Hk5GTY29sDAIqKimBoaIh58+YpqnqEEFJlYqVufipX5xuoHj164MCBA2AYBgLBf3e1bdiwAe3bt2evQRFCSG2jzNeXuKjzQ3z9+/dHs2bNsGXLFjZRbUREBI4dO4ZOnTrVcO0IIaTqavs1qDrfgypbxmP16tWwsbGBuro6mjRpgh07dkBHR6emq0cIIVWmvE0PN3W+gQJKl4r39fWt8LkLFy58tNyaNWuqq0qEEMKbMveOuKAGihBCVBRNkiCcbWpmWtNVwJPid7xj6Nfnl5DzrFYJ7zq0EjfmHeNW4Rv+9ajPbxi4oYD/R/BVCb/lTwDggZhf0luAf7LX9ITzvOuwpa837xgRgizeMfa9u8U7hnySxdZu1EARQoiKYmp5D6rOz+IjhBBVVR2pjo4fPw5ra2sMHz4c+/eXX+gwNjYWjo6OGDFiBBYtWoSSkqqPmFADRQghKkrCMJw2rpKSkrBx40YcOHAAISEhOHz4MJ4+fSp1zIIFC+Dt7Y3w8HAwDIPAwMAq17/SBioxMREWFhbl9uvr61f5pFU1efJk3LhxQ+Hn/ZjJkyfXdBUIIeSj5J3q6OrVqxAKhdDV1UXDhg0xYsQInDlzhn3+1atXKCgoYNPBOTo6Sj0vK7oGxcPNmzdrugqEEPJRYo4DeFlZWcjKKj85REdHR+p+0OTkZLRo0YJ9rKenh5iYmI8+36JFCyQlJVWl6gB4NlDHjh1DREQEMjMz8fLlSxgbG8PHxwcAsGPHDpw+fRpisRgmJiZYsGABXr16BVdXV3To0AFPnz5Ft27d0KdPHwQHByMzMxMBAQHo2LEjLCwsMHLkSFy9ehUAsGrVKnTr1k3q3Nu2bUNYWBjU1NRgbGyMBQsWwN/fHwzDYO7cuQAAT09PmJmZ4cqVK2jQoAEePnyIrKws/PDDDwgNDUVcXByGDh0KT09PiMVirFu3Djdv3oRYLIajoyO+/vpr3LhxA9u3b4eWlhb+/fdf6Ovrw8/Pj11yY/To0Thy5Aift5EQQqoF1+tL+/btw5YtW8rtd3Nzg7u7+3/xJBKplHAfpoir7HlZ8b4GdefOHWzevBlhYWG4ePEiHj16hCtXruDBgwcICgpCSEgIkpKSEBYWBgB49OgRpk2bhtDQUNy+fRuvXr3C4cOHYWNjg8OHD7NxGzZsiJCQEHh4eOCnn36SOufly5dx4cIFHD16FMHBwYiPj8ehQ4fg5OSE48ePg2EY5Ofn4/r167C0LJ36mpycjMOHD2P69OlYuHAhli5dipCQEAQGBiI7O5sdJw0ODkZQUBDOnz+P6Oho9jV6e3vj9OnTeP36NSIjI+Hl5QUA1DgRQpQW11RHU6ZMwfnz58ttU6ZMkYrXqlUrpKSksI9TUlKgp6f30edTU1OlnpdVpT2oD5ehAKRbxT59+kBbWxsA0K5dO2RmZuLatWuIiYlhV5otKChA69at0a9fPzRv3pztDbVq1QqDBg0CALRu3RqJiYnsOcaMGQMAsLCwgKenJ9LS0tjnrl+/jlGjRqFBgwYAACcnJ4SEhGDixIlo06YNoqKi8Pr1a/zvf/9jM5WbmZmx5+ncuTOaNWsGANDV1WXrHBsbi+vXrwMA8vLy8OjRI3Tq1AmdO3dGq1atAAAdO3ZEZmYmh7eWEEJqFtdp5h8O5X3M4MGD4e/vj7S0NDRo0ABnz57F8uXL2efbtGkDTU1N3Lp1C/369UNoaCj7t7cqKm2gdHR0kJ0tfSPgu3fv0Lhx6Y2S7y9VIRAIwDAMxGIxpkyZgqlTpwIoHd9UU1NDeno6NDQ0pGKpqalVXDH1/6omkUikjqtoIcGyqYxOTk44ceIEXr9+LdU1rV+/foWxy4jFYixYsADDhw8HAKSlpaFRo0a4e/duha+REEKUnbxv1G3ZsiXmzp0LFxcXFBcXw9nZGYaGhpg2bRo8PDzQs2dP+Pn5wcvLCzk5OejevTtcXFyqfL5Kh/i0tbXRvn17hIeHs/sOHz7M9nwqIhQKERoaitzcXJSUlMDV1VWqPBcnT54EAPz111/o2LEj2yCWxT958iQKCgpQUlKCo0ePQigUAgBGjhyJa9euITU1Fb169eJ8PqFQiMDAQBQXFyM3NxcTJkzA3bt3P1lGTU2N1xx/QgipTgzDcNpkYWtrixMnTiA8PBzTpk0DAPz222/o2bMnAMDAwABBQUE4c+YM1q9fX65TIgtOkyR8fX3h4+ODgIAAFBcXQ19fH97e3rh06VKFx1tYWCAuLg5jxoyBWCyGqakpRCIRXr16xblit2/fRlBQEBo0aFAuKau5uTliY2Ph5OSEkpISmJiYYNKkSQAALS0t9O7dG126dOF8LgAYN24c4uPjIRKJUFJSAkdHRxgZGX1yWrulpSXs7e1x7NixTy56SAghNaGklmeSEDBKOF5lYWGB33//HW3btpWpHMMwyM3NxdixY7F3716p6Y7KYHvbSbxjON7Zyqu8da9RvOvANxefjhzyz/0r5p9/LkUOOeyUIRdfckku7xjZcsjF9yTrNa/yqpSL71JaLO8YadlPeMew+YLb5/1Ewkne56oOKpVJ4v79+7CwsMCYMWOUrnEihBBFq+0LFiplD0pV9WllzDvG2ftVvysbAMROtrzrMDdel1f5doIGvOuQDTHvGFpy+H6Ww7MeRXK4jN0U9Ss/qBKZ4H8tNZsp5lV+MPMZ7zq43V7GO4ZLvx94x5CHg/EhvGNYtbPidNzpl6d5n6s6UCYJQghRUbTcBiGEEKXENdWRsqIGihBCVFRtv4KjUpMkuDpz5gwcHR1hZ2cHW1tb7Ny5EwAwbdo0XokNCSFEmdT2SRJ1rgeVlJSEtWvX4tixY2jSpAlyc3MxefJkfPXVV/jtt99qunqEECI3tX1F3TrXQKWnp6O4uBgFBaX3fTRq1Ahr1qyBpqYme//VoUOHEBERAQDIzs5Geno67ty5g5iYGKxevRoFBQVo0qQJli5dinbt2tXkyyGEkI+SZTFCZVTnGigDAwNYWlpi6NCh6Nq1K4yMjGBra4v27duzx8yfPx/z589HUVERJk+ezP7s5eWFbdu2oXXr1oiIiMDixYuxd+/emnsxhBDyCbW7eaqDDRQALF26FLNmzUJkZCQiIyMxZswY+Pn5lTvOy8sLAwYMgLW1NR4/foyXL19i5syZ7PM5OTmKrDYhhMikhGbx1S6XLl1CXl4erK2t4eTkBCcnJwQGBiIoKEjquF27duHdu3dsHkCJRIK2bdsiNDQUQGn289TUVIXXnxBCuKJZfLWMlpYW1q9fz649xTAMYmNj0bVrV/aYK1eu4MiRI9iwYQO7HlaHDh2QmZnJLmJ49OhRzJ8/X/EvgBBCOKJZfLWMUCiEm5sbZsyYgeLi0tQspqamcHV1xfHjxwEAK1euRElJCb7++mt27Sl/f3/88ssvWLlyJQoLC6GtrY21a9fW2OsghJDK0Cy+WkgkEkEkEpXbf+HCBQD46NpVX3zxRbmhQEIIUVa1fYivTjZQNcVAs+YzrK9IaMk7Rleevzb6hbyrgD/q818SIV2czztGa3V+CU4Noc27DsFF8bxjCDVb845RwPOKgTyWubgph0Svv9/awDuGvoET7xjyoMzDd1xQA0UIISpKzNAsPkIIIUqIrkERQghRSrU9k4TKTjOfOnUqzp07xz5eu3Yt+vTpg6KiInafiYkJO92cKwsLC5nLEEJITWA4/lNWKttACYVC3Lp1i3189epV9O7dm90XHx+Phg0bom3btjVVRUIIqVYShuG0KSuVbaAGDRqEO3fuACjNYK6hoYERI0YgMjISABAdHQ1jY2OEhIRAJBLB3t4eP//8MwoLS6eYXblyBc7OznBwcICbmxvS09Ol4j9//hzDhw/H3bt3Ffq6CCGEKzEj4bQpK5VtoLp3746EhAQUFhYiMjISxsbGMDY2lmqg9PT0EBgYiEOHDiE0NBTNmjXDrl27kJaWhvXr12PXrl0ICQmBiYmJVK6+t2/fws3NDatWrULv3r1r6BUSQsin1fYhPpWdJKGmpoZevXrh/v37iIyMxMSJE9GuXTsUFBQgMzMTd+7cQdeuXREfH48xY8YAAIqLi9GtWzfcu3cPb968gYuLC4DSPHyNGzdmY8+ePRs9e/ZE//79a+S1EUIIF8o8fMeFyjZQQOl1qNu3byMmJga+vr4ASof+zp8/jyZNmoBhGFhZWcHLywsAkJubC7FYjJs3b6Jv377Ytm0bAKCwsBC5ubls3EWLFiEgIACXLl3CkCFDFP66CCGEC0X2jl6/fo0FCxbg3bt3+Oqrr+Dn54dGjRpJHZOcnIyFCxciNTUV9erVw48//ohBgwZ9NKbKDvEBpY1RaGgounTpAnX10rbY2NgYe/bsgbGxMYyMjPDXX3/h3bt3YBgGPj4+2LdvH3r16oW7d+/i+fPnAIBff/0V69atY+MaGhrCx8cHy5YtQ15eXo28NkIIqQzDSDht8rB06VJMmDABZ86cQY8ePfDrr7+WO2bdunWwsLBAaGgo1q9fj/nz50MsFn80pko3UF26dEFGRgZMTEzYfUKhEM+ePcPgwYNhYGAANzc3TJkyBaNGjYJEIsH06dPRokULrFq1CnPmzIGtrS3++ecf/PTTT1KxBwwYACMjI2zatEnBr4oQQrjhms08KysLiYmJ5basLG7pp4qLixEVFYURI0YAABwdHXHmzJlyxw0bNgw2NjYAgPbt26OwsPCTX/JVeogPAP7++2+px5999hn++ecf9vHo0aMxevTocuUsLCxgYWFRbn9ZQlkAWL16tRxrSggh8sV1ht6+ffuwZcuWcvvd3Nzg7u5eafn09HRoa2uzI1UtWrRAUlJSuePKGjCgdM29rl274rPPPp7PUuUbKEIIqau4ZjOfMmVKhSs86OjolNt3+vTpcl/O27dvD4FAILXvw8fv27t3Lw4fPow///zzk/WiBqqOaSiHUd1IyTte5VM1G1d+UCWOrB3IO0bRqSu8Y/x6iV828/vIrfygSuzVbMI7ho5ueuUHVeKXjGa8yu97d6vygyoxoml33jHkkYn8UdxR3jHkgessPh0dnQobo4pYWVnByspKal9xcTGMjIwgFouhpqaGlJQU6OnpVVh+3bp1uHz5Mvbv349WrVp98lwqfQ2KEELqMkXdB1W/fn30798fp06dAgCEhITAzMys3HF79+7FjRs3cPDgwUobJ4B6UIQQorIUuWDhkiVL4Onpia1bt+Lzzz/Hhg2l62odPHgQycnJ8PDwQEBAALS1tTF58mS23I4dO9CyZcXr1FEDRQghKkqRCxa2adMGf/zxR7n948ePZ3+OioqSKWadGuJbtmwZPDw8pPZFRkbC0tISOTk5NVQrQgipHmKJhNOmrOpUAzVv3jw8ePAA58+fBwDk5eXBx8cHq1atgrY2/6W3CSFEmTAMw2lTVnWqgWrUqBFWrFiB5cuXIy8vD5s3b4aFhQUaNGiA8ePHQyQS4ZtvvsHLly8BADdv3mT3W1pasutLeXp6YsaMGbCyspK6L4oQQpQJ1xt1lVWduwY1ePBgmJiYYOHChXj27BkOHDiAiRMnYtu2bWjdujUiIiKwePFi7N27F3/++SdWrFiBjh074tq1a1i1ahWGDh0KANDV1WVz9RFCiDJS5t4RF3WugQJKe0BDhgxBQEAA3rx5g5cvX2LmzJns82XXo3x9fXHx4kWcOXMG9+7dk0oYa2hoqPB6E0KILCibeS2kra0NHR0dtGnTBjk5OWjbti1CQ0MBAGKxGKmpqQCACRMmwMjICEZGRhg0aBDmz5/PxtDS0qqRuhNCCFfKvBghF3XqGlRFOnTogMzMTERHRwMAjh49ivnz5yMjIwMvXrzA7NmzYWZmhvPnz38y6y4hhCib2j5Jok72oN6noaGBX375BStXrkRhYSG0tbWxdu1a6OrqwtnZGaNGjYK6ujqEQiEKCgpoeQ1CSK2hzKvlclFnG6j3Z9/16dMHQUFB5Y5ZuHAhFi5cyD728fEBAKxZs6ba60cIIXwpc++IizrbQBFCiKqr7Q2UgKntr4AQQohKqvOTJAghhCgnaqAIIYQoJWqgCCGEKCVqoAghhCglaqAIIYQoJWqgCCGEKCVqoAghhCglaqAIIYQoJWqgCCGEKCVqoAghhCglaqAIIbVOUVFRTVeBKAA1UCogMzOz3L5Xr15VOV7ZisKyGjVqFHbu3ImUlJQqn/v48ePYuHEj8vPzERISUuU4eXl5iIuLA8MwCl0iJTY2FhcuXEB2drbU/osXL3KOkZeXx/4Bvnr1Kvbs2YN79+7xqtfu3btlOj4pKYn9+dmzZ/jjjz9w8OBBvHnzhlc9qmLs2LFSjyUSCZycnBRah5iYGKnHBQUFMq9qcOnSJTnWqG6gBqqGvXr1ClOnTsXw4cORnJwMFxcXJCYmcir75s0bvH79GhMnTmR/fv36NV6+fIlvv/2Wcx0uXrwIX19f5ObmwsrKCpaWljh27JjMr2XHjh0oLCyEi4sLpk+fjjNnzqC4uJhzeT8/P1y+fBlnz56FWCzG0aNHq7S0ybVr12Bvb49Zs2YhNTUV5ubmiIyMlDmOrPbt24f58+cjMDAQI0eOxLVr19jnNm/ezCnGiRMnYG5uDktLS2zZsgWrV69GSkoKFi9ejCNHjnCKsWXLlnLb7t272Z+5mDFjBgDgzJkz+Oabb5CQkIB///0XkyZNwpkzZyotHxIS8smNCxcXFxgYGODevXswMDBgN0NDQ3z11VecYgD8PmNlFixYgDt37gAALl++DGtra2RlZckUw9fXV6bjCQCG1KhvvvmGiYiIYBwcHBiJRMIcPnyYmTBhAqeynp6ejLm5OdO9e3fG3Nyc3YYNG8asXLmScx0cHR2Z2NhYJjAwkPnxxx+ZnJwcRiQSVfUlMQzDMGfPnmXMzMyYgQMHMitWrGDS0tIqLWNvb89IJBLG3t6eYRiGKS4uZqysrGQ+t7OzM5OcnMzGefLkCWNra1tpOWNjY8bAwKDcpq+vzxgYGFRa3sbGhsnLy2MYhmFu3brFGBsbM1FRUexr48LW1pZJS0tjYmNjmR49ejAZGRkMwzBMdnY2Y2dnxymGu7s7Y2RkxGzYsIHx9/dn/P39GWNjY/ZnLhwcHBiGYRiRSMQkJiay+1NSUjj9n3h6en5yk8Xy5ctlOv5DfD5jZZ49e8aMGjWKmTFjBmNjY8P+v8ri+++/Zzw9PZmDBw8ywcHB7EY+jtaDqmHp6ekwMTGBn58fBAIBxowZg/3793Mqu3r1agClPZfp06fzqoeBgQH8/f1hZ2eHRo0aydTzKZObm4vw8HCEhoYiKSkJ48ePx6hRo3DlyhV8++23lfbK6tUr7dALBAIApdcZyvbJQiKRoEWLFuzjTp06cSp39OhRuLi4ICAggHOZDzVo0AAA0LdvX2zcuBFz5szB7t272ddUGYZh0KRJEzRp0gT29vZo3LgxAKBRo0YQi8WcYmzevBlBQUEICQnB0qVL0bFjR5w7dw5ubm4yvx5NTU2p97JZs2acXkvZ76Y8/PTTT7h06RIyMjKk9js4OHAqz+cz9vr1awCl74OPjw/mzJkDLy8vtG7dGq9fv0br1q05v44mTZoAQLnhWq6voy6iBqqGaWlp4e3bt+yHPjo6GhoaGjLFGDt2LFauXInr169DXV0dZmZmmDlzJrS0tDiVb968OZYvX44HDx7A19cXa9askemDV8bS0hLm5uZwc3PDgAED2P0TJkzA1atXKy0/cuRIzJkzB5mZmdi7dy/CwsJgY2Mjcz1atWqFixcvQiAQICsrC/v37+f0elq2bImff/4Zmzdv5jwk975+/fph7ty5cHV1RadOnTBgwAB4e3tj6tSpnBuXPn36YN68efD19cWKFSsAAPHx8fD19UW/fv0418XZ2RkDBw7EokWLMGLECJlfS3Z2NqytrSGRSODr64tFixbhwYMH2LJlC6d6JCUlYd26dXjy5An7mnR0dGSuBwDMnz8fr1+/RseOHaUaR65/2Pl8xiZNmgSBQMAu/KehoYF169YBKP0idf78ec6vo6JGu6CggHP5uogWLKxh9+/fh5eXFxISEvDFF18gMzMTv/zyC3r16sU5xvfff48OHTrAwcEBDMPg6NGjSEtLw/r16zmVz8nJwblz59C3b1988cUX2L9/P+zt7aGtrS3Ta8nJySlXpqCggHNDKRaLcfXqVVy9ehUSiQRCoRDm5uYy1QEA3r17h5UrV+Lq1atgGAZGRkbw8vKCnp6ezLFkIZFIcPToUejr68PQ0JDdHxMTg23btuHXX3/lFCMsLEzqj+8///yDe/fuYdy4cTL3KMViMTZv3oyzZ8/i9OnTMpXNyMjA/fv3UVhYiKFDh+LSpUt49eoVxo0bBzU1tU+W/fbbb9GlSxcYGRkhPDwcQNV7VSNHjuR03etjYmJisHjxYl6fMXm4cOECNm3ahLy8PDAMA4lEgoKCAqlrlUQaNVA17NKlSzA2NsaLFy8gFovRoUMHmXtQNjY2OHHiRKX7PiUsLAz//vsvZsyYgfDw8CoNO1T0AczPz8f169c5lReJRAgODpb5vBV5+PAhunXrhuzsbDx48ACDBg2SqXxOTg6ys7OllsyWpVfJt3xtj/H+719xcTEcHBxw8uRJmc5bxtXVFUuWLOH1BaO4uFjqM5aUlIR27dpxLp+ZmQlfX18kJCRg8+bNWLt2LRYuXChTr3DYsGFYvnw59uzZgxkzZuDcuXPIz8+Ht7d3VV5SnUBDfDXM19cXQ4YMQefOnasco1OnToiOjkb//v0BAHFxcWjfvj3n8n5+fnj79i3++ecfTJs2DUePHkVcXBw8PT1lqsfq1asr/ABy1bx5c0RHR8PQ0FDmRvp9fn5+ePjwIXbv3o38/Hz8+uuviI6Ohru7O6fy27Ztw44dO6Crq8vuk2U4h2/56ohRNkylqBj169eX+vn9x7IqKCjAyJEj0aVLF6nfi99//51T+b59+2L16tVSQ50eHh4yfRlavHgxjI2NERMTg4YNG0JPTw/z58/Hjh07OMf47LPPIBQKcfv2bWRnZ2PBggWwtrbmXL4uogaqhrVr1w4LFy5Er169pIbCZOnBPHv2DJMmTcJXX30FNTU1PH/+HI0bN4aFhQWnPyaRkZEIDg6GSCSCtrY29uzZAzs7O5kbKL4fwPv372PSpElS+wQCAWJjY2Wqx6VLlxAaGgoA0NPTw549eyASiTg3UEFBQTh37hyaNm0q03nlVV7VYgDgPEmkIt9//z2vczdp0gR79uzBP//8gx9++AEAIOvAUWJiIsaOHYuDBw9CQ0MDc+fOhZ2dnUwxtLS08Pz5c3Ts2BE3b96EUCis0mSkuoQaqBomj5k9W7du5VUHec2e4/sB5DoUWJmSkhIUFBSgUaNGACDzH4HPP/+cnT1XFXzLq0KMJ0+ewNLSkn2clJQES0vLKvXiBg4ciFu3buHx48dwcnLCvXv3pCbhVEZHRwe///47vLy8MG3aNGzYsEHm3281NTVkZ2ezn5EXL17IHGPOnDnYtGkTfH19sWPHDhw+fBjOzs4yxahrqIGqYatXr0ZxcTGeP38OsViMzp07Q11dtv+WNm3a4Pjx43j69GmVriHJa/ZcRR9AWe74/9hNpLJOjx43bhwcHR1hYWEBALhy5QomTpzIufyXX36JCRMmwMjISGpIiWs9+JZXhRjh4eHIyMiAWCxGs2bNAAA3btxAp06d2Mdc7du3D+fOnUNycjJGjhwJb29vODs7c74ZnWEYdvbdrl27MGbMGJSUlMhUBw8PD0yePBlv3rzBrFmzcPfuXaxatUqmGAMHDsTAgQMBlN7SkJmZyfsLhKqjBqqGPXjwAB4eHtDV1YVEIkFqaioCAgJkmmHE9xrS9OnTERERgdatW+PNmzdwd3ev0uw5eX4Ai4uLERERUaWZVl9//TX69euHqKgoqKurw9fXF926deNcvmXLlmjZsqXM55VXeVWIkZmZie+//x6rVq1iZzTGx8dj48aN+O2332SKFRwcjMDAQIwZMwZNmjRBUFAQRo8ezbmBMjU1ZX/+9ttv0blzZ6xcuVKmOpiamqJ79+6IiYmBWCzGsmXL0Lx5c5livHr1Cl5eXnj16hX279+PefPmYdWqVWjbtq1MceoSaqBq2IoVK7Bx40b2D/Hdu3exfPlyBAUFcY5R1WtIUVFR7M9aWlpsj6PsOa7DKJMnT/7kNQauF7M//Fbu6uqKb775hlNZoDRlk7m5OZtKp+y6yePHj/H48WPOvcoGDRrA3NwcHTp04HxueZZXhRhr167F+vXrYWRkxO6bO3cu+vfvjzVr1mDv3r2cY9WrV0+q96apqVnpNHcASElJQYsWLTB+/Hj2hlugdFLRnj17OJ8fKB32DgwMxLNnz7B48WLs27cP06dPl2kyj7e3N7799lv4+fmhefPmsLGxwU8//cT5puG6iBqoGpaXlyfVS+jduzcKCwtlivHhWDjXa0ifuhlVIBBwbljKJh8EBgZCS0sLDg4OUFdXx4kTJ2R+Le/Lzc2V+sNSmfv378Pc3Bw3btyo8HmuDZRYLMaSJUvw7t07mJiYwNzcHAMGDOA89Mq3vCrEyMrKkmqcypiamsLPz4/z+YHSnvnatWuRn5+Pc+fO4fDhwxAKhZWW8/Lywvbt29mbbT8ky3WwZcuWoWnTpnj48CHU1dWRkJCAn3/+WabXwiejRZ2l2MxK5EOTJk1i/vrrL/bxX3/9xUyaNEmmGNu3b2c8PDwYc3NzZs+ePYyDgwOzdetWeVe1Uo6OjuX2yZLTz9zcnLGwsGAsLCwYc3Nzpm/fvkxAQIDM9diwYYPMZSqSnZ3NHDhwgDE1NWX69u2r8PK1OYaNjQ0jFovL7ReLxTLnVxSLxczBgwcZd3d3xtXVlfnjjz+Y4uJiTmUvXLjAxMfHMwxTmh9y+vTpzKZNm5jCwkKZ6lCWm7Asp6JEImFGjRrFqWxubi7DMAwzfvx45s2bN2ysqKgoxtnZWaZ61DXUg6phy5cvx4IFC7Bo0SIApdPOZc16PGTIEOjp6eHly5e4desWZs+ejSFDhnAuf/fuXWzfvl3qBtvXr1/jwoULMtWjsLAQz58/ZzNNP3r0SKaL0X/88Qf7s0AggI6OjszZLIDSob45c+ZUeWrz6dOnERUVhejoaKipqcHKyorTN3Z5lVeFGAMGDMCWLVvg4eEhtf/XX39Fjx49ZKpDvXr1YGNjAzMzM3ZfcnJypTcL7969GydPnsTatWsRFxfHfs5iY2Ph5+eHn3/+mXMdBAIBioqK2N+p9PR0zr9f9vb2WL16NRYuXIjvv/8eCQkJsLe3ZzNakI+jTBI17MmTJ+jcuTPy8vIgkUigra2Nu3fvonfv3pWWfffuHTw8PPD06VP2xtznz5+jd+/e2LBhAz777DNOdbC2tsa3336L4OBgTJ48GWfPnkWzZs1k+gADpdfCPD090bJlSzAMg3fv3mH9+vXsDcSVcXd3h7+/v9S+KVOmYN++fTLVw8XFBUlJSejevTs0NTXZ/VxT7ZiZmUEsFmPKlCkYNmyYTEs7yKO8KsTIycnB9OnT8fbtWxgYGEBTUxMPHz5E06ZNsXXrVqkbkCuzdu1aBAYGsmUYjlPV7ezscPjwYTRo0AB+fn54/fo1NmzYAIZhYG1tzSn1U1lC2JCQEBw5cgTx8fGwsrLCuXPn4OrqymmaeGRkJJYuXQpLS0u4ubnhzZs3Vc4aU9dQA1VDbt26BYlEAi8vL6xcuZK9cbCkpAQ+Pj5s/rJP+fnnn9G8eXO4u7uzd+oXFxdj8+bNSElJ4byWkoODA0JCQrB582YMGDAAAwcOhK2tLU6dOiXz6yoqKsLjx48hEAigr6/P6XqHm5sbYmNjkZycLJXOpqSkBJ9//jkOHTokUx0+liFAJBJxjvHs2TNcv34dN2/exIsXL9CxY0fOuQ3lUV4VYjAMg+vXryM2Nhb16tVDjx49OH9Zed/w4cMRHBzM3tfGlb29PXvD9ujRozFhwgT2d8DKyopTA2VqaoqGDRvCxMQELVq0gLa2NhiGwYABA2BgYMC5Lvn5+fjll19w9epVeHt7S/X+qpKYua6gIb4acvXqVdy8eRPJyclsN18gEEBdXb3cCqIfc+fOnXIfsvr16+OHH36Avb0957poamoiIyMDX331Fe7du4dBgwZxzr4NAP7+/nB3d8fChQsrfL6ynsuaNWuQkZGBlStXwsvLi92vrq4u8z0zz549g7a2Nrp3787rgy+RSNgbfgsKCthlNBRVXhViCAQCDBo0SOY8iB/S19dHUVGRzA2UmpoasrKykJeXh9jYWBgbGwMone7NdaJIREQEEhISEB0djaioKNy9exdNmzZFVlYWCgsLOd8G0aBBA8yePRtv377FzJkzoaOjU6WblusaaqBqiLu7Oy5cuIDY2Fi4urrir7/+QlBQELp164bJkydzivH+8NX7BAKBTHe5f/3115g7dy78/f0xevRoHD9+XKbrBN27dwcA9h4oWWlra0NbWxtbt27Fw4cP2WthYrEYERERnO+2379/P/z8/NChQwe8fPkSy5cvr9JSE2ZmZmjdujXMzMzg7u7Ovj5FlVe1GHzZ29tj+PDh6NKli9T08spmmU6fPh0ODg4oKSmBs7Mz9PT0cOrUKWzcuBGurq6cz//FF1/giy++gKOjI7KysnD+/Hns3r0bW7duxYMHDzjFuHjxIpYvXw4TExNcvHixStdW6yIa4qsh71/ALSkpwbhx49gLuGpqauykiU/5VPZvWTODl32by8vLw4sXL2BgYMC5katsKjjXnoyXlxdu3ryJzMxMdOjQAXFxcejbty927drFqfyoUaPw+++/o1mzZoiLi8OSJUtw+PBhTmXfl5aWBoZh2Jsy+/TpI1NPjm95VYvB16hRozBt2rRyv0dcvhAlJSUhPT2dHY67fPkytLS0KpwCX5GSkhLcunULERERiIyMREFBAQYPHozBgwdDKBRyamg8PDzw8OFDLF++nHdvsq6hHlQNCQkJkbqAa2FhgdGjR7MXcLn4MN9ZGYZhkJKSwinGxYsX0alTJ7Rr1w7nzp1DUFAQunbtis6dO3NuoD5c1O19sgxhXL16FeHh4Vi+fDlcXFyQn5/P+ToaUDq8WfbH08DAAHl5eZzLvu/hw4dYuHAhevfuDYlEAm9vb6xcuZJzdg2+5VUtBl+fffZZlVed/TATxv/+9z+Zyg8YMAB9+/bFiBEjsGXLliplfWjRogXCwsLQsGFDmcvWeYqb0U7eZ2dnx/7s7OzMHDt2jH08cuRITjESExM/uVVm586djKOjI/PkyRMmNjaW6dWrFxMYGMgsXbqUWbFihewviqexY8cyDMMwe/fuZU6cOMEwDMPY2tpyLl92f8nHHnMlEomYhIQE9nFCQoLU/1d1l1e1GHwtXbqUcXNzYwIDA5ng4GB2U4Q1a9Yw9vb2zJgxY5hffvmFiY6OrvD+LlI9qAdVQ+RxAbdNmza86hAaGsq7F/e+tLQ0LFu2DNeuXYNYLIZQKISPjw/nnGUtW7bE9u3bMWjQIPZesKKiIs7nz8jIYNMcVfSY67fwkpISqcXs2rVrB4lEwrkefMurWgy+8vPzoa2tjdu3b0vtr2qvShY//fQTgNL7riIjI7F//354enqiS5cuMDExwfjx46u9DnUZNVA1RF4XcPkQCATsjKwbN25gwoQJ7P6q8Pb2Rp8+fbBixQpIJBIcPnwYixYtwvbt2zmVX7lyJS5fvgxDQ0MMHz4cJ06cgI+PD+fzC4VCqTRHHz7m+getdevW2Lt3Lzs5IygoSKYvA3zLq1oMvszMzGBpaVmj9wzp6enBxsYG7du3x+3btxEaGop79+5RA1XdaroLV5e9ffuWiY2NZR9funSJuX79usLOLxKJmMzMTObNmzdM9+7dmaSkJIZhSocObWxsZI5X0dCPLHG++eYbmc8pq82bN1d6TGpqKjN79mzGyMiIGThwIOPh4cG+N1zwLa9qMfjy9PRkzM3NGR8fH+bevXsKPfe5c+eYdevWMWPHjmWMjY2ZWbNmMb///jvz+PFjhdajrqIGqg47ffo0Y25uzpiamjJLlixhGIZhTp48yQwdOrRKY/z29vbM69ev2cevXr2S6TrQ+PHjpcpXh6pelyI1Ky8vjwkJCWG+++47RiQSMTt37mRSU1Or/bxTp05ltm/fzty7d4+uPdUAGuKrw0aOHIk+ffpITcNt1KgRVqxYwU7DLVuygIvZs2dj7Nix6NWrFxiGwb1797B8+XLO9UlPT4eFhQWaNWsGTU3NarmRkankroqjR49i//79eP78OTQ1NdGpUydMnDgRVlZWnOLzLa9qMeSlQYMGaNOmDT7//HPEx8fj0aNH+PrrrzF27FhMmjSp2s67e/fuaotNKkcNVB1X2TTc6dOnc76fytzcHL169UJMTAwkEgmWLl0q0z0zO3fu5HxsVX3q+tr+/ftx6NAhzJo1C126dAFQmvB227ZtyMzMxLhx4z4Zm295VYshLxs3bsSJEyfQtm1bODo6YtGiRdDU1EROTg4sLS2rtYEiNayGe3BEyZUtL/Ap70/9rWiTRVhYGLNhwwYmLy+vWqYSf2qIz8bGhklLSyu3PykpidPQIN/yqhZDXjZt2iQ11f19ir4mRRSLelDkk7jM6Ht/ptyFCxekVuYFuM+e47t0PV/16tVDkyZNyu1/P4FtdZZXtRjy4u7ujkOHDuH69esoKSmBkZERJk+ejHr16rHLyRPVRA0U4e39ZLAODg6cl7X4UFWXrpdFx44dP/qcLPkLq6O8qsWQF19fX8THx8PJyQkMw+DYsWNITEzklA6M1G7UQBG5quo9VMB/fxTLYnBdur7Mx7Kpl1m9evUnl+hOSUnBli1bPvpcZfiWV7UY8vL3338jJCSE/V0YMmQIbG1tFVoHUjOogSKfxCgwl/DIkSMxZ84cZGZmYu/evQgLC4ONjQ3n8lXNpl7mUxf+uUwK4Fte1WLIi1gsRklJCXujrlgslspqTlQXZTMnWLp0KUQiUYXj+dHR0ZUuMhcVFcX+/OECjEBpwk2uIiIicPXqVTAMAyMjoyonJU1MTMTTp09hYmKCN2/eSKXrqUx6enq56y8VXVurrvKqFoOvbdu24dKlSxg1ahQA4OTJk/jf//6HmTNnKqwOpGZQA0UQHByMkJAQpKWlwd7eHvb29pzvfQLwyfWrBAJBpev2vO/cuXO4du0a1NXVYWZmxuYolMWpU6ewdetWFBQU4NChQ7Czs8OPP/7IeRFHBwcH7N69G02bNkVKSgqWL1+Op0+fcl5hmG95VYshD1euXMG1a9fAMAyEQiGGDBmi0POTGlJj8weJ0nn9+jWzY8cOxsLCgpk+fTrz119/KfT8q1evZsaOHcv8/vvvzN69e5nRo0czW7dulTmOg4MDk52dzU6RT0pKYqytrTmXP3PmDGNvb8/s2bOHMTY2ZrZs2cIUFRUprLyqxaiqmzdvfnIjqo8aKMIwTOkyClu2bGGsrKyYqVOnMkeOHGF++OEHZsGCBZxj3Lt3j9m9ezdTWFjITJ06lTEyMmIuX77Mufzw4cOZ4uJi9nFBQQHnpUfe5+joyDCM9D1csuYWjIyMZPr06VPl3Ih8y6tajKqYNGnSR7fJkycrtC6kZtAkCYLx48cjNTUV9vb22LlzJ7tyqYODA8zMzDjHWbFiBdzd3REeHg5NTU0cO3YM7u7unGO0aNECWVlZaNq0KQCguLi4wntxKtO5c2f8+eefKCkpQWxsLA4cOMCmcvoUCwsLqVmIDMPA1dUVjRs3BoBKUy7xLa9qMfj6448/pB5nZGRATU0Nn332WbWfmygHugZFcO3aNbksRe3s7IygoCDMmzcPpqamcHBwgIODg9SaTJ/i4eGB27dvw9LSEurq6oiIiEDTpk3x1VdfAQDn+6vy8vKwdetWXL16FRKJBEKhEK6urpUuz/3q1SsAwLt37ypM0VTZMhN8y6taDHmJi4vDjz/+iKSkJDAMgw4dOmDdunX44osvFFYHUjOogarDuNw3JIvJkyfD3Nwcu3fvxsmTJxEaGorw8HDs37+fU/nKcv6JRCKZ6lNVVlZWOH36dI2VV7UYfDk6OsLd3Z2d0fnXX39hz549OHDgQI3Wi1Q/GuKrwz5131BVbrj18/PDkSNHsHnzZjRu3BhJSUlYv3495/IikQg5OTnIysqS2l825MiVgYFBufq3aNECV65c4Vw+JCQEhoaG0NLSkrkefMurWgy+GIaRut1g2LBhCAgIUNj5Sc2hHhRBTEyM1D1Q+fn5+OWXXxSWA6/M2rVrERgYCF1dXQCQy3IbxcXFOHfuHO7evVtpj7FMRff4yFIPvuVVLQZfvr6+aNSoEcaMGQM1NTWcOnUKt2/fxrx58wAotrEkikUNFMGIESOwZs0a9OnTB5cvX8bSpUshFAqxatUqTuUr6rEA/zUwsbGxnOIMHz4cwcHBaNSokUz158Le3h6hoaFyj0uq36duClZ0Y0kUi4b4CLZt2wZ3d3e0a9cOiYmJWLduXaXZI94XFxcnl3ro6+ujqKiIdwP1/qQMhmHw5MkTqKtz/1V/8eIF/vzzT+Tl5YFhGEgkEiQmJnK+lsa3vKrF4OvChQsKOxdRLsqTspgo3OvXr/H69WtoamrCx8cH9+/fh6urK1q3bo3Xr18rvD729vYYPnw4Jk6cCBcXF3bjKikpCUDp8h9l282bNwEAmzZt4hznhx9+gI6ODmJjY9G1a1e8fv0anTt3Vlh5VYvB17Nnz7BmzRosXLhQaiOqj3pQddikSZMgEAjYvHkaGhpYt24dgJoZOtm4cSMWLVpU5WsKM2bMQHBwMFavXo3du3fjm2++qVKc4uJieHh4oKSkBN26dcOYMWPg5OSksPKqFoMvNzc3WFtbQ19fX6HnJTWPGqg6TNmGTj777DPOixtW5P3LqcePH69yA9WgQQMUFRXhyy+/xD///CPTcKc8yqtaDL50dHTg5uam8POSmkcNFEFmZiZ8fX2RkJCAzZs3Y+3atVi4cCF0dHQUWo9u3bqxmSfq16/P7ufaaH2Y+aCq7O3tMWPGDPj5+WHs2LGIiIhAq1atFFZe1WLwJRKJsHHjRgiFQqlribJkySe1EzVQBIsXL4axsTFiYmLQsGFD6OnpYf78+dixY4dC65Gfnw9tbW3cvn1ban9VelVVuY+rbHJFo0aNYG5ujitXrkAkEqFhw4ZSDWZ1lVe1GPJy584d3L59W+r3QtYs+aR2ogaKIDExEWPHjsXBgwehoaGBuXPnws7OTuH1KMtckZmZyeZ8k8WTJ09gaWkJoHTCRNnPXO+n8vT0RLNmzTBo0KAq/RHmW17VYsjLP//8g7Nnz9ZoHUjNoAaKQE1NDdnZ2Wyv48WLFzIttS4vcXFxmDNnDgoKCnD48GFMmjQJmzZtQvfu3TmVDw8P53X+4OBgnDp1Cn///TcMDAxgbW2NwYMHc34v+JZXtRjy0rlzZ8TFxXFK+EtUC92oSxAREYH169fjzZs36NevH+7evYtVq1YpfFG4iRMnYtmyZZg3bx5CQkLw999/Y+PGjQgKClJoPQDg/v37OHXqFG7cuIEePXpg1KhRMDIyUlh5VYvBh4ODAx49eoQWLVqgfv36cskwQmoHaqAIACAtLQ0xMTEQi8Xo1asXmjdvrvA6ODo64tixY1IZ0O3s7BAWFqbwupSJjo6Gn58fHj16hDt37ii8vKrFqIqyzOofUmRGdVIzaIiPoKioCIGBgXj27BkWL16Mffv2Yfr06dDQ0FDI+YODgyESiaCrq4u4uDh2qDEsLKxK16L4YBgGUVFROHPmDK5cuYKuXbuyWdoVUV7VYshDmzZtcPz4cTx9+hQzZsxAeHg4r9sRSO1BPSgCLy8vNG3aFBcuXMCRI0ewZMkSSCQS+Pn5KeT8IpEIwcHBiI+Ph6enJ+7fvw9NTU18+eWX8PX1RYcOHRRSjyVLliAiIgLdunWDlZUVLCws0KBBA4WVV7UY8uLn54e3b9/in3/+wZEjRzBz5kx0795d4cmMieJRA0XYBqJsaI1hGNja2uLEiRMKPX+ZvLw8SCSSShcYlDcDAwPo6uqiYcOGAMpPVa/smgff8qoWQ14cHBzYXnZISAhKSkpgZ2eHU6dOKawOpGbQEB+BQCBAUVER+0coPT29SvcRVdX708Mroqg/hnzPI496qlIMeSmbOVj2O1lUVFQjswmJ4lEDVYe9fv0arVu3houLC6ZOnYqUlBSsXLkS586dg6urq8Lq0b59e4XfFFwRvhfd5XHRXpViyMvIkSMxZ84cZGZmYu/evQgLC4ONjU1NV4soAA3x1WGmpqZo2LAhTExM0KJFC2hra4NhGAwYMECh95y8P2uPkIpERETg6tWrkEgkEAqFCp+oQWoG9aDqsIiICCQkJCA6OhpRUVG4e/cumjZtiqysLBQWFqJXr14KqUffvn0Vch5Se7Vq1QqWlpZsjsWoqCjKxVcHUA+KsLKysnD+/Hns3r0bz58/x4MHD2q6SoRg6dKluHjxItq1a8fuo1x8dQM1UHVYSUkJbt26hYiICERGRqKgoACDBw/G4MGDIRQKFT6LjpCKDB8+HGFhYdDS0qrpqhAFoyG+OmzAgAHo27cvRowYgS1btqBt27Y1XSVCymnXrh2v5VNI7UUNVB02btw4XLt2DUePHsXbt29hbGyMPn360BReolQaN26MUaNGoU+fPlLZTcqy3xPVRUN8BMnJyYiMjERkZCTu37+PLl26wMTEBOPHj6/pqhFSboZn2Z8skUhUA7UhikQNFAFQevPj/fv3cfv2bYSGhiIjIwORkZE1XS1ShxkYGEAgELANkkAgQOPGjTF48GB4e3tDV1e3ZitIqh01UHXY+fPncfv2bdy6dQuJiYno1asXhEIhhEIhOnfuXNPVI6Scd+/e4fDhw3j69Ck2bNhQ09Uh1YwaqDrsm2++YRukHj160LUnUmuMGjUKJ0+erOlqkGpGkyTqsN27d9d0FQipkppehp4oBn1lJoTUKmfPnqXrT3UE9aAIIUrJwsKiXFb9nJwctG/fHr6+vjVUK6JIdA2KEKKUPlzqvV69etDR0UGjRo1qqEZE0aiBIoQQopToGhQhhBClRA0UIYQQpUQNFCGEEKVEDRQhhBClRA0UIYQQpfR/BVAKRnpKDGAAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 2 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.heatmap(clean_data2.corr())"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 57,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAALMCAYAAAA2OLLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACYqElEQVR4nOzdd3hU1brH8e+kUGMIQUIR5CiaUEJRwIQWIdTQQuhF2lVUpImIhiJFiggEFQQEBUFAIEAggEAwFAkSulKUovRmAiS0hJLMzP2DwxyGUDI4yQT4fe4zz81es/ba794nhnfetfYeg9lsNiMiIiLiIE6ODkBERESebkpGRERExKGUjIiIiIhDKRkRERERh1IyIiIiIg6lZEREREQcSslIBggMDKRDhw4P7dehQwcCAwNtGvtR9rnTzJkzqVatGmXLlmXcuHGPPM6DXL16lYSEhAwZOyNERETg4+PD1q1bbd53//79NGvWjDJlyhAYGMjixYsfeazHxeHDh/Hx8WHEiBFp3jt16hQ+Pj74+Piwf//+NO+PHTsWHx8fjhw5Yve4QkND8fHx+dd9bLFy5Uo6dOhApUqVKFu2LHXr1mXEiBHEx8c/0ngTJ07Ex8eHU6dO2S3G9Dh58qTl561bt+Lj40NERESmxuBId57//ZjNZr7//nvq1auHr68vVatW5ZNPPnms/tZlZUpGHOjdd99lwIABmXa8gwcP8tlnn/Hcc8/xySefUK9ePbsfY9++fQQFBfHXX3/ZfeyMUqlSJcaMGUPx4sVt3nfgwIEcPXqUDz74gD59+mAwGDIgwqylePHi5MuXj927d6d5LzY2FmdnZwwGA7GxsWne/+2338ifPz8vvvhiZoSaob744gv69OlDrly56N69OwMGDKB69eosWrSI4OBgTpw44egQ0+XNN99k0qRJjg7DYQYPHpyuv8NfffUVo0eP5rnnnqN///4EBQURERFB+/btuXr1aiZE+mRzcXQAT7OqVatm6vEOHToEwDvvvPOvqisPO8ajfip0lKJFi1K0aNFH2vfQoUPUrFmTLl26ADw1nyYrVqzIunXruHnzJtmyZbO0b9myBR8fH1JTU4mNjeX//u//LO+lpKSwb98+6tSp44iQ7ers2bN8++23dOjQgUGDBlm916hRI9q3b8/48eP58ssvHROgDTZt2kRISIijw3CYTZs28dxzzz2wz+3/vf39/Zk+fbrlQ0fp0qUJDQ3lxx9/5O23386McJ9Yqow8RVJSUgDInTu3gyN5cqSkpDyV17NSpUqkpKSkmYrZunUrFStWxM/Pjx07dlh+5wD+/PNPbty4gZ+fX2aHa3e7d+/GaDTe8wPFK6+8QtmyZfn9998zPzDJELGxsaSmptKhQwer6mdwcDC5cuVix44dDozuyaBk5AGCg4MJDg62aps9ezY+Pj58//33afp27drVqm358uU0bNgQX19f6tWrx7x586zev9f6j8OHD9O7d2/8/PyoUKECHTp0uOcv+qZNmyxrFWrUqMHkyZMxmUz3PZcOHTrQv39/ADp27Gg1b/7333/TvXt3KlasSLly5WjTpg0xMTFpxli9ejVvvPEGFSpUwNfXl8DAQMaMGcPNmzeBW/Pddx7j9rndb57+7vbQ0FDq16/P3LlzqVSpEpUqVWLjxo0A/PPPP3z00Uf4+/tTpkwZmjZtyrJly6zGM5vNfP3119SrV48yZcpQpUoV+vXrx9mzZ+97XSDtmpHb2wcOHKBv375UqlSJV155he7du1vm8m/3AViyZMl959jvtx7lXu03btzgiy++IDAwEF9fX2rVqsVXX31lub7pje22mzdvMnHiROrWrUvZsmWpV68e06ZNw2g02nTMe6lUqRKA1VTN4cOHOXfuHP7+/vj7+5OcnMyePXss7//2228AvPbaa5a29P7upbffnVJTU3n33XcpVaoUq1evTvN+TEwMPj4+zJ07N81777//PtWqVbO6Vne6nYAuWbLkntfqhx9+YMOGDVZtf/zxBz179qRKlSqULl2aypUr07dvX/75558HnselS5cYPnw41atXx9fXl6CgIGbNmsXd3+Qxb948GjduTLly5fDz86N79+4PnC69vb7n9nnc/fuYnJzMsGHDqFy5MuXLl6dTp04cPHjQagyTycSMGTOoX78+vr6+VK9enREjRjx02uL2upTNmzczcOBAKlWqRIUKFejfvz/Jycn88ssvBAcHU65cOYKDg9NM+V27do2wsDDL721gYCDjxo3j2rVrVv2ioqJo3rw5r7zyChUqVKBLly7s3LnT8r6Pjw+nT59m27ZtD1wnU7duXcLDw9Mkn6mpqaSmpuLq6vrA85WH0zTNA7z++utMmzaNhIQEPD09Adi2bRsAO3bssJTmz507x8GDB2nVqpVl371793Lo0CHeeOMNPD09mT9/PkOHDiV//vzUrl37nsc7duwYrVq1wsXFxWq/Ll26MHfuXMqWLWs5Xs+ePWnbti0tW7Zk+fLlfPXVV+TKlYvOnTvfc+x3332XF154gQULFvDuu+9a5uwPHjxIu3btePbZZ3nnnXdwdXVlxYoVvP3224SFhdGgQQMAFi5cyKBBgwgMDOTDDz8kJSWFn3/+menTp5MrVy569OhBnTp1OHfunOUYZcqUsfmanz17lkmTJtGjRw/i4+MpV64ccXFxtGzZErPZTIcOHciTJw9r166lX79+xMfH89ZbbwHwzTffMGnSJNq3b29ZBPjDDz+wb98+VqxYgbOzs02xdOvWjeLFi9OnTx9OnjzJrFmziIuLY9GiRZZ1Jh999BEVK1akVatWvPrqq2zfvt3mcwYwGo2888477Nq1i1atWlG8eHH27dvHN998w/79+5kyZYrVJ7IHxXZb9+7d2bhxI40bN6ZLly7s2bOHsLAwLly4QP/+/W0+5p18fHzIkyePVTKyZcsWnJycLImKk5MTsbGxVKhQAbiVjBQoUID//Oc/QPp/99Lb705ms5mBAwfyyy+/MHr0aOrXr5+mT5UqVciXLx+rV6+mffv2lvbk5GQ2bNhAixYt7vs74+fnR5EiRYiKimLnzp3UrVuXqlWrUqlSJfLkyWM1dXXnORQrVoy3336bnDlzsmvXLiIjI4mPj2f27Nn3PE5ycjJvvPEGZ8+epV27dhQsWJAtW7YwatQojh07xpAhQwBYtmwZQ4cOpWnTpnTo0IGEhARmzZpFhw4d+Pnnn3nmmWfSjO3p6Znmd7h48eIcPnwYgHHjxuHj40PPnj2Ji4vj+++/58033yQ6OpocOXIAt9ZMLV26lJCQEDp37szhw4eZN28eu3btYt68eWTPnv2e53VbaGgoL730En379mXbtm1ERETwzz//8Oeff9KhQweeeeYZpk2bRu/evYmOjsbd3Z2bN2/SpUsXfv/9d5o1a4avry979uzh22+/ZefOnfzwww+4urqybds2+vTpQ0BAAC1btuTatWvMmTOHLl268NNPP1G0aFHGjBnDZ599Rt68eXn33Xd59dVX7xmnm5sb5cqVS9M+Z84cbt68SUBAwAPPU9LBLPe1fft2s7e3t3nVqlVms9lsNplM5tdee81cvXp1s5+fn9lkMpnNZrN5yZIlZm9vb/PJkyfNZrPZXLNmTbOPj4953759lrFOnTpl9vHxMffr18/S9sYbb5hr1qxp2e7du7e5bNmy5mPHjlnaEhISzBUqVDD36tXLso+3t7d5zZo1lj5Xrlwxv/rqq+Z27do98HwWL15s9vb2Nm/ZssUqhtq1a5uTkpIsbSkpKeZ27dqZq1SpYr5x44bZbDab69evb27durXlnG/3CwgIMDdq1OiBx/j444/N3t7eaeK5u/329uLFi9P0e+2118xxcXFW7R988IHZ19fXfP78ebPZbDYHBQWZ3377bas+8+bNMzdp0sR8/PjxdF+X29s9evSw6jd48GCzt7e3+ejRo5Y2b29v88cff/zQse68Hg/qt3HjRqt+8+fPN3t7e5t//vlnm2LbsGGD2dvb2zxlyhSrfn379jWXLl3afPHixXQf837eeecdc+3atS3bPXr0MDdr1syyHRISYm7fvr1lOyAgwPzhhx9attP7u5fefnf+Po0aNcrs4+NjXrBggVXMd//ODR8+3FyiRAlzfHy8pW358uVmb29v8++///7A8z9y5Ii5adOmZm9vb8urZMmS5g4dOphjYmKs+g4ePNhcrlw5c2JiolV7nz59zN7e3pb2CRMmWP0tmTBhgrl06dLmAwcOWO0XFhZm9vb2Nu/fv99sNpvNb731lrlhw4ZWfTZs2GBu0KCBeceOHQ88j7t/h7ds2WL29vY2h4SEmFNSUiztEydONHt7e5s3b95s1W/evHlW48XExJi9vb3NM2fOvO8xb+/bvHlzs9FoNJvNZrPRaDRXrVrV7O3tbf7ll18sfcPDw83e3t7mTZs2mc1ms/nHH380e3t7m7///nurMb/99luzt7e3ee7cuWaz2WweMmSI+ZVXXrH6m3XgwAFz3bp1LX/TzeZbf6/feOONB16je1mzZo25ZMmS5tatW1tdJ3k0mqZ5gPLly/PMM8+wZcsW4Nanm4sXL9KpUycSExMtnyBiYmJ46aWXKFKkiGXf//znP5QuXdqy/dxzz+Hp6cn58+fveSyTycQvv/zC66+/TrFixSztefPm5ccff7RaJJczZ06r6R03NzdefPHF+459P4mJiWzbto3XX3+d69evk5CQQEJCApcvX6ZOnTqcP3+evXv3Arc+eU2bNs3qk/KFCxdwd3cnOTnZpuM+TLVq1Sw/m0wmoqOjqVixIi4uLpYYExISqFu3Ljdv3uTXX38FoGDBgmzdupVZs2ZZrkWbNm2IjIzk+eeftzmOoKAgq+2SJUsC2Hyd02PNmjV4enpSunRpq3N8/fXXcXZ2TlPyf1hsGzZswMnJiTfeeMOq38cff0xkZCRubm42H/Nur732GidOnCAhIQGz2cy2bdus1oP4+fnx+++/c+PGDc6cOcM///xjmaJJ7++eLb+jt02ZMoWZM2fSo0cPq2rlvTRq1AiTyURUVJSl7fan5nt9Er7TCy+8QEREBD/88AMdO3akePHiGI1Gtm7dyptvvsm0adMsfYcOHcq6devw8PCwtF29etVSObjff0Nr1qzB29ub/PnzW/1vdLu6un79euDW7/6RI0f4+uuvLdN1r7/+Oj/99JOlMmWr+vXr4+Lyv+L57Urn7d+xNWvWYDAYeP31161iK1WqFPnz53/o7w9ArVq1cHK69c+Qk5MTRYsWJUeOHFaVhtt/V8+dOwfAunXrcHNzs6pmwa2pYTc3N9auXQvcuiZJSUmMGDHC8rfax8eHqKioe1bKbPHnn3/ywQcf8PzzzzN58mSr6ySPRlfwAVxcXKhSpYolGdmyZQv58uWjWbNmjB07lu3bt1O8eHF+/fVXmjVrZrVvvnz50oyXI0cOqwV9d7p48SLJyclWicht3t7eVtseHh5pysc5cuTgwoULNp3f7XvrZ8+efd8y8e31Fq6urmzfvp0VK1Zw5MgRTpw4YTnew1ai2+rOa5eYmMiVK1eIjo4mOjr6gTF+9NFHdOvWjVGjRvHZZ59RunRpAgMDadWqFfnz57c5jrx581pt3y69328dwb9x+x/1ypUr3/P9u9e9PCy206dPky9fPtzc3Kz65c+f33ItbD3m3W5Px+zdu5f8+fNz8eJF/P39Le/7+fkxY8YM9u7da7nD6vb76f3duz0Xn57f0du+/PJLnJyc2LVr1wPjh1sfOIoWLWpZD3XlyhU2bdpkdRfQgxgMBvz8/CxJ2JkzZ1i8eDFTp07lq6++Ijg4mAIFCmAwGEhMTGTq1KkcPHiQEydOcObMGcu6j/ut9zpx4gTXr19/6P9G3bt35/fff2fixIlMnDiRl156icDAQFq2bPlIiThgmZq+7fbUzO2/YSdOnMBsNlOjRo177p+ehd3PPvus1baLi0ua495OVm5fo1OnTlG0aNE06zSyZctG0aJFOX36NABvvPEGmzZtYs6cOcyZM4ciRYpQs2ZNWrRoQYkSJR4a24OMGTOGXLly8f3336eJVx6NkpGHCAgIICoqiri4OLZu3UqlSpXImzcv3t7e7NixA19fXxITE3n99det9rv9H1B63f5HJD372Tr2w47Zvn37+65jeemllwAICwtj2rRplCpVivLlyxMcHMwrr7zC8OHDH/qP1sOOf7c7E63bferVq0ebNm3u2f/2bbklSpQgKiqKmJgY1q9fT0xMDBMmTGDmzJnMnz/f5ueI2Os638vd5240GvnPf/5jWQNwN3d3d5tiMxqND33mia3HvFupUqXInTs3e/fuJXfu3Li6ulKxYkXL+7erWbt27SI+Pp5ChQpZ/rdK7+/e7X9Y0vM7etu7776Lk5MTkydPZvny5TRu3PiB59GoUSOmTp1KfHw8mzZt4ubNmzRq1OiB+8yePZsbN25Y1ivdVrhwYXr27En27NkJCwvj999/p169emzYsIH33nsPLy8v/P39CQgIwNfXl02bNjF16tT7HsdoNFKhQgV69Ohxz/e9vLyAW1WAyMhItm7dytq1a4mJiWHatGl8//33zJgxw2rRcHo97HfMZDKRO3duvv7663u+/7D1IsA91+Q87PfWfNfC3btjup2kuLm5MWfOHH7//Xeio6PZuHEjs2fPZu7cuYwZM+ahvxf3c+3aNbZu3Urnzp0pVKjQI40haSkZeYiAgADLA5x27dpFr169gFsl6p9//pmXXnqJZ5555pFLobflzZuXHDlycPz48TTvTZ8+nfPnz/Pxxx//q2Pc7XZFw9nZmSpVqli99/fff3Pq1Cly5szJ6dOnmTZtGsHBwYwZM8aqX3qmLG7/Ubv7mRTp2dfT05OcOXOSmpqaJsYzZ87w559/kjNnToxGIwcOHMDNzY1atWpRq1Yt4NYTMvv06cPChQsJDQ196PHs7c5zv9Pd516kSBH27duHv7+/1T8CtxcKFyxY0KbjFi5cmM2bN5OUlGT1CfWPP/5gxowZdOvW7V8f09nZmVdffZUDBw5gNpvx9fUlV65clvfd3NwoXbo0Bw8e5OTJk1ZTOOn93Utvvzv16dOH69evs2zZMkaPHs3rr7/+wMSqcePGTJkyhQ0bNvDLL7/g4+PDyy+//MBzj46OZs+ePbRr187qnG+7Xc28XU0YPnw4xYoVY/HixVb9ly9f/sDjPPfccyQlJaU590uXLhEbG2uppN6+y6Vy5cqWKsrOnTvp1KkTs2fPfqRk5GGee+45Nm3ahK+vb5rrGxUVZTUlZe/j/v7776SkpFhVR27evMmpU6csCfHRo0e5cuUK5cuXp3z58nz44Yf8/ffftG/fnu+///6Rk5GLFy9iMpmeiAf3ZSVaM/IQXl5elChRgjlz5nDx4kVLabpSpUr8888/LF68mKpVq/7rOUMXFxeqVq3KL7/8YlVpuHTpEtOnT8+Qpzl6eXnh6+vLkiVLiIuLs7SnpKQwYMAAevXqRWpqKpcuXQLSfgL95ZdfOHbsGKmpqZa2u0uqgGVa4M5nUvzzzz+WWz0fxMXFhYCAAH755RcOHDhg9d7o0aPp3r07iYmJGI1GOnbsyKhRo6z63J73z8gqx4Pc69xTU1NZs2aNVb/AwEAuXryY5vbv+fPn06dPn3s+zfRBXn/9dUwmEwsXLrRqnzdvHqtWreLZZ5+1yzErVarEgQMH+P33362maG7z8/PjwIEDHDhwwOofxPT+7qW3391y5MjBgAEDOH/+/EO/9qB48eKUKlWK6OhoYmNjH1oVgVsJTHJyMqNHj04zxXL7uru7u1v+Xly8eJHChQtbJSJnz561/B7cr0oYGBjIgQMH0qy/mDJlCr1797bcutu7d28++ugjq3FKlSqFq6vrQ3/3nZycHvhYgPu5vW5typQpVu3r1q2jV69eD020HlVgYCBXr15Nc0v2jz/+SFJSkmXaaMSIEbz33nskJSVZ+rz44ou4u7tbXRNbz9/Ly4tNmzY9cjIj96bKSDoEBAQwdepUPDw8LJ+YKlWqhMFg4OTJk3Tv3t0ux+nbty8tW7akZcuWtG/fHjc3N8LDw0lOTub999+3yzHuNmjQIDp16kTz5s1p27YtHh4e/PTTT+zevZu+ffuSN29ecufOTeHChfnmm2+4ceMGBQsWZM+ePSxZsoTs2bNb/cd+e/503rx5nD9/nsaNGxMUFMTUqVPp06cPnTt35saNG8ydO5cCBQpw7Nixh8b44YcfsnXrVtq3b0/79u0pXLgwGzZsYP369bRu3dryv0mHDh2YMmUK3bt3p3r16ly/fp0FCxaQM2dOmjdvniHX72Fee+018ufPz+TJk7lx4wb58uUjMjIyzYLFli1bsmTJEoYPH84ff/xB2bJlOXToEAsWLKB06dJp1iQ9TGBgIFWrVmX06NH89ddflClTht9++42lS5fSvXt3PDw87HLMSpUqMX78eIB7PszMz8/PspDz7vfT87tnS7+71apVi5o1axIeHk7Tpk3ve9sm3JqqGTNmDAaDgYYNGz70vJs1a0ZMTAwLFizgt99+o379+hQsWJALFy6watUqDh48SFhYmCX5CAgIYOXKlQwePJgyZcpw6tQpwsPDLc/FuPO/oTu98847rFmzhh49etCmTRtefvlldu7cSWRkJAEBAZaFnm+++SaDBg2ic+fO1K9fH7PZTGRkJDdu3KBdu3YPPBdPT0+2bdtGeHi41eLxh3n99depVasWM2bM4NSpU1SpUoXTp08zd+5cChcuzJtvvpnusWxx+/d29OjRHDp0CF9fX/bt20dERATlypWjZcuWAHTp0oWuXbvSvn17mjZtSvbs2YmOjubEiRN8/vnnlvE8PT05cOAAP/74I6+99lqaD113S0xMZPPmzfj4+PzrtSfyP0pG0uF2MlKxYkXLfKanpycvvfQSf//9t93uMS9evDgLFixg/PjxfPfddzg5OVG2bFk+//zzh5aNH9Urr7zCvHnzmDhxIt9//z2pqam88MILjB492vKI6GzZsjFt2jRGjx7NDz/8gNls5vnnn2fAgAGkpqYycuRI9u3bh6+vL5UrVyYoKIj169ezZcsW6tatS4kSJfjyyy+ZNGkSY8aMoVChQnTt2pXr16+nmfa5l+eff57w8HAmTJhgSc6KFi1K//79rb6QsFevXnh4eLB48WI+//xzyzTC2LFjH+l7Z+zB1dWV7777jtGjR/Pdd9+RK1cuGjVqRN26da3udMmWLRszZ85k0qRJREVFsWzZMry8vGjbti3du3dPMxXxMLfXTNxeN7Fs2TKef/55Bg8eTNu2be12zDJlylimye71j32FChVwdXXFy8vL6m4zSN/vni397mXgwIFs3ryZIUOGPPBR/Y0aNWLcuHGUK1cuXQuynZyc+PLLL4mMjCQyMpI5c+Zw5coV8uTJQ4UKFRg2bJjluUBw626aXLlysW7dOiIjIylYsCBNmzalTp06tG3bli1btlCqVKk0x/Hw8GDBggVMmDCB1atXs2DBAgoXLsx7773H22+/bfmE37JlS1xdXfnhhx8YP348JpMJX19fvv3224c+8fbDDz8kLCyM4cOHM3z48HSvgzAYDHz11Vd89913LF26lPXr1+Pp6UndunXp3bt3msWp9nLn7+2qVatYtmwZBQsW5J133qFbt26WqZtq1aoxZcoUpk6davkw8PLLLzN+/HirhLNnz54MGTKEUaNG0b1794cmI4cPH+ajjz6iR48eSkbsyGB+0GogEZGnQHx8PK+//jqffPLJQysJImJ/WjMiIk+98PBwsmXLlq4pGhGxP03TiMhTKywsjL/++otffvmF9u3bkydPHkeHJPJUUmVERJ5aycnJbNmyhdq1a/PBBx84OhyRp5bWjIiIiIhDqTIiIiIiDqVkRERERBxKyYiIiIg4lJIRERERcSglIyIiIuJQSkZERETEoZSMiIiIiEMpGREREXnKXb16lUaNGnHq1Kk07+3fv59mzZpRr149Bg4cSGpqKgBnzpyhffv21K9fn27dut3326fTQ8mIiIjIU2z37t20bduWY8eO3fP9fv36MXjwYKKiojCbzYSHhwMwbNgw2rVrx+rVq/H19WXy5MmPHIOSERERkadYeHg4Q4YMwcvLK817p0+f5vr165QvXx6AZs2asXr1alJSUti+fTv16tWzan9U+qI8ERGRJ8zly5e5fPlymnZ3d3fc3d2t2kaOHHnfceLj48mfP79lO3/+/MTFxZGYmIibmxsuLi5W7Y9KyUgmKtG1sKNDEBGR/zrw7ZkMGTcr/K3vXrY/X3/9dZr2Hj160LNnz3SPYzKZMBgMlm2z2YzBYLD8/zvdvW0LJSMiIiJPmE6dOhESEpKm/e6qyMMULFiQc+fOWbbPnz+Pl5cXnp6eXLlyBaPRiLOzM+fOnbvnNE96KRkRERF5wtxrOuZRPPfcc2TPnp2dO3dSoUIFIiMjCQgIwNXVlYoVK7Jy5UoaN27M0qVLCQgIeOTjaAGriIiIHRmcHP/6t7p27crevXsBGDduHJ999hn169cnOTmZjh07AjBkyBDCw8Np0KABO3bs4P3333/0a2Y2m83/PmxJj6wwjygiIrdk1JqRku84/m/9/qkZc24ZRZURERERcSitGREREbEjJ6dHv6vkaaXKiIiIiDiUKiMiIiJ29C8et/HUUmVEREREHErJiIiIiDiUpmlERETsyEkf822mSyYiIiIOpcqIiIiIHRl0a6/NVBkRERERh1IyIiIiIg6laRoRscnoLl9y6PQBZqz5xtGhiGRJWsBqO5svWZcuXYiOjrZsf/7557zyyivcvHnT0latWjVOnTpl07iBgYFp9omIiCA0NNTWEAFYvXo1zZo1o0mTJjRu3Jjvvvvuoft06NCBrVu3PtLxRJ50LxZ8iZl9w6lboZGjQxGRJ4zNlRF/f3927txJ7dq1Adi8eTPly5dn586dVK5cmePHj5MrVy6KFCli92DTKy4ujs8//5yIiAjy5s1LUlISHTp04IUXXqBWrVoOi0vkcda+ZhcWxczjbMJpR4cikqUZVBmxmc2XrHLlyvz222/ArX/0s2XLRr169di0aRMAO3bsoGrVqixdupSQkBCCg4MZMGAAN27cAGDjxo20aNGCpk2b0qNHDxITE63GP3r0KHXr1uX333+3tMXGxtKmTRvLdkREBEOGDLlvjImJiaSkpHD9+nUAcufOzejRo3nppZcAWLVqFa1ataJJkybUr1+fXbt2pRlj2rRphISE0KRJE8aMGYPZbObq1au8/fbbNGvWjGbNmrF27VpbL5/IY2v4vIGs2LbE0WGIyBPI5mSkdOnSnDhxghs3brBp0yaqVq1K1apVrZIRLy8vwsPDmT9/PpGRkeTLl4/p06eTkJBAWFgY06dPZ+nSpVSrVo1x48ZZxv7nn3/o0aMHo0aNonz58pZ2f39/zp07x4kTJwBYunQpzZo1u2+MJUqUoFatWtSuXZsWLVowduxYTCYTxYoVw2QyMX/+fL755huWLVvGW2+9xbRp06z237hxI/v27WPRokUsXbqUuLg4li1bxs8//8xzzz1HREQEI0eOZMeOHbZePhEREbmLzdM0zs7OlCtXjr1797Jp0ybat29P0aJFuX79OpcuXeK3336jZMmSHD9+nFatWgGQkpJCqVKl2L17N2fPnqVjx44AmEwm8uTJYxm7d+/elClThooVK1od02AwEBISwrJly2jWrBkXLlygXLlyD4xz2LBhvPfee2zatIlNmzbRqlUrxo0bR926dZk0aRLr1q3j6NGjbNu2Dae7VhvFxsayZ88eS8Jz/fp1ChcuTPPmzRk/fjxxcXHUqFGD7t2723r5RETkCeekb8qz2SPdTePv78+uXbvYs2cPY8eOBW5N36xdu5a8efNiNpsJCgpi0KBBACQlJWE0Gtm2bRuvvvoq33xzaxX+jRs3SEpKsow7cOBAJk2axIYNG6hRo4bVMUNCQnjrrbfIli0bwcHBD4xvw4YNJCcn06BBA5o3b07z5s0JDw9n0aJFVK1alRYtWtCkSRMqVaqEj48Pc+fOtdrfaDTSqVMnunTpAsDly5dxdnYmd+7crFq1ipiYGNavX8+MGTNYuXJlmmRGRERE0u+R/hWtXLkykZGReHt74+JyK5+pWrUq33//PVWrVsXPz4+ff/6ZCxcuYDabGTp0KLNmzaJcuXL8/vvvHD16FIDJkyczZswYy7hly5Zl6NChfPrppyQnJ1sd87nnnqNgwYLMnz//oclIjhw5CAsLs9ydYzab2b9/PyVLluTYsWMYDAbeffddS5xGo9Fqf39/fyIjI0lKSiI1NZXu3bsTFRXFnDlzmDhxIkFBQQwZMoSEhASuXr36KJdQRESeUAYnx78eN49UGfH29ubixYu0a9fO0ubv78/7779PlSpVKFGiBD169KBTp06YTCZKlizJ22+/Tfbs2Rk1ahTvv/8+JpOJAgUKWCort1WqVAk/Pz++/PJLSpQoYfVegwYNWLNmDQUKFHhgfP7+/vTo0YN3332XlJQUAKpXr0737t1xdnamZMmSBAUFYTAYqFatGjt37rTaPzAwkAMHDtCqVSuMRiPVq1cnJCSEpKQkPvjgAxo3boyzszP9+vXD3d39US6hyGOr//d9HB2CiDxhDGaz2ezoINIjNTWVjz76iPr161O3bl1Hh/NISnQt7OgQRETkvw58eyZDxq3Ur2iGjGuL7WNPOjoEmzwWT2A1m81Ur16dKlWqWJ5vsmPHDoYPH37P/tOmTXto9URERCQjaBmh7R6LZMRgMBAbG2vVVrFiRSIjIx0UkYiIiNiL8jcRERFxqMeiMiIiIvK4eBzvZnE0XTIRERFxKFVGRERE7MjJSU9gtZUqIyIiIuJQSkZERETEoTRNIyIiYkf6njzbqTIiIiIiDqXKiIiIiB3pCay20yUTERERh1IyIiIiIg6laRoRERE7Mug5IzZTMpKJBvVu7ugQREREshwlIyIiInakBay20yUTERERh1IyIiIiIg6laRoRERE7Muhjvs10yURERMShVBkRERGxIyd9OY3NVBkRERERh1IyIiIiIg6laRoRERE70gJW2+mSiYiIiEOpMiIiImJHegKr7XTJRERExKGUjIiIiIhDaZpGRETEjgxOes6IrVQZEREREYdSZUREAPhr5znWzfmL1FQTBYo9Q+P3SpM9173/RBzYGk/khL18PLcWAAvH/k7iP9cs71+Mv8bzpfLSpv8rmRK7iDzenspkZPXq1UybNo3U1FTMZjPBwcG89dZbdO3alREjRlCgQAFHhyiSqZIu3WTZ1/voPPI18hXOTfTsQ6ydc4gGb5dK0/fCmSSifziI+Y62lv3KW34+8/clFo3dTVDXkhkfuEgWpLtpbPfUXbK4uDg+//xzpk+fzrJly5g/fz4rV65k7dq1fPvtt0pE5Kl0ZPcFCr+Uh3yFcwNQsV5R9sX8g9lstuqXcsPI0gl7qdPZ557jGFNMRE7cR93/8yHPszkyPG4ReTI8dZWRxMREUlJSuH79OgC5c+dm9OjRZM+encDAQH744Qfmz59PTEwMAFeuXCExMZHffvuNPXv28Nlnn3H9+nXy5s3LsGHDKFq0qCNPR8QuLp+/jvsdyYN7vuzcSE7l5jWj1VTNT9/8SYU6RSlQ7Jl7jvPb2tM8kzc7JfyU1MvTS9+TZ7unrjJSokQJatWqRe3atWnRogVjx47FZDJRrFgxS58PP/yQyMhIFi5cSP78+Rk5ciQ3b95k0KBBhIWFsWTJErp06cInn3ziwDMRsR+z2cy9/n7e+VjrHatP4ORsoHyt5+47ztYVx6nW4kX7BygiT7SnrjICMGzYMN577z02bdrEpk2baNWqFePGjUvTb9CgQVSqVIkGDRpw6NAhTp48Sbdu3SzvX716NTPDFskw7s/m4PRflyzbly/cIIebC9ly/O9PxO71Z0i5YWRa31iMqSZSb976ue3AV3jGMwdnj1zGZDRTrHReR5yCiDzGnrpkZMOGDSQnJ9OgQQOaN29O8+bNCQ8PZ9GiRVb9pk+fzoULFxg9ejQAJpOJIkWKEBkZCYDRaOT8+fOZHr9IRihePh/Rsw5x4UwS+QrnZueaU/hU8rLq8+bn/pafL8Zf45s+m3k7rLKl7cSfifynjCcG1ajlKeek54zY7KmbpsmRIwdhYWGcOnUKuFWe3r9/PyVL/m/l/8aNG1m4cCHjx4/H6b/Lol988UUuXbrEjh07AFi8eDEffvhh5p+ASAbInSc7jbuXZtG43Uzu9SvnTlyhTicfzvx9iWl9Y9M1RsLZZDy8cmZwpCLyJDKY714u/xRYsmQJ06dPJyUlBYDq1avz0UcfUb9+fX744QfefPNNUlNTcXd3x2QyATBx4kQuXLjAyJEjuXHjBm5ubnz++ec8//zz6T7unH09M+R8RETEdm/4TsyQcRtPcPy6qeW9jjg6BJs8lcmIoygZERHJOpSMZB1P3TSNiIiIZC1P3QJWERGRjKQFrLZTZUREREQcSpURERERO3LS7e02U2VEREREHErJiIiIiDiUpmlERETsSAtYbafKiIiIiDiUKiMiIiJ2pMqI7VQZEREREYdSMiIiIiIOpWkaERERO3Iy6HO+rZSMiIiIPMWWL1/OlClTSE1NpVOnTrRv397y3v79+wkNDbVsJyQkkCdPHlasWMGSJUsICwsjX758ANSoUYM+ffo8UgxKRkREROzocVrAGhcXxxdffEFERATZsmWjTZs2+Pn58dJLLwFQsmRJIiMjAbh27RotW7Zk6NChAOzbt4/Q0FAaNWr0r+NQLUlEROQptXnzZvz9/fHw8CBXrlzUq1eP1atX37Pv1KlTqVSpEhUrVgRg7969LFmyhMaNG/Phhx9y6dKlR45DlZFMVO/Fno4OQUREngKXL1/m8uXLadrd3d1xd3e3bMfHx5M/f37LtpeXF3v27Emz35UrVwgPD2f58uWWtvz58/N///d/vPrqq4wfP55PP/2UsLCwR4pXyYiIiIgdZYVpmlmzZvH111+nae/Rowc9e/7vg7HJZMJwxxf7mc1mq+3bli1bRu3atS3rQwAmTZpk+fmtt96iTp06jxyvkhEREZEnTKdOnQgJCUnTfmdVBKBgwYLs2LHDsn3u3Dm8vLzS7BcdHc0777xj2b5y5QqLFy+mc+fOwK0kxtnZ+ZHj1ZoRERGRJ4y7uztFihRJ87o7GalSpQqxsbEkJCRw7do11qxZQ0BAgFUfs9nMH3/8wSuvvGJpy5UrF9999x27d+8GYM6cOaqMiIiIZBVO95jmyKoKFChAnz596NixIykpKbRo0YKyZcvStWtXevXqRZkyZUhISMDV1ZXs2bNb9nN2dubLL79k6NChXL9+nf/85z+MGTPmkeMwmM1msz1OSB7uXPIhR4cgIiL/lT+Xd4aM2+H70hkyri1md/nD0SHYRJURERERO3Jy0goIW+mKiYiIiEMpGRERERGH0jSNiIiIHWWF54w8blQZEREREYdSZURERMSOHqdbe7MKVUZERETEoZSMiIiIiENpmkZERMSOtIDVdqqMiIiIiEOpMiIiAGyO2c7UiT9w82YKxV/+D/2H9CK3W640/cxmMyMHf8mLLxejXcdmlvaGNduR3+tZy3a7Ts2o26BGZoQukqXoCay2y9ArdurUKXx8fBg8eLBV+/79+/Hx8SEiIiLd4wQGBqZpnzhxIlWrViU4OJgmTZrQqFEj5syZY5fYHyQuLo5q1apl+HFEMktiwiVGDfmKEWP7M2/pNxQuUpApE2am6XfsyEl6vzOIDdG/WrWfOHaKZ9yfYeaCCZaXEhERSa8Mr4x4eHgQExOD0WjE2dkZgJUrV+Lp6WmX8du0aUPPnj0BSEhIoFOnTmTPnp2WLVvaZfy7/fLLL4waNYpz585lyPgijrB9y2+ULP0yRYsVBiCkZRCdW/eib/9uGO64TTEi/CcahdShQMFnrfbfu/sAzs5OvPd/H5N0NZkatarQ8a1Wlv/mRUQeJMNrSblz56ZkyZJs377d0vbrr79SpUoVAObMmUPLli1p1KgRISEhHDlyBIDAwEDef/996tWrR0JCgmXfqKgomjRpYtV2m6enJ926dePHH38E4Pz587zzzjs0btyYkJAQNm7cSEJCAtWrV7fsU716dVauXAnA1KlT+e6775g4cSKDBg2iQ4cOBAYGMmXKFEv/RYsWMXHiRDteIRHHi/vnHF4F/pdg5Pd6lqSrySQnXbPq90Hou9QNqpFmf6PRSMXXyhM2aRhfT/+MbbG/sXj+iowOWyRLMhgMDn89bjJlYisoKIioqCgA9uzZg4+PD66urly9epXo6Ghmz57NihUrqFGjBnPnzrXsFxAQQFRUlKWKsmnTJiZNmsSMGTPuW1nx9va2JDTDhw/H39+f5cuXM2HCBAYMGIDJZKJQoUIcOnSIw4cPYzQa2bZtGwAxMTHUrFkTgIMHDzJ9+nQWLlzItGnTuHz5MnBrasjbO2O+dlrEUcxm8z3/gDk5p+9PRJNm9egT+g45c+bgmWfcaP1GMBvXxdo7TBF5QmVKMhIYGMjGjRsxmUysWrWKoKAgANzc3AgLC+Onn34iLCyM9evXk5ycbNmvXLlylp8TExPp2bMnTZs25dlnn01zjNsMBgM5cuQAYMuWLbRo0QKAokWLUq5cOXbv3k1AQACxsbFs2bKFjh07snPnTq5cucL58+cpXrw4AH5+fmTLlo18+fLh4eHBlStX7H5dRLKKAgXzc/7c/6qN5+Mv8Iy7Gzlz5kjX/qtXrOPvQ0ct22YzOLtofbw8nZycDA5/PW4yJRnJnTs3JUqUYOfOnWzZssUyRXP27Flat27NlStXCAgIICQkBLPZbNkve/bslp8NBgOTJ09m+vTpxMXF3fdYBw8etCQUd451e9toNFKjRg1iY2PZunUrderUwcnJieXLl1stSr372HePJfIkea3yK/yx9yAnj58BYOmiVVSv4Zfu/Y8cPsH0KXMxGo3cuH6DxQtWUKte9YfvKCJCJj5nJCgoiLCwMHx9fXH57yemXLlyUaxYMTp37kyZMmWIjo7GaDTec38PDw8qV65M27ZtGTFixD37xMfH880339C+fXsA/P39WbRoEQAnT55k165dlC9fntKlS3P06FGOHTtG8eLF8fPzY8qUKZYpGpGnTV5PDwYM7c2gfp/Rvlk3jvx9jB4fvMmBP/6ic+teD93//95uwzN5nqFTy550atWTMuVK0jikbiZELiJPgkyro9asWZOBAwfSu3dvS5urqysmk4kGDRpgNpupVKkSf/311wPHefvtt2nSpAnR0dEAzJ8/n+joaEv1onXr1jRs2BCAgQMHMnjwYMstxCNGjMDLywuAChUqcO3arcV5/v7+LFy4kEqVKtn9vEUeF5WrV6Ry9YpWbe55bt2ue7eBn/ax2s6RMwcDhvZO00/kafQ4TpM4msGs+YdMcy75kKNDEBGR/8qfK2NuRuix2PEfbL9uvv3hnbIQrTATERGxIyeDnsBqK10xERERcSglIyIiIuJQmqYRERGxIy1gtZ0qIyIiIuJQSkZERETEoTRNIyIiYkdOj+EX1TmaKiMiIiLiUKqMiIiI2JEWsNpOlRERERFxKCUjIiIi4lCaphEREbEjJyd9zreVrpiIiIg4lCojIiIidqRbe22nyoiIiIg4lCojmcjJ4OroEERERLIcJSMiIiJ2pOeM2E7TNCIiIuJQqoyIiIjYkSojtlNlRERERBxKyYiIiIg4lKZpRERE7MjJoM/5ttIVExEREYdSZURERMSOtIDVdqqMiIiIiEMpGRERERGH0jSNiIiIHTkZnB0dwmNHlRERERFxKCUjIiIi4lCaphEREbEjJyd9zreVrpiIiIg4lCojIgLArxu38s3E70m5mULxl19gwNA+5HbLnaaf2WxmxCdhFH/5P7Tr1AKAq1eSGDXsC44fPYnZbCaocW06dGmV2acgkiU4awGrzTK0MnLq1Cl8fHwYPHiwVfv+/fvx8fEhIiIi3eMEBgamaZ84cSJVq1YlODiYJk2a0KhRI+bMmWOX2B+mV69eTJw4MVOOJZLREhMuMnLIeEaN+4T5kdMpXKQQk7/6Pk2/Y0dO0PPtUNZHx1i1T5s8Cy+vZ5m7eCrT505gSfgK9u7+M7PCF5HHXIZXRjw8PIiJicFoNOLsfCtbXLlyJZ6ennYZv02bNvTs2ROAhIQEOnXqRPbs2WnZsqVdxr+XRYsWsXXrVl5++eUMO4ZIZtoWu4uSpb0pWuw5AJq1bEjH1u/x4YDuGAz/e5rk4gXLaRJSn4IF81vt3+ejbhiNJgAunEsgJSUFt3tUVURE7iXDk5HcuXNTokQJtm/fjr+/PwC//vorVapUAWDOnDlERkZy7do1XF1dCQsL48UXXyQwMJCyZcuyf/9+xo4daxkvKiqKSZMmMXPmzDTH8vT0pFu3bnz77be0bNmS8+fPM3DgQM6cOYOLiwt9+vTB19eX4OBgYmJufbKrXr06/fv3p0GDBkydOhVnZ2euXbtGXFwcx48f5/Tp07Rs2ZJu3boBcOLECZYsWULr1q0z+MqJZJ64uHMUuCPByF8gP0lXk0lOSraaqunbvzsA22J3Wu1vMBhwcXFm6IDP2RC9iYDAKjz/nyKZE7xIFuPkpGkaW2XKAtagoCCioqIA2LNnDz4+Pri6unL16lWio6OZPXs2K1asoEaNGsydO9eyX0BAAFFRUZYqyqZNm5g0aRIzZsy4b2XF29ubI0eOADB8+HD8/f1Zvnw5EyZMYMCAAZhMJgoVKsShQ4c4fPgwRqORbdu2ARATE0PNmjUBOHjwINOnT2fhwoVMmzaNy5cvk5qaysCBAxk2bBiurq4Zdr1EMpvZZLaqgNzm5GzbH9Whoz5m5YZwLl+6wvdTf7RXeCLyhMuUZCQwMJCNGzdiMplYtWoVQUFBALi5uREWFsZPP/1EWFgY69evJzk52bJfuXLlLD8nJibSs2dPmjZtyrPPPnvfYxkMBnLkyAHAli1baNHi1gK7okWLUq5cOXbv3k1AQACxsbFs2bKFjh07snPnTq5cucL58+cpXrw4AH5+fmTLlo18+fLh4eHBlStXmDhxInXq1OGll16y+zUScaQChfJz7twFy/a5+PM84+5Gzpw50rX/ls07OBd/a/9cuXJSp34NDh74O0NiFcnqnAzODn89bjIlGbk9VbNz5062bNlimaI5e/YsrVu35sqVKwQEBBASEoLZbLbslz17dsvPBoOByZMnM336dOLi4u57rIMHD1oSijvHur1tNBqpUaMGsbGxbN26lTp16uDk5MTy5cupVq3afY9tNpuJiopi0aJFBAcHM3/+fObPn89333337y6OSBbwWuUK/LHnACePnwZg6aKfqF6jcrr3X7dmIzOmzsFsNnPz5k3WrYmhQqVyD99RRIRMfM5IUFAQYWFh+Pr64uJya6lKrly5KFasGJ07d6ZMmTJER0djNBrvub+HhweVK1embdu2jBgx4p594uPj+eabb2jfvj0A/v7+LFq0CICTJ0+ya9cuypcvT+nSpTl69CjHjh2jePHi+Pn5MWXKFMsUzf2sXr2aZcuWERkZSZs2bWjTpg1vvfXWo14SkSzD09ODgcM+YGC/EbQN6crhv47Rq+/b7P/jEJ1avffQ/Xt+8DZXrybzRot36dK2Jz6lXqJV+6YZH7iIPBEy7TkjNWvWZODAgfTu3dvS5urqislkokGDBpjNZipVqsRff/31wHHefvttmjRpQnR0NADz588nOjraUr1o3bo1DRs2BGDgwIEMHjzYcgvxiBEj8PLyAqBChQpcu3YNuJW0LFy4kEqVKtn9vEUeF1Wqv0aV6q9ZtbnneYZZ4ZPT9B00/EOr7Wfc3Rj+ef8MjU/kcaEnsNrOYL57LkMyzIVrRx0dgoiI/Fe+nC9kyLhhm5tlyLi26Fslfc/xyir0BFYRERE70hNYbadakoiIiDiUkhERERFxKE3TiIiI2JGewGo7VUZERETEoVQZERERsSMngz7n20pXTERERBxKyYiIiIg4lKZpRERE7EgLWG2nyoiIiIg4lCojIiIidqQnsNpOlREREZGn2PLly2nQoAF169Zl7ty5ad7/+uuvqVmzJsHBwQQHB1v6nDlzhvbt21O/fn26detGUlLSI8egyoiIiMhTKi4uji+++IKIiAiyZctGmzZt8PPz46WXXrL02bdvH+PHj+eVV16x2nfYsGG0a9eOhg0bMmnSJCZPnky/fv0eKQ5VRkREROzIyeDk8Fd6bd68GX9/fzw8PMiVKxf16tVj9erVVn327dvH1KlTady4MZ9++ik3btwgJSWF7du3U69ePQCaNWuWZj+brtkj7ykiIiJZ0uXLlzl16lSa1+XLl636xcfHkz9/fsu2l5cXcXFxlu2kpCRKlixJv379WLJkCZcvX2by5MkkJibi5uaGi8utCZb8+fNb7WcrTdNkIiddbhERyQSzZs3i66+/TtPeo0cPevbsadk2mUwYDAbLttlsttrOnTs33377rWX7//7v/xgwYADt2rWz6gek2baF/nUUERGxo6zwnJFOnToREhKSpt3d3d1qu2DBguzYscOyfe7cOby8vCzbZ86cYfPmzbRo0QK4lay4uLjg6enJlStXMBqNODs7p9nPVpqmERERecK4u7tTpEiRNK+7k5EqVaoQGxtLQkIC165dY82aNQQEBFjez5EjB2PHjuXkyZOYzWbmzp1LnTp1cHV1pWLFiqxcuRKApUuXWu1nK1VGRERE7MjpMXrOSIECBejTpw8dO3YkJSWFFi1aULZsWbp27UqvXr0oU6YMn376Kd26dSMlJYVXX32VLl26ADBkyBBCQ0OZMmUKhQoVYvz48Y8ch8FsNpvtdVLyYInXTjo6BBER+a+8OYtmyLjf7343Q8a1RZdy3zg6BJtomkZEREQcStM0IiIiduScBRawPm5UGRERERGHUmVERETEjmx5AqrcoismIiIiDqVkRERERBxK0zQiIiJ2lBWewPq4UWVEREREHEqVERERETt6nJ7AmlWoMiIiIiIOpWREREREHErJiIhY/LpxC+1bdqVVcGcGfPgpSVeT7tnPbDbz6aDPmTsr3Kr9yuWrtG/Zlf1/HMyMcEWyJCcnJ4e/HjcZGvGpU6fw8fFh8ODBVu379+/Hx8eHiIiIdI8TGBiYpn3ixIlUrVqV4OBgmjRpQqNGjZgzZ45dYr8Xo9HI4MGDadSoEY0bN2b58uUZdiyRzJaYcJERQ8bx2bghhEfOpHCRQkz66rs0/Y4eOU6Pt/uxLjrGqn1zzFbe7NCDE8dOZVbIIvKEyPAFrB4eHsTExGA0GnF2vrWoZ+XKlXh6etpl/DZt2tCzZ08AEhIS6NSpE9mzZ6dly5Z2Gf9Oy5Yt4+rVq6xYsYKEhASCgoKoWbMmbm5udj+WSGbbGruTkqW9eb5YEQCatWxMh9Zv029ALwwGg6Xf4gXLaBISRIGCXlb7h89bwtCRoQzoNzxT4xbJapy1gNVmGZ6M5M6dmxIlSrB9+3b8/f0B+PXXX6lSpQoAc+bMITIykmvXruHq6kpYWBgvvvgigYGBlC1blv379zN27FjLeFFRUUyaNImZM2emOZanpyfdunXj22+/pWXLlpw/f56BAwdy5swZXFxc6NOnD76+vgQHBxMTc+tTXfXq1enfvz8NGjRg6tSpODs7c+3aNeLi4jh+/DinT5+mZcuWdOvWjZCQEBo3bgxAfHw8rq6uuLq6ZvAVFMkc8XHxVgmGV4H8JF1NJjkpmdxuuS3tH/a/lfxvjd1ptf+Xk0dnTqAi8sTJlImloKAgoqKiANizZw8+Pj64urpy9epVoqOjmT17NitWrKBGjRrMnTvXsl9AQABRUVGWKsqmTZuYNGkSM2bMuG9lxdvbmyNHjgAwfPhw/P39Wb58ORMmTGDAgAGYTCYKFSrEoUOHOHz4MEajkW3btgEQExNDzZo1ATh48CDTp09n4cKFTJs2jcuXLwPg4uLCwIEDadGiBa1atSJ79uwZc9FEMpnJZAZD2nYn58dv/llEHi+Z8lcmMDCQjRs3YjKZWLVqFUFBQQC4ubkRFhbGTz/9RFhYGOvXryc5OdmyX7ly5Sw/JyYm0rNnT5o2bcqzzz5732MZDAZy5MgBwJYtW2jRogUARYsWpVy5cuzevZuAgABiY2PZsmULHTt2ZOfOnVy5coXz589TvHhxAPz8/MiWLRv58uXDw8ODK1euWI4xcuRIYmJiWLNmDZs2bbLfhRJxoAKFvDh/7oJl+1z8edzdnyFnzpwOjErk8eNkcHb463GTKcnI7amanTt3smXLFssUzdmzZ2ndujVXrlwhICCAkJAQzGazZb87qw4Gg4HJkyczffp04uLi7nusgwcPWhKKO8e6vW00GqlRowaxsbFs3bqVOnXq4OTkxPLly6lWrdp9j202m9m3bx/Hjh0DIG/evFSvXp2DB3XXgDwZ/CpXYN+e/Zw4fmsB6pJFy6leo4qDoxKRp0Gm1V+DgoIICwvD19cXF5dbS1Vy5cpFsWLF6Ny5M2XKlCE6Ohqj0XjP/T08PKhcuTJt27ZlxIgR9+wTHx/PN998Q/v27QHw9/dn0aJFAJw8eZJdu3ZRvnx5SpcuzdGjRzl27BjFixfHz8+PKVOmWKZo7mf37t2MHTsWk8nE1atX2bRpE6+++uqjXhKRLMXTMy+fDOvHgH6f0jrk/zj811F69X2H/X8cpEOrdxwdnshjw8nJ2eGvx02mPQ6+Zs2aDBw4kN69e1vaXF1dMZlMNGjQALPZTKVKlfjrr78eOM7bb79NkyZNiI6OBmD+/PlER0dbqhetW7emYcOGAAwcOJDBgwdbbiEeMWIEXl63FuhVqFCBa9euAbeSloULF1KpUqUHHrtNmzYcPHiQxo0b4+TkRPv27XnllVce7YKIZEFVqvtRpbqfVVuePO7MDp+apu/g4R/dc4ylq+bes11E5H4M5rvnMiTDJF476egQRETkv/LmLJoh40YeHvzwThksuPinjg7BJvqiPBERETtyMugONFvpiomIiIhDKRkRERERh9I0jYiIiB05P4Z3sziaKiMiIiLiUKqMiIiI2NHj+ARUR1NlRERERBxKyYiIiIg4lKZpRERE7EjPGbGdrpiIiIg4lCojIiIidqQFrLZTZUREREQcSsmIiIiIOJSmaUREROxI0zS2U2VEREREHEqVERERETsyqDJiM1VGRERExKGUjIiIiIhDaZpGRETEjrSA1XaqjIiIiIhDqTIiIiJiR06oMmIrVUZERETEoZSMiIiIiENpmkZERMSOtIDVdqqMiIiIiEMpGRERERGH0jSNiIiIHWmaxnaqjIiIiIhDqTIiIiJiR/qiPNupMiIiIiIOpWRERCx+3biF9i270iq4MwM+/JSkq0n37Gc2m/l00OfMnRVu1X7l8lXat+zK/j8OZka4IvKEyNBk5NSpU/j4+DB48GCr9v379+Pj40NERES6xwkMDEzTPnHiRKpWrUpwcDBNmjShUaNGzJkzxy6x30+tWrUIDg62vM6ePZuhxxPJLIkJFxkxZByfjRtCeORMChcpxKSvvkvT7+iR4/R4ux/romOs2jfHbOXNDj04cexUZoUskiU54ezw1+Mmw9eMeHh4EBMTg9FoxNn51gVauXIlnp6edhm/TZs29OzZE4CEhAQ6depE9uzZadmypV3Gv1NiYiKurq5ERkbafWwRR9sau5OSpb15vlgRAJq1bEyH1m/Tb0AvDAaDpd/iBctoEhJEgYJeVvuHz1vC0JGhDOg3PFPjFpHHX4ZP0+TOnZuSJUuyfft2S9uvv/5KlSpVAJgzZw4tW7akUaNGhISEcOTIEQACAwN5//33qVevHgkJCZZ9o6KiaNKkiVXbbZ6ennTr1o0ff/wRgPPnz/POO+/QuHFjQkJC2LhxIwkJCVSvXt2yT/Xq1Vm5ciUAU6dO5bvvvmPixIkMGjSIDh06EBgYyJQpUwDYu3cvZrOZNm3aEBISwqpVq+x8tUQcJz4u3irB8CqQn6SrySQnJVv1+7B/T+o1qJVm/y8nj6aUb4kMj1Mkq3MyODn89bjJlIiDgoKIiooCYM+ePfj4+ODq6srVq1eJjo5m9uzZrFixgho1ajB37lzLfgEBAURFRVmqKJs2bWLSpEnMmDHjvpUVb29vS0IzfPhw/P39Wb58ORMmTGDAgAGYTCYKFSrEoUOHOHz4MEajkW3btgEQExNDzZo1ATh48CDTp09n4cKFTJs2jcuXL3Pz5k2qV6/OzJkzmThxIqNHj+bw4cMZdt1EMpPJZAZD2nYn58fvD5uIPF4y5a9MYGAgGzduxGQysWrVKoKCggBwc3MjLCyMn376ibCwMNavX09y8v8+hZUrV87yc2JiIj179qRp06Y8++yz9z2WwWAgR44cAGzZsoUWLVoAULRoUcqVK8fu3bsJCAggNjaWLVu20LFjR3bu3MmVK1c4f/48xYsXB8DPz49s2bKRL18+PDw8uHLlCrVr12bQoEHkyJGDIkWKUKdOHTZt2mT36yXiCAUKeXH+3AXL9rn487i7P0POnDkdGJWIPA0yJRnJnTs3JUqUYOfOnWzZssUyRXP27Flat27NlStXCAgIICQkBLPZbNkve/bslp8NBgOTJ09m+vTpxMXF3fdYBw8etCQUd451e9toNFKjRg1iY2PZunUrderUwcnJieXLl1OtWrX7HttsNrN+/Xr27t1rNaaLix7VIk8Gv8oV2LdnPyeO31qAumTRcqrXqOLgqEQeP04GZ4e/HjeZVn8NCgoiLCwMX19fyz/guXLlolixYnTu3JkyZcoQHR2N0Wi85/4eHh5UrlyZtm3bMmLEiHv2iY+P55tvvqF9+/YA+Pv7s2jRIgBOnjzJrl27KF++PKVLl+bo0aMcO3aM4sWL4+fnx5QpUyxTNPdz+vRpJk2ahMlk4vz586xbt44aNWo84hURyVo8PfPyybB+DOj3Ka1D/o/Dfx2lV9932P/HQTq0esfR4YnIEyzTPtbXrFmTgQMH0rt3b0ubq6srJpOJBg0aYDabqVSpEn/99dcDx3n77bdp0qQJ0dHRAMyfP5/o6GhL9aJ169Y0bNgQgIEDBzJ48GDLLcQjRozAy+vWAr0KFSpw7do14FbSsnDhQipVqvTAY7dp04aDBw/SqFEjTCYTH374Ic8999yjXRCRLKhKdT+qVPezasuTx53Z4VPT9B08/KN7jrF01dx7tos8LR7HyoSjGcx3z2VIhkm8dtLRIYiIyH/lzVk0Q8b9/fzCDBnXFuWftf/jLTKSlsmLiIiIQ2n1pYiIiB3pi/Jsp8qIiIiIOJQqIyIiInb0OH43jKOpMiIiIiIOpWREREREHErTNCIiInak54zYTpURERERcShVRkREROxIlRHbqTIiIiIiDqVkRERERBxK0zQiIiJ2pGka26kyIiIi8hRbvnw5DRo0oG7dusydm/Zbt6OjowkODqZJkya89957XLp0CYAlS5ZQrVo1goODCQ4O5osvvnjkGFQZEREReUrFxcXxxRdfEBERQbZs2WjTpg1+fn689NJLAFy9epWhQ4eyePFiChQowFdffcXEiRMZNGgQ+/btIzQ0lEaNGv3rOFQZERERsSODwdnhr/TavHkz/v7+eHh4kCtXLurVq8fq1ast76ekpDBkyBAKFCgAgI+PD2fPngVg7969LFmyhMaNG/Phhx9aKiaPQpWRTGTQ9xWIiEgmuHz5MpcvX07T7u7ujru7u2U7Pj6e/PnzW7a9vLzYs2ePZTtv3rzUqVMHgOvXrzNt2jQ6dOgAQP78+fm///s/Xn31VcaPH8+nn35KWFjYI8WrZERERMSOssIX5c2aNYuvv/46TXuPHj3o2bOnZdtkMmEwGCzbZrPZavu2K1eu0L17d0qUKEFISAgAkyZNsrz/1ltvWZKWR6FkRERE5AnTqVMnS9JwpzurIgAFCxZkx44dlu1z587h5eVl1Sc+Pp4333wTf39/BgwYANxKThYvXkznzp2BW0mMs/OjJ2FaMyIiIvKEcXd3p0iRImledycjVapUITY2loSEBK5du8aaNWsICAiwvG80Gnn33XcJCgpi4MCBlqpJrly5+O6779i9ezcAc+bMUWVEREQkq3AyPD6f8wsUKECfPn3o2LEjKSkptGjRgrJly9K1a1d69erFP//8w59//onRaCQqKgoAX19fRo4cyZdffsnQoUO5fv06//nPfxgzZswjx2Ewm81me52UPNjFa2ccHYKIiPyXR87CGTLukcsbM2RcW7zoHvDwTlmIKiMiIiJ2pCew2u7xqSWJiIjIE0nJiIiIiDiUpmlERETsSNM0tlNlRERERBxKlRERERE70ld/2E6VEREREXEoJSMiIiLiUJqmERERsSMtYLWdKiMiIiLiUKqMiDzFNm2MZcrE77h5M4WXXn6RgUP74eaWO119Ll26zJiRX3Do4GFy5sxBo+D6tGrbzGrfZUtX8su6TYRNGJWZpyXiUKqM2O6pqox8+umn9OrVy6pt06ZN1KpVi6tXrzooKhHHSEy4yIghY/hs3DAWRv7Ac0UKMfmraenu8+XYSeTMlZP5Ed8zffYkNm/axqaNsQBcunSZ0SPG88WYr9HXX4nIwzxVyUjfvn3Zt28fa9euBSA5OZmhQ4cyatQo3NzcHBydSObaGrudkqV9eL5YEQCatQxm9aq1VsnDg/oc2H+IoIZ1cXZ2xtXVlarV/Vj38y8ArF2zgWfz56PnB+9m/omJyGPnqZqmyZ07NyNGjGDAgAFUrlyZCRMmEBgYSM6cOWnbti3Xr18nb968DBs2jKJFi7Jt2za++OILrl+/zuXLl+nfvz+1a9cmNDSUixcvcvz4cfr160dgYKCjT03EZnFx5yhQ0Muy7VUgP0lXk0hKSrZM1TyoT+kyJVn10xrKlfflZkoK69fG4OJyqzzdrGUTAFZErs7EMxLJGgxP1+d8u3iqkhGAKlWqUK1aNfr378+RI0f48ccfad++Pd988w2FCxcmJiaGTz75hJkzZzJnzhxGjBhB8eLFiY2NZdSoUdSuXRsADw8PvvnmGwefjcijM5tMGAyGNO3Ozk7p6tP7g/eY8MUUOrTpSr5nPXnNvwJ7d/+RoTGLyJPpqUtGAEJDQ6lRowaTJk3i7NmznDx5km7dulnev71+ZOzYsaxfv57Vq1eze/dukpKSLH3Kli2b6XGL2FOBQgXYt2+/Zftc/Dnc3Z8hZ86c6erzz8U4erz/DnnyuAMw87s5FCn6XOadgEiWlTaBlwd7KmtJbm5uuLu789xzz2EymShSpAiRkZFERkYSERHBjz/+CEC7du3Ys2cPvr6+vPuu9dx3jhw5HBG6iN34Va7Ivj37OXH8FAARi5ZTvUbVdPeJWLiMaZO/B+DChQQil6ykXlCtTDwDEXlSPJXJyJ1efPFFLl26xI4dOwBYvHgxH374IRcvXuTYsWP07t2bgIAA1q5di9FodHC0Ivbj6ZmXT4Z9RP9+Q2gd0onDfx2hd99u7P/jIG+0euuBfQA6vdme+LhztG3ehe5dP+Dt97pQyreEI09JRB5TT+U0zZ2yZcvGV199xciRI7lx4wZubm58/vnneHh40KJFCxo2bIiLiwv+/v5cv36d5ORkR4csYjdVq/tTtbq/VVuePO7MCf/ugX0AcufOxdgvRzxw/EbB9WkUXN8+wYo8JrSA1XYGsx4CkGkuXjvj6BBEROS/PHIWzpBx45L/zJBxbVEgVylHh2ATpW8iIiLiUE/9NI2IiIg9GXQ3jc1UGRERERGHUmVERETErvQ531a6YiIiIuJQSkZERETEoTRNIyIiYkdawGo7VUZERETEoVQZERERsSODQZ/zbaUrJiIiIg6lZEREREQcStM0IiIidqUFrLZSZUREREQcSpUREREROzLoc77NdMVERETEoVQZyUTKlkVERNJSMiIiImJHegKr7fRRXURERBxKlRERERG70ud8W+mKiYiIiEMpGRERERGH0jSNiIiIHWkBq+1UGRERERGHUjIiIiIiDqVpGhERETvSAy5tpysmIiIiDqXKiIiIiF1pAautVBkRERERh1IyIiIiIg6laRoRERE70gJW2+mKiYiIiEOpMiIiAGzaGMvkidO4eTOFl15+kUFDP8bNLXe6+hiNRsaO/pLfdu4GoEo1f3r16YbBoIV88vTRE1htp8qIiJCYcJHhQ0YzetxwFkXO4bkihZn01dR091m1Yg3Hj53kx4XfM3fBDHbt+J21P29wwJmIyOPIYcnIqVOn8PX1JTg42Op19uxZm8aJiIggNDT0gX1CQ0OpUaOG5RhBQUHMmTPnnn2/+uor1q5da1MMIo+7rbHbKVW6BM8XKwJA85bBrF4VjdlsTlcfo8nE9WvXSbmZws2Um6SkppI9ezaHnIuIPH4cOk3j5eVFZGRkphyrV69eNGvWDIDz589Tp04dKleuTPHixa369e7dO1PiEclK4uLi8SroZdn2KpCfpKtJJCUlW6ZqHtSnUZP6rP15Aw3rNsdoNOJXuRLVX6+a6echkjVo0sFWWe6KhYaGEhERYdn28fEBICkpiY8//phmzZoRHBzMihUrHvkYzz77LC+88AJ///03ERERdOjQgcaNGzN+/Hir48+cOZN69erRoEEDxo4dC9xKZN577z2aNWtG8+bN2bx58784W5GswWQyca/lHc7OTunq893UmeTNm4fV65ayImoRly9dZu4PCzIwYhF5kji0MhIfH09wcLBlu3HjxvftO2XKFEqXLs3nn3/O1atXadOmDeXKlXuk4x44cIATJ05QunRptm3bRlxcHCtXrsTFxcUy5bNnzx5+/PFHFi9eTM6cOXnrrbfYt28f06dPp3nz5tSqVYv4+HjatWvH0qVLcXNze6RYRLKCgoUK8Me+/Zbtc/HncXd/hpw5c6arz/q1MXwY2gtXV1dcXV1p2Lg+a6N/oX3H1pl6HiJZgW7ttV2Wm6a53/qPzZs3c/36dRYvXgxAcnIyf/31V7qPNWHCBGbNmoXJZCJHjhx8+umnFClShG3btlGqVClcXKwvxfbt26lZsybPPPMMcKtKcjuOI0eOMGHCBABSU1M5efIkJUuWTHcsIlmNX+VKfBU2mRPHT/F8sSJELFpGQI2q6e7jU/Jlotesp2KlV0lNSWXjL7/iW7aUI05FRB5DWe7WXoPBYFk0l5KSYmk3mUyMHTuW0qVLA7emS/LkycPy5cvTNe6da0buliNHjjRtLi4uVrclxsXFkTNnTkwmE7NmzcLDwwO4Vd3Jly9fumIQyao8PfPyybBQQvsNJjUlheeKPMfQEQP4848DjBw2lrnh0+/bB6DPhz0YN/pLWjbtgJOTE5X8XqVj57YOPisReVxkuWTEw8ODv//+G4Do6GhLu7+/P/PmzWPEiBHEx8fTtGlT5s+fn2FxVKxYkQ8//JCePXuSPXt2+vbty3vvvYe/vz8//vgj7733Hn///Tft27dn7dq1mqaRx17V6v5Ure5v1ZYnjztzw6c/sA+Ah0ceRowekuExijwO9JwR22W5ZKRt27a8//77NG7cGH9/f/Lnzw9Ajx49GDp0KI0aNcJoNNKvXz+ef/55duzYkSFxlC5dmjfeeIM2bdpgMpmoU6cOVapUoXjx4gwePNiyvmXMmDFKRERERP4Fg/nOBwlIhrp07R9HhyAiIv+VJ2fBDBn36vWLGTKuLdxyeDg6BJtkucrIo+rbt69leudOgYGBenaIiIhIFqbKSCZSZUREJOtQZSTreGIqIyIiIlmBFrDaTk9mEREREYdSZURERMSO9ARW2+mKiYiIiEMpGRERERGH0jSNiIiIXWkBq61UGRERERGHUjIiIiIiDqVkRERExI4MODn8ZYvly5fToEED6taty9y5c9O8v3//fpo1a0a9evUYOHAgqampAJw5c4b27dtTv359unXrRlJS0iNfMyUjIiIiT6m4uDi++OILfvzxR5YuXcqCBQvSfLVKv379GDx4MFFRUZjNZsLDwwEYNmwY7dq1Y/Xq1fj6+jJ58uRHjkPJiIiIiB0ZssD/pdfmzZvx9/fHw8ODXLlyUa9ePVavXm15//Tp01y/fp3y5csD0KxZM1avXk1KSgrbt2+nXr16Vu2PSnfTiIiIPGEuX77M5cuX07S7u7vj7u5u2Y6Pjyd//vyWbS8vL/bs2XPf9/Pnz09cXByJiYm4ubnh4uJi1f6olIxkIgPOjg5BRESeArNmzeLrr79O096jRw969uxp2TaZTBgM/6ukmM1mq+37vX93PyDNti2UjIiIiNiV458z0qlTJ0JCQtK031kVAShYsCA7duywbJ87dw4vLy+r98+dO2fZPn/+PF5eXnh6enLlyhWMRiPOzs5p9rOV1oyIiIg8Ydzd3SlSpEia193JSJUqVYiNjSUhIYFr166xZs0aAgICLO8/99xzZM+enZ07dwIQGRlJQEAArq6uVKxYkZUrVwKwdOlSq/1sZTCbzeZH3ltscvnauYd3EhGRTOGeM//DOz2C69euZ8i4tsiRM0e6+y5fvpypU6eSkpJCixYt6Nq1K127dqVXr16UKVOGAwcOMGjQIK5evUrp0qX57LPPyJYtG6dPnyY0NJQLFy5QqFAhxo8fT548eR4pXiUjmUjJiIhI1qFkJOvQNI2IiIg4lBawioiI2JFBEw42U2VEREREHEqVEREREXtSYcRmqoyIiIiIQykZEREREYfSNI2IiIg9aZrGZqqMiIiIiEOpMiIiImJPurXXZqqMiIiIiEMpGRERERGH0jSNyFNs08bNTJo4lZs3b/Lyy8UZNLQ/bm65091n4YIIIpes4MaNG5Qo6cMnQ0PJli0bG3/ZxLBPRlKgYAHLON9+P5ncuXNl6vmJOIJBszQ2e2IrI126dCE6Otqy/fnnn/PKK69w8+ZNS1u1atU4deqUTeMGBgbavI9IVpSYkMinQ0bx+bgRLI6cx3NFCvP1V1PS3Wfd2l8In7+YSVO/ZMHi2dy4cYMf5ywAYM/ufbzRsS0/hs+0vJSIiMj9PLHJiL+/Pzt37rRsb968mfLly1vajh8/Tq5cuShSpIijQhRxqC2x2ylVuiTPFysKQPOWIaxe9TN3fpH3g/qsXL6a9h3akCePO05OTvQf+CENGtYHbiUj27fvpF2rTnTt8h67dv6e6ecn4jDmLPB6zDyxyUjlypX57bffAIiLiyNbtmzUq1ePTZs2AbBjxw6qVq3K0qVLCQkJITg4mAEDBnDjxg0ANm7cSIsWLWjatCk9evQgMTHRavyjR49St25dfv/990w9LxF7iYuLo0BBL8u2V4H8JF1NIikpOV19Tpw4SWJCIj3f+4C2LTsx7ZsZPOPuBkCePO40b9GUuQtm0r3XO3z0wQDi4uIz7+RE5LHyxCYjpUuX5sSJE9y4cYNNmzZRtWpVqlatapWMeHl5ER4ezvz584mMjCRfvnxMnz6dhIQEwsLCmD59OkuXLqVatWqMGzfOMvY///xDjx49GDVqFOXLl3fQGYr8O2aTGYPBkKbd2dkpXX1SU1LZumU7n40Zzg8/fsfly5eZPHEaAGPHj6JWnZoYDAbKv1KOMuV82Rq7PeNORkQea0/sAlZnZ2fKlSvH3r172bRpE+3bt6do0aJcv36dS5cu8dtvv1GyZEmOHz9Oq1atAEhJSaFUqVLs3r2bs2fP0rFjRwBMJhN58uSxjN27d2/KlClDxYoVHXJuIvZQoFAB9u3707J9Lv487u7PkDNnznT1edbrWWrWet2ymDWoQT2+m/Y9Vy5fYVH4Ejq/2eF/iYwZXFyf2D83Itb0nBGbPbGVEbi1bmTXrl3s2bPHUsGoXLkya9euJW/evJjNZoKCgoiMjCQyMpKFCxcyePBgjEYjr776qqV90aJFTJgwwTLuwIEDOXnyJBs2bHDMiYnYgX/l19i35w9OHD8JwOJFSwmoUT3dfWrVrkH0mnVcv34Ds9nMhvUxlCpdkly5c7FwQQTr1/4CwMEDh/hj359UqeKXiWcnIo8Tg9n85KZwhw4dok+fPjz//PNMmXLrDoCff/6ZCRMmUK9ePWrXrs0777xDREQEnp6efPTRRzz//PO0adOGxo0bM2/ePF544QW++OIL4uLiGD16NIGBgfzwww+cPXuWjz/+mBUrVpArV/ruErh87VxGnq6IzX6NiWXSxG9ISUmlSJHnGDpiEKdPnWHEsNH8GD7zvn3y5HHHaDQy49tZ/LxmHUajkRIlvek/6CPc3HLz5x8HGPf5FyQlJePs7MwH/XpRsdKrjj1Zkbu458yfIePevJiUIePaIptH7od3ykKe6GQEoGrVqrz33nu0b98egCtXruDv78/s2bN59dVXWbhwIbNmzcJkMlGyZElGjRpF9uzZWbduHV999RUmk4kCBQowduxY8ubNa0lGihQpQv/+/XnmmWcYMGBAumJRMiIiknVkWDKSmAWSkbxKRuQ+lIyIiGQdSkayjid6zYiIiIhkfUpGRERExKGUjIiIiIhD6cZ/EREROzJoKabNVBkRERERh1JlRERExJ5UGLGZKiMiIiLiUEpGRERExKE0TSMiImJPmqaxmSojIiIi4lCqjIiIiNiTbu21mSojIiIi4lBKRkRERMShNE0jIiJiRwbN0thMyUgmcsLZ0SGIiIhkOUpGRERE7EmVEZtpzYiIiIg4lJIRERERcShN04iIiNiTpmlspsqIiIiIOJSSEREREXEoTdOIiIjYkx4HbzNVRkRERMShVBkRERGxIz2B1XaqjIiIiIhDKRkRERERh1IyIiIiIg6lZEREREQcSgtYRURE7Em39tpMlRERERFxKCUjIiIi4lCaphF5isVs/JWvJ04h5WYKL71cnMFDB+LmljvdfQJr1KeAl5elb4dO7WnQsB7bt+/kqy++JjU1lezZs9Pvoz74limdqecm4jCapbFZlqyM+Pj4PPD9Dh06sHXrVqu20NBQIiIiHrhfYGAgp06dYu3atXz11Vdp3t+6dSsdOnSwPWCRx1BiQiLDhoxk7LjPiIhcQJEizzHxq8np7nPs2HHyuLszL/wHy6tBw3qkpKTQ/6NPGDQ4lPnhs3mza2cGD/rUEacoIo+JLJmMZLRatWrRu3dvR4ch4lCxsdsoVbokzxcrCkCLls1YtSoK8x2L7x7UZ8/ve3FyduLNLu/SuuUbTJs6HaPRiKurK6vWLKNECR/MZjOnT50hTx53h5yjiCMYzI5/PW6ydDLyzz//8MYbb9CsWTNatGjB77//nq791q9fT3BwMI0bN+a9997j/PnzVu9HREQQGhoKwKZNm2jYsCHNmjUjPDzc0mfbtm20bduWkJAQatWqRXR0NFevXsXPz4+rV68CcOrUKRo0aGCfkxXJZHFxcRQs+L8pFq8C+Um6mkRSUnK6+qQajfj5VeLryV/w3fQpbNm8lQXzFgLg6urChQsJBNVtwldffE3Hzm9k3omJyGMnS68ZWbRoETVq1OCtt95i48aN7Ny5k/LlywMwaNAgcuXKZel79uxZXnvtNS5cuMDgwYOZN28eRYoU4bvvvuPTTz9lwoQJaca/efMmoaGhzJo1i+LFizNw4EDLe3PmzGHEiBEUL16c2NhYRo0aRe3atalRowarV6+mRYsWLF26lKZNm2b0ZRDJEGaTCQyGNO3Ozk7p6tOsefD/GnJC+w5tmT8vnHZvtAEgXz5PVv+8nP37D9Lt7Z68WPwFihV73v4nIiKPvSxdGalcuTIzZsygb9++XLx4kTfe+N+nqxEjRhAZGWl5BQYGArBnzx7Kli1LkSJFAGjdujVbtmy55/gHDx7Ey8uL4sWLAxASEmJ5b+zYsfz1119MmjSJ77//nqSkJACaN29OZGQkACtWrCA4ODjtwCKPgYKFCnL+3P+qhufiz+Hu/gw5c+ZMV5+fVqzir0N/W94zm824uLhw5cpV1q3bYGkvWdIHb++X+Puvwxl7QiJZhdns+NdjJksnIxUqVOCnn36iWrVqrFy5knffffeh+5hMJqtts9lMamrqPfsaDAar+XFnZ2fLz+3atWPPnj34+vpaHbdSpUrEx8ezZs0aihQpQoECBWw9LZEswb/ya+zds48Tx08CsGjREl6vEZDuPof/PsKUyd9iNBq5fv064fMXUadubZydnfh0yCh+/223pd+xY8d1N42I3FeWnqYZM2YMBQoUoFOnTvj5+VlVLu6nXLlyDBkyhFOnTlGkSBEWLFiAn5/fPfv6+Phw/vx5Dhw4QIkSJfjpp58AuHjxIseOHePHH38kW7ZsjBs3DqPRCNxKYJo2bcqIESMs605EHkeenp4MGTaIj/oNICUlhSJFnuPTEYP584/9DB/2GfPCf7hvH4Cu77zJmNHjaN3yDVJTUqldJ5CQZk0wGAyEfTGasLFfkZqaims2V0Z8NowCBbweEpHIE+LxK0w4XJZORjp06EDfvn2JiIjA2dmZzz///KH7PPvss3z66af06NGDlJQUChcuzMiRI+/Z19XVlfHjx9OvXz9cXFwoVaoUAB4eHrRo0YKGDRvi4uKCv78/169fJzk5mVy5ctGwYUNmzJhB7dq17Xq+IpmtWvUqVKtexaotT548zAv/4YF9AHLmzMGQYYPuOW6Fiq8y+8cZ9g1WRJ5YBrP5MZxcciCTycS8efM4evQogwbd+w/x/Vy9lpBBUYmIiK3ccnpmyLim4xczZFxbOBXzcHQINsnSlZGsqEePHpw9e5bp06c7OhQREcmKTPqMbytVRjKRKiMiIllHhlVGjiZmyLi2cHohr6NDsIkqIyIiInakz/i2y9K39oqIiMiTT8mIiIiIOJSmaUREROzJ9PAuYk2VEREREXEoJSMiIiLiUJqmERERsSOznjNiM1VGRERExKFUGREREbEnPWfEZkpGRERExMqZM2fo168fFy5c4IUXXmDcuHHkzp3bqk98fDz9+/fn/PnzODk58dFHH1G5cmVSUlLw8/OjaNGilr63v/D2fvQ4+Eykx8GLiGQdGfU4+NSD5zNkXFu4+Dz7r/Z/5513aNKkCQ0bNmTSpEkkJyfTr18/qz4ffvghr7zyCu3bt+fIkSN06NCBjRs3sn//fr744gubvsNNa0ZERETsyGwyO/z1b6SkpLB9+3bq1asHQLNmzVi9enWafnXq1KFRo0YAFCtWjBs3bpCcnMzevXtJSEigWbNmtGrVim3btj30mJqmERERecJcvnyZy5cvp2l3d3fH3d39gfsmJibi5uaGi8utFCF//vzExcWl6Xc7WQGYPn06JUuW5JlnnsFgMFCrVi3eeecd/vrrL7p27cry5cvx9Lx/JUrJiIiIiD1lgVt7Z82axddff52mvUePHvTs2dOyvWrVKj777DOrPsWKFcNgMFi13b19p5kzZ7JgwQLmzJkDQJs2bSzvlSpVirJly7Jr1y5q16593zGUjIiIiDxhOnXqREhISJr2u6siQUFBBAUFWbXdXoBqNBpxdnbm3LlzeHl53fM4Y8aM4ZdffmHu3LkULFgQgKVLl/Lqq6/y/PPPA7e+xdjV1fWB8WrNiIiIyBPG3d2dIkWKpHk9bIoGwNXVlYoVK7Jy5UrgVnIREBCQpt/MmTPZunUr8+bNsyQiAAcPHmTGjBkAHDlyhP3791OhQoUHHlN302Qi3U0jIpJ1ZNTdNDf3pV1fkdmy+Rb4V/ufPn2a0NBQLly4QKFChRg/fjx58uRh3rx5xMfH06tXL1577TXc3NysEpxp06aRO3duBgwYwJEjRzAYDAwcOBB/f/8HHk/JSCZSMiIiknUoGck6tGZERETEnkyODuDxozUjIiIi4lBKRkRERMShNE0jIiJiR1qKaTtVRkRERMShVBkRERGxpyzwBNbHjSojIiIi4lBKRkRERMShNE0jIiJiR2ZN09hMlRERERFxKFVGRJ5iMRt/5euJU0i5mcJLLxdn8NCBuLnlTnefwBr1KXDHt3l26NSeBg3rsX37Tr764mtSU1PJnj07/T7qg2+Z0pl6biIOo1t7bZahlZFTp07h4+PD4MGDrdr379+Pj48PERER6R4nMDAwTfvEiROpWrUqwcHBNGnShEaNGjFnzhy7xH4vRqORIUOG0KhRIxo2bMjMmTMz7FgiGS0xIZFhQ0YydtxnREQuoEiR55j41eR09zl27Dh53N2ZF/6D5dWgYT1SUlLo/9EnDBocyvzw2bzZtTODB33qiFMUkcdEhk/TeHh4EBMTg9FotLStXLkST0/7fEFRmzZtiIyMZNmyZfzwww8sWLCAhQsX2mXsu0VERHDx4kWWLVvGwoULCQ8P548//siQY4lktNjYbZQqXZLnixUFoEXLZqxaFWX1wKYH9dnz+16cnJ14s8u7tG75BtOmTsdoNOLq6sqqNcsoUcIHs9nM6VNnyJPn4V9bLiJPrwyfpsmdOzclSpRg+/btlq8Q/vXXX6lSpQoAc+bMITIykmvXruHq6kpYWBgvvvgigYGBlC1blv379zN27FjLeFFRUUyaNOmeVQlPT0+6devGt99+S8uWLTl//jwDBw7kzJkzuLi40KdPH3x9fQkODiYmJgaA6tWr079/fxo0aMDUqVNxdnbm2rVrxMXFcfz4cU6fPk3Lli3p1q0bL7/8MuXKlcPJyYlcuXJRtGhRzp49S+nSKj/L4ycuLo6CBf83xeJVID9JV5NISkq2TMM8qE+q0YifXyV69n6P1JRUevfsi1vu3LR7ow2uri5cuJBA+zaduHjxEp99PjzTz0/EUbSA1XaZsoA1KCiIqKgoAPbs2YOPjw+urq5cvXqV6OhoZs+ezYoVK6hRowZz58617BcQEEBUVJSlirJp0yYmTZrEjBkz7ltZ8fb25siRIwAMHz4cf39/li9fzoQJExgwYAAmk4lChQpx6NAhDh8+jNFoZNu2bQDExMRQs2ZNAA4ePMj06dNZuHAh06ZN4/Lly5QvXx5vb28Adu3axZ49e6hUqVLGXDSRDGY2mcBgSNPu7OyUrj7NmgfzUWhfcubMyTPuz9C+Q1vWr//F0idfPk9W/7yc73/4lmFDRnL8+ImMOREReexlSjISGBjIxo0bMZlMrFq1iqCgIADc3NwICwvjp59+IiwsjPXr15OcnGzZr1y5cpafExMT6dmzJ02bNuXZZ5+977EMBgM5cuQAYMuWLbRo0QKAokWLUq5cOXbv3k1AQACxsbFs2bKFjh07snPnTq5cucL58+cpXrw4AH5+fmTLlo18+fLh4eHBlStXLMfYvn07vXr1Yty4ceTJk8d+F0okExUsVJDz585bts/Fn8Pd/Rly5syZrj4/rVjFX4f+trxnNptxcXHhypWrrFu3wdJesqQP3t4v8fdfhzP2hETksZUpycjtqZqdO3eyZcsWyxTN2bNnad26NVeuXCEgIICQkBCr+ers2bNbfjYYDEyePJnp06cTFxd332MdPHjQklDc/WVFZrMZo9FIjRo1iI2NZevWrdSpUwcnJyeWL19OtWrV7nvs22OtWbOG3r17ExYWRtWqVf/FVRFxLP/Kr7F3zz5OHD8JwKJFS3i9RkC6+xz++whTJn+L0Wjk+vXrhM9fRJ26tXF2duLTIaP4/bfdln7Hjh3X3TTy9DBlgddjJtOeMxIUFERYWBi+vr64uNxaqpIrVy6KFStG586dKVOmDNHR0VYLXe/k4eFB5cqVadu2LSNGjLhnn/j4eL755hvat28PgL+/P4sWLQLg5MmT7Nq1i/Lly1O6dGmOHj3KsWPHKF68OH5+fkyZMsUyRXM/e/bsYejQocyYMQM/P79HvRQiWYKnpydDhg3io34DaB7Shr//Okyfvj3584/9tG3V8YF9ALq+8yZ58jxD65Zv0KZlB8qWK0NIsybkypWLsC9GEzb2K9q26siwoSMZ8dkwChTwelA4IvIUy7TnjNSsWZOBAwfSu3dvS5urqysmk4kGDRpgNpupVKkSf/311wPHefvtt2nSpAnR0dEAzJ8/n+joaEv1onXr1jRs2BCAgQMHMnjwYMstxCNGjMDrv89EqFChAteuXQNuJS0LFy586PqPKVOmYDQa+fjjjy1tvXr1olatWjZeDZGsoVr1KlSrXsWqLU+ePMwL/+GBfQBy5szBkGGD7jluhYqvMvvHGfYNVuQxcXdVXh7OYNZVyzRXryU4OgQREfkvt5z2ecTE3ZJjT2bIuLbIVbmoo0OwiR4HLyIiIg6lx8GLiIjYk54zYjNVRkRERMShVBkRERGxJ1VGbKbKiIiIiDiUkhERERFxKE3TiIiI2JGemGE7VUZERETEoVQZERERsafH8LthHE2VEREREXEoJSMiIiLiUJqmERERsSOznjNiM1VGRERExKFUGREREbEn3dprM1VGRERExKFUGclELoacjg5BREQky1EyIiIiYkdawGo7TdOIiIiIQ6kyIiIiYk+qjNhMlRERERFxKCUjIiIi4lCaphEREbEjs54zYjNVRkRERMShlIyIiIiIQ2maRkRExJ50N43NVBkRERERh1JlRERExI7MRpOjQ3jsqDIiIiIiDqVkRERERBxK0zQiIiJ2pC/Ks50qIyIiIuJQqoyIPGU2btzIhAkTuXnzJt7eLzN06FDc3NzS1cdoNBIWFsavv27GaDTSsWNHWrVqCcCGDb/wySefUKhQQcs433//Pblz57Zsz5kzh4iIJURELM6ckxVxAC1gtZ2SEeDq1auEhYWxfft2nJ2dcXd3JzQ0lDx58lC/fn2KFy+OwWAgJSUFLy8vPvvsMwoWLEhoaCivvfYazZo1c/QpiKRLQkICgwcPYdasmRQrVowvvviSr776ioEDB6arz6JFizh+/DiLFy8iOTmZDh06UrJkCcqUKcPu3bvp1Kkjb7311j2P/dtvvzFz5izc3d0z63RF5DHx1E/TmEwmunbtSp48eVi6dCmRkZF0796drl27cvHiRby8vIiMjGTp0qX89NNP+Pj4MGbMGEeHLfJIYmNj8fUtTbFixQBo1aolK1eusvoujQf1WbduHcHBwbi4uODu7k79+vX46aeVAOzevZtt27bTsmUrOnfuws6dOy1jXrhwgc8+G02fPu9n3smKyGPjqU9Gtm7dytmzZ+nVqxcuLrcKRf7+/nz22WeYTGlLbX5+fvz111+ZHaaIXfzzTxwFCvxvGqVAgQJcvXqVpKSkdPX55584Cha0fi8uLg6APHny0LJlC8LDF9CrVy/69PmAuLg4jEYjoaH96dPnfby8vDLhLEUczGRy/Osx89RP0/z555+UKFECJyfrvOz111/n1KlTVm0pKSlERUVRvnz5TIxQxH7MZhMGgyFNu5OTc7r63ErQDXf0NePsfOu/nS++GG9pf/XVVyhXrhyxsbEcPXqUChVepXLlymzfvt2OZyMiT4qnPhlxcnIie/bs930/Pj6e4OBgAG7evEnZsmXp27dvZoUnYlcFCxZi7959lu34+Hjc3d3JlStnuvoUKlSIc+fOWd47d+4cBQoU4PLly4SHh/Pmm29aEhmz2YyLiysrVvyEp6cn69atIzn5GvHx8bRq1Yrw8PBMOGORzGc26tZeWz310zS+vr78+eefVnPmAOPHj2fr1q2WNSORkZGsWrWKzz//HA8PD8cEK/IvVa5cmT179nD8+HEAFi5cRI0aNdLdp0aNGixdupTU1FQuX77M6tVR1KxZk9y5czN//gLWrl0LwP79B9i3bx9Vq1Zh7dpoFi4MJzw8nCFDBlOkSBElIiJi5amvjFSsWJF8+fLx9ddf89577+Hs7ExMTAwRERFMmjTJ0eGJ2FW+fJ58+ukwPvywHykpKRQpUoSRI0fwxx9/MGzYMMLDw+/bB24tZj116iQtW7YiNTWFFi1aULFiRQC++upLRo/+nMmTp+Di4syYMWPImzevI09XRB4TBvPdJYGnUEJCAp999hn79u3DxcWFvHnzEhoairu7Ox07dmTdunX33M/WW3uvX79mz7BFRORfyJEj58M7PYIL837PkHFtka9teUeHYBMlI5lIyYiISNahZCTreOqnaUREROxJT2C13VO/gFVEREQcS8mIiIiIOJSmaUREROzpMXwCqqOpMiIiIiIOpWREREREHErTNCIiInZkNumJGbZSZUREREQcSpURERERO9JzRmynyoiIiIg4lJIRERERcShN04iIiNiR+Ql4zsiZM2fo168fFy5c4IUXXmDcuHHkzp3bqs/p06dp1KgRzz//PADPPvss06dPx2w2M2bMGNavX4+TkxPDhw+nQoUKDzyeKiMiIiJiZdiwYbRr147Vq1fj6+vL5MmT0/TZt28fjRs3JjIyksjISKZPnw5AVFQUhw8fZuXKlUyaNIn+/fuTmpr6wOMpGREREbEno8nxr38hJSWF7du3U69ePQCaNWvG6tWr0/Tbu3cvhw4dIjg4mI4dO3Lw4EEAfvnlFxo0aICTkxMvvPAChQoV4rfffnvgMTVNIyIi8oS5fPkyly9fTtPu7u6Ou7v7A/dNTEzEzc0NF5dbKUL+/PmJi4tL0y979uw0adKENm3aEBMTQ/fu3Vm5ciXx8fF4eXlZ+uXPn59//vnngcdUMpKJnK8aHR2CiIjclsPRAWScWbNm8fXXX6dp79GjBz179rRsr1q1is8++8yqT7FixTAYDFZtd28DVuO8/vrrhIWFceTIEUwmk1V/s9mMk9ODJ2KUjIiIiNhRVngCa6dOnQgJCUnTfndVJCgoiKCgIKu2lJQU/Pz8MBqNODs7c+7cOatKx22zZ8+mUaNG5M2bF7iVdLi4uFCwYEHi4+Mt/c6fP3/P/e+kNSMiIiJPGHd3d4oUKZLm9bApGgBXV1cqVqzIypUrAVi6dCkBAQFp+m3fvp1FixYBsG3bNkwmEy+++CIBAQEsX74co9HI8ePHOXbsGGXKlHngMQ1ms9nxKdxTIuX8VUeHICIi/+X6rFuGjHt24sYMGdcWhXqmTR5scfr0aUJDQ7lw4QKFChVi/Pjx5MmTh3nz5hEfH0/v3r2Ji4sjNDSUc+fOkT17dkaOHEmJEiUst/Zu3HjrOvTv359q1ao98HhKRjKRkhERkaxDyUjWoWkaERERcSgtYBUREbGjJ+EJrJlNlRERERFxKFVGRERE7MmopZi2UmVEREREHErJiIiIiDiUpmlERETsSAtYbafKiIiIiDiUKiMiIiJ2ZDaqMmIrVUZERETEoZSMiIiIiENpmkZE7uuXzTF8+c3XpNxMwfull/i0/2Dcct/7+zzMZjMDRwzh5eIv0aVdx0yOVCTr0AJW29m9MjJs2DCCg4Np0KABvr6+BAcHExwczOLFi+19qH/lypUrdO/e3dFhiGRZCYmJfDJyGF+OHMuK+REUKVyEL6ZMvGffw8eO8mavd/l5w9pMjlJEngR2r4wMGTIEgFOnTtGxY0ciIyPtfQi7uHTpEvv373d0GCJZ1uZtsZQuWYpiRZ8HoHVIC5p3asOgvqEYDAarvvMXh9O8cVMKFSjoiFBF5DGXKdM0x48fZ+jQoVy8eJEcOXLwySefUKpUKUJDQ8mZMyd//vknly9f5oMPPiAyMpIDBw5Qu3ZtQkNDiYiIYMOGDVy4cIFz585Rs2ZNQkNv/TGcNm0aq1atwmg0Uq1aNfr168fp06d56623yJs3Lzly5GDixIkMGDCAuLg44uPjqVy5MiNHjmTEiBHEx8fTvXt3+vfvT8eOHVm3bh0AEyfe+vTXs2dP/P398fX15dy5cyxatIjvv/8+zTHv/sMs8iT4Jz6Ogl7/Sy4K5PfialISSclJaaZqBvb9GIDN27ZkaowiWZIeB2+zTElGPv74YwYPHkypUqX4+++/6d69O1FRUQDEx8ezYMEClixZQv/+/YmKiiJ79uwEBARYplF27txJZGQk7u7udOzYkZ9//pkcOXKwb98+Fi1ahMFgoF+/fixbtowKFSpw9OhRvvvuO4oUKcKKFSsoWbIkEyZM4ObNmzRs2JA//viDQYMG0bFjRyZNmsSpU6fuG3tiYiJdu3bFz8+PjRs33vOYwcHBmXEZRTKVyWTmXnm2k5Nz5gcjIk+0DE9GkpKS2LdvH/3797e0JScnk5iYCEBAQAAAhQsX5uWXXyZfvnwAeHh4cOnSJQBq1arFs88+C0CDBg3YsmUL2bNnZ8+ePTRr1gyA69evU7hwYSpUqEC+fPkoUqQIAI0aNWLPnj3MnDmTI0eOcPHiRZKTk/Hw8Ej3OZQrVw6A2NjYex5T5Enx9bdTWL9pIwBJyUm8/OJLlvfiz5/D/Rl3cuXM6ajwRB4LWsBquwxPRkwmE9myZbNaO/LPP/9YkgFXV9f/BeNy73Ccnf/3ScxkMuHs7IzRaKRTp0506dIFgMuXL+Ps7ExiYiI5cuSw9J89ezZRUVG0atWKKlWqcOjQIcxm6xKawWCwaktNTbWK5fZ49zumyJOiR9du9OjaDYALiQmEdGjN8ZMnKFb0eRYsWURg9dcdHKGIPIky/DkjzzzzDP/5z38sycivv/5K+/btbRojJiaGK1eucOPGDX766ScCAgLw9/cnMjKSpKQkUlNTraZ+7vTrr7/SunVrmjRpwo0bNzhw4AAmkwkXFxdSU1MBcHd35+LFiyQkJHDz5k1iYmLuGUd6jynyJMiX15MRA4bQZ9BHNG7XnL+O/E2/nn0A2Lf/T5p3auvgCEXkSZEpa0bGjh3L0KFD+e6773B1deWLL76wadGnp6cnXbt2JTExkSZNmlC9enUADhw4QKtWrTAajVSvXp2QkBBOnz5ttW+nTp0YOnQo06ZNw83NjVdeeYVTp05RsWJFChcuTIcOHZg9ezZvvfUWLVq0oGDBgpQpU+aecQQGBt7zmCJPqoAq1QioUi1Nu2/JUiyeNS9N+8hBwzIjLJEsTY+Dt53BfPecRRYTERHBtm3bGD16tKND+ddSzl91dAgiIvJfrs/e+wF+/9bxISsyZFxbFBvWyNEh2ERPYBUREbEjLWC1XZZPRpo1a2a5e0VERESePPqiPBEREXGoLF8ZEREReazoCaw2U2VEREREHEqVERERETvSAlbbqTIiIiIiDqVkRERERBxK0zQiIiJ2ZE7VNI2tVBkRERERh1JlRERExI703TS2U2VEREREHErJiIiIiDiUpmlERETsSAtYbadkJDOZ9YhgERGRuykZERERsSMtYLWd1oyIiIiIQykZEREREYfSNI2IiIgdaQGr7VQZEREREYdSMiIiIiIOpWkaERERO9I0je1UGRERERGHUmVERETEjsxGPeDSVqqMiIiIiEMpGRERERGH0jSNiIiIHWkBq+1UGRERERGHUmVERETEjvRFebZTZUREREQcSsmIiIiIOJSmaUTE4pfNm/hy6tek3LyJd/GX+bT/J7jldrtnX7PZzMCRQ3n5xZfo0q4DANdvXGdE2Ofs2/8HZjOUKVWaQX0/Jkf2HJl5GiIOpQWstntoZeTUqVMEBgamaffx8cmQgB6kQ4cObN26NdOPez8dOnRwdAgidpOQmMgno4bx5YgxrJgXQZHCz/HFlK/v2ffwsaO82bsbP29Ya9U+bdYMjEYjEbPmEzFrHjdu3OC72TMzIXoReZypMvIvbNu2zdEhiNjN5u1bKF2yFMWKPg9A65AWNO/clkF9P8ZgMFj1nR8RTvNGTSlUoKBVe4Xyr/JcwUI4Od36nFPS24e/jx7JnBMQySJUGbHdv0pGIiIiiImJ4dKlS5w8eZKqVasydOhQAKZNm8aqVaswGo1Uq1aNfv36cfr0abp3786LL77I33//TalSpXjllVdYsmQJly5dYtKkSRQvXpzAwEDq16/P5s2bARg1ahSlSpWyOvY333zDsmXLcHZ2pmrVqvTr14+JEydiNpvp06cPAKGhoQQEBLBx40Zy5szJn3/+yeXLl/nggw+IjIzkwIED1K5dm9DQUIxGI2PGjGHbtm0YjUaaNWtG586d2bp1K1OnTiVHjhwcPnwYHx8fxo0bx5gxYwBo2bIlCxcu/DeXUSRL+CcujoJeBSzbBfJ7cTUpiaTkpDRTNQM/+Bi4lcDcqepr/pafz/xzltnh8xjy0cAMjFpEngT/egHrb7/9xoQJE1i2bBnr16/n4MGDbNy4kX379rFo0SKWLl1KXFwcy5YtA+DgwYN07dqVyMhIdu3axenTp1mwYAGNGjViwYIFlnFz5crF0qVL6dWrFx9//LHVMX/55RfWrVvH4sWLWbJkCcePH2f+/Pk0b96c5cuXYzabuXbtGlu2bKFWrVoAxMfHs2DBAt5++2369+/PsGHD+P/27jwqyivN4/i3LEFUAjEKGkRNNCrYcdcGRdBWDwFtF8CmHe3EtkOIEYwmLcatXbo1iks2l3E4mphtQmg0QKK4RGOUbuMSpY09mKTjFjdQQVAMClU1f9DWDMGtksIX8Pc5p86xbt33vs9bHuXhufe9b1paGikpKVy+fJmUlBQAPvroI1JTU9m2bRv79++3X+OsWbPIzMzkzJkzZGVlMXPmTAAlIlJrWG3WShUQgDp1zA6P9c8jOTw1Pob/iIqmX1CwM8ITkVrsjpWRG+XW/89ms9n/0+ratSvu7uW/NbVo0YLCwkJ2797NoUOHiIyMBKCkpAQfHx+6d+9OkyZN7FWOZs2a0atXLwB8fHw4deqU/RzR0dEA9O/fn6lTp5Kfn2//7IsvvmDw4MHUr18fgKioKNLS0hg9ejTNmzdn3759nDlzhr59+1KvXj0AQkJC7Odp27YtjRs3BuDBBx+0x5yTk8MXX5T/pnf16lW+/vprHnvsMdq2bUuzZuXl6DZt2lBYWHgXX61I9bd89So+y9oJQHFxMW3btLF/lnfhPB4PeNDg3//O7tbGTzczb2kiM16YwuDQMKfGK1ITaJ8Rx90xGfHw8ODy5csV2i5evIinpyeA/Yc9gMlkwmazYbFYGDNmDGPHjgWgqKgIs9lMQUEBrq6uFcYym2/+W1fduv8XmtVqrdDPaq38F11WVgaUJyaffPIJZ86cYcKECfbPXVxcbjr2DRaLhYSEBEJDQwHIz8+nYcOGZGdn3/QaRWqD+JhxxMeMA+BiQT4RT43kxPcnadWiJR+mraN/cF+HxtuRtZOFry0h6dXlPO7X4c4HiIhwF9M07u7utGrVis2bN9vbPvzwQ3tF42YCAwNJT0+nuLiYsrIy4uLiKhx/NzZs2ADA1q1badOmjT35uTH+hg0bKCkpoaysjHXr1hEYWD5XHRYWxu7du7lw4QKdO3e+6/MFBgaSkpJCaWkpxcXFjBo1iuzs7NseYzab7UmQSE3XuNFDzJs+ixdmvsSQ0SP49ui/SIifBMDhI/9D1O9H3XGMJStew4aN2QvnEfX7UUT9fhTzliZWceQi1YutzGr4q6a5qwWsixcvZs6cOaxYsYLS0lLat2/PrFmz2LFjx0379+/fnyNHjhAdHY3FYiE4OJiIiAhOnz5914EdOHCA1NRU6tevz8KFCyt89qtf/YqcnByioqIoKyujT58+/O53vwPAzc2NLl260K5du7s+F8DIkSM5ceIEERERlJWVERkZSUBAwG1vJR4wYADDhg1j/fr1FaonIjVVSK8+hPTqU6n9cb8OrFv735Xa58+YU+H9Jx+sr6rQRKQWM9mq4ZxD//79eeedd/D19XXoOJvNRnFxMb/97W9Zu3YtXl5eVRThT1N6/vKdO4mIyD3h4vVAlYx7KHxllYzriE6Z440OwSG1ap+Rr776ipiYGOLi4qpdIiIiIveHmjhNYrRqmYxs3779Jx3XqVMnbUQmIiJSw+hBeSIiImKoalkZERERqam0z4jjVBkRERERQ6kyIiIi4kRawOo4VUZERETEUEpGRERExFCaphEREXEiLWB1nCojIiIiYihVRkRERJxIC1gdp2REREREKjhz5gwJCQlcvHiRRx99lCVLltCwYcMKfcaNG8fZs2cBsFqtfPPNN6SmpuLn50dAQAAtWrSw912/fj1ms/mW51MyIiIiIhXMnTuXUaNGMXjwYFasWMHKlStJSEio0GfVqlX2P7/++ut06dKFjh07cvjwYbp27cqaNWvu+nxaMyIiIuJEtjKr4a+fo7S0lH379vHEE08AEBkZyaZNm27Z/+jRo6SlpfHSSy8B5Q+tzc/PJzIykujo6Lt6ZpwqI/eQ5eRlo0MQEZF/c/F6wOgQqkxRURFFRUWV2j08PPDw8LjtsQUFBbi7u1O3bnmK4OXlRW5u7i37r1y5kqeffhp3d3cATCYTAwYM4Nlnn+Xbb7/lmWee4eOPP+ahhx665RhKRkRERJzIZrEZHQJvv/02y5cvr9QeHx/PhAkT7O8zMzNZsGBBhT6tWrXCZDJVaPvx+xsKCwv529/+xvz58+1tI0eOtP+5Q4cOdOrUiQMHDjBw4MBbxqtkREREpJYZM2YMERERldp/XBUJDw8nPDy8QltpaSkBAQFYLBbMZjPnz5/H29v7puf5/PPPCQkJoV69eva2tLQ0unXrRsuWLQGw2Wy4uLjcNl6tGREREallPDw88PX1rfS60xQNgIuLCz169GDjxo1AeXIREhJy077Z2dn06NGjQtvXX3/Nm2++CZSvJ8nJyaF79+63PaeSEREREScyevGqM/Y5mT17NikpKQwaNIj9+/czadIkAD744ANef/11e7/vv/+epk2bVjg2Li6O/Px8fv3rXzNx4kQSExPt60luxWSz2Yyf3LpPlHx5xugQRETk39y6+1TJuHsfX3DnTlXsl4enGR2CQ7RmRERExIn0bBrHaZpGREREDKVkRERERAylaRoREREn0oPyHKfKiIiIiBhKlREREREnUmXEcaqMiIiIiKGUjIiIiIihNE0jIiLiRNpnxHGqjIiIiIihVBkREbudB3fzRvJqrpeV0q5Fa+bEJuDeoGGlfp9kbeXtT5IxmUy4ubrx0pgJ/KJ1ewqvFDHvzVf5+sR31K/nxrC+YYx6ItKAKxGRmqTWJyObNm0iKSmJsrIybDYbw4YNIyYmhjfeeIPevXtXetqgyP0qv+gSs/5rEW/PXkarh3159YP/4vXkJGb84YUK/Y6fOcmr/72K5PlJeDVqzK6DX/Diq7PYvOxDFr+7ggZu9flo8VtYrVYmLf0Tzb0epm+3XgZdlci9p2kax9XqaZrc3FwSExNZs2YNGRkZJCcns3HjRrZt28a+ffuwWCxGhyhSbew+tI/HW7en1cO+AEQPHMbGv23jx8/SdHFxZfYzk/Fq1BiADq3bc+FSPqVlpfzPsW/4dZ9QzHXMuNR1IbhrAJ/u/fyeX4uI1Cy1ujJSUFBAaWkpJSUlADRs2JCFCxeyZcsWDh8+zMyZM1m+fDmurq7MmjWLS5cu0aBBA2bMmEGnTp2YOnUqly5d4sSJEyQkJNCkSRMWLFhASUkJjRo1Yu7cubRo0cLgqxRxjnP552na2Nv+vulDXlz5oZjiH65WmKpp7tWM5l7NALDZbCx5byX9uvfGpa4LHR/z55OsLXRp9zilZaV8uncXdc3me34tIkay2lQZcVStTkb8/PwYMGAAAwcOxN/fn4CAAIYMGUJ8fDx79uwhPj6e9u3bM2LECGJjYwkNDSU7O5uJEyeyefNmAB588EFWrVrF9evXGTFiBKtWrcLHx4ddu3bxpz/9ibVr1xp7kSJOYrNaMWGq1F6nzs0LqFdLfmDWqkTO5eex8qVFAPxx9Hheef8/+e30Z2ji+RC9OnYn+5t/VmncIlLz1epkBGDu3LmMHz+erKwssrKyiI6OZsmSJfbPi4uLOXnyJKGhoQB06dIFT09Pjh49CkCnTp0AOH78ON9//z3PPfec/dgrV67cwysRcb4Vf32Tzw/8HYArV6/StuWj9s/y8s/j0fABGrjVr3Tc2Qu5PL9kOo/6tGL1zFdxc60HQPEPxbww6lk83T0AWJ32Hi2bNb8HVyIiNVmtTkZ27NjB1atXGTRoEFFRUURFRZGSkkJqaqq9z4/nw2+03VhP4ubmBoDVasXX15f09HQALBYLFy5cuAdXIVJ14n7zB+J+8wcALhYWMOKlpzlx9hStHvblr9s+pl/3oErHFP9wlaf/8gJDQ55gXNSYCp/99dMMrvxwleljJ3KxMJ/1n21k0fOz7sm1iFQX1pv8XJHbq9ULWN3c3Fi6dCmnTp0CypOMnJwc/P39MZvNWCwW3N3d8fX1ZcuWLQBkZ2dz4cIF2rZtW2Gs1q1bU1hYyP79+wFYt24dkydPvrcXJFKFGns24s/PTmHy67MZPnkM335/lMm/K68E/vPo10RPiwEgectHnL2Qy/b9u4ieFmN/XbpcyNPDRpOXf57IKWOJmfci438zlsfb+Bl5WSJSA5hsNysN1CIfffQRa9asobS0FIDg4GCmTJnCu+++S3JyMomJiXh6ejJnzhwuXbqEi4sLM2fOpFu3bkydOpVf/vKXREaW75Nw8OBB5s+fz7Vr13B3dycxMZGWLVvedSwlX56pkmsUERHHuXX3qZJxtzebWiXjOqL/uYVGh+CQWp+MVCdKRkREqg8lI9VHrZ6mERERkeqvVi9gFRERude0z4jjVBkRERERQ6kyIiIi4kS6tddxqoyIiIiIoZSMiIiIiKE0TSMiIuJEWsDqOFVGRERExFCqjIiIiDiRKiOOU2VEREREDKVkRERERAylaRoREREn0j4jjlNlRERERAylyoiIiIgTaQGr41QZEREREUMpGRERERFDaZrmHrrc8gGjQxARkX9zq6JxLZqmcZgqIyIiImIoJSMiIiJiKE3TiIiIOJH2GXGcKiMiIiJiKFVGREREnEj7jDhOlRERERExlJIRERERMZSmaURERJxI0zSOU2VEREREDKXKiIiIiBPp1l7HqTIiIiIihlIyIiIiIobSNI2IiIgTaQGr41QZEREREUOpMiIiIuJEFlVGHHZfJSOnTp0iLCyMNm3aAFBSUkK3bt344x//SJMmTRweb9q0acTHx9O8eXNnhyoiInLfuO+maby9vUlPTyc9PZ1NmzbRpEkTnn/++Z801p49e7DpFi4REZGf5b6qjPyYyWRiwoQJBAUFceTIEXbu3ElmZiYWi4U+ffqQkJDA6dOnee6552jdujX/+te/8PHxYfHixaSkpJCXl0dsbCzvv/8+jRo1MvpyRESkGtACVsfdd5WRH3N1daVVq1YcOXKEw4cPk5qaSlpaGrm5uWRkZADwzTffMGrUKDZs2ECbNm1Yvnw5sbGxeHt7k5SUpERERETkZ7ivKyM3mEwm3nnnHfLz84mMjATK15P4+PjQvXt3HnnkEQICAgAYPnw4kydPNjJcERGpxrQDq+Pu+2Tk+vXrHDt2jICAAIYMGcLYsWMBKCoqwmw2U1BQQN26//c12Ww2zGazUeGKiIjUOvf1NI3VamXZsmV07tyZqKgo0tPTKS4upqysjLi4ODZv3gzAsWPHyMnJAWDdunWEhIQAYDabsVgshsUvIiJSG9x3lZG8vDyGDRsGlCcj/v7+vPLKK3h6enLkyBGio6OxWCwEBwcTERHB6dOn8fT05I033uDkyZO0b9+eefPmAdCvXz9iY2NZvXo1LVq0MPKyRESkmtACVseZbLo39bZOnTrFU089xfbt23/2WOfPX3ZCRCIi4gxeXg9Uybir3Z6sknEdEVPyrtEhOOS+nqYRERER49130zSO8vX1dUpVRERE7g+apnGcKiMiIiJiKFVGREREnEj7jDhOlRERERExlJIRERERMZSmaURERJzIogWsDlNlRERERAylyoiIiIgT6dZex6kyIiIiIoZSMiIiIiKG0jSNiIiIE2mfEcepMiIiIiI39dprr7Fs2bKbfnb9+nUSEhIIDw8nIiKC7777DgCbzUZiYiJhYWEMGjSIL7/88o7nUTIiIiLiRFab1fDXz3X58mWmT5/OW2+9dcs+7777LvXr1yczM5Pp06czbdo0ADZv3sx3333Hxo0bWbFiBdOmTaOsrOy259M0jYiISC1TVFREUVFRpXYPDw88PDzuePy2bdt45JFHGDt27C377Nixg4kTJwLQs2dP8vPzOXPmDJ9//jmDBg2iTp06PProozz88MMcPHiQnj173nIsJSP3kJfXA0aHICIiVewF6zqjQ2DZsmUsX768Unt8fDwTJky44/HDhw+3j3MreXl5eHl52d97eXlx7tw58vLy8Pb2rtR+O0pGREREapkxY8YQERFRqf3HVZHMzEwWLFhQoa1169asXbv2juew2WyYTKYK7+vUqYPVar1p++0oGREREall7nY6Jjw8nPDw8J90jqZNm5KXl0fLli0BuHDhAt7e3jRr1oy8vDx7vxvtt6MFrCIiIuKwvn37kp6eDsD+/fupV68ePj4+hISE8PHHH2OxWDhx4gTHjx+nY8eOtx1LlRERERG5Kx988AF5eXlMnDiRJ598klmzZjF48GBcXV1ZtGgRAGFhYRw6dIihQ4cCMH/+fNzc3G47rslm0+4sIiIiYhxN04iIiIihlIyIiIiIoZSMiIiIiKGUjIiIiIihlIyI1BBjx47l008/tb9PTEyka9euXL9+3d7Wp08fTp065dC4/fv3r3TM+vXrmTp16k+Kc9OmTURGRjJ06FCGDBnC6tWr73jMk08+yZ49e37S+USk5lMyIlJDBAYGVnj65d///ne6dOlibztx4gQNGjTA19fXqBDJzc0lMTGRNWvWkJGRQXJyMhs3bmTbtm2GxSQi1Z+SEZEaolevXhw8eBAo/6Hv6urKE088QVZWFlC+6VBQUBBpaWlEREQwbNgwpk+fzrVr1wDYuXMnI0aMYPjw4cTHx1NQUFBh/GPHjhEaGkp2dra9bffu3YwcOdL+fv369cyePfuWMRYUFFBaWkpJSQkADRs2ZOHChTz22GNA+dbT0dHRDB06lLCwMA4cOFBpjKSkJCIiIhg6dCiLFi3CZrNx5coVYmNjiYyMJDIyUsmNSC2jZESkhvjFL37ByZMnuXbtGllZWQQFBREUFFQhGfH29iYlJYXk5GTS09Np3Lgxa9asIT8/n6VLl7JmzRrS0tLo06cPS5YssY997tw54uPjefnll+nSpYu9PTAwkPPnz3Py5EkA0tLSiIyMvGWMfn5+DBgwgIEDBzJixAgWL16M1WqlVatWWK1WkpOTWbVqFRkZGcTExJCUlFTh+J07d3L48GFSU1NJS0sjNzeXjIwMtm7dSvPmzVm/fj3z589n//79TvxmRcRo2oFVpIYwm8107tyZr776iqysLEaPHk2LFi0oKSmhsLCQgwcP4u/vz4kTJ4iOjgagtLSUDh068I9//IOzZ8/y1FNPAWC1WvH09LSPPXHiRDp27EiPHj0qnNNkMhEREUFGRgaRkZFcvHiRzp073zbOuXPnMn78eLKyssjKyiI6OpolS5YQGhrKihUr2L59O8eOHWPv3r2VHp61e/duDh06ZE94SkpK8PHxISoqildeeYXc3Fz69etHXFzcz/4+RaT6UDIiUoMEBgZy4MABDh06xOLFi4Hy6Ztt27bRqFEjbDYb4eHhzJw5E4Di4mIsFgt79+6lW7durFq1CoBr165RXFxsH3fGjBmsWLGCHTt20K9fvwrnjIiIICYmBldXV4YNG3bb+Hbs2MHVq1cZNGgQUVFRREVFkZKSQmpqKkFBQYwYMYKhQ4fSs2dP2rdvz/vvv1/heIvFwpgxYxg7diwARUVFmM1mGjZsSGZmJrt27eKzzz7jzTffZOPGjXd8EqiI1Az6lyxSg/Tq1Yv09HTatWtH3brlv0sEBQXx1ltvERQUREBAAFu3buXixYvYbDbmzJnD22+/TefOncnOzubYsWMArFy50v4cCYBOnToxZ84c/vznP3P16tUK52zevDnNmjUjOTn5jsmIm5sbS5cutd+dY7PZyMnJwd/fn+PHj2MymRg3bpw9TovFUuH4wMBA0tPTKS4upqysjLi4ODZv3sx7773HsmXLCA8PZ/bs2eTn53PlypWf/X2KSPWgyohIDdKuXTsuXbrEqFGj7G2BgYFMmjSJ3r174+fnR3x8PGPGjMFqteLv709sbCz16tXj5ZdfZtKkSVitVpo2bWqvrNzQs2dPAgICeO211/Dz86vw2aBBg9iyZQtNmza9bXyBgYHEx8czbtw4SktLAQgODiYuLg6z2Yy/vz/h4eGYTCb69OlT4e4gKL/N+MiRI0RHR2OxWAgODiYiIoLi4mJefPFFhgwZgtlsJiEh4a4ejy4iNYMelCcit1VWVsaUKVMICwsjNDTU6HBEpBZSZUREbslmsxEcHEzv3r0ZOHAgUH7Xzl/+8peb9k9KSrpj9URE5MdUGRERERFDaQGriIiIGErJiIiIiBhKyYiIiIgYSsmIiIiIGErJiIiIiBhKyYiIiIgY6n8BLBzJ1uDRRkIAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 576x864 with 2 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.figure(figsize=(8, 12))\n",
-                "heatmap = sns.heatmap(clean_data2.corr()[['Weekly_Sales']].sort_values(by='Weekly_Sales', ascending=False), vmin=-1, vmax=1, annot=True, cmap='PiYG')\n",
-                "heatmap.set_title('which features influence Weekly Sales the most ?', fontdict={'fontsize':18}, pad=16);"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 58,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Store           0\n",
-                            "Dept            0\n",
-                            "Date            0\n",
-                            "Weekly_Sales    0\n",
-                            "IsHoliday       0\n",
-                            "Temperature     0\n",
-                            "Fuel_Price      0\n",
-                            "MarkDown1       0\n",
-                            "MarkDown2       0\n",
-                            "MarkDown3       0\n",
-                            "MarkDown4       0\n",
-                            "MarkDown5       0\n",
-                            "CPI             0\n",
-                            "Unemployment    0\n",
-                            "Type            0\n",
-                            "Size            0\n",
-                            "Week            0\n",
-                            "Year            0\n",
-                            "dtype: int64"
-                        ]
-                    },
-                    "execution_count": 58,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "clean_data2.isnull().sum()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 59,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "clean_data3 = clean_data2.drop(['CPI', 'Fuel_Price', 'Dept'], axis = 1) "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 60,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "Store           0\n",
-                            "Date            0\n",
-                            "Weekly_Sales    0\n",
-                            "IsHoliday       0\n",
-                            "Temperature     0\n",
-                            "MarkDown1       0\n",
-                            "MarkDown2       0\n",
-                            "MarkDown3       0\n",
-                            "MarkDown4       0\n",
-                            "MarkDown5       0\n",
-                            "Unemployment    0\n",
-                            "Type            0\n",
-                            "Size            0\n",
-                            "Week            0\n",
-                            "Year            0\n",
-                            "dtype: int64"
-                        ]
-                    },
-                    "execution_count": 60,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "clean_data3.isnull().sum() "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 61,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<AxesSubplot:>"
-                        ]
-                    },
-                    "execution_count": 61,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAE/CAYAAAAT0Vc7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABZeElEQVR4nO3deVxUZfv48c+ICirhvmSapalohUsZKEoKpqIgi7grflv0sUCzJ33C3HBf0CzRMssts5RQAXdyS0jcU9TQFrfcEEVBRbaZ8/uDn5MTmMPMQYbhevc6rxdzZuY695BwcZ9zn+vSKIqiIIQQQliYMsU9ACGEEKIgkqCEEEJYJElQQgghLJIkKCGEEBZJEpQQQgiLJAlKCCGERZIEJYQQolDu3r2Ll5cXly5dyvdcUlIS/v7+dO3alXHjxpGbm2vycSRBCSGEMNrx48fp378/58+fL/D5MWPGMHHiRLZv346iKERERJh8LElQQgghjBYREcGkSZOoVatWvucuX75MZmYmLVu2BMDf359t27aZfKyyJr9TCCGEVUhPTyc9PT3ffgcHBxwcHAz2TZ8+/ZFxrl+/Ts2aNfWPa9asSXJyssnjkgT1BDkOratqvP8sbatqPIDeM4erGu/kXNP/enoUx+Gvqx5TbTa25VWPqc3KVjVehWdrPv5FhVTdrbGq8Y4NWKZqPIA6fVqpHrMo1PvoDbNjGPs7J8hpLAsXLsy3Pzg4mBEjRhh9PJ1Oh0aj0T9WFMXgcWFJghJCCCulMfIizpAhQ/Dz88u3/5+zp8epU6cOKSkp+sc3btwo8FSgsSRBCSGElSpTxrjZS0Gn8kzxzDPPYGtry5EjR3jllVeIjo7Gzc3N5HiySEIIIayURmPcZq6hQ4dy4sQJAObOncvMmTPp1q0bGRkZBAYGmhxXZlBCCGGlbMqqkH0eYdeuXfqvv/rqK/3Xjo6OREZGqnIMq09Q27ZtY8mSJeTm5qIoCj4+PrzzzjssWLCAdu3a8eqrrxb3EIUQokiUKeHnyKw6QSUnJzN79mzWr19P1apVuXfvHoMHD+b555/n0KFDODs7F/cQhRCiyBi7SMJSWXWCunXrFjk5OWRmZgJQqVIlZs2aRWxsLCdPnmT8+PEsXLiQ8uXLM3HiRG7fvk3FihUZN24cTk5OhISEcPv2bS5cuMCYMWOoUaMGM2fOJDMzk6pVqzJ58mTq169fzJ9SCCEKVkaNC0zFyKoTlKOjIx4eHnTu3JlmzZrh7OyMt7c3wcHBHDhwgODgYJo2bUpAQADDhg2jS5cuHDt2jPfff5/t27cDUKVKFRYvXkx2djYBAQEsXryYunXrEhcXx4QJE1ixYkXxfkghhHgEmUFZuMmTJ/Pee+8RHx9PfHw8ffr0Ye7cufrn7927x8WLF+nSpQsALVu2pHLlypw9exYAJycnAM6fP89ff/3Fu+++q3/v3bt3n+AnEUKIwrEp4b/hS/jw/92ePXvIyMige/fu9OrVi169ehEREWGwwkRRlHzvUxQFrVYLgJ2dHZB3h3S9evWIjo4GQKvVcuPGjSfwKYQQwjTG3gdlqUr4BPDf2dnZMW/ePH1JeEVRSEpKolmzZtjY2KDVarG3t6devXrExsYCcOzYMW7cuEHjxoYlWxo2bEhaWhqHDx8GYN26dYwePfrJfiAhhCiEJ3UfVFGx6hmUi4sLwcHBDB8+nJycHAA6dOhAUFAQq1atYtKkScyePZuwsDBCQ0MJDw+nXLlyhIeHU768YS218uXL89lnnzF9+nSysrKwt7dn9uzZxfGxhBDCKLLM3ML5+fkVWGPq7bff5u2339Y/XrVqVb7XzJo1y+Bxq1atVLsBTQghipqmhJ/is/oEJYQQpZXMoIQQQlgkGxuZQQkjqd2/6cu3E1SNBzD46bGqxnu65fOqxgOo3aO1qvHu/XZN1XgAtk9XVT1mGVsbVePp7ueqGg/gxNBvVY1XL85T1XgA5aK16sesXFH1mGqQ+6CEEEJYJDnFJ4QQwiLJIgkhhBAWSWZQQgghLFJJXyRR6Pz65ptvsmPHDv3j2bNn06pVK7Kzs/X72rdvr6/eYCx3d/d871m/fj0hISGFHSKQ1wfK39+fnj174u3tzddff/3Y9wwePJgDBw6YdDwhhLA0mjLGbZaq0ENzcXHhyJEj+sf79u2jZcuW+n0XLlygYsWK1KtXT71RFtKDPlBLly4lJiaGNWvWsGXLFnbu3FlsYxJCiCetTBmNUZulKnSCatu2Lb/88guQlwjKly9P165diY+PB+Dw4cO4uroSFRWFn58fPj4+fPzxx2RlZQGwd+9eAgIC8PX1JTg4mFu3bhnEP3funL7txQMJCQn069dP/3j9+vVMmjTpkWN8VB+oF154AYCtW7fSp08fevbsSbdu3Th69Gi+GEuWLMHPz4+ePXsyZ84cFEXh7t27DBs2DH9/f/z9/SXhCSEsWhmNxqjNUhU6Qb344otcvHiRrKws4uPjcXV1xdXV1SBB1apVi4iICNasWUN0dDTVq1dn6dKlpKamMm/ePJYuXUpUVBTt27c3aH1x7do1goODmTFjBi1bttTvd3FxISUlhYsXLwIQFRWFv7//I8f4cB+ogIAAwsLC0Ol0NGjQAJ1Ox5o1a1i8eDExMTG88847LFmyxOD9e/fu5eTJk0RGRhIVFUVycjIxMTH8+OOPPPPMM6xfv57p06frC8cKIYQlKukzqEIvkrCxsaFFixacOHGC+Ph4Bg4cSP369cnMzCQtLY1ffvmFZs2aceHCBfr06QNATk4OzZs35/jx41y9epXAwEAgr4VF5cqV9bHff/99Xn75ZV599VWDY2o0Gvz8/IiJicHf35+bN2/SokWLfx3no/pAdenShUWLFrFr1y7OnTvHwYMHKfOPpS4JCQkkJibqk2BmZiZ169alV69efPLJJyQnJ9OxY0eCgoIK++0TQognxpKTjzFMWsXn4uLC0aNHSUxMJCwsDMg79bdz506qVq2Koih4enoyfvx4IK8poFar5eDBg7Ru3ZrFixcDkJWVxb179/Rxx40bx6JFi9izZw8dO3Y0OKafnx/vvPMO5cuXx8fH51/H9299oFxdXQkICKBnz560adOGpk2bsnr1aoP3a7VahgwZwptvvglAeno6NjY2VKpUia1btxIXF8fu3btZtmwZW7ZsyZfghBDCEpS1Ubf6yJNm0m/Wtm3bEh0dTZMmTShbNi/Hubq6snz5clxdXXF2dubHH3/k5s2bKIpCaGgoK1eupEWLFhw7doxz584B8PnnnzNnzhx9XCcnJ0JDQ5kyZQoZGRkGx3zmmWeoU6cOa9aseWyC+rc+UOfPn0ej0TB8+HD9OB80J3zAxcWF6Oho7t27R25uLkFBQWzfvp1vv/2W8PBwPD09mTRpEqmpqdJVVwhhsUrdKT6AJk2acPv2bQYMGKDf5+LiwqhRo2jXrh2Ojo4EBwczZMgQdDodzZo1Y9iwYdja2jJjxgxGjRqFTqejdu3a+hnYA23atMHZ2ZlPP/0UR0dHg+e6d+9ObGwstWvX/tfx/VsfKBsbG5o1a4anpycajYb27dsbrEqEvCXvp0+fpk+fPmi1Wjp06ICfnx/37t3jv//9L97e3tjY2DBmzBgcHBxM+RYKIUSRs+QFEMbQKAX1PLdAubm5/O9//6Nbt2506dKluIdjkvlleqkaryiKxcZ3iFE13uVV+1WNB9Bkqq+q8aRYrHr+mL5J1XhPb/NQNR6UnGKxDt2bmB1jyMqXjXrdyiEnzD5WUSgRlSQURaFDhw60a9eOzp07A3mrBadOnVrg65csWfLYWZYQQli7ojh9t3HjRr744gtyc3MZMmQIAwcONHj+1KlTTJw4kZycHJ5++mnCwsJMPtNUIhKURqMhIcFwtvDqq68SHR1dTCMSQgjLp/YpvuTkZObPn8/69espX748/fr1w9nZWX+PKcD06dMZOXIkr7/+OrNmzWLp0qV88MEHJh2vRCQoIYQQhVe2rHGnhdPT00lPT8+338HBwWD2s2/fPlxcXKhSpQoAXbt2Zdu2bQQHB+tfo9Pp9Kuz79+/b3ArUaHHb/I7RaH1njlc1XhqNxcEaB/XU9V4y84MVTUeQEpsoqrx6r3pqmo8AG1F9Zf3pnyr7o3h2Tfy/0IyV23ff78/sbByw9W/PvhU28aqx7z87c+qx1TjGpTGyBnUypUrWbhwYb79wcHBjBgxQv/4+vXr1KxZU/+4Vq1aJCYa/jyGhITw1ltvMWPGDCpUqEBERISJo5cEJYQQVsvYa1BDhgzBz88v3/5/XjvS6XQGSU9RFIPHmZmZjBs3jhUrVuDk5MTy5cv56KOP8lXrMZYkKCGEsFLGJqh/nsp7lDp16hiUeEtJSaFWrVr6x7/99hu2trY4OTkB0LdvXz777LNCjvpvUgJBCCGsVBlNGaM2Y7Vr146EhARSU1O5f/8+sbGxuLm56Z9v0KAB165d4+zZswDs3LmTl182bql7QWQGJYQQVqqsjbpzkNq1a/PBBx8QGBhITk4OAQEBODk5MXToUEaOHMnLL7/MzJkzGTVqFIqiUL16dWbMmGHy8SwyQTVt2pQzZ8488vnBgwcTHByMs7Ozfl9ISAivvfbav1Y5d3d355tvvuHMmTOcPHmS999/3+D5AwcOsHDhQlatWmX+hxBCiGJWFPdBeXt74+3tbbDvq6++0n/9+uuv8/rrr6tyLItMUEXNw8MDDw/171AXQghLUtILWVv06K9du8agQYPw9/cnICDAoInhv9m9ezc+Pj54e3vz3nvvcePGDYPnH24lHx8fT48ePfD39zdYDnnw4EH69++Pn58fHh4e7Nixg7t37+Ls7KwvEHvp0iW6d++uzocVQgiVlfSGhRY9g4qMjKRjx46888477N27lyNHjugbGY4fP56KFf+uf3X16lVee+01bt68ycSJE/n++++pV68eX3/9NVOmTGHBggX54mdnZxMSEsLKlStp1KgR48aN0z/37bffMm3aNBo1akRCQgIzZsygc+fOdOzYkW3bthEQEEBUVBS+vr5F/W0QQgiTWHKlcmNY9Ayqbdu2LFu2jA8//JDbt28zaNAg/XPTpk0jOjpav7m7uwOQmJiIk5MT9erVA/KWOe7fX3DB0jNnzlCrVi0aNWoEYHAfQFhYGL///juLFi1i+fLl+juje/XqpS+xtGnTpse2/hBCiOJS0tttWHSCeuWVV9i8eTPt27dny5YtDB/++EoMOp3O4LGiKOTmFly1WaPR8HAxd5uHmnsNGDCAxMREXnrpJYPjtmnThuvXrxMbG0u9evWkKK0QwmKVtbExarNUFp2g5syZQ0xMDH5+fkycOJFff/31se9p0aIFx48f1zcrXLt2rcFqv4c1bdqUGzducPr0aQA2b94MwO3btzl//jzvv/8+bm5u7Ny5U9/UUKPR4Ovry7Rp0/51xaAQQhS3MhobozZLZdHXoAYPHsyHH37I+vXrsbGxYfbs2Y99T40aNZgyZQrBwcHk5ORQt25dpk+fXuBry5UrxyeffMKYMWMoW7YszZs3B6BKlSoEBATQo0cPypYti4uLC5mZmWRkZFCxYkV69OjBsmXL9K0/hBDCEpX0VXwlpmGhpdDpdHz//fecO3eO8ePHF+q9l2b/qOpY7IqgKZ7qxWK3q18stt47Bc+ITY4nxWJVU77qU6rG0+Wo31SxagkpFttkycDHv+gxZv5k3Crjsa9vMftYRcGiZ1CWKDg4mKtXr7J06dLiHooQQvyrMmUs9/SdMSRBFdLnn39e3EMQQgijWPL1JWNIgnqCTs7dpmq8p1s+r2o8UL9/01tdv3r8iwppZ0W3x7+oEGJbT1E1HkBDv9aqxyzrYKdqvAoNaj7+RYVUrqq9qvHKV1M3HoBdI/VPjdfwML0galEqZ1OuuIdgFklQQghhpeQUnxBCCItUmFYalkgSlBBCWCmZQQkhhLBINrJIQgghhCUqK4skDE2ePJmjR4+Sk5PDxYsX9YVYAwMD6dWrl9qHM9mdO3cICQlh0aJFxT0UIYQoErLM/B8mTZoE5PVKCgwM1Ff+tjRpaWkkJSUV9zCEEKLI2Mg1qMe7cOECoaGh3L59Gzs7OyZMmEDz5s0JCQmhQoUK/Prrr6Snp/Pf//6X6OhoTp8+TefOnQkJCWH9+vXs2bOHmzdvkpKSQqdOnQgJCUGj0bBkyRK2bt2KVqulffv2jBkzhsuXL/POO+9QtWpV7OzsCA8P5+OPPyY5OZnr16/Ttm1bpk+fzrRp07h+/TpBQUGMHTuWwMBAdu3aBUB4eDgAI0aMwMXFhZdeeomUlBQiIyNZvnx5vmNqLLjhlxCi9JJVfEb46KOPmDhxIs2bN+ePP/4gKCiI7du3A3D9+nXWrl3Lhg0bGDt2LNu3b8fW1hY3NzeCgoIAOHLkCNHR0Tg4OBAYGMiPP/6InZ0dJ0+eJDIyEo1Gw5gxY4iJieGVV17h3LlzfP3119SrV49NmzbRrFkzFixYQHZ2Nj169ODUqVOMHz+ewMBAFi1apK98XpBbt24xdOhQnJ2d2bt3b4HHlJ5QQghLJKv4HuPevXucPHmSsWPH6vdlZGRw69YtANzc8qoC1K1bl8aNG1O9enUgr6J4WloaAB4eHtSoUQOA7t27s3//fmxtbUlMTNS3vMjMzKRu3bq88sorVK9eXd+w0MvLi8TERFasWMHZs2e5ffs2GRkZVKlSxejP0KJFCwASEhIKPKYQQlgiuQb1GDqdjvLlyxtci7p27Zo+QZQr9/cqk7JlCx7Ow40EdTodNjY2aLVahgwZwptvvglAeno6NjY23Lp1Czu7v0vCrFq1iu3bt9OnTx/atWvHb7/9xj8LuP+zcWFubq7BWB7Ee9QxhRDCEpX0UkdFfoLyqaee4rnnntMnqJ9//pmBAwtXRj4uLo47d+6QlZXF5s2bcXNzw8XFhejoaO7du0dubq7BacOH/fzzz/Tt25eePXuSlZXF6dOn0el0lC1bVt9p18HBgdu3b5Oamkp2djZxcXEFjsPYYwohhCWQhoVGCAsLIzQ0lK+//ppy5coxf/78Qi0sqFatGkOHDuXWrVv07NmTDh06AHD69Gn69OmDVqulQ4cO+Pn5cfnyZYP3DhkyhNDQUJYsWYK9vT2tWrXi0qVLvPrqq9StW5fBgwezatUq3nnnHQICAqhTpw4vv1xw4Ud3d/cCjymEEJaopF+DsviGhevXr+fgwYPMmjWruIditm01P1Q1XlFUM793JkXVeEVSzbzpKlXjnZitfrM2qWaujqKoZl6pRW3VY6bFX1A9ZrW+TmbH2Hg21KjXeTc07nUAGzdu5IsvviA3N5chQ4bkOyN29uxZJk2aRFpaGjVr1uSTTz6hcuXKxg/6ISV7DaIQQohHsiljY9RmrOTkZObPn893331HVFQUa9eu5Y8//tA/rygK7777LkOHDiUmJoZmzZqxZMkSk8dv8aWO/P399avmhBBCGE/t60v79u3DxcVFv8ita9eubNu2jeDgYABOnTpFxYoV9auzhw8fTnp6usnHs/gEZU0ch7+uarzaPdQ/jZQSm6hqPLWbCwJ4nBmsarzjsUdUjQdwLUr9mCH1x6ga78uBe1SNB/B7R3VPvzb8yFPVeAC/Dv9e9Zj3v66keszXMP8UX9kyxq3iS09PLzCRODg44ODgoH98/fp1atb8+9RwrVq1SEz8+3fGxYsXqVGjBh9//DFJSUk0bNiQCRMmmDx+OcUnhBBWythVfCtXrsTDwyPftnLlSoN4Op3OYIGboigGj3Nzczl48CD9+/dnw4YN1K9f36z1AzKDEkIIK6Ux8hTfkCFDClyR/PDsCaBOnTocPnxY/zglJYVatWrpH9esWZMGDRroV0J7eXkxcuRIU4YOSIISQgirZew1qH+eynuUdu3aER4eTmpqKhUqVCA2NpapU6fqn2/VqhWpqamcPn0aR0dHdu3axYsvvmjy+CVBCSGElSqDuoskateuzQcffEBgYCA5OTkEBATg5OTE0KFDGTlyJC+//DKLFi1i/Pjx3L9/nzp16jBnzhyTj1ekCerSpUt4eHjQt29fpkyZot+flJSEr68vM2fONGqF3oPWHQ+qjT8QHh7OmjVrqFGjBoqioNPp6NevH4MGDVL9szwsOTmZXr16ER8fX6THEUIIc5QtU171mN7e3nh7exvs++qrv+93bNGiBZGRkaocq8hnUFWqVCEuLg6tVquvW7dlyxaqVaumSvx+/foxYsQIAFJTUxkyZAi2trb07t1blfj/9NNPPzFjxgxSUtS9oVUIIdRm7DUoS1Xkq/gqVapEs2bNOHTokH7fzz//TLt27QD49ttv6d27N15eXvj5+XH27Fkgr6zQqFGj6Nq1K6mpqfr3bt++nZ49exrse6BatWq8++67fPfddwDcuHGD//znP3h7e+Pn58fevXtJTU3Vl0oC6NChA1u25FUS+PLLL/n6668JDw9n/PjxDB48GHd3d7744gv96yMjI/X9ooQQwpKVwcaozVI9kWXmnp6e+qKqiYmJNG3alHLlynH37l127NjBqlWr2LRpEx07dmT16tX697m5ubF9+3b9bCs+Pp5FixaxbNmyR87AmjRpok9yU6dOxcXFhY0bN7JgwQI+/vhjdDodTz/9NL/99ht//vknWq2WgwcPAnlFaTt16gTAmTNnWLp0KT/88ANLlizR3yMQHh5OkyZNiuYbJYQQKiqjKWPUZqmeyMjc3d3Zu3cvOp2OrVu34umZd/Odvb098+bNY/PmzcybN4/du3eTkZGhf9+DPkyQ1zhwxIgR+Pr66ntDFUSj0ejbY+zfv5+AgAAA6tevT4sWLTh+/Dhubm4kJCSwf/9+AgMDOXLkCHfu3OHGjRs0atQIAGdnZ8qXL0/16tWpUqUKd+7cUf37IoQQRamkVzN/IgmqUqVKODo6cuTIEfbv368/vXf16lX69u3LnTt3cHNzw8/Pz6Avk62trf5rjUbD559/ztKlS0lOTn7ksc6cOaNPMv+sg6soClqtlo4dO5KQkMCBAwd44403KFOmDBs3bqR9+/aPPLaF19QVQoh8JEEZydPTk3nz5vHSSy/pmwFWrFiRBg0a8H//93+8/PLL7NixA61WW+D7q1SpQtu2benfvz/Tpk0r8DXXr19n8eLF+uq6Li4u+tUkf/31F0ePHqVly5a8+OKLnDt3jvPnz9OoUSOcnZ354osv9Kf3hBDCGthoyhu1Waondh9Up06dGDduHO+//75+X7ly5dDpdHTv3h1FUWjTpg2///77v8YZNmwYPXv2ZMeOHQCsWbOGHTt26Gc5ffv2pUePHgCMGzeOiRMnsn79egCmTZumv+v5lVde4f79+0BeIvvhhx9o06aN6p9bCCGKiyXPjoxh8f2grMn5CTGqxisJxWJtKto+/kWFpHqx2PekWKxaSkKx2EvLC+6YbY4iKRZb2/x/50m3thr1umZV1f8+q0EqSQghhJUq6TMoSVBCCGGlSvqNupKghBDCSpXVGNcPylJJgirB7v12TfWY9d50VTVebOspj39RIandYLDF56+oGg/gxwbLVI+5pMEmVeNp9t1TNR5AlXYNVI2Xc+uuqvEAqjg/p3rMRmdNr9j9SLXNDyGn+IQQQlgkSVBCCCEsksaC6+wZQxKUEEJYKZlBCSGEsEglPUEVaamjS5cu0bRpUyZOnGiwPykpiaZNm+orPBgTx93dPd/+8PBwXF1d8fHxoWfPnnh5efHtt9+qMvaCaLVaJk2ahJeXFz169GDFihVFdiwhhDCXBhujNkslDQsLYf369dy+fZuYmBgyMzMJCAigTZs2vPhiEazgEUIIM2meXLnVIiENCwvRsLBx48YEBQVRpkwZKlasSP369bl69arK3zEhhFCHxsj/LJU0LCxEw8KWLVvqmxUePXqUxMREKTArhLBgZYzcLJM0LDShYeGhQ4cYOXIkc+fOpXLlyup9o4QQQkUygzKCNTUsjI2N5f3332fevHm4uqpbdUEIIdSk0ZQxarNU0rCwEA0LExMTCQ0NZdmyZTg7O5v6rRBCiCdCVvEZyRoaFn7xxRdotVo++ugj/b6RI0fi4eFRyO+GEEIUPUs+fWcMaVj4BKndsNC+cV1V4wFU69RY1XhFUSy2U+xoVeOVlGKxVZzV/X+jKaP+L6/kTeoW8n3qpWdVjQeQdfWW6jGre6h/q0nFtvXNjpF6/6JRr6tWQf3vsxos9+SjEEIIsxTFIomNGzfSvXt3unTpYrDq+p/27NlTYIGFwpBSR0IIYaXUvlE3OTmZ+fPns379esqXL0+/fv1wdnbmhRdeMHjdjRs3mD17ttnHkwT1BNnYllc1nu3TVVWNB6CtqO4F04Z+rVWNB3AtSt3TSNvrLqFMOXV/FN648Jaq8QBidV+rGq8o/v2Uq1pJ1XiZl29Srqq9qjGrv95M1XgAt37+TfWYapziM3YBRHp6Ounp6fn2Ozg44ODgoH+8b98+XFxcqFKlCgBdu3Zl27ZtBAcHG7xv/PjxBAcHM2/ePNMHjyQoIVRPTkI9aien0sbY03crV65k4cKF+fYHBwfrS8lB3krpmjVr6h/XqlWLxMREg/d88803NG/e3OA+VlPJT6YQQlgt407xDRkyBD8/v3z7H549Aeh0OjSav5OeoigGj3/77TdiY2NZsWIF166Z3/FbEpQQQlgpY69BPfWPU3mPUqdOHQ4fPqx/nJKSor91B2Dbtm2kpKTQq1cvcnJyuH79OgMGDNDXRy0sWcUnhBBWSu1VfO3atSMhIYHU1FTu379PbGwsbm5u+udHjhzJ9u3biY6OZsmSJdSqVcvk5ASSoIQQwnppyhi3Gal27dp88MEHBAYG4uvri5eXF05OTgwdOpQTJ06oPnxpWFgIWq2WiRMn4uXlhbe3Nxs3biyyYwkhhLnKYGPUVhje3t5s2rSJ7du3M3ToUAC++uorXn75ZYPX1atXj127dpk1fmlYWAgxMTHcvXuXTZs2kZqaiqenJ506dcLeXlYaCSEsUckudSQNCwvRsNDPz485c+YAecsty5UrR7ly5dT8dgkhhGo0lDFqs1TSsLAQDQsBypYty7hx4wgICKBPnz4GbTmEEMKSSD8oI1hbw8Lp06cTFxdHbGws8fHx6n2jhBBCVRojN8skDQsL0bDw5MmTnD9/HoCqVavSoUMHzpw5Y/o3RgghipJi5GahpGFhIRoWHj9+nLCwMHQ6HXfv3iU+Pp7WrdWvNSeEEGrQ6BSjNkslDQsxvmFhv379OHPmDN7e3pQpU4aBAwfSqlUr074hQghR1Cw39xhFGhY+QX9N26ZqPLUb2AHYta6tarxzY6NVjQdg+3RlVeMVRbHYIqlmXt/yq5mr3QywKIrFVm7ZQPWYtw78oXrMZ0ab36k7607G418E2D5V0exjFQWpxSeEEFZKU8KnH5KghBDCWkmCEsbSZmWrGq+MrbrNBQFSvj38+BcVQlkHO1XjAYTUH6NqvCUNNqkaD9RvLgjQ5a93VI134l31V6D+9u5aVePVHdBW1XgASaN/UD2m409DVY+pCgteAGEMy72FWAghRKkmMyghhLBSmhK+Bk4SlBBCWKuSnZ8kQQkhhNWSBCWEEMIilfBTfNKw0EQjR44kPDz8iRxLCCFModEZt1kqaVhogsjISA4cOEDjxupXchBCCNWU7AmUNCwsTMNCgIsXL7Jhwwb69u2r4ndJCCGKgKIYt1koaVhYiIaFubm5jBs3jsmTJ0snXSGExdMoxm2WShoWFqJhYXh4OG+88QYvvPCC6t8jIYQQhqRhYSEaFm7fvp3IyEh8fHxYs2YNa9as4euv1S9pI4QQqpBTfMaxhoaF27ZtIyYmhujoaPr160e/fv145x1166MJIYRaZBWfkayhYaEQQpQoFjw7MoY0LHyCzk+IUTVezTecVI0HkPbLeVXjZf51U9V4AOMcx6saryiqmd9KUL9SuOrVzGeUzmrmZ2dvVT1mUVQzr2RnfmNO3YXbRr2uTIMqZh+rKEg1cyGEsFY6xbitEDZu3Ej37t3p0qWLwarrB3bs2KEvnvDee++RlpZm8vAlQQkhhJVSFMWozVjJycnMnz+f7777jqioKNauXcsff/zd7v7u3buEhoayZMkSYmJiaNq0qVkVd6QW3xNU4dmaqsbT3c9VNR5A9o10VeNVaKDuZwb4cuAeVeNp9t1TNR6A7dNVVY+pdoPBlz9uqmo8gG/PjVI1Xvb126rGA2gwIn/ZNHNlKvkLB5irEuaf4lNyjUs+6enppKfn/9l3cHDAwcFB/3jfvn24uLhQpUoVALp27cq2bdsIDg4GICcnh0mTJlG7dm0AmjZtysaNG00evyQoIYSwVkbOjlauXMnChQvz7Q8ODtaXkoO8ldI1a/79R2etWrVITEzUP65atSpvvPEGAJmZmSxZsoTBgwebOnpJUEIIYa0UI68vDRkyBD8/v3z7H549Aeh0OjQazd/xFcXg8QN37twhKCgIR0fHAuMaSxKUEEJYKyMT1D9P5T1KnTp1OHz4sP5xSkqK/tadB65fv87bb7+Ni4sLH3/8ceHG+w+ySEIIIayU2osk2rVrR0JCAqmpqdy/f5/Y2Fjc3Nz0z2u1WoYPH46npyfjxo0rcHZVGEU6g7p06RIeHh707duXKVOm6PcnJSXh6+vLzJkz8ff3NypOYGAgu3btMtgfHh7OmjVrqFGjBoqioNPp6NevH4MGDVL9szzg4eGBvb29/vHixYt5+umni+x4QghhMpWrRNSuXZsPPviAwMBAcnJyCAgIwMnJiaFDhzJy5EiuXbvGr7/+ilar1RcIf+mll5g+fbpJx5N+UIVw69YtypUrR3R0tOqxhRBCbYpW/TpG3t7eeHt7G+z76quvAHj55Zc5ffq0aseSflCF6Ad14sQJFEWhX79++Pn5sXWr+nekCyGEWhSdYtRmqaQfVCH6QWVnZ9OhQwdWrFhBeHg4s2bN4s8//yyy75sQQphFqpk/nrX0g+rcuTPjx4/Hzs6OevXq8cYbbxAfH6/690sIIdQgMygjWEs/qN27d3PixAmDmA9ahwghhMXRGblZKOkHVYh+UJcvX2bRokXodDpu3LjBrl276Nixo4nfESGEKFpqLzN/0qQfFMb3g+rXrx9nzpzBy8sLnU7H6NGjeeaZZ0z7hgghRFHLteDpkRGkH9QTlPxVgqrxKqpcfBbgZvyvqsazrVVF1XgAld5Rt8hpmSIoFnvv7KNPQ5uqmu9LqsYrkmKxR0epGq/+UFdV4wHY2FdQPaaml/rFgatXeN7sGPf2njfqdZXcnjP7WEVBLqAIIYS1KtkTKElQQghhrSx5hZ4xJEEJIYS1KuFXcOQa1BOUe+aGqvFODP1W1XgAtX1bPP5FhVC+lvlN1/7pQviux7+oEKq0a6BqPIByVSupHvNO4hVV490/p36TvUGtP1U13vH3jqgaD+BalPox930So3rM/neWmB3jzvY/Hv8i4KmuL5h9rKIgMyghhLBSJX3+IQlKCCGslVyDEkIIYYmKopr5kyQJSgghrFRJX8X32FJHly5dwt3dPd/+pk3Vv8nvcQYPHsyBAwee+HEfZfDgwcU9BCGEeCRFqzNqs1QygzLDgzYdQghhiZScgmublhRmJaj169cTFxdHWloaf/31F66uroSGhgKwZMkStm7dilarpX379owZM4bLly8TFBREw4YN+eOPP2jevDmtWrViw4YNpKWlsWjRIho1aoS7uzvdunVj3759AMyYMYPmzZsbHHvx4sXExMRgY2ODq6srY8aMITw8HEVR+OCDDwAICQnBzc2NvXv3UqFCBX799VfS09P573//S3R0NKdPn6Zz586EhISg1WqZM2cOBw8eRKvV4u/vz//93/9x4MABvvzyS+zs7Pjzzz9p2rQpc+fOZc6cOQD07t2bH374wZxvoxBCFAlFZ7mzI2OYXc38l19+YcGCBcTExLB7927OnDnD3r17OXnyJJGRkURFRZGcnExMTN59AmfOnGHo0KFER0dz9OhRLl++zNq1a/Hy8mLt2rX6uBUrViQqKoqRI0fy0UcfGRzzp59+YteuXaxbt44NGzZw4cIF1qxZQ69evdi4cSOKonD//n3279+Ph4cHkFfpfO3atQwbNoyxY8cyefJkoqKiiIiI4M6dO0RERACwYcMGIiMj2blzJ4cPH9Z/xokTJ7J161auXLlCfHw848ePB5DkJISwWFZ/iq9Mmfw5TFEUNBoNAK1atcLe3h7IawqYlpZGQkICiYmJ+Pv7A5CZmUndunV55ZVXqFGjhn42VKdOHdq2bQtA3bp1uXTpkv4Yffr0AfKaHYaEhBi0eN+/fz89evSgQoW8oo+9evUiKiqKgQMH8swzz3Do0CGuXLnC66+/ru/r5Obmpj9O48aNqV69OpDXxuPBmJOSkti/fz8AGRkZnDlzhhdeeIHGjRtTp04dABo1akRaWpoR31ohhChmJXwG9dgE5eDgwJ07dwz23bx5k8qV8yoEFNTYT6vVMmTIEN58800A0tPTsbGx4datW5QvX94glo2NTcEDe6gRoE6nM3idroBvem5uLpCXrDZt2sSVK1cYMWKE/vly5coVGPsBrVbLmDFj6NKlCwCpqalUqlSJY8eOFfgZhRDC0ln9Kj57e3saNGjA9u3b9fvWrl2rn/kUxMXFhejoaO7du0dubi5BQUEG7zfG5s2bAfjxxx9p1KiRPiE+iL9582YyMzPJzc1l3bp1uLi4ANCtWzcSEhK4ceOGQcv4x3FxcSEiIoKcnBzu3bvHgAEDOHbs2L++x8bGRp8YhRDC0uhyco3aLJVRiyTCwsIIDQ1l0aJF5OTk0LRpUyZOnMiePXsKfL27uzunT5+mT58+aLVaOnTogJ+fH5cvXzZ6YEePHiUyMpIKFSowa9Ysg+c6depEUlISvXr1Ijc3l/bt2zNo0CAA7OzsaNmyJU2aNDH6WJDXjPDChQv4+fmRm5uLv78/zs7O/7qs3cPDAx8fH9avX28wyxJCCItgwdeXjGGRxWLd3d355ptvqFevXqHepygK9+7do2/fvqxYsYKaNdVv6GcOKRarDikWqw4pFqseSy0We+3zeKNeV+e99mYfqyiYvYrPkpw4cQJ3d3f69OljcclJCCGetKJYxbdx40a6d+9Oly5dWL16db7nk5KS8Pf3p2vXrowbN86syyAWmaB27dpV6NkTgJOTEwcPHmTIkCFFMCohhChZFJ3OqM1YycnJzJ8/n++++46oqCjWrl3LH38YtvQYM2YMEydOZPv27SiKor+FxxRSSeIJOjZgmarx6sV5qhoPIDf8mqrxylezVzUeQMOP1P3cObfuqhoPQJuRpXrMugMevTDJFNnXb6saD+C4s/rlv1p8/oqq8Xa8sFLVeAAdxvdWPaYqtOpewdm3bx8uLi5UqVIFgK5du7Jt2zaCg4MBuHz5MpmZmbRs2RIAf39/FixYwIABA0w6niQoIYTFUjs5lTbGrtBLT08nPT09334HBwccHBz0j69fv25w+aRWrVokJiY+8vmaNWuSnJxsytABSVBCCGG1jD19t3LlShYuXJhvf3BwsMH9pDqdTl+kAQyLNhjzfGFJghJCCGtl5Cm+IUOG4Ofnl2//w7MnyKv+86AEHEBKSgq1atUyeD4lJUX/+MaNGwbPF5ZFLpIQQghhPmMXSTg4OFCvXr182z8TVLt27UhISCA1NZX79+8TGxurLyMH8Mwzz2Bra8uRI3lL+aOjow2eLyxJUEIIYaXUXmZeu3ZtPvjgAwIDA/H19cXLywsnJyeGDh3KiRMnAJg7dy4zZ86kW7duZGRkEBgYaPL4S+Upvm3btrFkyRJyc3NRFAUfHx/eeecdhg4dyrRp06hdu3ZxD1EIIcxWFO02vL298fb2Ntj31Vdf6b92dHQkMjJSlWOVugSVnJzM7NmzWb9+PVWrVuXevXsMHjyY559/3uCbLIQQJV2pblhYEt26dYucnBwyMzMBqFSpErNmzcLW1lZfYmnNmjXExcUBcOfOHW7dusUvv/xCYmIiM2fOJDMzk6pVqzJ58mTq169fnB9HCCEeSckt2bX4Sl2CcnR0xMPDg86dO9OsWTOcnZ3x9vamQYO/67GNHj2a0aNHk52dzeDBg/Vfjx8/nsWLF1O3bl3i4uKYMGECK1asKL4PI4QQ/8KSmxEao9QlKIDJkyfz3nvvER8fT3x8PH369GHu3Ln5Xjd+/HjatGlD9+7d+e233/jrr79499139c/fvat+BQIhhFCLzKBKmD179pCRkUH37t3p1asXvXr1IiIiIt9FvaVLl3Lz5k19qw+dTke9evWIjo4G8hoc3rihbnVyIYRQU0mfQZW6ZeZ2dnbMmzdP315eURSSkpJo1qyZ/jV79+7lhx9+4JNPPtG3vG/YsCFpaWn6m9TWrVvH6NGjn/wHEEIII+kyc43aLFWpm0G5uLgQHBzM8OHDycnJAaBDhw4EBQWxceNGAKZPn05ubi7/93//p28vHx4ezmeffcb06dPJysrC3t6e2bNnF9vnEEKIx1FULhb7pJW6BAXg5+dXYFmPXbvyGuE9qj39s88+q9r6fiGEKGpyDUoIIYRFKunXoCRBCSGElZIZlDBanT6tVI1XLlr9u8SfattY1Xh2jaqqGg/g1+HfqxqvivNzqsYDqP56s8e/qJCSRv+garwGI9xVjQdwLeqIqvGKorlg5z/U77j9+UbT6809Sr2P3jA7hiQoIYQQFkmXZbkr9IwhCUoIIayUzKCEEEJYJFkkIYQQwiLJDEoIIYRFKukzKKstdfTmm2+yY8cO/ePZs2fTqlUrsrOz9fvat2+vL3lkLHd390K/RwghioOSqzNqs1RWm6BcXFw4cuTvJa/79u2jZcuW+n0XLlygYsWK1KtXr7iGKIQQRUqXpTVqs1RWm6Datm3LL7/8AuR10S1fvjxdu3YlPj4egMOHD+Pq6kpUVBR+fn74+Pjw8ccfk5WVBeQVjA0ICMDX15fg4GBu3bplEP/cuXN06dKFY8eOPdHPJYQQxpIZlIV68cUXuXjxIllZWcTHx+Pq6oqrq6tBgqpVqxYRERGsWbOG6OhoqlevztKlS0lNTWXevHksXbqUqKgo2rdvb9Av6tq1awQHBzNjxgxatmxZTJ9QCCH+naLVGbVZKqtdJGFjY0OLFi04ceIE8fHxDBw4kPr165OZmUlaWhq//PILzZo148KFC/Tp0weAnJwcmjdvzvHjx7l69SqBgXl3h+t0OipXrqyP/f777/Pyyy/z6quvFstnE0IIY1jy7MgYVpugIO861NGjR0lMTCQsLAzIO/W3c+dOqlatiqIoeHp6Mn78eADu3buHVqvl4MGDtG7dmsWLFwOQlZXFvXv39HHHjRvHokWL2LNnDx07dnzin0sIIYxR0hOU1Z7ig7xkFB0dTZMmTShbNi8Xu7q6snz5clxdXXF2dubHH3/k5s2bKIpCaGgoK1eupEWLFhw7doxz584B8PnnnzNnzhx9XCcnJ0JDQ5kyZQoZGRnF8tmEEOJxdNm5Rm2WyqoTVJMmTbh9+zbt27fX73NxceHs2bO0a9cOR0dHgoODGTJkCD169ECn0zFs2DBq1qzJjBkzGDVqFN7e3pw6dYqPPvrIIHabNm1wdnbm008/fcKfSgghjKNTdEZtlsqqT/EB/PzzzwaPn3rqKU6dOqV/3Lt3b3r37p3vfe7u7ri756/2/KCpIcDMmTNVHKkQQqhLp5TsjrpWPYMSQojSTKvojNrUcOXKFQYOHEi3bt149913Da7bP3D9+nXefvttfHx88PPzIyEh4V9jSoISQggr9SRP8U2ePJkBAwawbds2XnrpJT7//PN8r5kzZw7u7u5ER0czb948Ro8ejVb76BuFrf4UnzUrV7mi6jEvf/vz419UCDU8XlY1HsD9ryupGq/R2RdVjQdw6+ffVI/p+NNQVeNlKqmqxgPYV2uxqvE6jM9/+t1cRdFc8D3vb1SPeZpZZscw9hRfeno66enp+fY7ODjg4ODw2Pfn5ORw6NAhFi1aBIC/vz+DBg1izJgxBq974403cHFxAaBBgwZkZWWRkZHBU089VWBcSVBCCGGlcnXGrdBbuXIlCxcuzLc/ODiYESNGPPb9t27dwt7eXr9aumbNmiQnJ+d7XdeuXfVfL126lGbNmj0yOYEkKCGEsFrGzqCGDBmCn59fvv0FzZ62bt2ab4FYgwYN0Gg0Bvv++fhhK1asYO3atXz77bf/Oi5JUEIIYaWMvb5k7Kk8AE9PTzw9PQ325eTk4OzsjFarxcbGhpSUFGrVqlXg++fMmcNPP/3E6tWrqVOnzr8eSxZJCCGElXpSq/jKlSvHq6++ypYtWwCIiorCzc0t3+tWrFjBgQMH+P777x+bnKCUJagpU6YwcuRIg33x8fF4eHhw9+7dYhqVEEIUDZ2iGLWpYdKkSURERNC9e3cOHz7MqFGjAPj+++/57LPPUBSFRYsWkZqayuDBg/Hx8cHHx6fAa1UPlKpTfB9++CHe3t7s3LkTDw8PMjIyCA0NZcaMGdjb2xf38IQQQlVPskrEM888w6pVq/Lt79+/v/7rQ4cOFSpmqUpQlSpVYtq0aXz88ce0bduWBQsW4O7uToUKFejfvz+ZmZlUrVqVyZMnU79+fQ4ePMj8+fPJzMwkPT2dsWPH0rlzZ0JCQrh9+zYXLlxgzJgxBVacEEKI4pars9xmhMYoVQkKoF27drRv356xY8dy9uxZvvvuOwYOHMjixYupW7cucXFxTJgwgRUrVvDtt98ybdo0GjVqREJCAjNmzKBz584AVKlSRV/tXAghLJEl19kzRqlLUAAhISF07NiRRYsWcfXqVf766y/effdd/fMPrkeFhYWxe/dutm3bxvHjxw1Kdzg5OT3xcQshRGGoVcaouJTKBGVvb4+DgwPPPPMMd+/epV69ekRHRwOg1Wq5ceMGAAMGDMDZ2RlnZ2fatm3L6NGj9THs7OyKZexCCGGskj6DKlWr+ArSsGFD0tLSOHz4MADr1q1j9OjR3L59m/Pnz/P+++/j5ubGzp07/7VmlBBCWJonuYqvKJTKGdTDypcvz2effcb06dPJysrC3t6e2bNnU6VKFQICAujRowdly5bFxcWFzMxMaVAohCgxjC11ZKlKbYJ6uK9Tq1atiIyMzPeasWPHMnbsWP3j0NBQAGbNMr+IoxBCFDVLnh0Zo9QmKCGEsHaySEIIIYRFKumLJCRBCSGElSrpp/g0ilLCP4EQQgirVOqXmQshhLBMkqCEEEJYJElQQgghLJIkKCGEEBZJEpQQQgiLJAlKCCGERZIEJYQQwiJJghJCCGGRJEEJIYSwSJKghBBCWCRJUEKIYpWdnV3cQxAWShJUKXH37l2zY/To0YOvv/6alJQUFUaUZ+PGjcyfP5/79+8TFRWlWly1JCUlsWvXLu7cuWOwf/fu3SbHzMjI0P9S3rdvH8uXL+f48eNmjfNhy5YtM+v9ycnJ+q/Pnj3LqlWr+P7777l69aq5Q6Nv374Gj3U6Hb169TI7rloSExMNHmdmZprd/23Pnj1mvb80kwRlIS5fvsybb75Jly5duH79OoGBgVy6dMnkeLt37yYsLIx79+7h6emJh4cH69evN2uMS5YsISsri8DAQIYNG8a2bdvIyckxOd7cuXP56aefiI2NRavVsm7dOotqBrly5UpGjx5NREQE3bp1IyEhQf/cggULTIq5adMmOnXqhIeHBwsXLmTmzJmkpKQwYcIEfvjhh0LHW7hwYb5t2bJl+q9NMXz4cAC2bdvGW2+9xcWLF/nzzz8ZNGgQ27ZtMylmYGAgjo6OHD9+HEdHR/3m5OTE888/b1JMUP/nZsyYMfzyyy8A/PTTT3Tv3p309HST4wGEhYWZ9f5STREW4a233lLi4uIUX19fRafTKWvXrlUGDBhgcjx/f38lKSlJiYiIUP73v/8pd+/eVfz8/FQbb2xsrOLm5qa89tpryrRp05TU1NRCx/Dx8VF0Op3i4+OjKIqi5OTkKJ6eniaPydXVVXF0dMy3NW3aVHF0dCx0PC8vLyUjI0NRFEU5cuSI4urqqhw6dEg/dlN4e3srqampSlJSkvLSSy8pt2/fVhRFUe7cuaP07Nmz0PFGjBihODs7K5988okSHh6uhIeHK66urvqvTeHr66soiqL4+fkply5d0u9PSUkx6/+PoijK1KlTzXr/P6n9c3P27FmlR48eyvDhwxUvLy/9/29z/Oc//1FCQkKU77//XtmwYYN+E48nMygLcevWLdq3b4+iKGg0Gvr06WP2aTlHR0f27NmDu7s7lSpVMmu2A3Dv3j3Wr1/PkCFDmDdvHv379ycyMpLnnnuOt99+u9DxypTJ++en0WiAvGsRD/aZYt26dTz77LNs3LiRpKQk/Xb69GmSkpJMilmhQgUAWrduzfz58xk1ahS//fabfsyFpSgKVatWxdHRER8fHypXrgxApUqV0Gq1hY63YMECRo8ezZEjR/D09CQ4OJgaNWoQHBxMcHCwSWN8wNbWlpo1a+ofV69e3eTP/cBHH33Enj17iIqKMthMpdbPzZUrV7hy5Qq2traEhoZy4sQJgoKCqFu3LleuXDF5fABVq1YF4Pjx4xw4cEC/iceThoUWws7OjmvXrul/ARw+fJjy5cubHK9GjRpMnTqVkydPEhYWxqxZs6hbt65ZY/Tw8KBTp04EBwfTpk0b/f4BAwawb9++Qsfr1q0bo0aNIi0tjRUrVhATE4OXl5fJ46tduzYff/wxCxYsMPkU3MNeeeUVPvjgA4KCgnjhhRdo06YNEydO5M033zQpmQC0atWKDz/8kLCwMKZNmwbAhQsXCAsL45VXXjEpZkBAAK+99hrjxo2ja9euJsV42J07d+jevTs6nY6wsDDGjRvHyZMnWbhwocljfGD06NFcuXKFRo0aGSQ7X19fk+Kp9XMzaNAgNBoNyv9vj1e+fHnmzJkD5P0BtXPnTpPGBzBz5sx8+zIzM02OV5pIw0ILceLECcaPH8/Fixd59tlnSUtL47PPPqNFixYmxbt79y47duygdevWPPvss6xevRofHx/s7e1NHuPdu3fzvT8zMxM7OzuT4mm1Wvbt28e+ffvQ6XS4uLjQqVMnk8enNp1Ox7p162jatClOTk76/YmJiSxevJjPP//cpJgxMTEGv5BPnTrF8ePH6devn1kzSK1Wy4IFC4iNjWXr1q0mxwG4ffs2J06cICsri86dO7Nnzx4uX75Mv379sLGxMTlut27dTL6OVZDExEQmTJig2s9NUdi1axeffvopGRkZKIqCTqcjMzPT4JqmKJgkKAuxZ88eXF1dOX/+PFqtloYNG5o1gwKIiYnhzz//ZPjw4Wzfvt3kv1IfKOgH7f79++zfv9+keH5+fmzYsMGsMT3K3bt3uXPnDg//8zZnBql2vNI6xqCgICZNmkStWrXMGtfDcnJyDH5ukpOTqV+/vkmx0tLSCAsL4+LFiyxYsIDZs2czduxYHBwcTB7fG2+8wdSpU1m+fDnDhw9nx44d3L9/n4kTJ5ocs7SQU3wWIiwsjI4dO9K4cWNV4s2dO5dr165x6tQphg4dyrp16zh9+jQhISEmx5w5c2aBP2imqlGjBocPH8bJycnsZPywxYsXs2TJEqpUqaLfZ85pGrXjFfUYH5yqUnOMasXMzMykW7duNGnSxOD/+TfffGNSvNatWzNz5kyDU5sjR440+Q+fCRMm4OrqSmJiIhUrVqRWrVqMHj2aJUuWmBQP4KmnnsLFxYWjR49y584dxowZQ/fu3U2OV5pIgrIQ9evXZ+zYsbRo0cLglJmps574+Hg2bNiAn58f9vb2LF++nJ49e5qVoNT+QTtx4gSDBg0y2KfRaExe0PBAZGQkO3bsoFq1ambFKap4RRGzJIwR4D//+Y9qsSBvAcLy5cs5deoU//3vfwEw56TQpUuX6Nu3L99//z3ly5fngw8+oGfPnmaN0c7OjnPnztGoUSMOHjyIi4uL2QuWSgtZxWch1F7po/YKOcj/g5adnW3WD9r+/fs5ffq0wWZucgJ4+umn9avj1KB2vKKIWRLGCPDaa69hY2PDn3/+ScuWLdFoNLz22msmx3NwcOCbb77h2rVrDB06lDt37pj179zGxoY7d+7of27Onz9v9s/NqFGj+PTTT+nUqRMJCQm4urrSuXNns2KWFjKDshAzZ84kJyeHc+fOodVqady4MWXLmv6/R+0VcvD3D1pYWBhLlixh7dq1ZlUBeNSNpOYuj37uuecYMGAAzs7OBqeRTI2rdrzSOkbIu/l5x44dXL9+nW7dujFx4kQCAgJMuk0B8mZLD1bcLV26lD59+pCbm2vy+EaOHMngwYO5evUq7733HseOHWPGjBkmx4O8pPwgCa9bt460tDTVE7+1kgRlIU6ePMnIkSOpUqUKOp2OGzdusGjRIpNXIw0bNoy4uDjq1q3L1atXGTFihNkr5IryBy0nJ4e4uDhVVl/Vrl2b2rVrqzCqoolXFDFLwhgBNmzYQEREBH369KFq1apERkbSu3dvkxNUhw4d9F+//fbbNG7cmOnTp5s8vg4dOvDiiy+SmJiIVqtlypQp1KhRw+R4kFftYvz48Vy+fJnVq1fz4YcfMmPGDOrVq2dW3NJAEpSFmDZtGvPnz9f/gj527BhTp04lMjKyUHEOHTqk/9rOzg53d3eD5x6+f8lYgwcP/tcbNE29wP3Pv8SDgoJ46623TIr1sAoVKtCpUycaNmxodqyiiFcUMUvCGCHv1PPDszFbW1uTlq2npKRQs2ZN+vfvb3Aj7QsvvMDy5ctNHl92djYRERGcPXuWCRMmsHLlSoYNG2bWIp6JEyfy9ttvM3fuXGrUqIGXlxcfffQRq1evNjlmaSEJykJkZGQYzB5atmxJVlZWoeP82w2qGo3GpGQyYsQIACIiIrCzs8PX15eyZcuyadMmk8b4KPfu3TP7rn3Iux9o0qRJ3Lx5k/bt29OpUyfatGlj8ilTteOV1jFC3ix89uzZ3L9/nx07drB27VpcXFwKHWf8+PF8+eWX+hts/8nUlYZTpkyhWrVq/Prrr5QtW5aLFy/y8ccfM3fuXJPiwd/VLubOnauvdiHJyUhPuLSSeIRBgwYpP/74o/7xjz/+qAwaNKgYR5Sfv79/vn3m1Pfr1KmT4u7urri7uyudOnVSWrdurSxatMicIRq4c+eO8t133ykdOnRQWrdubXHxiiKmpY9Rq9Uq33//vTJixAglKChIWbVqlZKTk2NSrF27dikXLlxQFCWvNuSwYcOUTz/9VMnKyjJ5fA/qED6otajT6ZQePXqYFOvevXuKoihK//79latXr+pjHzp0SAkICDB5jKWJzKAsxNSpUxkzZgzjxo0D8padm1MF+dixY3z55ZcGN9VeuXKFXbt2mRwzKyuLc+fO6atPnzlzxqwL0qtWrdJ/rdFocHBwMKvSxQNbt27l0KFDHD58GBsbGzw9PU36K72o4pXWMULeKT4vLy/c3Nz0+65fv17om3+XLVvG5s2bmT17NqdPn9b/7CQlJTF37lw+/vhjk8an0WjIzs7Wz8pu3bplcv1BHx8fZs6cydixY/nPf/7DxYsX8fHx0Ve7EI8nlSQsxO+//07jxo3JyMhAp9Nhb2/PsWPHaNmypUnxunfvzttvv82GDRsYPHgwsbGxVK9e3eQfXMi7tyokJITatWujKAo3b95k3rx5vPrqqybFGzFiBOHh4Qb7hgwZwsqVK00eI4CbmxtarZYhQ4bwxhtvmNXOoSjildYxAsyePZuIiAj9DcqKiTf/9uzZk7Vr11KhQgXmzp3LlStX+OSTT1AUhe7duxe61NOVK1eoW7cuUVFR/PDDD1y4cAFPT0927NhBUFAQAQEBhYoHeT8vkydPxsPDg+DgYK5evapalZjSQhJUMTty5Ag6nY7x48czffp0/U2Gubm5hIaGsn37dpPi+vr6EhUVxYIFC2jTpg2vvfYa3t7ebNmyxazxZmdn66t5N23a1KTrEcHBwSQlJXH9+nWDkje5ubk8/fTTrFmzxqwxQl6jvf3793Pw4EHOnz9Po0aNmDdvnsXEK61j7NKlCxs2bKBSpUpmjcvHx4fo6GgAevfuzYABA/Dz8wPA09Oz0AmqQ4cOVKxYkfbt21OzZk3s7e1RFIU2bdrg6Oho8jjv37/PZ599xr59+5g4caLBTNHcMlSlgZziK2b79u3j4MGDXL9+XT/t12g0lC1bNl/30cKwtbXl9u3bPP/88xw/fpy2bduaXIE7PDycESNGMHbs2AKfL6ha87+ZNWsWt2/fZvr06YwfP16/v2zZslSvXt2kMf6TTqcjNzeXzMxMMjMz9W0zLCVeaR1j06ZNyc7ONjtB2djYkJ6eTkZGBklJSbi6ugJ5S7pN+aMpLi6OixcvcvjwYQ4dOsSxY8eoVq0a6enpZGVlmXz7Q4UKFXj//fe5du0a7777Lg4ODqqUjCotZAZlAXbt2kVSUhJBQUH8+OOPREZG0rx5c9577z3KlStnUsytW7cSERFBeHg4vXv3pkyZMjg6Opr01++uXbtwd3d/ZH2zB3+5muLXX3/VXyfTarVcunTJpNMpD3Nzc6Nu3bq4ubnx+uuv8+KLL1pUvNI6RoAdO3YwduxYmjRpYrC8vLCrS7dt28acOXPIzc3F3d2d0NBQtmzZwvz58wkKCjK7MHJ6ejo7d+5k2bJlnDt3jpMnT5oUZ/fu3UydOpX27dvzv//9T5VrrKWJJKhi9vDF3tzcXPr166e/2GtjY6NfNGGKB3+pZWRkcP78eRwdHU0q2/K4pd+mnqoYP348Bw8eJC0tjYYNG3L69Glat27N0qVLTYr3QGpqKoqi6G+2bNWqlVkzM7XjldYxAvTo0YOhQ4fm+zdjSrmj5ORkbt26pT8F99NPP2FnZ4ezs3OhY+Xm5nLkyBHi4uKIj48nMzOTdu3a0a5dO1xcXExKLCNHjuTXX39l6tSptG3bttDvF5Kgip3aF3sh76+2F154gfr167Njxw4iIyNp1qyZyTMyd3d3g2ZuDzPnVIW7uzvbt29n6tSpBAYGcv/+fWbNmmX2PSLx8fGMHTuWli1botPp+OWXX5g+fbrJlTTUjldaxwjQr18/Va4xqq1Vq1a0bt2arl270q5dO1WqPEydOpUPP/yQihUrqjDCUupJrWcXBevZs6f+64CAAGX9+vX6x926dSt0vK+//lrx9/dXfv/9dyUpKUlp0aKFEhERoUyePFmZNm2aKmNWS9++fRVFUZQVK1YomzZtUhRFUby9vc2O6+fnp1y8eFH/+OLFiwbf5+KOV1rHqCiKMnnyZCU4OFiJiIhQNmzYoN+K26xZsxQfHx+lT58+ymeffaYcPnxY0Wq1xT2sUk8WSRQztS/2RkdHG8zI3N3d6d27t35GZo7U1FSmTJlCQkICWq0WFxcXQkNDTa5VVrt2bb788kvatm2rv+crOzvbrDFC3umahxvW1a9fH51OZzHxSusYIW9Vm729PUePHjXYb+41I3N99NFHQN49WfHx8axevZqQkBCaNGlC+/bt6d+/f7GOr7SSBFXMhg0bhq+vL7m5uQQEBFCrVi2Di72FpdFo9CutDhw4wIABA/T7zTVx4kRatWrFtGnT0Ol0rF27lnHjxvHll1+aFG/69On89NNPODk50aVLFzZt2kRoaKjZ46xbty4rVqzQL7aIjIzkmWeesZh4pXWMkLfwwsPDw2LvA6pVqxZeXl40aNCAo0ePEh0dzfHjxyVBFZfinsIJRbl27ZqSlJSkf7xnzx5l//79JsXy8/NT0tLSlKtXryovvviikpycrCiKoly6dEnx8vIya5wFnd4xJ+Zbb71lznAe6caNG8r777+vODs7K6+99poycuRI/ffBEuKV1jEqiqKEhIQonTp1UkJDQ5Xjx4+bFUtNO3bsUObMmaP07dtXcXV1Vd577z3lm2++UX777bfiHlqpJoskrExRLr/19fXliy++4OmnnwbyVvcFBQWZ3F57wIABzJs3Tx9PlA73798nNjaWTZs2cfPmTXr06IGvr69q98CZ4q233sLFxQUXFxdeeukls5sUCnVIgrJCj1t++6BVQWHt3r2bSZMm0aJFCxRF4fjx40ydOpWOHTuaNE5PT0/Onz9P9erVsbW1VeUGxnXr1rF69WrOnTuHra0tL7zwAgMHDsTT09Mi4pXWMf7T4cOHiYmJYf/+/bRs2ZKkpCT69u3LoEGDVIkvrIMkqFLIz8/P5FlPamoqiYmJ6HQ6WrRoYdZfvZcvXy5wv6nXOVavXs2aNWt47733aNKkCZBX0PbLL7+kf//+9OvXr1jjldYxPmz+/Pls2rSJevXq4e/vT7du3bC1teXu3bt4eHhw4MABk2MLK1R8ZxdFcXnQSsBYDy8HLmgzR0xMjPLJJ58oGRkZZsfy8vJSUlNT8+1PTk7WtzooznildYwP+/TTTw2Wrj/Mkq5JCcsgq/hKocKu6Hv4r9oHZY8eZup1rblz53Lt2jVOnTrF0KFDWbduHadPnyYkJMSkeGXKlKFq1ar59j9ckLY44xVFzJIwxoeNGDGCNWvWsH//fnJzc3F2dmbw4MGUKVMGJycns+ML6yIJSjzWw8VgfX19C10c9lHi4+PZsGEDfn5+2Nvbs3z5cnr27GlWglJTUVwoL41jfFhYWBgXLlygV69eKIrC+vXruXTpklklvYT1kgQlCkWN+6keePCL8EHM7Oxss345pqSksHDhwkc+V9zxiiJmSRjjw37++WeioqL0/587duyIt7e3WTGF9ZIEVQopFrIuplu3bowaNYq0tDRWrFhBTEwMXl5eJsf7t4v3plzYVzteUcQsCWN8mFarJTc3V3+jrlarNahqLsTDZBWflZo8eTJ+fn4Fntc/fPhwobrgHjp0SP/1PxsrArRp08bkccbFxbFv3z4URcHZ2dmsQqQP3Lp1K981lIKunRVXvNI6RoDFixezZ88eevToAcDmzZt5/fXXeffdd02OKayXJCgrtWHDBqKiokhNTcXHxwcfHx+T7n0CGDx48COf02g0he7l87AdO3aQkJBA2bJlcXNz09ciNIevry/Lli2jWrVqpKSkMHXqVP744w+TuwmrHa+0jvGBvXv3kpCQgKIouLi4mHwfnbB+kqCs3NWrV9m0aRNr1qzhhRdeoHfv3nTu3Lm4hwXkddY9duwYPXr0QKfTsXnzZtzd3Rk+fLhZcbdv384XX3yBr68vX3/9Nf3792fYsGEmN39UO15pHOPDs/CCmDMLF9ZLEpQV++uvv4iJiWHz5s3UqVOH7t27k5CQgI2NDXPmzCl0vMTERI4cOcLAgQMZPnw4v/76K3PmzMHNzc2k8XXt2pXNmzfrq7ZnZWXh6+trUg+sf/r5558ZMWIEX3zxhUkN7Io6XlHEtOQxFuUsXFgvSVBWqn///ty4cQMfHx/8/f31HUxzc3Nxc3Nj3759hY7Zp08fRowYwe3bt9myZQsTJkxgxIgRrFu3zqQxDho0iAULFlCtWjUA7t69y7Bhw/juu+9MivegseIDqamp2NjYULlyZYBCl1BSO15pHWNBbt++jY2NDU899ZTZsYT1kgRlpRISElRvMx0QEEBkZCQffvghHTp0wNfXF19fX6KiokyKN3LkSI4ePYqHhwdly5YlLi6OatWq8fzzzwMU+n6rB6WTbt68WWAJpsKWUFI7Xmkd48NOnz7N//73P5KTk1EUhYYNGzJnzhyeffZZk2MK6yUJysqMHTv2X5835ybbwYMH06lTJ5YtW8bmzZuJjo5m+/btJrdof1w9QD8/P5Pienp6qnKasKjiFUXMkjBGAH9/f0aMGKFfrfnjjz+yfPlyk2fNwrrJfVBW5rXXXnvkc+beZDt37lx++OEHFixYQOXKlUlOTmbevHkmx/Pz8+Pu3bukp6cb7H9wOtJUjo6OREVF4eTkhJ2dndlx1Y5XWscIeffgPXwrwRtvvMGiRYtMjiesm8ygrFRiYqLBPVD379/ns88+M7mMUFGYPXs2ERERVKlSBUCVdhtAgffpmBNX7XhFEbMkjBHySh1VqlSJPn36YGNjw5YtWzh69CgffvghYP4fJ8K6SIKyUl27dmXWrFm0atWKn376icmTJ+Pi4sKMGTMKHcvR0bHA2deDhJKUlGTSGLt06cKGDRuoVKmSSe8XJc+/3eSrxh8nwrrIKT4rtXjxYkaMGEH9+vW5dOkSc+bMKVT1iIedPn1a5dHladq0KdnZ2aonqPPnz/Ptt9+SkZGBoijodDouXbpk8rUyteOV1jFCXiUKIYwlfY2tzJUrV7hy5Qq2traEhoZy4sQJgoKCqFu3LleuXCnu4Rnw8fGhS5cuDBw4kMDAQP1mrv/+9784ODiQlJREs2bNuHLlCo0bN7aYeKV1jABnz55l1qxZjB071mAToiAyg7IygwYNQqPR6GvllS9fXn9TrqWdQpk/fz7jxo1T/bpDTk4OI0eOJDc3l+bNm9OnTx969eplMfFK6xgBgoOD6d69O02bNjUrjigdJEFZmZJ0CuWpp54yudnhv6lQoQLZ2dk899xznDp1yuRTm0UVr7SOEcDBwYHg4GCz44jSQRKUlUpLSyMsLIyLFy+yYMECZs+ezdixY3FwcCjuoek1b96cESNG4ObmZlDfzdyk5ePjw/Dhw5k7dy59+/YlLi6OOnXqWEy80jpGyLu1YP78+bi4uOhLXIHU4hMFk1V8VmrkyJG4urqyevVqIiMjWbRoEUlJSSxZsqS4h6b3qGsPpt5M/HBFizt37vDUU09x5coVKlasSLly5Rg4cGCxxiutY3xYSEgIR48epXbt2vp9UotPPIrMoKzUpUuX6Nu3L99//z3ly5fngw8+oGfPnsU9LAMPElFaWpq+zps5QkJCqF69Om3btjWrindRxSuKmCVhjA87deoUsbGxqsYU1ksSlJWysbHhzp07+vuXzp8/b1Y79aJw+vRpRo0aRWZmJmvXrmXQoEF8+umnvPjiiybF27BhA1u2bOHnn3/G0dGR7t27065dO5M/t9rxSusYH9a4cWNOnz6No6Oj2bGE9ZNTfFYqLi6OefPmcfXqVV555RWOHTvGjBkzLKo53MCBA5kyZQoffvghUVFR/Pzzz8yfP5/IyEizY584cYItW7Zw4MABXnrpJXr06GFWuwi145XWMfr6+nLmzBlq1qxJuXLlVKseIqyTJCgrlpqaSmJiIlqtlhYtWlCjRo3iHpIBf39/1q9fb1ARvWfPnsTExKh2jMOHDzN37lzOnDnDL7/8YnHxiiKmJY/xQaX0fzKnQrqwXnKKz0plZ2cTERHB2bNnmTBhAitXrmTYsGGUL1++uIfGhg0b8PPzo0qVKpw+fVp/GjImJsbsa1GKonDo0CG2bdvG3r17adasmb4KuyXEK61jfOCZZ55h48aN/PHHHwwfPpzt27cXya0GwjrIDMpKjR8/nmrVqrFr1y5++OEHJk2ahE6nY+7cucU9NPz8/NiwYQMXLlwgJCSEEydOYGtry3PPPUdYWBgNGzY0Ke6kSZOIi4ujefPmeHp64u7uToUKFUwep9rxSusYHzZ37lyuXbvGqVOn+OGHH3j33Xd58cUXLaqIsbAckqCs1IMk8OD0maIoeHt7s2nTpuIemn5sD2RkZKDT6bC3tzcrrqOjI1WqVKFixYpA/vYihb3OoXa80jrGh/n6+upn0FFRUeTm5tKzZ0+2bNlickxhveQUn5XSaDRkZ2frf7ncunXL7H5Qavn999/x8PB45POm/gJU+0J7UVy4L41jfNiDlYAP/i1mZ2db3OpSYTkkQVmZK1euULduXQIDA3nzzTdJSUlh+vTp7Nixg6CgoOIeHgANGjQokhuG1b7QXhQX7kvjGB/WrVs3Ro0aRVpaGitWrCAmJgYvL68iO54o2eQUn5Xp0KEDFStWpH379tSsWRN7e3sURaFNmzYWc+/Jw6v2ROkTFxfHvn370Ol0uLi4mL3wQlgvmUFZmbi4OC5evMjhw4c5dOgQx44do1q1aqSnp5OVlUWLFi2Ke4i0bt26uIcgilGdOnXw8PDQV9w/dOiQ1OITBZIZlJVLT09n586dLFu2jHPnznHy5MniHpIoxSZPnszu3bupX7++fp/U4hOPIgnKyuTm5nLkyBHi4uKIj48nMzOTdu3a0a5dO1xcXMxeKSeEObp06UJMTAx2dnbFPRRRAsgpPivTpk0bWrduTdeuXVm4cCH16tUr7iEJoVe/fn3kb2JhLElQVqZfv34kJCSwbt06rl27hqurK61atZKlvMIiVK5cmR49etCqVSuDqiamtlgR1k1O8Vmp69evEx8fT3x8PCdOnKBJkya0b9+e/v37F/fQRCn2z9WbD379+Pn5FcNohKWTBGXFsrOzOXHiBEePHiU6Oprbt28THx9f3MMSpZCjoyMajUafkDQaDZUrV6Zdu3ZMnDiRKlWqFO8AhUWSBGVldu7cydGjRzly5AiXLl2iRYsWuLi44OLiQuPGjYt7eELo3bx5k7Vr1/LHH3/wySefFPdwhAWSBGVl3nrrLX1Ceumll+Tak7B4PXr0YPPmzcU9DGGBZJGElVm2bFlxD0GIQlG7rbywHvLntRCi2MTGxsr1J/FIMoMSQhQ5d3f3fNX07969S4MGDQgLCyumUQlLJ9eghBBF7p+t3suUKYODgwOVKlUqphGJkkASlBBCCIsk16CEEEJYJElQQgghLJIkKCGEEBZJEpQQQgiLJAlKCCGERfp//NzYe6Y/85UAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 2 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.heatmap(clean_data3.corr(),cmap=\"PiYG\")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 62,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAALMCAYAAAA2OLLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACNp0lEQVR4nOzdd3gUVdvH8W8SQo0BgoQuj6IJvQiY0CKEGlpM6CDFVwGRJipKkyKICMQCUgUEAeklgDQjLZHQpSlFQTomQAKEhJJs5v2Dh31cQsniJhPg93mvvd7MmTNnzsyzLvfe58xZJ8MwDERERERM4mx2B0REROTppmBERERETKVgREREREylYERERERMpWBERERETKVgREREREylYCQN+Pv70759+4fWa9++Pf7+/na1/SjH/NPMmTOpXr06ZcuWZezYsY/czoNcu3aNmJiYNGk7LSxduhRvb2+2b99u97GHDh0iODiYMmXK4O/vz5IlSx65rcfFsWPH8Pb2ZsSIESn2nTlzBm9vb7y9vTl06FCK/WPGjMHb25vjx487vF/9+vXD29v7X9exx+rVq2nfvj2VK1embNmy1KtXjxEjRhAdHf1I7Y0fPx5vb2/OnDnjsD6mxunTp61/b9++HW9vb5YuXZqufTDTP6//fgzD4LvvvqN+/fqULl2aatWq8fHHHz9Wn3UZmYIRE7399tsMGDAg3c535MgRPvvsMwoVKsTHH39M/fr1HX6OgwcPEhAQwB9//OHwttNK5cqVGT16NMWKFbP72IEDB/LXX3/x3nvv0adPH5ycnNKghxlLsWLFyJMnD/v27UuxLzIyEhcXF5ycnIiMjEyx/9dffyVv3ry88MIL6dHVNPXll1/Sp08fsmfPTvfu3RkwYAA1atRg8eLFBAYGcurUKbO7mCpvvvkmEyZMMLsbphk8eHCqPoe//vprRo0aRaFChejfvz8BAQEsXbqUdu3ace3atXTo6ZMtk9kdeJpVq1YtXc939OhRALp27fqvsisPO8ejfis0S5EiRShSpMgjHXv06FFq1arFG2+8AfDUfJusVKkSGzZs4NatW2TOnNlavm3bNry9vUlKSiIyMpL/+7//s+5LTEzk4MGD1K1b14wuO9T58+f59ttvad++PYMGDbLZ17hxY9q1a8cXX3zBV199ZU4H7RAREUFQUJDZ3TBNREQEhQoVemCdO/97+/r6Mn36dOuXjlKlStGvXz9++OEHunTpkh7dfWIpM/IUSUxMBCBHjhwm9+TJkZiY+FTez8qVK5OYmJhiKGb79u1UqlQJHx8fdu3aZX3PAfz+++/cvHkTHx+f9O6uw+3btw+LxXLPLxQVKlSgbNmy7N27N/07JmkiMjKSpKQk2rdvb5P9DAwMJHv27OzatcvE3j0ZFIw8QGBgIIGBgTZls2fPxtvbm++++y5F3c6dO9uUrVy5kkaNGlG6dGnq16/PvHnzbPbfa/7HsWPH6N27Nz4+PlSsWJH27dvf840eERFhnatQs2ZNJk6cSHJy8n2vpX379vTv3x+ADh062Iyb//nnn3Tv3p1KlSpRrlw5WrduTXh4eIo21q5dy+uvv07FihUpXbo0/v7+jB49mlu3bgG3x7v/eY4713a/cfq7y/v160eDBg2YO3culStXpnLlymzZsgWAv//+mw8//BBfX1/KlCnDa6+9xooVK2zaMwyDb775hvr161OmTBmqVq1K3759OX/+/H3vC6ScM3Jn+/Dhw7z//vtUrlyZChUq0L17d+tY/p06AMuWLbvvGPv95qPcq/zmzZt8+eWX+Pv7U7p0aWrXrs3XX39tvb+p7dsdt27dYvz48dSrV4+yZctSv359pk6disViseuc91K5cmUAm6GaY8eOceHCBXx9ffH19SUhIYH9+/db9//6668AvPLKK9ay1L73Ulvvn5KSknj77bcpWbIka9euTbE/PDwcb29v5s6dm2Lfu+++S/Xq1W3u1T/dCUCXLVt2z3v1/fffs2nTJpuy3377jZ49e1K1alVKlSpFlSpVeP/99/n7778feB1Xrlxh+PDh1KhRg9KlSxMQEMCsWbO4+5c85s2bR5MmTShXrhw+Pj507979gcOld+b33LmOu9+PCQkJDBs2jCpVqlC+fHk6duzIkSNHbNpITk5mxowZNGjQgNKlS1OjRg1GjBjx0GGLO/NStm7dysCBA6lcuTIVK1akf//+JCQksHnzZgIDAylXrhyBgYEphvyuX79OSEiI9X3r7+/P2LFjuX79uk29devW0axZMypUqEDFihV544032L17t3W/t7c3Z8+eZceOHQ+cJ1OvXj0WLlyYIvhMSkoiKSkJV1fXB16vPJyGaR7g1VdfZerUqcTExODh4QHAjh07ANi1a5c1NX/hwgWOHDlCy5YtrcceOHCAo0eP8vrrr+Ph4cH8+fMZOnQoefPmpU6dOvc834kTJ2jZsiWZMmWyOe6NN95g7ty5lC1b1nq+nj170qZNG1q0aMHKlSv5+uuvyZ49O506dbpn22+//TbPP/88CxYs4O2337aO2R85coS2bdvy7LPP0rVrV1xdXVm1ahVdunQhJCSEhg0bArBo0SIGDRqEv78/H3zwAYmJifz0009Mnz6d7Nmz06NHD+rWrcuFCxes5yhTpozd9/z8+fNMmDCBHj16EB0dTbly5YiKiqJFixYYhkH79u3JmTMnP//8M3379iU6Opq33noLgMmTJzNhwgTatWtnnQT4/fffc/DgQVatWoWLi4tdfenWrRvFihWjT58+nD59mlmzZhEVFcXixYut80w+/PBDKlWqRMuWLXn55ZfZuXOn3dcMYLFY6Nq1K3v27KFly5YUK1aMgwcPMnnyZA4dOsSkSZNsvpE9qG93dO/enS1bttCkSRPeeOMN9u/fT0hICJcuXaJ///52n/OfvL29yZkzp00wsm3bNpydna2BirOzM5GRkVSsWBG4HYzky5eP//znP0Dq33uprfdPhmEwcOBANm/ezKhRo2jQoEGKOlWrViVPnjysXbuWdu3aWcsTEhLYtGkTzZs3v+97xsfHh8KFC7Nu3Tp2795NvXr1qFatGpUrVyZnzpw2Q1f/vIaiRYvSpUsXsmXLxp49ewgNDSU6OprZs2ff8zwJCQm8/vrrnD9/nrZt25I/f362bdvGyJEjOXHiBEOGDAFgxYoVDB06lNdee4327dsTExPDrFmzaN++PT/99BPPPPNMirY9PDxSvIeLFSvGsWPHABg7dize3t707NmTqKgovvvuO958803CwsLImjUrcHvO1PLlywkKCqJTp04cO3aMefPmsWfPHubNm0eWLFnueV139OvXjxdffJH333+fHTt2sHTpUv7++29+//132rdvzzPPPMPUqVPp3bs3YWFhuLu7c+vWLd544w327t1LcHAwpUuXZv/+/Xz77bfs3r2b77//HldXV3bs2EGfPn3w8/OjRYsWXL9+nTlz5vDGG2/w448/UqRIEUaPHs1nn31G7ty5efvtt3n55Zfv2U83NzfKlSuXonzOnDncunULPz+/B16npIIh97Vz507Dy8vLWLNmjWEYhpGcnGy88sorRo0aNQwfHx8jOTnZMAzDWLZsmeHl5WWcPn3aMAzDqFWrluHt7W0cPHjQ2taZM2cMb29vo2/fvtay119/3ahVq5Z1u3fv3kbZsmWNEydOWMtiYmKMihUrGr169bIe4+XlZaxfv95aJy4uznj55ZeNtm3bPvB6lixZYnh5eRnbtm2z6UOdOnWM+Ph4a1liYqLRtm1bo2rVqsbNmzcNwzCMBg0aGK1atbJe8516fn5+RuPGjR94jo8++sjw8vJK0Z+7y+9sL1myJEW9V155xYiKirIpf++994zSpUsbFy9eNAzDMAICAowuXbrY1Jk3b57RtGlT4+TJk6m+L3e2e/ToYVNv8ODBhpeXl/HXX39Zy7y8vIyPPvrooW398348qN6WLVts6s2fP9/w8vIyfvrpJ7v6tmnTJsPLy8uYNGmSTb3333/fKFWqlHH58uVUn/N+unbtatSpU8e63aNHDyM4ONi6HRQUZLRr18667efnZ3zwwQfW7dS+91Jb75/vp5EjRxre3t7GggULbPp893tu+PDhRvHixY3o6Ghr2cqVKw0vLy9j7969D7z+48ePG6+99prh5eVlfZUoUcJo3769ER4eblN38ODBRrly5YzY2Fib8j59+hheXl7W8nHjxtl8lowbN84oVaqUcfjwYZvjQkJCDC8vL+PQoUOGYRjGW2+9ZTRq1MimzqZNm4yGDRsau3bteuB13P0e3rZtm+Hl5WUEBQUZiYmJ1vLx48cbXl5extatW23qzZs3z6a98PBww8vLy5g5c+Z9z3nn2GbNmhkWi8UwDMOwWCxGtWrVDC8vL2Pz5s3WugsXLjS8vLyMiIgIwzAM44cffjC8vLyM7777zqbNb7/91vDy8jLmzp1rGIZhDBkyxKhQoYLNZ9bhw4eNevXqWT/TDeP25/Xrr7/+wHt0L+vXrzdKlChhtGrVyuY+yaPRMM0DlC9fnmeeeYZt27YBt7/dXL58mY4dOxIbG2v9BhEeHs6LL75I4cKFrcf+5z//oVSpUtbtQoUK4eHhwcWLF+95ruTkZDZv3syrr75K0aJFreW5c+fmhx9+sJkkly1bNpvhHTc3N1544YX7tn0/sbGx7Nixg1dffZUbN24QExNDTEwMV69epW7duly8eJEDBw4At795TZ061eab8qVLl3B3dychIcGu8z5M9erVrX8nJycTFhZGpUqVyJQpk7WPMTEx1KtXj1u3bvHLL78AkD9/frZv386sWbOs96J169aEhoby3HPP2d2PgIAAm+0SJUoA2H2fU2P9+vV4eHhQqlQpm2t89dVXcXFxSZHyf1jfNm3ahLOzM6+//rpNvY8++ojQ0FDc3NzsPufdXnnlFU6dOkVMTAyGYbBjxw6b+SA+Pj7s3buXmzdvcu7cOf7++2/rEE1q33v2vEfvmDRpEjNnzqRHjx422cp7ady4McnJyaxbt85adudb872+Cf/T888/z9KlS/n+++/p0KEDxYoVw2KxsH37dt58802mTp1qrTt06FA2bNhArly5rGXXrl2zZg7u99/Q+vXr8fLyIm/evDb/G93Jrm7cuBG4/d4/fvw433zzjXW47tVXX+XHH3+0Zqbs1aBBAzJl+l/y/E6m8857bP369Tg5OfHqq6/a9K1kyZLkzZv3oe8fgNq1a+PsfPufIWdnZ4oUKULWrFltMg13PlcvXLgAwIYNG3Bzc7PJZsHtoWE3Nzd+/vln4PY9iY+PZ8SIEdbPam9vb9atW3fPTJk9fv/9d9577z2ee+45Jk6caHOf5NHoDj5ApkyZqFq1qjUY2bZtG3ny5CE4OJgxY8awc+dOihUrxi+//EJwcLDNsXny5EnRXtasWW0m9P3T5cuXSUhIsAlE7vDy8rLZzpUrV4r0cdasWbl06ZJd13fn2frZs2ffN018Z76Fq6srO3fuZNWqVRw/fpxTp05Zz/ewmej2+ue9i42NJS4ujrCwMMLCwh7Yxw8//JBu3boxcuRIPvvsM0qVKoW/vz8tW7Ykb968dvcjd+7cNtt3Uu/3m0fwb9z5R71KlSr33H/3vJeH9e3s2bPkyZMHNzc3m3p58+a13gt7z3m3O8MxBw4cIG/evFy+fBlfX1/rfh8fH2bMmMGBAwesT1jd2Z/a996dsfjUvEfv+Oqrr3B2dmbPnj0P7D/c/sJRpEgR63youLg4IiIibJ4CehAnJyd8fHysQdi5c+dYsmQJU6ZM4euvvyYwMJB8+fLh5OREbGwsU6ZM4ciRI5w6dYpz585Z533cb77XqVOnuHHjxkP/N+revTt79+5l/PjxjB8/nhdffBF/f39atGjxSIE4YB2avuPO0Mydz7BTp05hGAY1a9a85/Gpmdj97LPP2mxnypQpxXnvBCt37tGZM2coUqRIinkamTNnpkiRIpw9exaA119/nYiICObMmcOcOXMoXLgwtWrVonnz5hQvXvyhfXuQ0aNHkz17dr777rsU/ZVHo2DkIfz8/Fi3bh1RUVFs376dypUrkzt3bry8vNi1axelS5cmNjaWV1991ea4O/8Bpdadf0RSc5y9bT/snO3atbvvPJYXX3wRgJCQEKZOnUrJkiUpX748gYGBVKhQgeHDhz/0H62Hnf9u/wy07tSpX78+rVu3vmf9O4/lFi9enHXr1hEeHs7GjRsJDw9n3LhxzJw5k/nz59u9joij7vO93H3tFouF//znP9Y5AHdzd3e3q28Wi+Wha57Ye867lSxZkhw5cnDgwAFy5MiBq6srlSpVsu6/k83as2cP0dHRFChQwPq/VWrfe3f+YUnNe/SOt99+G2dnZyZOnMjKlStp0qTJA6+jcePGTJkyhejoaCIiIrh16xaNGzd+4DGzZ8/m5s2b1vlKdxQsWJCePXuSJUsWQkJC2Lt3L/Xr12fTpk288847eHp64uvri5+fH6VLlyYiIoIpU6bc9zwWi4WKFSvSo0ePe+739PQEbmcBQkND2b59Oz///DPh4eFMnTqV7777jhkzZthMGk6th73HkpOTyZEjB99888099z9svghwzzk5D3vfGndN3L27T3eCFDc3N+bMmcPevXsJCwtjy5YtzJ49m7lz5zJ69OiHvi/u5/r162zfvp1OnTpRoECBR2pDUlIw8hB+fn7WBZz27NlDr169gNsp6p9++okXX3yRZ5555pFToXfkzp2brFmzcvLkyRT7pk+fzsWLF/noo4/+1Tnudiej4eLiQtWqVW32/fnnn5w5c4Zs2bJx9uxZpk6dSmBgIKNHj7apl5ohizsfanevSZGaYz08PMiWLRtJSUkp+nju3Dl+//13smXLhsVi4fDhw7i5uVG7dm1q164N3F4hs0+fPixatIh+/fo99HyO9s9r/6e7r71w4cIcPHgQX19fm38E7kwUzp8/v13nLViwIFu3biU+Pt7mG+pvv/3GjBkz6Nat278+p4uLCy+//DKHDx/GMAxKly5N9uzZrfvd3NwoVaoUR44c4fTp0zZDOKl976W23j/16dOHGzdusGLFCkaNGsWrr776wMCqSZMmTJo0iU2bNrF582a8vb156aWXHnjtYWFh7N+/n7Zt29pc8x13spl3sgnDhw+naNGiLFmyxKb+ypUrH3ieQoUKER8fn+Lar1y5QmRkpDWTeucplypVqlizKLt376Zjx47Mnj37kYKRhylUqBARERGULl06xf1dt26dzZCUo8+7d+9eEhMTbbIjt27d4syZM9aA+K+//iIuLo7y5ctTvnx5PvjgA/7880/atWvHd99998jByOXLl0lOTn4iFu7LSDRn5CE8PT0pXrw4c+bM4fLly9bUdOXKlfn7779ZsmQJ1apV+9djhpkyZaJatWps3rzZJtNw5coVpk+fniarOXp6elK6dGmWLVtGVFSUtTwxMZEBAwbQq1cvkpKSuHLlCpDyG+jmzZs5ceIESUlJ1rK7U6qAdVjgn2tS/P3339ZHPR8kU6ZM+Pn5sXnzZg4fPmyzb9SoUXTv3p3Y2FgsFgsdOnRg5MiRNnXujPunZZbjQe517UlJSaxfv96mnr+/P5cvX07x+Pf8+fPp06fPPVczfZBXX32V5ORkFi1aZFM+b9481qxZw7PPPuuQc1auXJnDhw+zd+9emyGaO3x8fDh8+DCHDx+2+Qcxte+91Na7W9asWRkwYAAXL1586M8eFCtWjJIlSxIWFkZkZORDsyJwO4BJSEhg1KhRKYZY7tx3d3d36+fF5cuXKViwoE0gcv78eev74H5ZQn9/fw4fPpxi/sWkSZPo3bu39dHd3r178+GHH9q0U7JkSVxdXR/63nd2dn7gsgD3c2fe2qRJk2zKN2zYQK9evR4aaD0qf39/rl27luKR7B9++IH4+HjrsNGIESN45513iI+Pt9Z54YUXcHd3t7kn9l6/p6cnERERjxzMyL0pM5IKfn5+TJkyhVy5clm/MVWuXBknJydOnz5N9+7dHXKe999/nxYtWtCiRQvatWuHm5sbCxcuJCEhgXfffdch57jboEGD6NixI82aNaNNmzbkypWLH3/8kX379vH++++TO3ducuTIQcGCBZk8eTI3b94kf/787N+/n2XLlpElSxab/9jvjJ/OmzePixcv0qRJEwICApgyZQp9+vShU6dO3Lx5k7lz55IvXz5OnDjx0D5+8MEHbN++nXbt2tGuXTsKFizIpk2b2LhxI61atbL+b9K+fXsmTZpE9+7dqVGjBjdu3GDBggVky5aNZs2apcn9e5hXXnmFvHnzMnHiRG7evEmePHkIDQ1NMWGxRYsWLFu2jOHDh/Pbb79RtmxZjh49yoIFCyhVqlSKOUkP4+/vT7Vq1Rg1ahR//PEHZcqU4ddff2X58uV0796dXLlyOeSclStX5osvvgC452JmPj4+1omcd+9PzXvPnnp3q127NrVq1WLhwoW89tpr931sE24P1YwePRonJycaNWr00OsODg4mPDycBQsW8Ouvv9KgQQPy58/PpUuXWLNmDUeOHCEkJMQafPj5+bF69WoGDx5MmTJlOHPmDAsXLrSui/HP/4b+qWvXrqxfv54ePXrQunVrXnrpJXbv3k1oaCh+fn7WiZ5vvvkmgwYNolOnTjRo0ADDMAgNDeXmzZu0bdv2gdfi4eHBjh07WLhwoc3k8Yd59dVXqV27NjNmzODMmTNUrVqVs2fPMnfuXAoWLMibb76Z6rbsced9O2rUKI4ePUrp0qU5ePAgS5cupVy5crRo0QKAN954g86dO9OuXTtee+01smTJQlhYGKdOneLzzz+3tufh4cHhw4f54YcfeOWVV1J86bpbbGwsW7duxdvb+1/PPZH/UTCSCneCkUqVKlnHMz08PHjxxRf5888/HfaMebFixViwYAFffPEF06ZNw9nZmbJly/L5558/NG38qCpUqMC8efMYP3483333HUlJSTz//POMGjXKukR05syZmTp1KqNGjeL777/HMAyee+45BgwYQFJSEp9++ikHDx6kdOnSVKlShYCAADZu3Mi2bduoV68exYsX56uvvmLChAmMHj2aAgUK0LlzZ27cuJFi2OdennvuORYuXMi4ceOswVmRIkXo37+/zQ8S9urVi1y5crFkyRI+//xz6zDCmDFjHul3ZxzB1dWVadOmMWrUKKZNm0b27Nlp3Lgx9erVs3nSJXPmzMycOZMJEyawbt06VqxYgaenJ23atKF79+4phiIe5s6ciTvzJlasWMFzzz3H4MGDadOmjcPOWaZMGesw2b3+sa9YsSKurq54enraPG0GqXvv2VPvXgYOHMjWrVsZMmTIA5fqb9y4MWPHjqVcuXKpmpDt7OzMV199RWhoKKGhocyZM4e4uDhy5sxJxYoVGTZsmHVdILj9NE327NnZsGEDoaGh5M+fn9dee426devSpk0btm3bRsmSJVOcJ1euXCxYsIBx48axdu1aFixYQMGCBXnnnXfo0qWL9Rt+ixYtcHV15fvvv+eLL74gOTmZ0qVL8+233z50xdsPPviAkJAQhg8fzvDhw1M9D8LJyYmvv/6aadOmsXz5cjZu3IiHhwf16tWjd+/eKSanOso/37dr1qxhxYoV5M+fn65du9KtWzfr0E316tWZNGkSU6ZMsX4ZeOmll/jiiy9sAs6ePXsyZMgQRo4cSffu3R8ajBw7dowPP/yQHj16KBhxICfjQbOBRESeAtHR0bz66qt8/PHHD80kiIjjac6IiDz1Fi5cSObMmVM1RCMijqdhGhF5aoWEhPDHH3+wefNm2rVrR86cOc3ukshTSZkREXlqJSQksG3bNurUqcN7771ndndEnlqaMyIiIiKmUmZERERETKVgREREREylYERERERMpWBERERETKVgREREREylYERERERMpWBERERETKVgRERE5Cl37do1GjduzJkzZ1LsO3ToEMHBwdSvX5+BAweSlJQEwLlz52jXrh0NGjSgW7du9/316dRQMCIiIvIU27dvH23atOHEiRP33N+3b18GDx7MunXrMAyDhQsXAjBs2DDatm3L2rVrKV26NBMnTnzkPigYEREReYotXLiQIUOG4OnpmWLf2bNnuXHjBuXLlwcgODiYtWvXkpiYyM6dO6lfv75N+aPSD+WJiIg8Ya5evcrVq1dTlLu7u+Pu7m5T9umnn963nejoaPLmzWvdzps3L1FRUcTGxuLm5kamTJlsyh+VgpF0VLxzQbO7ICIi/3X423Np0m5G+KzvXrY/33zzTYryHj160LNnz1S3k5ycjJOTk3XbMAycnJys//+f7t62h4IRERGRJ0zHjh0JCgpKUX53VuRh8ufPz4ULF6zbFy9exNPTEw8PD+Li4rBYLLi4uHDhwoV7DvOkloIRERGRJ8y9hmMeRaFChciSJQu7d++mYsWKhIaG4ufnh6urK5UqVWL16tU0adKE5cuX4+fn98jn0QRWERERB3JyNv/1b3Xu3JkDBw4AMHbsWD777DMaNGhAQkICHTp0AGDIkCEsXLiQhg0bsmvXLt59991Hv2eGYRj/vtuSGhlhHFFERG5LqzkjJbqa/1l/aEraXFtaUWZERERETKU5IyIiIg7k7PzoT5U8rZQZEREREVMpMyIiIuJA/2K5jaeWMiMiIiJiKgUjIiIiYioN04iIiDiQs77m2023TEREREylzIiIiIgDOenRXrspMyIiIiKmUjAiIiIiptIwjYiIiANpAqv9dMtERETEVMqMiIiIOJCTvubbTbdMRERETKVgRETsMuqNr/i/em+b3Q0ReYLYHYy88cYbhIWFWbc///xzKlSowK1bt6xl1atX58yZM3a16+/vn+KYpUuX0q9fP3u7CMDatWsJDg6madOmNGnShGnTpj30mPbt27N9+/ZHOp/Ik+6F/C8y8/2F1KvY2OyuiGRozk5Opr8eN3bPGfH19WX37t3UqVMHgK1bt1K+fHl2795NlSpVOHnyJNmzZ6dw4cIO72xqRUVF8fnnn7N06VJy585NfHw87du35/nnn6d27dqm9Uvkcdau1hssDp/H+ZizZndFRJ4wdmdGqlSpwq+//grc/kc/c+bM1K9fn4iICAB27dpFtWrVWL58OUFBQQQGBjJgwABu3rwJwJYtW2jevDmvvfYaPXr0IDY21qb9v/76i3r16rF3715rWWRkJK1bt7ZuL126lCFDhty3j7GxsSQmJnLjxg0AcuTIwahRo3jxxRcBWLNmDS1btqRp06Y0aNCAPXv2pGhj6tSpBAUF0bRpU0aPHo1hGFy7do0uXboQHBxMcHAwP//8s723T+SxNXzeQFbtWGZ2N0QyPCdn81+PG7u7XKpUKU6dOsXNmzeJiIigWrVqVKtWzSYY8fT0ZOHChcyfP5/Q0FDy5MnD9OnTiYmJISQkhOnTp7N8+XKqV6/O2LFjrW3//fff9OjRg5EjR1K+fHlrua+vLxcuXODUqVMALF++nODg4Pv2sXjx4tSuXZs6derQvHlzxowZQ3JyMkWLFiU5OZn58+czefJkVqxYwVtvvcXUqVNtjt+yZQsHDx5k8eLFLF++nKioKFasWMFPP/1EoUKFWLp0KZ9++im7du2y9/aJiIjIXewepnFxcaFcuXIcOHCAiIgI2rVrR5EiRbhx4wZXrlzh119/pUSJEpw8eZKWLVsCkJiYSMmSJdm3bx/nz5+nQ4cOACQnJ5MzZ05r271796ZMmTJUqlTJ5pxOTk4EBQWxYsUKgoODuXTpEuXKlXtgP4cNG8Y777xDREQEERERtGzZkrFjx1KvXj0mTJjAhg0b+Ouvv9ixYwfOd61QExkZyf79+60Bz40bNyhYsCDNmjXjiy++ICoqipo1a9K9e3d7b5+IiIjc5ZHWGfH19WXPnj3s37+fMWPGALeHb37++Wdy586NYRgEBAQwaNAgAOLj47FYLOzYsYOXX36ZyZMnA3Dz5k3i4+Ot7Q4cOJAJEyawadMmatasaXPOoKAg3nrrLTJnzkxgYOAD+7dp0yYSEhJo2LAhzZo1o1mzZixcuJDFixdTrVo1mjdvTtOmTalcuTLe3t7MnTvX5niLxULHjh154403ALh69SouLi7kyJGDNWvWEB4ezsaNG5kxYwarV69OEcyIiMjTS/8k2O+RblmVKlUIDQ3Fy8uLTJluxzPVqlXju+++o1q1avj4+PDTTz9x6dIlDMNg6NChzJo1i3LlyrF3717++usvACZOnMjo0aOt7ZYtW5ahQ4fyySefkJCQYHPOQoUKkT9/fubPn//QYCRr1qyEhIRYn84xDINDhw5RokQJTpw4gZOTE2+//ba1nxaLxeZ4X19fQkNDiY+PJykpie7du7Nu3TrmzJnD+PHjCQgIYMiQIcTExHDt2rVHuYUiIiLyX4+UGfHy8uLy5cu0bdvWWubr68u7775L1apVKV68OD169KBjx44kJydTokQJunTpQpYsWRg5ciTvvvsuycnJ5MuXz5pZuaNy5cr4+Pjw1VdfUbx4cZt9DRs2ZP369eTLl++B/fP19aVHjx68/fbbJCYmAlCjRg26d++Oi4sLJUqUICAgACcnJ6pXr87u3bttjvf39+fw4cO0bNkSi8VCjRo1CAoKIj4+nvfee48mTZrg4uJC3759cXd3f5RbKPLY6v9dH7O7ICJPGCfDMAyzO5EaSUlJfPjhhzRo0IB69eqZ3Z1HUrxzQbO7ICIi/3X423Np0q5v/yJp0q49tn122uwu2OWx+G0awzCoUaMGVatWta5vsmvXLoYPH37P+lOnTn1o9kREREQyhsciGHFyciIyMtKmrFKlSoSGhprUIxERkXtzdn78VkA1m+b8ioiIiKkUjIiIiIipHothGhERkcfFY/g7daZTZkRERERMpcyIiIiIA2kFVvvplomIiIipFIyIiIiIqTRMIyIi4kBOWmfEbsqMiIiIiKmUGREREXEgTWC1n26ZiIiImErBiIiIiJhKwzQiIiIO5KSv+XbTLRMRERFTKTMiIiLiQM76cRq7KTMiIiIiplIwIiIiIqbSMI2IiIgDaQKr/RSMpKNBvZuZ3QUREZEMR8GIiIiIA2kFVvvplomIiIipFIyIiIiIqTRMIyIi4kBOzlpnxF7KjIiIiIipFIyIiIiIqTRMIyIi4kB6msZ+umUiIiJiKmVGREREHEi/k2c/ZUZERETEVApGRERExFQaphEREXEgZ60zYjdlRkRERMRUyoyIiIg4kJO+5ttNt0xERERMpWBERERETKVhGhEREQfSBFb7KTMiIiIiplJmRERExIGctQSr3RSMiAgAf+y+wIY5f5CUlEy+os/Q5J1SZMl+74+Iw9ujCR13gI/m1gZg0Zi9xP593br/cvR1niuZm9b9K6RL30Xk8fZUBiNr165l6tSpJCUlYRgGgYGBvPXWW3Tu3JkRI0aQL18+s7sokq7ir9xixTcH6fTpK+QpmIOw2Uf5ec5RGnYpmaLupXPxhH1/BOMfZS36lrf+fe7PKywes4+AziXSvuMi8kR46oKRqKgoPv/8c5YuXUru3LmJj4+nffv2PP/883z77bdmd0/EFMf3XaLgiznJUzAHAJXqF2Hq+5EEdC6B0z9Szok3LSwfd4C6nbxZ9tWBFO1YEpMJHX+Qev/nTc5ns6Zb/0UyEk1gtd9TF4zExsaSmJjIjRs3AMiRIwejRo0iS5Ys+Pv78/333zN//nzCw8MBiIuLIzY2ll9//ZX9+/fz2WefcePGDXLnzs2wYcMoUqSImZcj4hBXL97A/R/Bg3ueLNxMSOLWdYvNUM2Pk3+nYt0i5Cv6zD3b+fXnszyTOwvFfZRdFJHUe+qCkeLFi1O7dm3q1KlDiRIl8PHxoUmTJhQtWtRa54MPPuCDDz7g1q1btG/f3vr3oEGDmDx5MgULFiQ8PJyPP/6YmTNnmncxIg5iGAb3+i73z5Ukd609hbOLE+VrF+Jy9PV71Ibtq07S6O2UQzsiTxNlRuz31AUjAMOGDeOdd94hIiKCiIgIWrZsydixY1PUGzRoEJUrV6Zhw4YcPXqU06dP061bN+v+a9eupWe3RdKM+7NZOfvHFev21Us3yeqWicxZ//cRsW/jORJvWpj6fiSWpGSSbt3+u83ACjzjkZXzx6+SbDEoWiq3GZcgIo+xpy4Y2bRpEwkJCTRs2JBmzZrRrFkzFi5cyOLFi23qTZ8+nUuXLjFq1CgAkpOTKVy4MKGhoQBYLBYuXryY7v0XSQvFyuchbNZRLp2LJ0/BHOxefwbvyp42dd783Nf69+Xo60zus5UuIVWsZad+j+U/ZTxs5piIiKTGU7foWdasWQkJCeHMmTPA7fT0oUOHKFHifzP/t2zZwqJFi/jiiy9wdr59i1544QWuXLnCrl27AFiyZAkffPBB+l+ASBrIkTMLTbqXYvHYfUzs9QsXTsVRt6M35/68wtT3I1PVRsz5BHJ5ZkvjnopkfM5Ozqa/HjdOhmEYD6/2ZFm2bBnTp08nMTERgBo1avDhhx/SoEEDvv/+e958802SkpJwd3cnOTkZgPHjx3Pp0iU+/fRTbt68iZubG59//jnPPfdcqs8752DPNLkeERGx3+ulx6dJu62mFk+Tdu2xoMvhVNdduXIlkyZNIikpiY4dO9KuXTvrvkOHDtGvXz/rdkxMDDlz5mTVqlUsW7aMkJAQ8uTJA0DNmjXp06fPI/X3qQxGzKJgREQk40irYKTNNPPX2Jn31qFU1YuKiqJNmzYsXbqUzJkz07p1a7744gtefPHFFHWvX79OixYtGDp0KJUqVWL48OFUqFCBxo0b/+v+Pn65HBEREXGIrVu34uvrS65cuciePTv169dn7dq196w7ZcoUKleuTKVKlQA4cOAAy5Yto0mTJnzwwQdcuXLlnselhoIRERGRJ8zVq1c5c+ZMitfVq1dt6kVHR5M3b17rtqenJ1FRUSnai4uLY+HChfTo0cNaljdvXt555x1WrFhBgQIF+OSTTx65v0/d0zQiIiJpKSOsMzJr1iy++eabFOU9evSgZ8//TRlITk62eQLOMIx7PhG3YsUK6tSpY50fAjBhwgTr32+99RZ169Z95P4qGBEREXnCdOzYkaCgoBTl7u7uNtv58+e3PiUKcOHCBTw9Pe8+jLCwMLp27WrdjouLY8mSJXTq1Am4HcS4uLg8cn81TCMiIvKEcXd3p3DhwiledwcjVatWJTIykpiYGK5fv8769evx8/OzqWMYBr/99hsVKvzvV7izZ8/OtGnT2LdvHwBz5sxRZkRERCSjcH6MFv7Lly8fffr0oUOHDiQmJtK8eXPKli1L586d6dWrF2XKlCEmJgZXV1eyZMliPc7FxYWvvvqKoUOHcuPGDf7zn/8wevToR+6HHu1NR3q0V0Qk40irR3vbf1cqTdq1x+w3fjO7C3ZRZkRERMSB7qzcLamnOyYiIiKmUjAiIiIiptIwjYiIiANlhHVGHjfKjIiIiIiplBkRERFxoMfp0d6MQpkRERERMZWCERERETGVhmlEREQcSBNY7afMiIiIiJhKmREREREH0gqs9tMdExEREVMpGBERERFTaZgmHdV/Qb/aKyLypHPSOiN2U2ZERERETKXMiIiIiAPp0V77KTMiIiIiplIwIiIiIqbSMI2IiIgDaZjGfsqMiIiIiKmUGREREXEgZyd9z7eX7piIiIiYSsGIiIiImErDNCIiIg6kCaz2U2ZERERETKVgREREREylYRoREREHctYP5dlNmRERERExlTIjIiIiDqQJrPZTZkRERERMpWBERERETKVhGhEREQdydtb3fHvpjomIiIiplBkRERFxID3aaz8FIyICwNbwnUwZ/z23biVS7KX/0H9IL3K4ZU9RzzAMPh38FS+8VJS2HYKt5Y1qtSWv57PW7bYdg6nXsGZ6dF1EHnNpOkxz5swZvL29GTx4sE35oUOH8Pb2ZunSpalux9/fP0X5+PHjqVatGoGBgTRt2pTGjRszZ84ch/T9QaKioqhevXqan0ckvcTGXGHkkK8ZMaY/85ZPpmDh/EwaNzNFvRPHT9O76yA2hf1iU37qxBmecX+GmQvGWV8KREQktdI8M5IrVy7Cw8OxWCy4uLgAsHr1ajw8PBzSfuvWrenZsycAMTExdOzYkSxZstCiRQuHtH+3zZs3M3LkSC5cuJAm7YuYYee2XylR6iWKFC0IQFCLADq16sX7/bvh9I+U89KFP9I4qC758j9rc/yBfYdxcXHmnf/7iPhrCdSsXZUOb7W0/jcv8jTROiP2S/MJrDly5KBEiRLs3LnTWvbLL79QtWpVAObMmUOLFi1o3LgxQUFBHD9+HAB/f3/effdd6tevT0xMjPXYdevW0bRpU5uyOzw8POjWrRs//PADABcvXqRr1640adKEoKAgtmzZQkxMDDVq1LAeU6NGDVavXg3AlClTmDZtGuPHj2fQoEG0b98ef39/Jk2aZK2/ePFixo8f78A7JGK+qL8v4JnvfwFGXs9nib+WQEL8dZt67/V7m3oBNVMcb7FYqPRKeUImDOOb6Z+xI/JXlsxfldbdFpEnRLo8TRMQEMC6desA2L9/P97e3ri6unLt2jXCwsKYPXs2q1atombNmsydO9d6nJ+fH+vWrbNmUSIiIpgwYQIzZsy4b2bFy8vLGtAMHz4cX19fVq5cybhx4xgwYADJyckUKFCAo0ePcuzYMSwWCzt27AAgPDycWrVqAXDkyBGmT5/OokWLmDp1KlevXgVuDw15eXmlzY0SMYlhGDYZkDucXVL3EdE0uD59+nUlW7asPPOMG61eD2TLhkhHd1PkseDs7GT663GTLsGIv78/W7ZsITk5mTVr1hAQEACAm5sbISEh/Pjjj4SEhLBx40YSEhKsx5UrV876d2xsLD179uS1117j2WefTXGOO5ycnMiaNSsA27Zto3nz5gAUKVKEcuXKsW/fPvz8/IiMjGTbtm106NCB3bt3ExcXx8WLFylWrBgAPj4+ZM6cmTx58pArVy7i4uIcfl9EMop8+fNy8cL/so0Xoy/xjLsb2bJlTdXxa1dt4M+jf1m3DQNcMml+vIikTroEIzly5KB48eLs3r2bbdu2WYdozp8/T6tWrYiLi8PPz4+goCAMw7AelyVLFuvfTk5OTJw4kenTpxMVFXXfcx05csQaUPyzrTvbFouFmjVrEhkZyfbt26lbty7Ozs6sXLnSZlLq3ee+uy2RJ8krVSrw24EjnD55DoDli9dQo6ZPqo8/fuwU0yfNxWKxcPPGTZYsWEXt+jUefqCICOm46FlAQAAhISGULl2aTP/9xpQ9e3aKFi1Kp06dKFOmDGFhYVgslnsenytXLqpUqUKbNm0YMWLEPetER0czefJk2rVrB4Cvry+LFy8G4PTp0+zZs4fy5ctTqlQp/vrrL06cOEGxYsXw8fFh0qRJ1iEakadNbo9cDBjam0F9P6NdcDeO/3mCHu+9yeHf/qBTq14PPf7/urTmmZzP0LFFTzq27EmZciVoElQvHXoukvE4Ozmb/nrcpFsetVatWgwcOJDevXtby1xdXUlOTqZhw4YYhkHlypX5448/HthOly5daNq0KWFhYQDMnz+fsLAwa/aiVatWNGrUCICBAwcyePBg6yPEI0aMwNPTE4CKFSty/frtyXm+vr4sWrSIypUrO/y6RR4XVWpUokqNSjZl7jlvP657t4Gf9LHZzpotKwOG9k5RT0QkNZwMjT+kmwsJR83ugoiI/Ffe7GnzMMLQn1Oui5XehtbeYHYX7PL45XJERETkiaJgREREREylZ+9EREQcyNlJKw/bS5kRERERMZWCERERETGVhmlEREQcyNlZ3/PtpTsmIiIiplJmRERExIFcNIHVbsqMiIiIiKkUjIiIiIipNEwjIiLiQM7OGqaxlzIjIiIiYiplRkRERBxIK7DaT5kRERERMZWCERERETGVhmlEREQcSCuw2k93TEREREylzIiIiIgDaQVW+ykzIiIiIqZSZiQdOTu5mt0FERGRDEfBiIiIiANpBVb7aZhGRERETKXMiIiIiAM5O+l7vr10x0RERMRUCkZERETEVBqmERERcSBNYLWfMiMiIiJiKmVGREREHEgrsNpPmREREZGn2MqVK2nYsCH16tVj7ty5KfZ/88031KpVi8DAQAIDA611zp07R7t27WjQoAHdunUjPj7+kfugzIiIiMhTKioqii+//JKlS5eSOXNmWrdujY+PDy+++KK1zsGDB/niiy+oUKGCzbHDhg2jbdu2NGrUiAkTJjBx4kT69u37SP1QZkRERMSBnJ2cTX+l1tatW/H19SVXrlxkz56d+vXrs3btWps6Bw8eZMqUKTRp0oRPPvmEmzdvkpiYyM6dO6lfvz4AwcHBKY6z65498pEiIiKSIV29epUzZ86keF29etWmXnR0NHnz5rVue3p6EhUVZd2Oj4+nRIkS9O3bl2XLlnH16lUmTpxIbGwsbm5uZMp0e4Alb968NsfZS8GIiIjIE2bWrFnUrl07xWvWrFk29ZKTk3FycrJuG4Zhs50jRw6+/fZbihUrRqZMmfi///s/Nm/enKIekGLbHpozIiIi4kAZYZ2Rjh07EhQUlKLc3d3dZjt//vzs2rXLun3hwgU8PT2t2+fOnWPr1q00b94cuB2sZMqUCQ8PD+Li4rBYLLi4uKQ4zl7KjIiIiDxh3N3dKVy4cIrX3cFI1apViYyMJCYmhuvXr7N+/Xr8/Pys+7NmzcqYMWM4ffo0hmEwd+5c6tati6urK5UqVWL16tUALF++3OY4eykzIiIi4kDOj9E6I/ny5aNPnz506NCBxMREmjdvTtmyZencuTO9evWiTJkyfPLJJ3Tr1o3ExERefvll3njjDQCGDBlCv379mDRpEgUKFOCLL7545H44GYZhOOqi5MEuXf/L7C6IiMh/5cn2fJq0+92+t9OkXXu8UW6y2V2wi4ZpRERExFQaphEREXEglwwwgfVxo8yIiIiImEqZEREB4Jct25k8/jsSbyVS7KXnGTC0DznccqSoZxgGIz4OodhL/6Ftx9uP+12Li2fksC85+dftGfcBTerQ/o2W6X0JIhmCPSugym1pesfOnDmDt7c3gwcPtik/dOgQ3t7eLF26NNXt+Pv7pygfP3481apVIzAwkKZNm9K4cWPmzJnjkL4/TK9evRg/fny6nEskrcXGXObTIV8wcuzHzA+dTsHCBZj49Xcp6p04foqeXfqxMSzcpnzqxFl4ej7L3CVTmD53HMsWruLAvt/Tq/si8phL88xIrly5CA8Pty6MArB69Wo8PDwc0n7r1q3p2bMnADExMXTs2JEsWbLQokULh7R/L4sXL2b79u289NJLaXYOkfS0I3IPJUp5UaRoIQCCWzSiQ6t3+GBAd5tVFZcsWEnToAbkz5/X5vg+H3bDYkkG4NKFGBITE3G7R1ZFRORe0jwYyZEjB8WLF2fnzp34+voC8Msvv1C1alUA5syZQ2hoKNevX8fV1ZWQkBBeeOEF/P39KVu2LIcOHWLMmDHW9tatW8eECROYOXNminN5eHjQrVs3vv32W1q0aMHFixcZOHAg586dI1OmTPTp04fSpUsTGBhIePjtb3Y1atSgf//+NGzYkClTpuDi4sL169eJiori5MmTnD17lhYtWtCtWzcATp06xbJly2jVqlUa3zmR9BMVdYF8/wgw8ubLS/y1BBLiE2yGat7v3x2AHZG7bY53cnIiUyYXhg74nE1hEfj5V+W5/xROn86LZDAZYQXWx026DGwFBASwbt06APbv34+3tzeurq5cu3aNsLAwZs+ezapVq6hZsyZz5861Hufn58e6deusWZSIiAgmTJjAjBkz7ptZ8fLy4vjx4wAMHz4cX19fVq5cybhx4xgwYADJyckUKFCAo0ePcuzYMSwWCzt27AAgPDycWrVqAXDkyBGmT5/OokWLmDp1KlevXiUpKYmBAwcybNgwXF1d0+x+iaQ3Iznl70wAOLvY96E6dORHrN60kKtX4vhuyg+O6p6IPOHSJRjx9/dny5YtJCcns2bNGgICAgBwc3MjJCSEH3/8kZCQEDZu3EhCQoL1uHLlyln/jo2NpWfPnrz22ms8++yz9z2Xk5MTWbNmBWDbtm3W9fSLFClCuXLl2LdvH35+fkRGRrJt2zY6dOjA7t27iYuL4+LFixQrVgwAHx8fMmfOTJ48eciVKxdxcXGMHz+eunXr8uKLLzr8HomYKV+BvFy4cMm6fSH6Is+4u5EtW9ZUHb9t6y4uRN8+Pnv2bNRtUJMjh/9Mk76KZHTOTi6mvx436RKM3Bmq2b17N9u2bbMO0Zw/f55WrVoRFxeHn58fQUFB/HNB2CxZslj/dnJyYuLEiUyfPv2BP1N85MgRa0Bx9+KyhmFgsVioWbMmkZGRbN++nbp16+Ls7MzKlSupXr36fc9tGAbr1q1j8eLFBAYGMn/+fObPn8+0adP+3c0RyQBeqVKR3/Yf5vTJswAsX/wjNWpWSfXxG9ZvYcaUORiGwa1bt9iwPpyKlcs9/EAREdJxnZGAgABCQkIoXbo0mTLdnqqSPXt2ihYtSqdOnShTpgxhYWFYLJZ7Hp8rVy6qVKlCmzZtGDFixD3rREdHM3nyZNq1aweAr68vixcvBuD06dPs2bOH8uXLU6pUKf766y9OnDhBsWLF8PHxYdKkSdYhmvtZu3YtK1asIDQ0lNatW9O6dWveeuutR70lIhmGh0cuBg57j4F9R9AmqDPH/jhBr/e7cOi3o3Rs+c5Dj+/5XheuXUvg9eZv80abnniXfJGW7V5L+46LyBMh3dYZqVWrFgMHDqR3797WMldXV5KTk2nYsCGGYVC5cmX++OOPB7bTpUsXmjZtSlhYGADz588nLCzMmr1o1aoVjRo1AmDgwIEMHjzY+gjxiBEjrD9xXLFiRa5fvw7cDloWLVpE5cqVHX7dIo+LqjVeoWqNV2zK3HM+w6yFE1PUHTT8A5vtZ9zdGP55/zTtn8jjwtlZ64zYSz+Ul470Q3kiIhlHWv1Q3sIjfdOkXXu09B7z8EoZiFZgFRERcSCXx3ACqdmUSxIRERFTKRgRERERU2mYRkRExIEex3U+zKbMiIiIiJhKmREREREH0m/T2E+ZERERETGVghERERExlYZpREREHMjZSd/z7aU7JiIiIqZSMCIiIiKm0jCNiIiIA7noaRq7KTMiIiIiplJmRERExIG0Aqv9lBkRERERUykYEREREVNpmEZERMSBtM6I/XTHRERExFTKjIiIiDiQJrDaT8FIOnLW7RYREUlBwzQiIiJiKn1VFxERcSAN09hPmRERERExlTIjIiIiDuSkzIjdlBkRERERUykYEREREVNpmEZERMSBNIHVfsqMiIiIiKmUGREREXEgZ5QZsZcyIyIiImIqBSMiIiJiKg3TiIiIOJAmsNpPmRERERExlYIRERERMZWGaURERBxIwzT2U2ZERERETKXMiIiIiAPph/Lsp8yIiIiImErBiIiIiJhKwzQiIiIOpOXg7afMiIhY/bJlG+1adKZlYCcGfPAJ8dfi71nPMAw+GfQ5c2cttCmPu3qNdi06c+i3I+nRXRF5QqRpMHLmzBm8vb0ZPHiwTfmhQ4fw9vZm6dKlqW7H398/Rfn48eOpVq0agYGBNG3alMaNGzNnzhyH9P1eLBYLgwcPpnHjxjRp0oSVK1em2blE0ltszGVGDBnLZ2OHsDB0JgULF2DC19NS1Pvr+El6dOnLhrBwm/Kt4dt5s30PTp04k15dFsmQnJ2cTX89btK8x7ly5SI8PByLxWItW716NR4eHg5pv3Xr1oSGhrJixQq+//57FixYwKJFixzS9t1WrFjBtWvXWLVqFbNmzWLEiBFcu3YtTc4lkt62R+6mRCkvnitaGIDgFk1Yt+ZnDMOwqbdkwQqaBgXgX9fPpnzhvGUM/bQfeZ51zH/bIvL0SPM5Izly5KB48eLs3LkTX19fAH755ReqVq0KwJw5cwgNDeX69eu4uroSEhLCCy+8gL+/P2XLluXQoUOMGTPG2t66deuYMGECM2fOTHEuDw8PunXrxrfffkuLFi24ePEiAwcO5Ny5c2TKlIk+ffpQunRpAgMDCQ+//a2uRo0a9O/fn4YNGzJlyhRcXFy4fv06UVFRnDx5krNnz9KiRQu6detGUFAQTZo0ASA6OhpXV1dcXV3T+A6KpI/oqGjy5fe0bnvmy0v8tQQS4hPI4ZbDWv5B/57A7eDln76aOCp9OioiT5x0yeUEBASwbt06APbv34+3tzeurq5cu3aNsLAwZs+ezapVq6hZsyZz5861Hufn58e6deusWZSIiAgmTJjAjBkz7ptZ8fLy4vjx4wAMHz4cX19fVq5cybhx4xgwYADJyckUKFCAo0ePcuzYMSwWCzt27AAgPDycWrVqAXDkyBGmT5/OokWLmDp1KlevXgUgU6ZMDBw4kObNm9OyZUuyZMmSNjdNJJ0lJxvglLLc2eXxS/mKmMnZycX01+MmXT5l/P392bJlC8nJyaxZs4aAgAAA3NzcCAkJ4ccffyQkJISNGzeSkJBgPa5cuXLWv2NjY+nZsyevvfYazz777H3P5eTkRNasWQHYtm0bzZs3B6BIkSKUK1eOffv24efnR2RkJNu2baNDhw7s3r2buLg4Ll68SLFixQDw8fEhc+bM5MmTh1y5chEXF2c9x6effkp4eDjr168nIiLCcTdKxET5Cnhy8cIl6/aF6Iu4uz9DtmzZTOyViDwN0iUYuTNUs3v3brZt22Ydojl//jytWrUiLi4OPz8/goKCbMan/5l1cHJyYuLEiUyfPp2oqKj7nuvIkSPWgOLusW7DMLBYLNSsWZPIyEi2b99O3bp1cXZ2ZuXKlVSvXv2+5zYMg4MHD3LixAkAcufOTY0aNThyRE8NyJPBp0pFDu4/xKmTtyegLlu8kho1q5rcK5HHj9lZEWVGHiAgIICQkBBKly5Npky3p6pkz56dokWL0qlTJ8qUKUNYWJjNRNd/ypUrF1WqVKFNmzaMGDHinnWio6OZPHky7dq1A8DX15fFixcDcPr0afbs2UP58uUpVaoUf/31FydOnKBYsWL4+PgwadIk6xDN/ezbt48xY8aQnJzMtWvXiIiI4OWXX37UWyKSoXh45ObjYX0Z0PcTWgX9H8f++Ite73fl0G9HaN+yq9ndE5EnWLotelarVi0GDhxI7969rWWurq4kJyfTsGFDDMOgcuXK/PHHHw9sp0uXLjRt2pSwsDAA5s+fT1hYmDV70apVKxo1agTAwIEDGTx4sPUR4hEjRuDpeXuCXsWKFbl+/TpwO2hZtGgRlStXfuC5W7duzZEjR2jSpAnOzs60a9eOChUqPNoNEcmAqtbwoWoNH5uynDndmb1wSoq6g4d/eM82lq+Ze89yEZH7cTLuHsuQNBN7/bTZXRARkf/Kna1ImrS771Lq1tBKS+XyBJvdBbtomryIiIiYSr9NIyIi4kD6bRr7KTMiIiIiplIwIiIiIqbSMI2IiIgDPY7rfJhNmRERERExlTIjIiIiDqTMiP2UGRERERFTKRgRERERU2mYRkRExIE0TGM/ZUZERESeYitXrqRhw4bUq1ePuXNT/rZUWFgYgYGBNG3alHfeeYcrV64AsGzZMqpXr05gYCCBgYF8+eWXj9wHZUZERESeUlFRUXz55ZcsXbqUzJkz07p1a3x8fHjxxRcBuHbtGkOHDmXJkiXky5ePr7/+mvHjxzNo0CAOHjxIv379aNy48b/uhzIjIiIiDuTk5GL6K7W2bt2Kr68vuXLlInv27NSvX5+1a9da9ycmJjJkyBDy5csHgLe3N+fPnwfgwIEDLFu2jCZNmvDBBx9YMyaPQsGIiIjIE+bq1aucOXMmxevq1as29aKjo8mbN69129PTk6ioKOt27ty5qVu3LgA3btxg6tSp1KlTB4C8efPyzjvvsGLFCgoUKMAnn3zyyP3VMI2IiIgDZYQfyps1axbffPNNivIePXrQs2dP63ZycjJOTk7WbcMwbLbviIuLo3v37hQvXpygoCAAJkyYYN3/1ltvWYOWR6FgRERE5AnTsWNHa9DwT+7u7jbb+fPnZ9euXdbtCxcu4OnpaVMnOjqaN998E19fXwYMGADcDk6WLFlCp06dgNtBjIvLowdhGqYRERF5wri7u1O4cOEUr7uDkapVqxIZGUlMTAzXr19n/fr1+Pn5WfdbLBbefvttAgICGDhwoDVrkj17dqZNm8a+ffsAmDNnjjIjIiIiGYWz0+PzPT9fvnz06dOHDh06kJiYSPPmzSlbtiydO3emV69e/P333/z+++9YLBbWrVsHQOnSpfn000/56quvGDp0KDdu3OA///kPo0ePfuR+OBmGYTjqouTBYq+fNrsLIiLyX7mzFUmTdo9f3ZIm7drjBXe/h1fKQJQZERERcSCtwGq/xyeXJCIiIk8kBSMiIiJiKg3TiIiIOJCGaeynzIiIiIiYSpkRERERB3LKACuwPm6UGRERERFTKRgRERERU2mYRkRExIE0gdV+yoyIiIiIqZQZERERcSBlRuynzIiIiIiYSsGIiIiImErDNCIiIg7kpO/5dtMdExEREVMpMyIiIuJQTmZ34LGjzIiIiIiYSsGIiIiImErDNCIiIg6kCaz20x0TERERUykYEREREVMpGBERq1+2bKNdi860DOzEgA8+If5a/D3rGYbBJ4M+Z+6shTblcVev0a5FZw79diQ9uiuSITllgP973KRpMHLmzBm8vb0ZPHiwTfmhQ4fw9vZm6dKlqW7H398/Rfn48eOpVq0agYGBNG3alMaNGzNnzhyH9P1+ateuTWBgoPV1/vz5ND2fSHqJjbnMiCFj+WzsEBaGzqRg4QJM+Hpainp/HT9Jjy592RAWblO+NXw7b7bvwakTZ9KryyLyhEjzCay5cuUiPDwci8WCi8vtHw9avXo1Hh4eDmm/devW9OzZE4CYmBg6duxIlixZaNGihUPa/6fY2FhcXV0JDQ11eNsiZtseuZsSpbx4rmhhAIJbNKF9qy70HdALJ6f/fdNasmAFTYMCyJff0+b4hfOWMfTTfgzoOzxd+y2S8WjQwV5pfsdy5MhBiRIl2Llzp7Xsl19+oWrVqgDMmTOHFi1a0LhxY4KCgjh+/DgA/v7+vPvuu9SvX5+YmBjrsevWraNp06Y2ZXd4eHjQrVs3fvjhBwAuXrxI165dadKkCUFBQWzZsoWYmBhq1KhhPaZGjRqsXr0agClTpjBt2jTGjx/PoEGDaN++Pf7+/kyaNAmAAwcOYBgGrVu3JigoiDVr1jj4bomYJzoq2ibA8MyXl/hrCSTEJ9jU+6B/T+o3rJ3i+K8mjqJk6eJp3k8RefKkS/gWEBDAunXrANi/fz/e3t64urpy7do1wsLCmD17NqtWraJmzZrMnTvXepyfnx/r1q2zZlEiIiKYMGECM2bMuG9mxcvLyxrQDB8+HF9fX1auXMm4ceMYMGAAycnJFChQgKNHj3Ls2DEsFgs7duwAIDw8nFq1agFw5MgRpk+fzqJFi5g6dSpXr17l1q1b1KhRg5kzZzJ+/HhGjRrFsWPH0uy+iaSn5GTjngtHOrvoW56IpK10+ZTx9/dny5YtJCcns2bNGgICAgBwc3MjJCSEH3/8kZCQEDZu3EhCwv++hZUrV876d2xsLD179uS1117j2Wefve+5nJycyJo1KwDbtm2jefPmABQpUoRy5cqxb98+/Pz8iIyMZNu2bXTo0IHdu3cTFxfHxYsXKVasGAA+Pj5kzpyZPHnykCtXLuLi4qhTpw6DBg0ia9asFC5cmLp16xIREeHw+yVihnwFPLl44ZJ1+0L0RdzdnyFbtmwm9krk8WP25FVNYL2PHDlyULx4cXbv3s22bdusQzTnz5+nVatWxMXF4efnR1BQEIZhWI/LkiWL9W8nJycmTpzI9OnTiYqKuu+5jhw5Yg0o/tnWnW2LxULNmjWJjIxk+/bt1K1bF2dnZ1auXEn16tXve27DMNi4cSMHDhywaTNTJq0bJ08GnyoVObj/EKdO3p6AumzxSmrUrGpyr0TkaZBu+deAgABCQkIoXbq09R/w7NmzU7RoUTp16kSZMmUICwvDYrHc8/hcuXJRpUoV2rRpw4gRI+5ZJzo6msmTJ9OuXTsAfH19Wbx4MQCnT59mz549lC9fnlKlSvHXX39x4sQJihUrho+PD5MmTbIO0dzP2bNnmTBhAsnJyVy8eJENGzZQs2bNR7wjIhmLh0duPh7WlwF9P6FV0P9x7I+/6PV+Vw79doT2Lbua3T2Rx4aTk7Ppr8dNun2tr1WrFgMHDqR3797WMldXV5KTk2nYsCGGYVC5cmX++OOPB7bTpUsXmjZtSlhYGADz588nLCzMmr1o1aoVjRo1AmDgwIEMHjzY+gjxiBEj8PS8PUGvYsWKXL9+HbgdtCxatIjKlSs/8NytW7fmyJEjNG7cmOTkZD744AMKFSr0aDdEJAOqWsOHqjV8bMpy5nRn9sIpKeoOHv7hPdtYvmbuPctFRO7Hybh7LEPSTOz102Z3QURE/it3tiJp0u7F63+mSbv2eDbbi2Z3wS6a8CAiIuJQj98EUrM9fgNLIiIi8kRRZkRERMSBnPQ93266YyIiImIqBSMiIiJiKg3TiIiIONDjuAKq2ZQZEREREVMpMyIiIuJQ+p5vL90xERERMZWCERERETGVhmlEREQcSBNY7afMiIiIiJhKwYiIiIiYSsM0IiIiDqTl4O2nOyYiIiKmUmZERETEoTSB1V7KjIiIiIipFIyIiIiIqTRMIyIi4kCawGo/3TERERExlTIj6cgJF7O7ICIiaUwrsNpPmRERERExlYIRERERMZWGaURERBxK3/PtpTsmIiIiplJmRERExIH0aK/9dMdERETEVApGRERExFQaphEREXEgrTNiP2VGRERExFTKjIiIiDiSk77n20t3TEREREylYERERERMpWEaERERB9IEVvspMyIiIiKmUmZERETEgbQCq/10x0RERMRUCkZERETEVBqmERERcShNYLWXMiMiIiJiKmVGRJ5iEVsimTR+GrduJfLiSy8wcGhf3NxypKrOlStXGf3plxw9coxs2bLSOLABLdsE2xy7YvlqNm+IIGTcyPS8LBF5zDxVmZFPPvmEXr162ZRFRERQu3Ztrl27ZlKvRMwRG3OZEUNG89nYYSwK/Z5ChQsw8eupqa7z1ZgJZMuejflLv2P67AlsjdhBxJZIAK5cucqoEV/w5ehvMAwj3a9NxExOOJv+ssfKlStp2LAh9erVY+7cuSn2Hzp0iODgYOrXr8/AgQNJSkoC4Ny5c7Rr144GDRrQrVs34uPjH/mePVXByPvvv8/Bgwf5+eefAUhISGDo0KGMHDkSNzc3k3snkr62R+6kRClvnitaGIDgFoGsXfOzTfDwoDqHDx0loFE9XFxccHV1pVoNHzb8tBmAn9dv4tm8eej53tvpf2EikmpRUVF8+eWX/PDDDyxfvpwFCxbw559/2tTp27cvgwcPZt26dRiGwcKFCwEYNmwYbdu2Ze3atZQuXZqJEyc+cj+eqmAkR44cjBgxguHDh5OQkMC4cePw9/cnW7ZstGnThqCgIP7v//6P06dPA7Bjxw5ree3atQkLCwOgX79+vP322wQEBLBhwwYzL0nkkUVFXSBffk/rtme+vMRfiyc+PiFVdUqVKcGaH9eTlJhEQsJ1Nv4czsWLlwAIbtGUt7p2JLNr5vS7IJEMwikD/F9qbd26FV9fX3LlykX27NmpX78+a9eute4/e/YsN27coHz58gAEBwezdu1aEhMT2blzJ/Xr17cpf1RP3ZyRqlWrUr16dfr378/x48f54YcfaNeuHZMnT6ZgwYKEh4fz8ccfM3PmTObMmcOIESMoVqwYkZGRjBw5kjp16gCQK1cuJk+ebPLViDw6IzkZJ6eUH1ouLs6pqtP7vXcY9+Uk2rfuTJ5nPXjFtyIH9v2Wpn0WkdS5evUqV69eTVHu7u6Ou7u7dTs6Opq8efNatz09Pdm/f/999+fNm5eoqChiY2Nxc3MjU6ZMNuWP6qkLRuB2ZqNmzZpMmDCB8+fPc/r0abp162bdf2f+yJgxY9i4cSNr165l3759NuNhZcuWTfd+izhSvgL5OHjwkHX7QvQF3N2fIVu2bKmq8/flKHq825WcOW9/sM2cNofCRQql3wWIyH3NmjWLb775JkV5jx496Nmzp3U7+a4vHIZh2Gzfb//d9YB7fnFJracyGHFzc8Pd3Z1ChQpx7do1ChcuTGhoKAAWi4WLFy8C0LZtW3x8fPDx8aFKlSp88MEH1jayZs1qSt9FHMWnSiW+DpnEqZNneK5oYZYuXkmNmtVSXWfpohXExyfQt39vLl2KIXTZaj79fLAZlyKSwZi/zkjHjh0JCgpKUf7PrAhA/vz52bVrl3X7woULeHp62uy/cOGCdfvixYt4enri4eFBXFwcFosFFxeXFMfZ66maM3IvL7zwAleuXLH+j7FkyRI++OADLl++zIkTJ+jduzd+fn78/PPPWCwWk3sr4jgeHrn5eNiH9O87hFZBHTn2x3F6v9+NQ78d4fWWbz2wDkDHN9sRHXWBNs3eoHvn9+jyzhuULF3czEsSkf9yd3encOHCKV53ByNVq1YlMjKSmJgYrl+/zvr16/Hz87PuL1SoEFmyZGH37t0AhIaG4ufnh6urK5UqVWL16tUALF++3OY4ezkZT+lzd/7+/nz//fcULlyYX3/9lU8//ZSbN2/i5ubG559/znPPPcdnn33Gzz//TKZMmfD19WXNmjVs3LiRTz75hFdeeYXg4OCHn+gfLl8/l0ZXIyIi9sqVrWCatHvj+o00adceWbOlPnu/cuVKpkyZQmJiIs2bN6dz58507tyZXr16UaZMGQ4fPsygQYO4du0apUqV4rPPPiNz5sycPXuWfv36cenSJQoUKMAXX3xBzpw5H6m/T20wYgYFIyIiGYeCkYzjqR+mEREREXM9lRNYRURE0oqTBhzspsyIiIiImEqZEREREUdSYsRuyoyIiIiIqRSMiIiIiKk0TCMiIuJIGqaxmzIjIiIiYiplRkRERBxJj/baTZkRERERMZWCERERETGVhmlEREQcyEmjNHZTZkRERERMpcyIiIiIIykzYjdlRkRERMRUCkZERETEVBqmERERcSStM2I3ZUZERETEVApGRERExFQaphEREXEkjdLYTcFIOnLG1ewuiIiIZDgaphERERFTKRgRERERUykYEREREVNpzoiIiIgDOWmdEbspMyIiIiKmUmZERETEkZQYsZsyIyIiImIqBSMiIiJiKg3TiIiIOJKGaeymzIiIiIiYSpkRERERR9KjvXZTZkRERERMpWBERERETKVhGhEREQdy0iiN3ZQZEREREVMpMyIiIuJIyozYTZkRERERMZWCERERETGVhmlEREQcScM0dlNmREREREylzIjIUyxiy1YmjJ/CrVu3eOmlYgwa2h83txyprrNowVJCl63i5s2bFC/hzcdD+5E5c2a2bI5g2Mefki9/Pms73343kRw5sqfr9YnI4+GJzYy88cYbhIWFWbc///xzKlSowK1bt6xl1atX58yZM3a16+/vb/cxIhlRbEwsnwwZyedjR7AkdB6FChfkm68npbrOhp83s3D+EiZM+YoFS2Zz8+ZNfpizAID9+w7yeoc2/LBwpvWlQESeGoZh/usx88QGI76+vuzevdu6vXXrVsqXL28tO3nyJNmzZ6dw4cJmdVHEVNsid1KyVAmeK1oEgGYtgli75ieMf3yQPajO6pVrade+NTlzuuPs7Ez/gR/QsFED4HYwsnPnbtq27EjnN95hz+696X59IvL4eGKDkSpVqvDrr78CEBUVRebMmalfvz4REREA7Nq1i2rVqrF8+XKCgoIIDAxkwIAB3Lx5E4AtW7bQvHlzXnvtNXr06EFsbKxN+3/99Rf16tVj79696XpdIo4SFRVFvvye1m3PfHmJvxZPfHxCquqcOnWa2JhYer7zHm1adGTq5Bk84+4GQM6c7jRr/hpzF8yke6+ufPjeAKKiotPv4kRM5GSY/3rcPLHBSKlSpTh16hQ3b94kIiKCatWqUa1aNZtgxNPTk4ULFzJ//nxCQ0PJkycP06dPJyYmhpCQEKZPn87y5cupXr06Y8eOtbb9999/06NHD0aOHEn58uVNukKRf8dINnByckpR7uLinKo6SYlJbN+2k89GD+f7H6Zx9epVJo6fCsCYL0ZSu24tnJycKF+hHGXKlWZ75M60uxgReaw9sRNYXVxcKFeuHAcOHCAiIoJ27dpRpEgRbty4wZUrV/j1118pUaIEJ0+epGXLlgAkJiZSsmRJ9u3bx/nz5+nQoQMAycnJ5MyZ09p27969KVOmDJUqVTLl2kQcIV+BfBw8+Lt1+0L0RdzdnyFbtmypqvOs57PUqv2qdTJrQMP6TJv6HXFX41i8cBmd3mz/v0DGgEyuT+zHjYj8S09sZgRuzxvZs2cP+/fvt2YwqlSpws8//0zu3LkxDIOAgABCQ0MJDQ1l0aJFDB48GIvFwssvv2wtX7x4MePGjbO2O3DgQE6fPs2mTZvMuTARB/Ct8goH9//GqZOnAViyeDl+NWukuk7tOjUJW7+BGzduYhgGmzaGU7JUCbLnyM6iBUvZ+PNmAI4cPspvB3+nalWfdLw6EXmcOBnGYzjtNpWOHj1Knz59eO6555g06fYTAD/99BPjxo2jfv361KlTh65du7J06VI8PDz48MMPee6552jdujVNmjRh3rx5PP/883z55ZdERUUxatQo/P39+f777zl//jwfffQRq1atInv21D0lcPX6hbS8XBG7/RIeyYTxk0lMTKJw4UIMHTGIs2fOMWLYKH5YOPO+dXLmdMdisTDj21n8tH4DFouF4iW86D/oQ9zccvD7b4cZ+/mXxMcn4OLiwnt9e1Gp8svmXqzIXdyz5U2Tdi3nrqZJu/ZwKehudhfs8kQHIwDVqlXjnXfeoV27dgDExcXh6+vL7Nmzefnll1m0aBGzZs0iOTmZEiVKMHLkSLJkycKGDRv4+uuvSU5OJl++fIwZM4bcuXNbg5HChQvTv39/nnnmGQYMGJCqvigYERHJONIsGDl7JU3atYdLoZwPr5SBPPHBSEaiYEREJONQMJJxPNFzRkRERCTj0/R2ERERR9J4g92UGRERERFTKTMiIiLiQI/jCqhmU2ZERERETKVgREREREylYRoRERFH0ooZdlNmREREREylzIiIiIgjKTFiN2VGRERExFQKRkRERMRUGqYRERFxpGSN09hLmRERERExlTIjIiIiDmTo0V67KTMiIiIiplIwIiIiIqbSMI2IiIgjJZvdgcePMiMiIiJiKgUjIiIiYioN06QjZ1zM7oKIiKQxQ+uM2E2ZERERETGVMiMiIiKOpHVG7KZgRERERGycO3eOvn37cunSJZ5//nnGjh1Ljhw5bOpER0fTv39/Ll68iLOzMx9++CFVqlQhMTERHx8fihQpYq27dOlSXFzuP1XBydBScenm2vUYs7sgIiL/5ZbNI03aTTpyMU3atUcm72f/1fFdu3aladOmNGrUiAkTJpCQkEDfvn1t6nzwwQdUqFCBdu3acfz4cdq3b8+WLVs4dOgQX375JdOnT0/1+TRnRERExIGMZMP017+RmJjIzp07qV+/PgDBwcGsXbs2Rb26devSuHFjAIoWLcrNmzdJSEjgwIEDxMTEEBwcTMuWLdmxY8dDz6lhGhERkSfM1atXuXr1aopyd3d33N3dH3hsbGwsbm5uZMp0O0TImzcvUVFRKerdCVYApk+fTokSJXjmmWdwcnKidu3adO3alT/++IPOnTuzcuVKPDzun4lSMCIiIuJIGeDR3lmzZvHNN9+kKO/Rowc9e/a0bq9Zs4bPPvvMpk7RokVxcnKyKbt7+59mzpzJggULmDNnDgCtW7e27itZsiRly5Zlz5491KlT575tKBgRERF5wnTs2JGgoKAU5XdnRQICAggICLApuzMB1WKx4OLiwoULF/D09LzneUaPHs3mzZuZO3cu+fPnB2D58uW8/PLLPPfcc8DtXzF2dXV9YH81Z0REROQJ4+7uTuHChVO8HjZEA+Dq6kqlSpVYvXo1cDu48PPzS1Fv5syZbN++nXnz5lkDEYAjR44wY8YMAI4fP86hQ4eoWLHiA8+pp2nSkZ6mERHJONLqaZpbB1POr0hvmUvn+1fHnz17ln79+nHp0iUKFCjAF198Qc6cOZk3bx7R0dH06tWLV155BTc3N5sAZ+rUqeTIkYMBAwZw/PhxnJycGDhwIL6+vg88n4KRdKRgREQk41AwknFozoiIiIgjJZvdgceP5oyIiIiIqRSMiIiIiKk0TCMiIuJAmoppP2VGRERExFTKjIiIiDhSBliB9XGjzIiIiIiYSsGIiIiImErDNCIiIg5kaJjGbgpGRJ5i4Vt+4Zvxk0i8lciLLxVj8NCBuLnlSHUd/5oNyPePH9Bq37EdDRvVZ+fO3Xz95TckJSWRJUsW+n7Yh9JlSqXrtYnI4yNDDtN4e3s/cH/79u3Zvn27TVm/fv1YunTpA4/z9/fnzJkz/Pzzz3z99dcp9m/fvp327dvb32GRx1BsTCzDhnzKmLGfsTR0AYULF2L81xNTXefEiZPkdHdn3sLvra+GjeqTmJhI/w8/ZtDgfsxfOJs3O3di8KBPzLhEEXMYhvmvx0yGDEbSWu3atendu7fZ3RAxVWTkDkqWKsFzRYsA0LxFMGvWrLNZI+FBdfbvPYCzizNvvvE2rVq8ztQp07FYLLi6urJm/QqKF/fGMAzOnjlHzpwP/6VQEXl6Zehg5O+//+b1118nODiY5s2bs3fv3lQdt3HjRgIDA2nSpAnvvPMOFy9etNm/dOlS+vXrB0BERASNGjUiODiYhQsXWuvs2LGDNm3aEBQURO3atQkLC+PatWv4+Phw7do1AM6cOUPDhg0dc7Ei6SwqKor8+f83xOKZLy/x1+KJj09IVZ0kiwUfn8p8M/FLpk2fxLat21kwbxEArq6ZuHQphoB6Tfn6y2/o0On19LswEXnsZOg5I4sXL6ZmzZq89dZbbNmyhd27d1O+fHkABg0aRPbs2a11z58/zyuvvMKlS5cYPHgw8+bNo3DhwkybNo1PPvmEcePGpWj/1q1b9OvXj1mzZlGsWDEGDhxo3TdnzhxGjBhBsWLFiIyMZOTIkdSpU4eaNWuydu1amjdvzvLly3nttdfS+jaIpAkjORmcnFKUu7g4p6pOcLPA/xVkg3bt2zB/3kLavt4agDx5PFj700oOHTpCty49eaHY8xQt+pzjL0Qkg9EEVvtl6MxIlSpVmDFjBu+//z6XL1/m9df/9+1qxIgRhIaGWl/+/v4A7N+/n7Jly1K4cGEAWrVqxbZt2+7Z/pEjR/D09KRYsWIABAUFWfeNGTOGP/74gwkTJvDdd98RHx8PQLNmzQgNDQVg1apVBAYGpmxY5DGQv0B+Ll74X9bwQvQF3N2fIVu2bKmq8+OqNfxx9E/rPsMwyJQpE3Fx19iwYZO1vEQJb7y8XuTPP46l7QWJyGMrQwcjFStW5Mcff6R69eqsXr2at99++6HHJCfb/nazYRgkJSXds66Tk5PN+LiLi4v177Zt27J//35Kly5tc97KlSsTHR3N+vXrKVy4MPny5bP3skQyBN8qr3Bg/0FOnTwNwOLFy3i1pl+q6xz78ziTJn6LxWLhxo0bLJy/mLr16uDi4swnQ0ay99d91nonTpzU0zQicl8Zephm9OjR5MuXj44dO+Lj42OTubifcuXKMWTIEM6cOUPhwoVZsGABPj4+96zr7e3NxYsXOXz4MMWLF+fHH38E4PLly5w4cYIffviBzJkzM3bsWCwWC3A7gHnttdcYMWKEdd6JyOPIw8ODIcMG8WHfASQmJlK4cCE+GTGY3387xPBhnzFv4ff3rQPQueubjB41llYtXicpMYk6df0JCm6Kk5MTIV+OImTM1yQlJeGa2ZURnw0jXz7Ph/RI5AmR/PAqYitDByPt27fn/fffZ+nSpbi4uPD5558/9Jhnn32WTz75hB49epCYmEjBggX59NNP71nX1dWVL774gr59+5IpUyZKliwJQK5cuWjevDmNGjUiU6ZM+Pr6cuPGDRISEsiePTuNGjVixowZ1KlTx6HXK5LeqteoSvUaVW3KcubMybyF3z+wDkC2bFkZMmzQPdutWOllZv8ww7GdFZEnlpOh3zq2S3JyMvPmzeOvv/5i0KB7fxDfz7XrMWnUKxERsZdbNo80aTch8nSatGuP7FWKmN0Fu2TozEhG1KNHD86fP8/06dPN7oqIiMgTQZmRdKTMiIhIxqHMSMahzIiIiIgjaZ0Ru2XoR3tFRETkyafMiIiIiCMpM2I3ZUZERETEVApGRERExFQaphEREXEgPaRqP2VGRERExFTKjIiIiDiSfpvGbsqMiIiIiKkUjIiIiIipNEwjIiLiQIbWGbGbMiMiIiJiKmVGREREHEmP9tpNmRERERExlYIRERERMZWGaURERBxIE1jtp8yIiIiImEqZEREREUdSZsRuyoyIiIiIqRSMiIiIiKk0TCMiIuJAhtYZsZsyIyIiImIqBSMiIiJiKg3TiIiIOJKeprGbMiMiIiJiKmVGREREHMiwJJvdhceOMiMiIiJiKgUjIiIiYioN04iIiDiQfijPfsqMiIiIiKmUGREREXEgTWC1nzIjIiIiYioFIyIiImIqDdOIiIg4UrKGaeylzIiIiIiYSpkRERERBzIserTXXsqMiIiIiKkUjIiIiIipNEwj8hQL3/IL34yfROKtRF58qRiDhw7EzS1Hquv412xAPk9Pa932HdvRsFF9du7czddffkNSUhJZsmSh74d9KF2mVLpem4hZDE1gtVuaZkbOnDmDt7c3gwcPtik/dOgQ3t7eLF26NNXt+Pv7pygfP3481apVIzAwkKZNm9K4cWPmzJnjkL7fi8ViYciQITRu3JhGjRoxc+bMNDuXSFqLjYll2JBPGTP2M5aGLqBw4UKM/3piquucOHGSnO7uzFv4vfXVsFF9EhMT6f/hxwwa3I/5C2fzZudODB70iRmXKCKPiTQfpsmVKxfh4eFYLBZr2erVq/Hw8HBI+61btyY0NJQVK1bw/fffs2DBAhYtWuSQtu+2dOlSLl++zIoVK1i0aBELFy7kt99+S5NziaS1yMgdlCxVgueKFgGgeYtg1qxZh2EYqaqzf+8BnF2cefONt2nV4nWmTpmOxWLB1dWVNetXULy4N4ZhcPbMOXLmdDflGkXMYFiSTX89btJ8mCZHjhwUL16cnTt34uvrC8Avv/xC1apVAZgzZw6hoaFcv34dV1dXQkJCeOGFF/D396ds2bIcOnSIMWPGWNtbt24dEyZMuGdWwsPDg27duvHtt9/SokULLl68yMCBAzl37hyZMmWiT58+lC5dmsDAQMLDwwGoUaMG/fv3p2HDhkyZMgUXFxeuX79OVFQUJ0+e5OzZs7Ro0YJu3brx0ksvUa5cOZydncmePTtFihTh/PnzlCql9LM8fqKiosif/39DLJ758hJ/LZ74+ATrMMyD6iRZLPj4VKZn73dISkyid8/3ccuRg7avt8bVNROXLsXQrnVHLl++wmefD0/36xORx0e6TGANCAhg3bp1AOzfvx9vb29cXV25du0aYWFhzJ49m1WrVlGzZk3mzp1rPc7Pz49169ZZsygRERFMmDCBGTNm3Dez4uXlxfHjxwEYPnw4vr6+rFy5knHjxjFgwACSk5MpUKAAR48e5dixY1gsFnbs2AFAeHg4tWrVAuDIkSNMnz6dRYsWMXXqVK5evUr58uXx8vICYM+ePezfv5/KlSunzU0TSWNGcjI4OaUod3FxTlWd4GaBfNjvfbJly8Yz7s/Qrn0bNm7cbK2TJ48Ha39ayXfff8uwIZ9y8uSptLkQEXnspUsw4u/vz5YtW0hOTmbNmjUEBAQA4ObmRkhICD/++CMhISFs3LiRhIQE63HlypWz/h0bG0vPnj157bXXePbZZ+97LicnJ7JmzQrAtm3baN68OQBFihShXLly7Nu3Dz8/PyIjI9m2bRsdOnRg9+7dxMXFcfHiRYoVKwaAj48PmTNnJk+ePOTKlYu4uDjrOXbu3EmvXr0YO3YsOXPmdNyNEklH+Qvk5+KFi9btC9EXcHd/hmzZsqWqzo+r1vDH0T+t+wzDIFOmTMTFXWPDhk3W8hIlvPHyepE//ziWthckklEkJ5v/esykSzByZ6hm9+7dbNu2zTpEc/78eVq1akVcXBx+fn4EBQXZjFdnyZLF+reTkxMTJ05k+vTpREVF3fdcR44csQYU/2zrzrbFYqFmzZpERkayfft26tati7OzMytXrqR69er3PfedttavX0/v3r0JCQmhWrVq/+KuiJjLt8orHNh/kFMnTwOwePEyXq3pl+o6x/48zqSJ32KxWLhx4wYL5y+mbr06uLg488mQkez9dZ+13okTJ/U0jYjcV7qtMxIQEEBISAilS5cmU6bbU1WyZ89O0aJF6dSpE2XKlCEsLMxmous/5cqViypVqtCmTRtGjBhxzzrR0dFMnjyZdu3aAeDr68vixYsBOH36NHv27KF8+fKUKlWKv/76ixMnTlCsWDF8fHyYNGmSdYjmfvbv38/QoUOZMWMGPj4+j3orRDIEDw8PhgwbxId9B9AsqDV//nGMPu/35PffDtGmZYcH1gHo3PVNcuZ8hlYtXqd1i/aULVeGoOCmZM+enZAvRxEy5mvatOzAsKGfMuKzYeTL5/mg7ojIUyzd1hmpVasWAwcOpHfv3tYyV1dXkpOTadiwIYZhULlyZf74448HttOlSxeaNm1KWFgYAPPnzycsLMyavWjVqhWNGjUCYODAgQwePNj6CPGIESPw/O+aCBUrVuT69evA7aBl0aJFD53/MWnSJCwWCx999JG1rFevXtSuXdvOuyGSMVSvUZXqNaralOXMmZN5C79/YB2AbNmyMmTYoHu2W7HSy8z+YYZjOyvymDCStRy8vZyMu8cyJM1cux5jdhdEROS/3LI5ZomJu12YuTNN2rVH3k6P18MVWoFVRETEgR7HdT7Mpt+mEREREVMpGBERERFTaZhGRETEgZ6EH8o7d+4cffv25dKlSzz//POMHTuWHDlsf0Tz7NmzNG7cmOeeew6AZ599lunTp2MYBqNHj2bjxo04OzszfPhwKlas+MDzKTMiIiIiNoYNG0bbtm1Zu3YtpUuXZuLEiSnqHDx4kCZNmhAaGkpoaCjTp08Hbv9sy7Fjx1i9ejUTJkygf//+JCUlPfB8CkZEREQcyZJs/utfSExMZOfOndSvXx+A4OBg1q5dm6LegQMHOHr0KIGBgXTo0IEjR44AsHnzZho2bIizszPPP/88BQoU4Ndff33gOTVMIyIi8oS5evUqV69eTVHu7u6Ou/uDf0U7NjYWNzc36wKlefPmvefK51myZKFp06a0bt2a8PBwunfvzurVq4mOjrau6XXn+L///vuB51QwIiIi8oSZNWsW33zzTYryHj160LNnT+v2mjVr+Oyzz2zqFC1aFKe7fiDz7m3App1XX32VkJAQjh8/TnJysk19wzBwdn7wQIyCEREREQfKCCuwduzYkaCgoBTld2dFAgICrD9ee0diYiI+Pj5YLBZcXFy4cOGCTabjjtmzZ9O4cWNy584N/O/HMvPnz090dLS13sWLF+95/D9pzoiIiMgTxt3dncKFC6d4PWyIBm7/VEulSpVYvXo1AMuXL8fPzy9FvZ07d1p//23Hjh0kJyfzwgsv4Ofnx8qVK7FYLJw8eZITJ05QpkyZB55Ty8GnIy0HLyKScaTVcvDnx29Jk3btUaBnyuDBHmfPnqVfv35cunSJAgUK8MUXX9z+3ap584iOjqZ3795ERUXRr18/Lly4QJYsWfj0008pXry49dHeLVtu34f+/ftTvXr1B55PwUg6UjAiIpJxKBjJODRMIyIiIqbSBFYREREHehJWYE1vyoyIiIiIqZQZERERcSSLpmLaS5kRERERMZWCERERETGVhmlEREQcSBNY7adgJB1lic9sdhdEROSObGZ3QO5QMCIiIuJAhkWZEXtpzoiIiIiYSsGIiIiImErDNCIiIg6kCaz2U2ZERERETKVgREREREylYRoRERFH0nLwdlNmREREREylzIiIiIgDaQKr/ZQZEREREVMpGBERERFTaZhGRETEgbQcvP2UGRERERFTKTMiIiLiQJrAaj9lRkRERMRUCkZERETEVBqmERERcSStwGo3ZUZERETEVMqMiIiIOJAmsNpPmRERERExlYIREbmvzVvDCerQisatg3lv0Idci79237qGYTBg+GC+++H7dOyhiDwJHB6MDBs2jMDAQBo2bEjp0qUJDAwkMDCQJUuWOPpU/0pcXBzdu3c3uxsiGVZMbCwffzqMrz4dw6r5SylcsDBfThp/z7rHTvzFm73e5qdNP6dzL0UyHiMp2fTX48bhc0aGDBkCwJkzZ+jQoQOhoaGOPoVDXLlyhUOHDpndDZEMa+uOSEqVKEnRIs8B0CqoOc06tmbQ+/1wcnKyqTt/yUKaNXmNAvnym9FVEXnMpcsE1pMnTzJ06FAuX75M1qxZ+fjjjylZsiT9+vUjW7Zs/P7771y9epX33nuP0NBQDh8+TJ06dejXrx9Lly5l06ZNXLp0iQsXLlCrVi369bv9YTh16lTWrFmDxWKhevXq9O3bl7Nnz/LWW2+RO3dusmbNyvjx4xkwYABRUVFER0dTpUoVPv30U0aMGEF0dDTdu3enf//+dOjQgQ0bNgAwfvztb389e/bE19eX0qVLc+HCBRYvXsx3332X4px3fzCLPAn+jo4iv+f/got8eT25Fh9PfEI8bjncbOoOfP8jALbu2JaufRTJiPTbNPZLl2Dko48+YvDgwZQsWZI///yT7t27s27dOgCio6NZsGABy5Yto3///qxbt44sWbLg5+dnHUbZvXs3oaGhuLu706FDB3766SeyZs3KwYMHWbx4MU5OTvTt25cVK1ZQsWJF/vrrL6ZNm0bhwoVZtWoVJUqUYNy4cdy6dYtGjRrx22+/MWjQIDp06MCECRM4c+bMffseGxtL586d8fHxYcuWLfc8Z2BgYHrcRpF0lZxscK8429nZJf07IyJPtDQPRuLj4zl48CD9+/e3liUkJBAbGwuAn58fAAULFuSll14iT548AOTKlYsrV64AULt2bZ599lkAGjZsyLZt28iSJQv79+8nODgYgBs3blCwYEEqVqxInjx5KFy4MACNGzdm//79zJw5k+PHj3P58mUSEhLIlStXqq+hXLlyAERGRt7znCJPim++ncTGiC0AxCfE89ILL1r3RV+8gPsz7mTPls2s7onIEyrNg5Hk5GQyZ85sM3fk77//tgYDrq6u/+tMpnt3x8Xlf9/EkpOTcXFxwWKx0LFjR9544w0Arl69iouLC7GxsWTNmtVaf/bs2axbt46WLVtStWpVjh49imHYro7n5ORkU5aUlGTTlzvt3e+cIk+KHp270aNzNwAuxcYQ1L4VJ0+fomiR51iwbDH+NV41uYciGd/jOIHUbGn+aO8zzzzDf/7zH2sw8ssvv9CuXTu72ggPDycuLo6bN2/y448/4ufnh6+vL6GhocTHx5OUlGQz9PNPv/zyC61ataJp06bcvHmTw4cPk5ycTKZMmUhKSgLA3d2dy5cvExMTw61btwgPD79nP1J7TpEnQZ7cHowYMIQ+gz6kSdtm/HH8T/r27APAwUO/06xjG5N7KCJPinSZMzJmzBiGDh3KtGnTcHV15csvv7Rr0qeHhwedO3cmNjaWpk2bUqNGDQAOHz5My5YtsVgs1KhRg6CgIM6ePWtzbMeOHRk6dChTp07Fzc2NChUqcObMGSpVqkTBggVp3749s2fP5q233qJ58+bkz5+fMmXK3LMf/v7+9zynyJPKr2p1/KpWT1FeukRJlsyal6L800HD0qNbIhmaJrDaz8m4e8wig1m6dCk7duxg1KhRZnflX0u8eP8Fo0REJH25Puv28EqP4I93Ugbq6e2liY9X5lIrsIqIiIipMvwP5QUHB1ufXhEREcnoNIHVfsqMiIiIiKkUjIiIiIipMvwwjYiIyONEwzT2U2ZERERETKXMiIiIiAMZlgy9YkaGpMyIiIiImErBiIiIiJhKwzQiIiIOpAms9lNmREREREylzIiIiIgD6Yfy7KfMiIiIiJhKwYiIiIiYSsM0IiIiDqQJrPZTZkRERERMpcyIiIiIAykzYj9lRkRERMRUCkZERETEVBqmSU+GfjxJRORJp3VG7KfMiIiIiJhKmREREREH0gRW+ykzIiIiIqZSMCIiIiKm0jCNiIiIA2mYxn7KjIiIiIipFIyIiIiIqTRMIyIi4kBaZ8R+yoyIiIiIqZQZERERcSBNYLWfMiMiIiJiKgUjIiIiYioN04iIiDiQJrDaT5kRERERMZUyIyIiIg6kCaz2UzAiIiIiNs6dO0ffvn25dOkSzz//PGPHjiVHjhw2dd5++23Onz8PQHJyMkePHmXx4sUUL14cHx8fihQpYq27dOlSXFxc7ns+BSMiIiJiY9iwYbRt25ZGjRoxYcIEJk6cSN++fW3qTJ482fr3119/Tfny5SlTpgwHDx6kQoUKTJ8+PdXn05wRERERBzKSkk1//RuJiYns3LmT+vXrAxAcHMzatWvvW//48eMsX76cjz76CIADBw4QExNDcHAwLVu2ZMeOHQ89pzIjIiIiT5irV69y9erVFOXu7u64u7s/8NjY2Fjc3NzIlOl2iJA3b16ioqLuW3/ixIm8+eabuLm5AeDk5ETt2rXp2rUrf/zxB507d2blypV4eHjctw0FIyIiIg5kWAyzu8CsWbP45ptvUpT36NGDnj17WrfXrFnDZ599ZlOnaNGiODk52ZTdvX3HlStX+OWXX/j000+tZa1bt7b+XbJkScqWLcuePXuoU6fOffurYERErDZvjeCrKd+QeOsWXsVe4pP+H+OWw+2edQ3DYOCnQ3nphRd5o217AG7cvMGIkM85eOg3DAPKlCzFoPc/ImuWrOl5GSJPvY4dOxIUFJSi/O6sSEBAAAEBATZliYmJ+Pj4YLFYcHFx4cKFC3h6et7zPJs3b8bPz48sWbJYy5YvX87LL7/Mc889B9z+rHB1dX1gfx86Z+TMmTP4+/unKPf29n7YoQ7Xvn17tm/fnu7nvZ/27dub3QURh4mJjeXjkcP4asRoVs1bSuGChfhyUspvVgDHTvzFm7278dOmn23Kp86agcViYems+SydNY+bN28ybfbMdOi9iPyTu7s7hQsXTvF62BANgKurK5UqVWL16tXA7eDCz8/vnnX37t1LpUqVbMqOHDnCjBkzgNvzSQ4dOkTFihUfeE5NYP0XUjMpR+RxsXXnNkqVKEnRIre/zbQKas6PP63BMFKmnOcvXUizxq9Rr5Zt2rVi+Zfp2vFNnJ2dcXFxoYSXN+f+Pp8u/RfJKMyevOqIdU6GDBnCwoULadiwIbt27eLdd98FYN68eXz99dfWeqdPnyZfvnw2x3bv3p2YmBgaN25M7969+fzzz63zSe7nXw3TLF26lPDwcK5cucLp06epVq0aQ4cOBWDq1KmsWbMGi8VC9erV6du3L2fPnqV79+688MIL/Pnnn5QsWZIKFSqwbNkyrly5woQJEyhWrBj+/v40aNCArVu3AjBy5EhKlixpc+7JkyezYsUKXFxcqFatGn379mX8+PEYhkGfPn0A6NevH35+fmzZsoVs2bLx+++/c/XqVd577z1CQ0M5fPgwderUoV+/flgsFkaPHs2OHTuwWCwEBwfTqVMntm/fzpQpU8iaNSvHjh3D29ubsWPHMnr0aABatGjBokWL/s1tFMkQ/o6KIr/n/z5U8uX15Fp8PPEJ8SmGaga+d3vW/Nad22zKq73ia/373N/nmb1wHkM+HJiGvRaRtFCoUCFmz56dorxNmzY2299++22KOm5ubowbN86u8/3rzMivv/7KuHHjWLFiBRs3buTIkSNs2bKFgwcPsnjxYpYvX05UVBQrVqwAbqdvOnfuTGhoKHv27OHs2bMsWLCAxo0bs2DBAmu72bNnZ/ny5fTq1cv6uNAdmzdvZsOGDSxZsoRly5Zx8uRJ5s+fT7NmzVi5ciWGYXD9+nW2bdtG7dq1AYiOjmbBggV06dKF/v37M2zYMJYvX87ChQuJi4tj4cKFACxbtozFixfz888/s2vXLus1Dh48mDVr1nDu3DkiIiIYNGgQgAIReWIkG8n3nKTm7Hz/hYru57fDh+jwzlu0adaSmtVqOKJ7Io8Nw5Js+utx89DMiLNzynjFMAzrh1aFChWs6ZciRYpw5coVIiMj2b9/P8HBwQDcuHGDggULUrFiRZ599llrliN//vxUqVIFgIIFC3LmzBnrOVq2bAmAv78//fr1IyYmxrpv27ZtNGrUiGzZsgHQrFkzli9fTrt27ShUqBA7d+7k3LlzvPrqq9ZJNXfGuwoWLMhLL71Enjx5AMiVK5e1z4cOHWLbttvf9BISEjhy5AgvvvgiL730Evnz5wegWLFiXLlyJRW3ViTj+2baZDZGbAEgPj6el4oVs+6LvngB92fcyf7f/85Sa3XYOkaEfM7APh/SqF4Dh/ZXRJ5MDw1G3N3diYuLsym7dOkSOXPmBLCZQevk5IRhGFgsFjp27Mgbb7wB3H7e2cXFhdjYWDJnzmzT1v2Wh73zfDPcXmb2n/WSk1NGfUlJScDtwGTVqlWcO3fO5vGlf87k/Wfbd1gsFvr27Uu9evUAiImJIUeOHOzdu/ee1yjyJOjx1tv0eOttAC7FxhDUoTUnT5+iaJHnWLB8Cf41XrWrvU0RWxj11VimfvkNpYuXfPgBIiKkYpjGzc2NokWLsm7dOmvZggULrBmNe/H19SU0NJT4+HiSkpLo3r27zfGp8eOPPwLw008/UaxYMWvwc6f9H3/8kRs3bpCUlMSSJUvw9b09Vt2gQQMiIyO5ePEi5cqVS/X5fH19WbhwIYmJicTHx9O2bVv27t37wGNcXFysQZDI4y5Pbg9GDBhMn0Ef0aRdc/44/id9e7wLwMHDv9OsU9uHtjF2wlcYGAwZNYJmndrSrFNbRoR8nsY9F8lYzJ68+jj+UF+qJrCOGTOGoUOHMmHCBBITE/H29mbw4MFs2rTpnvX9/f05fPgwLVu2xGKxUKNGDYKCgjh79myqO7Znzx4WL15MtmzZGDVqlM2+WrVqcejQIZo1a0ZSUhLVq1fn9ddfByBr1qyUL18eLy+vVJ8Lbi/ScvLkSYKCgkhKSiI4OBgfH58HPkpcu3ZtAgMDWbp0qU32RORx5VelOn5VqqcoL128JEtm/pCi/NOBQ222V81bmlZdE5EnmJORAccc/P39+f777ylcuLBdxxmGQXx8PK1atWLmzJnkzZs3jXr4aBIvxD28koiIpAvXvM+kSbuRzw9Lk3btUeWvIWZ3wS5P1DojBw4cwN/fn5YtW2a4QERERETuLUMuB79hw4ZHOq5s2bJaiExEROQxkyGDERERkcfV47jOh9meqGEaERERefwoGBERERFTaZhGRETEgTRMYz9lRkRERMRUyoyIiIg4ULKhzIi9lBkRERERUykYEREREVNpmEZERMSBkjPer6xkeMqMiIiIiKmUGREREXEgiyaw2k2ZERERETGVghERERExlYZpREREHEjrjNhPmRERERExlTIjIiIiDqRHe+2nzIiIiIiYSsGIiIiImErDNOnIcirO7C6IiMh/ueZ9Jk3a1QRW+ykzIiIiIqZSZkRERMSBlBmxnzIjIiIiYioFIyIiImIqDdOIiIg4kNYZsZ8yIyIiImIqZUZEREQcSBNY7afMiIiIiJhKwYiIiIiYSsM0IiIiDmTRMI3dlBkRERERUykYEREREVNpmEZERMSBtM6I/ZQZEREREVMpMyIiIuJAWmfEfsqMiIiIiKkUjIiIiIipNEwjIiLiQBqmsZ8yIyIiImIqZUZExGrLr5GMmz+NW0mJeBV5gaFd+uKWPUeKeqsifmLWqvk4OTmRNXNWPurYk1IveHPl2lVGzPiSIyePkS1LVgJfbUDb+sEmXImIefRor/2e+MzI2rVrCQ4OpmnTpjRp0oRp06YBMG7cOHbt2mVy70Qyjpirlxk8ZTQh7w5jRcj3FMpXgK/nT01R78S5U//f3v0HVVntexx/I4ooXsljgCJqekuhUkkjUKCcZAjoim4gbpPHOJzMY7I7mFdNkfzV9QeK5R3FyziSNtqNIUOgO5gohbpPjmZC5Ll2zx1FzElBBDRAEPbe9w+mPUMqRiFbmM9rZv/xrOdZ61lrzzB893etZz28/1/pbH97I1nrd/L6zD+y8P0VAGzak0Z/537s37SLvWvS+FvJSY6cPt7VQxGRbqZHByMVFRWkpKSQkZFBXl4emZmZ5OfnU1hYyNdff43ZbLZ3F0UeGMdLv+bJ0WMZOdQLgNiQGeT/rRDrL37l9enjxMrXF+E2aDAAj48eS1VtNc0tzfxP2T/4l6BQHHs50qd3H4Kf8ufwySNdPhYR6V569DRNTU0Nzc3NNDY2AuDi4sKGDRsoKCjgzJkzJCcns23bNpycnFixYgW1tbX079+f5cuXM378eJYuXUptbS3l5eUsXryYhx9+mPXr19PY2MigQYNYvXo1w4cPt/MoRTrHleqreAx2tx17/MGNupv11N9saDNVM8xtCMPchgBgtVpJ3budqZOm0Kd3H8Y96sN/mwrwHfMkzS3NHD55jN6Ojl0+FhF70gLWjuvRwYi3tzfTpk0jJCQEHx8f/P39mT59OkajkRMnTmA0Ghk7diwxMTHMnTuX0NBQSkpKSExM5ODBgwA89NBDpKenc+vWLWJiYkhPT8fT05Njx47xzjvvsHv3bvsOUqSTWC0WHHC4rbxXrzsnUBsab7IiPYUr1ZVsf3sjAP82az7vffSf/GvS6zzs+gcmj5tEyT/+fl/7LSLdX48ORgBWr17N/PnzMZlMmEwmYmNjSU1NtZ2vr6/n4sWLhIaGAuDr64urqyvnz58HYPz48QBcuHCBH374gTfeeMNWt66urgtHItL50j75gCOnvwKgrqGBx0aMsp2rrL7KQJd/or9zv9vqXa6q4K+pSYzyHMnO5PdxduoLQP3Net565S+4DhgIwM6cvYwYMqwLRiLy4DArM9JhPToYKSoqoqGhgYiICKKjo4mOjiYrK4t9+/bZrvnlfPjPZT+vJ3F2dgbAYrHg5eVFbm4uAGazmaqqqi4Yhcj9k/DSn0l46c8AXLteQ8zbr1F++RIjh3rxSeFnTJ0UeFud+psNvPbuW0Q++wLzouPanPvkcB51NxtIik/k2vVqsr/MZ+NfV3TJWESk++rRC1idnZ3ZvHkzly5dAlqDjLNnz+Lj44OjoyNms5kBAwbg5eVFQUEBACUlJVRVVfHYY4+1aWv06NFcv37d9gTOp59+yqJFi7p2QCL30WDXQaz5yxIW/cdKZi6K4/9+OM+iP7ZmAv9+/n+JXTYHgMyC/VyuquCLU8eIXTbH9qn96TqvzZhFZfVVopbEM+ffFzL/pXie/Gdvew5LRLoBB+udUgM9yP79+8nIyKC5uRmA4OBglixZwp49e8jMzCQlJQVXV1dWrVpFbW0tffr0ITk5mYkTJ7J06VKeeeYZoqJa90koLi5m7dq1NDU1MWDAAFJSUhgxYsSv7kvjNz/elzGKiEjHOU/yvC/t7u7/p/vSbkf8qWG3vbvQIT0+GHmQKBgREXlwKBh5cPToNSMiIiJdTTuwdlyPXjMiIiIiDz4FIyIiImJXmqYRERHpRNqBteOUGRERERG7UjAiIiIidqVpGhERkU6kaZqOU2ZERERE7EqZERERkU6kfUY6TpkRERERsSsFIyIiImJXmqYRERHpRGYtYO0wZUZERETErpQZERER6UR6tLfjlBkRERERu1IwIiIiInalaRoREZFOpH1GOk6ZEREREbmjLVu2sHXr1jueu3XrFosXLyY8PByDwcC5c+cAsFqtpKSkEBYWRkREBN98880976NgREREpBNZrBa7f36vn376iaSkJHbt2nXXa/bs2UO/fv04cOAASUlJLFu2DICDBw9y7tw58vPzSUtLY9myZbS0tLR7P03TiIiI9DA3btzgxo0bt5UPHDiQgQMH3rN+YWEhjzzyCPHx8Xe9pqioiMTERAD8/Pyorq7mxx9/5MiRI0RERNCrVy9GjRrF0KFDKS4uxs/P765tKRjpQs6TPO3dBRERuc/esnxq7y6wdetWtm3bdlu50WjkzTffvGf9mTNn2tq5m8rKStzc3GzHbm5uXLlyhcrKStzd3W8rb4+CERERkR4mLi4Og8FwW/kvsyIHDhxg/fr1bcpGjx7N7t2773kPq9WKg4NDm+NevXphsVjuWN4eBSMiIiI9zK+djgkPDyc8PPw33cPDw4PKykpGjBgBQFVVFe7u7gwZMoTKykrbdT+Xt0cLWEVERKTDnnvuOXJzcwE4deoUffv2xdPTk2effZbPPvsMs9lMeXk5Fy5cYNy4ce22pcyIiIiI/Coff/wxlZWVJCYmMnv2bFasWMGLL76Ik5MTGzduBCAsLIzS0lIiIyMBWLt2Lc7Ozu2262C1ancWERERsR9N04iIiIhdKRgRERERu1IwIiIiInalYERERETsSsGISDcRHx/P4cOHbccpKSk89dRT3Lp1y1YWFBTEpUuXOtTu888/f1ud7Oxsli5d+pv6+fnnnxMVFUVkZCTTp09n586d96wze/ZsTpw48ZvuJyLdn4IRkW4iICCgzdsvv/rqK3x9fW1l5eXl9O/fHy8vL3t1kYqKClJSUsjIyCAvL4/MzEzy8/MpLCy0W59E5MGnYESkm5g8eTLFxcVA6z99JycnXnjhBUwmE9C66VBgYCA5OTkYDAZmzJhBUlISTU1NABw9epSYmBhmzpyJ0WikpqamTftlZWWEhoZSUlJiKzt+/Dgvv/yy7Tg7O5uVK1fetY81NTU0NzfT2NgIgIuLCxs2bODRRx8FWreejo2NJTIykrCwME6fPn1bGzt27MBgMBAZGcnGjRuxWq3U1dUxd+5coqKiiIqKUnAj0sMoGBHpJp544gkuXrxIU1MTJpOJwMBAAgMD2wQj7u7uZGVlkZmZSW5uLoMHDyYjI4Pq6mo2b95MRkYGOTk5BAUFkZqaamv7ypUrGI1G1q1bh6+vr608ICCAq1evcvHiRQBycnKIioq6ax+9vb2ZNm0aISEhxMTEsGnTJiwWCyNHjsRisZCZmUl6ejp5eXnMmTOHHTt2tKl/9OhRzpw5w759+8jJyaGiooK8vDwOHTrEsGHDyM7OZu3atZw6daoTv1kRsTftwCrSTTg6OjJhwgS+++47TCYTs2bNYvjw4TQ2NnL9+nWKi4vx8fGhvLyc2NhYAJqbm3n88cf59ttvuXz5Mq+++ioAFosFV1dXW9uJiYmMGzeOp59+us09HRwcMBgM5OXlERUVxbVr15gwYUK7/Vy9ejXz58/HZDJhMpmIjY0lNTWV0NBQ0tLS+OKLLygrK+PkyZO3vTzr+PHjlJaW2gKexsZGPD09iY6O5r333qOiooKpU6eSkJDwu79PEXlwKBgR6UYCAgI4ffo0paWlbNq0CWidviksLGTQoEFYrVbCw8NJTk4GoL6+HrPZzMmTJ5k4cSLp6ekANDU1UV9fb2t3+fLlpKWlUVRUxNSpU9vc02AwMGfOHJycnJgxY0a7/SsqKqKhoYGIiAiio6OJjo4mKyuLffv2ERgYSExMDJGRkfj5+TF27Fg++uijNvXNZjNxcXHEx8cDcOPGDRwdHXFxceHAgQMcO3aML7/8kg8++ID8/Px7vglURLoH/SWLdCOTJ08mNzeXMWPG0Lt362+JwMBAdu3aRWBgIP7+/hw6dIhr165htVpZtWoVH374IRMmTKCkpISysjIAtm/fbnuPBMD48eNZtWoVa9asoaGhoc09hw0bxpAhQ8jMzLxnMOLs7MzmzZttT+dYrVbOnj2Lj48PFy5cwMHBgXnz5tn6aTab29QPCAggNzeX+vp6WlpaSEhI4ODBg+zdu5etW7cSHh7OypUrqa6upq6u7nd/nyLyYFBmRKQbGTNmDLW1tbzyyiu2soCAABYsWMCUKVPw9vbGaDQSFxeHxWLBx8eHuXPn0rdvX9atW8eCBQuwWCx4eHjYMis/8/Pzw9/fny1btuDt7d3mXEREBAUFBXh4eLTbv4CAAIxGI/PmzaO5uRmA4OBgEhIScHR0xMfHh/DwcBwcHAgKCmrzdBC0Pmb8/fffExsbi9lsJjg4GIPBQH19PQsXLmT69Ok4OjqyePHiX/V6dBHpHvSiPBFpV0tLC0uWLCEsLIzQ0FB7d0dEeiBlRkTkrqxWK8HBwUyZMoWQkBCg9amdd999947X79ix457ZExGRX1JmREREROxKC1hFRETErhSMiIiIiF0pGBERERG7UjAiIiIidqVgREREROxKwYiIiIjY1f8DLUV5XgnHfWYAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 576x864 with 2 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.figure(figsize=(8, 12))\n",
-                "heatmap = sns.heatmap(clean_data3.corr()[['Weekly_Sales']].sort_values(by='Weekly_Sales', ascending=False), vmin=-1, vmax=1, annot=True, cmap='PiYG')\n",
-                "heatmap.set_title('which features influence Weekly Sales the most ?', fontdict={'fontsize':18}, pad=16);"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 3.2. Index zur\u00fccksetzen"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "- Beim L\u00f6schen von Beobachtungen bleiben die urspr\u00fcnglichen Indizes erhalten\n",
-                "- Das L\u00f6schen von Beobachtungen mit den Indizes 2 und 3 f\u00fchrt zu einem Index wie: 0,1,4,5,6\n",
-                "- Sobald wir den Index zur\u00fccksetzen, wird eine neue Spalte erstellt, die den alten Index enth\u00e4lt\n",
-                "- Verwenden Sie 'drop=True', um den alten Index vollst\u00e4ndig zu l\u00f6schen"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 63,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "<ipython-input-63-a745ee53004c>:2: FutureWarning: Treating datetime data as categorical rather than numeric in `.describe` is deprecated and will be removed in a future version of pandas. Specify `datetime_is_numeric=True` to silence this warning and adopt the future behavior now.\n",
-                        "  clean_data4.describe(include='all')\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Weekly_Sales</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>Type</th>\n",
-                            "      <th>Size</th>\n",
-                            "      <th>Week</th>\n",
-                            "      <th>Year</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>count</th>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "      <td>2860.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>unique</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>143</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>top</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2011-07-15 00:00:00</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>freq</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>20</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2860</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>first</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2010-02-05 00:00:00</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>last</th>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>2012-10-26 00:00:00</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>mean</th>\n",
-                            "      <td>21.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>119434.208462</td>\n",
-                            "      <td>0.069930</td>\n",
-                            "      <td>59.737063</td>\n",
-                            "      <td>3274.485661</td>\n",
-                            "      <td>1136.812409</td>\n",
-                            "      <td>570.622937</td>\n",
-                            "      <td>1396.637923</td>\n",
-                            "      <td>2246.015262</td>\n",
-                            "      <td>7.765653</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>190992.500000</td>\n",
-                            "      <td>25.818182</td>\n",
-                            "      <td>2010.965035</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>std</th>\n",
-                            "      <td>12.761542</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>37562.653935</td>\n",
-                            "      <td>0.255074</td>\n",
-                            "      <td>18.000214</td>\n",
-                            "      <td>6803.391970</td>\n",
-                            "      <td>5966.226600</td>\n",
-                            "      <td>6110.689225</td>\n",
-                            "      <td>4506.434693</td>\n",
-                            "      <td>5378.014318</td>\n",
-                            "      <td>1.745066</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>21992.587981</td>\n",
-                            "      <td>14.130574</td>\n",
-                            "      <td>0.797097</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>min</th>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>45263.340000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>5.540000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>-265.760000</td>\n",
-                            "      <td>-29.100000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>3.879000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>151315.000000</td>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>2010.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25%</th>\n",
-                            "      <td>10.250000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>91257.565000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>46.507500</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>6.901000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>177610.250000</td>\n",
-                            "      <td>14.000000</td>\n",
-                            "      <td>2010.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>50%</th>\n",
-                            "      <td>22.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>115690.535000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>62.045000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>7.806000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>202756.000000</td>\n",
-                            "      <td>26.000000</td>\n",
-                            "      <td>2011.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75%</th>\n",
-                            "      <td>31.250000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>147571.427500</td>\n",
-                            "      <td>0.000000</td>\n",
-                            "      <td>74.142500</td>\n",
-                            "      <td>4833.170000</td>\n",
-                            "      <td>31.337500</td>\n",
-                            "      <td>11.165000</td>\n",
-                            "      <td>916.982500</td>\n",
-                            "      <td>3422.680000</td>\n",
-                            "      <td>8.326000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>203910.250000</td>\n",
-                            "      <td>38.000000</td>\n",
-                            "      <td>2012.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>max</th>\n",
-                            "      <td>41.000000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>293966.050000</td>\n",
-                            "      <td>1.000000</td>\n",
-                            "      <td>99.220000</td>\n",
-                            "      <td>78124.500000</td>\n",
-                            "      <td>97740.990000</td>\n",
-                            "      <td>109030.750000</td>\n",
-                            "      <td>67474.850000</td>\n",
-                            "      <td>108519.280000</td>\n",
-                            "      <td>14.313000</td>\n",
-                            "      <td>NaN</td>\n",
-                            "      <td>219622.000000</td>\n",
-                            "      <td>52.000000</td>\n",
-                            "      <td>2012.000000</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "              Store                 Date   Weekly_Sales    IsHoliday  \\\n",
-                            "count   2860.000000                 2860    2860.000000  2860.000000   \n",
-                            "unique          NaN                  143            NaN          NaN   \n",
-                            "top             NaN  2011-07-15 00:00:00            NaN          NaN   \n",
-                            "freq            NaN                   20            NaN          NaN   \n",
-                            "first           NaN  2010-02-05 00:00:00            NaN          NaN   \n",
-                            "last            NaN  2012-10-26 00:00:00            NaN          NaN   \n",
-                            "mean      21.000000                  NaN  119434.208462     0.069930   \n",
-                            "std       12.761542                  NaN   37562.653935     0.255074   \n",
-                            "min        1.000000                  NaN   45263.340000     0.000000   \n",
-                            "25%       10.250000                  NaN   91257.565000     0.000000   \n",
-                            "50%       22.000000                  NaN  115690.535000     0.000000   \n",
-                            "75%       31.250000                  NaN  147571.427500     0.000000   \n",
-                            "max       41.000000                  NaN  293966.050000     1.000000   \n",
-                            "\n",
-                            "        Temperature     MarkDown1     MarkDown2      MarkDown3     MarkDown4  \\\n",
-                            "count   2860.000000   2860.000000   2860.000000    2860.000000   2860.000000   \n",
-                            "unique          NaN           NaN           NaN            NaN           NaN   \n",
-                            "top             NaN           NaN           NaN            NaN           NaN   \n",
-                            "freq            NaN           NaN           NaN            NaN           NaN   \n",
-                            "first           NaN           NaN           NaN            NaN           NaN   \n",
-                            "last            NaN           NaN           NaN            NaN           NaN   \n",
-                            "mean      59.737063   3274.485661   1136.812409     570.622937   1396.637923   \n",
-                            "std       18.000214   6803.391970   5966.226600    6110.689225   4506.434693   \n",
-                            "min        5.540000      0.000000   -265.760000     -29.100000      0.000000   \n",
-                            "25%       46.507500      0.000000      0.000000       0.000000      0.000000   \n",
-                            "50%       62.045000      0.000000      0.000000       0.000000      0.000000   \n",
-                            "75%       74.142500   4833.170000     31.337500      11.165000    916.982500   \n",
-                            "max       99.220000  78124.500000  97740.990000  109030.750000  67474.850000   \n",
-                            "\n",
-                            "            MarkDown5  Unemployment  Type           Size         Week  \\\n",
-                            "count     2860.000000   2860.000000  2860    2860.000000  2860.000000   \n",
-                            "unique            NaN           NaN     1            NaN          NaN   \n",
-                            "top               NaN           NaN     A            NaN          NaN   \n",
-                            "freq              NaN           NaN  2860            NaN          NaN   \n",
-                            "first             NaN           NaN   NaN            NaN          NaN   \n",
-                            "last              NaN           NaN   NaN            NaN          NaN   \n",
-                            "mean      2246.015262      7.765653   NaN  190992.500000    25.818182   \n",
-                            "std       5378.014318      1.745066   NaN   21992.587981    14.130574   \n",
-                            "min          0.000000      3.879000   NaN  151315.000000     1.000000   \n",
-                            "25%          0.000000      6.901000   NaN  177610.250000    14.000000   \n",
-                            "50%          0.000000      7.806000   NaN  202756.000000    26.000000   \n",
-                            "75%       3422.680000      8.326000   NaN  203910.250000    38.000000   \n",
-                            "max     108519.280000     14.313000   NaN  219622.000000    52.000000   \n",
-                            "\n",
-                            "               Year  \n",
-                            "count   2860.000000  \n",
-                            "unique          NaN  \n",
-                            "top             NaN  \n",
-                            "freq            NaN  \n",
-                            "first           NaN  \n",
-                            "last            NaN  \n",
-                            "mean    2010.965035  \n",
-                            "std        0.797097  \n",
-                            "min     2010.000000  \n",
-                            "25%     2010.000000  \n",
-                            "50%     2011.000000  \n",
-                            "75%     2012.000000  \n",
-                            "max     2012.000000  "
-                        ]
-                    },
-                    "execution_count": 63,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "clean_data4 = clean_data3.reset_index(drop=True)  \n",
-                "clean_data4.describe(include='all')"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 3.3. Test auf Multikollinearit\u00e4t\n"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "Keine nicht-signifikanten Variablen mehr. Das endg\u00fcltige Modell wird erstellt."
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 64,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<matplotlib.collections.PathCollection at 0x2156b7200a0>"
-                        ]
-                    },
-                    "execution_count": 64,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAD7CAYAAABE+8LhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAth0lEQVR4nO3df3TU9Z3v8eckk4zUhE2hEwIsuC5HxRutsB135bpmai0JYRKQtFQlgpbewrIcZLWGEwILy674g+Yg9Qfa1rW1aLfmsphYNgnLqoGL0BU4KgtGa7PACjG/0fxQkknyuX9ApvkxIZNhkvlO8nqc4wnzyff7nff3K8x7Pr9txhiDiIjIIEWFOwAREYlMSiAiIhIUJRAREQmKEoiIiARFCURERIKiBCIiIkFRAhERkaDYAznoJz/5CXv27MFms/Hd736X73//+xw8eJDHHnuM1tZW0tPTefDBBwEoLy9n3bp1tLS04HK52LRpE3a7ncrKSnJycqivr+fqq68mPz+fK6+8ksbGRh5++GE++eQTxo0bx7Zt23A6nbS1tbFu3TqOHz/OFVdcQX5+PtOmTQv4xs6da6Gz89JTXMaPj6O+vjnga4ZbpMULkRdzpMULink4RFq8MPiYo6JsfPWrVw7qPQZMIO+88w6/+93veP3112lvb2fu3LnMmjWLvLw8duzYwcSJE1m+fDn79u3D7XaTk5PDI488wowZM8jLy6OgoIBFixaxadMmFi1ahMfj4dlnn2X79u3k5OSwbds2XC4XP/vZzygsLGTz5s1s27aNHTt2MGbMGEpKSjh8+DBr166loKAg4Bvr7DQDJpCu4yJJpMULkRdzpMULink4RFq8MPQxD9iE9Zd/+Zf86le/wm63U19fT0dHB42NjVx11VVMmTIFu91OZmYmpaWlnD17lvPnzzNjxgwAsrKyKC0txev1cvjwYdLS0nqUA5SVlZGZmQlARkYG+/fvx+v1UlZWxrx58wC4+eabaWhooLKyciiegYiIBCGgPpCYmBieeuopPB4Ps2bNoqamBqfT6ft9YmIi1dXVfcqdTifV1dWcO3eOuLg47HZ7j3Kgxzl2u524uDgaGhr8Xquqqury71hEREIioD4QgAceeIAf/vCH/M3f/A2nTp3CZrP5fmeMwWaz0dnZ6be862d3vV93PycqKqrPOV3lgRo/Pi6g45zO+ICvaQWRFi9EXsyRFi8o5uEQafHC0Mc8YAKpqKigra2N66+/njFjxpCamkppaSnR0dG+Y2pra0lMTCQpKYna2lpfeV1dHYmJiYwbN46mpiY6OjqIjo72HQ8Xai91dXUkJSXR3t5OS0sLCQkJTJgwgZqaGqZOndrjWoGqr28esP3P6YyntrYp4GuGW6TFC5EXc6TFC4p5OERavDD4mKOibAF/8fadM9ABZ86cYf369bS1tdHW1sYbb7zB3XffzcmTJzl9+jQdHR3s3r2blJQUJk+ejMPh4OjRowAUFRWRkpJCTEwMLpeL4uJiAAoLC0lJSQHA7XZTWFgIQHFxMS6Xi5iYGNxuN0VFRQAcOXIEh8PBpEmTBnVzImJth05UkbP9bZY+/iY529/m0Ak1U0eSAWsgbrebY8eOceeddxIdHU1qaioej4dx48axatUqWltbcbvdzJkzB4D8/HzWr19Pc3MzycnJLFmyBICNGzeSm5vLc889x8SJE9m6dSsAq1evJjc3F4/HQ3x8PPn5+QAsXryYDRs24PF4iI2NZcuWLUP1DEQkDA6dqOKlkg9pa+8EoL6xlZdKPgRgVnJSOEOTANlG6n4gasKyhkiLOdLihciN+f5NpdQ3tvb53fixDn78t7eGIar+ReozDnsTlojIUPCXPC5VLtajBCIiYTF+rGNQ5WI9SiAiEhZZ7mnE2nt+BMXao8hyB75kkYRXwPNARERCqaujfNe+CuobWxk/1kGWe5o60COIEoiIhM2s5CQljAimJiwREQmKEoiIiARFCURERIKiBCIiIkFRAhERkaAogYiISFCUQEREJChKICIiEhQlEBERCYoSiIiIBEUJREREgqIEIiIiQVECERGRoCiBiIhIUJRAREQkKEogIiISFCUQEREJihKIiIgERQlERESCogQiIiJBUQIREZGg2MMdgIhIb4dOVLFrXwX1ja2MH+sgyz2NWclJ4Q5LelECERFLOXSiipdKPqStvROA+sZWXir5EEBJxGLUhCUilrJrX4UveXRpa+9k176KMEUk/VECERFLqW9sHVS5hI8SiIhYyvixjkGVS/gElECeeeYZPB4PHo+HLVu2ALB27VpSU1OZP38+8+fPZ+/evQCUl5eTlZVFWloa69ato729HYDKykqys7OZM2cOK1asoKWlBYDGxkaWLVtGeno62dnZ1NbWAtDW1kZOTg7p6eksWLCAigpVX0VGgyz3NGLtPT+aYu1RZLmnhSki6c+ACeTgwYMcOHCA1157jcLCQk6cOMHevXs5fvw4L7/8MkVFRRQVFTF79mwAcnJy2LBhA3v27MEYQ0FBAQCbNm1i0aJFlJaWcsMNN7B9+3YAtm3bhsvloqSkhIULF7J582YAduzYwZgxYygpKSEvL4+1a9cO1TMQEQuZlZzEfenTfTWO8WMd3Jc+XR3oFjRgAnE6neTm5hIbG0tMTAzTpk2jsrKSyspK8vLyyMzM5KmnnqKzs5OzZ89y/vx5ZsyYAUBWVhalpaV4vV4OHz5MWlpaj3KAsrIyMjMzAcjIyGD//v14vV7KysqYN28eADfffDMNDQ1UVlYOxTMQEYuZlZzEj//2Vl7M/RY//ttblTwsasAEcs011/gSwqlTpygpKeG2227jlltu4dFHH6WgoIAjR46wc+dOampqcDqdvnOdTifV1dWcO3eOuLg47HZ7j3Kgxzl2u524uDgaGhr8XquqqipkNy4iIpcn4HkgH3/8McuXL2fNmjX8+Z//Oc8++6zvd4sXL6awsJBp06Zhs9l85cYYbDab72d3vV93PycqKqrPOV3lgRo/Pi6g45zO+ICvaQWRFi9EXsyRFi8o5uEQafHC0MccUAI5evQoDzzwAHl5eXg8Hj766CNOnTrla5IyxmC320lKSvJ1ggPU1dWRmJjIuHHjaGpqoqOjg+joaGpra0lMTAQgMTGRuro6kpKSaG9vp6WlhYSEBCZMmEBNTQ1Tp07tca1A1dc309lpLnmM0xlPbW1TwNcMt0iLFyIv5kiLFyI75kiZcR7JzzhQUVG2gL94+84Z6IBPP/2UlStXkp+fj8fjAS4kjEcffZTPP/8cr9fLq6++yuzZs5k8eTIOh4OjR48CUFRUREpKCjExMbhcLoqLiwEoLCwkJSUFALfbTWFhIQDFxcW4XC5iYmJwu90UFRUBcOTIERwOB5MmTRrUzYmIdXXNOO+a39E14/zQCTVVRwqbMeaSX9MfeeQR/vVf/9VXEwC4++676ezs5JVXXqG9vZ3U1FQefvhhAD788EPWr19Pc3MzycnJPPbYY8TGxnL27Flyc3Opr69n4sSJbN26lT/5kz/hs88+Izc3l08++YT4+Hjy8/P50z/9U1pbW9mwYQPHjx8nNjaWRx55hOTk5IBvTDUQa4i0mCMtXojcmO/fVOp3cuD4sQ5+/Le3hiGq/kXqMx7qGsiACSRSKYFYQ6TFHGnxQuTGnPmjon5//2Lut4YxmoFF6jMe6gSixRRFJCxi7Tba2vt+yYu1+x9gMxiR0rcS6ZRARCQsvB3+Wwi8HeayEoBW8x0+WgtLRMKiv8ZzY+AXxeU9Otd/UVwecOe6VvMdPkogIhIWUZdoqWrvVTtp7zD8y3/8PqDrajXf4aMmLBEJC/eMSbz1buDLEzV/2R7QcePHOvod3TWS9W72uz8jmeSpCUP6nqqBiEhYLE6bzu0zJ/lqIlE2uH3m5c/1Go2r+fqbU/PM/31/yOfUqAYiImGzOG06i9Om9yh7p7yalvMdfY698orogK7Z1VE+mkZh+ev3afV2sGtfxZDet2ogImIpi2ZfR3Sv/pFo24Vy8S9c/T6qgYiIpVxuDWI0DuMNV7+PEoiIWM6s5KSgP+wvNYx3pCaQLPe0HkkTwBETPeT9PkogIhI2QzFjfDQO4/VXaxuOUVhKICISFkPV1DRah/H2rrUNx/pd6kQXkbAYqhnjo3EYb7ioBiIiYTFUTU2jcRhvuCiBiEhYRNnA344Ll1riJFCX0wkvgVMCEZGw6G+7nktt46Nl2q1FCURELMdfogBG3fwOq1MCERHL8ZcoYmOiRt38DqtTAhERy/GXKHqXdRnJ8zusTsN4RSSijfT5HVamGoiIRIQrr4jG22561EQ0v+OPtB+IiIwajhj/y7Pbo21+JwIumn0d96VP99U4xo91cF/6dPV/oP1ARGSUafX23fMDLmxf+8PM6/sdrquE0Ve49gNRAhERy+lvIqDmgfgXrgUk1YQlIhHh0IkqXtz9QY9mmhd3fzDkzTSRoL+BBEM9wEAJREQiwq/3fkRHr1nqHeZC+WjnbwFJ7QciInKRv33SL1U+mmg/EBGRi/pbykT6F479QJRARMRyXvjtB3S1VtU3tvLCbz/AHm2jvXcbFv0PBx5tNA9ERATonSYM+E0eAHblD80DEREJhr8+kNE23Ddc80ACqoE888wzeDwePB4PW7ZsAeDgwYNkZmaSmprKk08+6Tu2vLycrKws0tLSWLduHe3t7QBUVlaSnZ3NnDlzWLFiBS0tLQA0NjaybNky0tPTyc7Opra2FoC2tjZycnJIT09nwYIFVFRc3jaXIjIy9R6q6u/b+EslH47o4b6WnQdy8OBBDhw4wGuvvUZhYSEnTpxg9+7d5OXlsX37doqLizl+/Dj79u0DICcnhw0bNrBnzx6MMRQUFACwadMmFi1aRGlpKTfccAPbt28HYNu2bbhcLkpKSli4cCGbN28GYMeOHYwZM4aSkhLy8vJYu3btUD0DEYkQUTZbn9e9O9iHaq91K+tvF8dQ7O54yfcd6ACn00lubi6xsbHExMQwbdo0Tp06xVVXXcWUKVOw2+1kZmZSWlrK2bNnOX/+PDNmzAAgKyuL0tJSvF4vhw8fJi0trUc5QFlZGZmZmQBkZGSwf/9+vF4vZWVlzJs3D4Cbb76ZhoYGKisrh+IZiEiE6DSmz+s/nPmsR1m4vo2HUzC7O4bCgH0g11xzje/Pp06doqSkhHvvvRen0+krT0xMpLq6mpqamh7lTqeT6upqzp07R1xcHHa7vUc50OMcu91OXFwcDQ0Nfq9VVVXFpEmTArqx8ePjAjrO6YwP6DiriLR4IfJijrR4ITJjDpW33q3koXtv9r12fnUMtee+7HOc86tjLus5WfkZx38lhqYvvH7LhzLugDvRP/74Y5YvX86aNWuIjo7m1KlTvt8ZY7DZbHR2dmLrVsXsKu/62V3v193PiYqK6nNOV3mg6uub6Rwg/Q7HOOlQirR4IfJijrR4IXJjvhQbPUdi9X7dW/f7/9pYh98E8rWxjqCfk9WfsTH+n44xJuC4o6JsAX/x7hJQAjl69CgPPPAAeXl5eDwe3nnnHV9nN0BtbS2JiYkkJSX1KK+rqyMxMZFx48bR1NRER0cH0dHRvuPhQu2lrq6OpKQk2tvbaWlpISEhgQkTJlBTU8PUqVN7XGsojbaRGyJW5W8Yb6DKT382qPKRoPnL9kGVh8qAX+k//fRTVq5cSX5+Ph6PB4CbbrqJkydPcvr0aTo6Oti9ezcpKSlMnjwZh8PB0aNHASgqKiIlJYWYmBhcLhfFxcUAFBYWkpKSAoDb7aawsBCA4uJiXC4XMTExuN1uioqKADhy5AgOhyPg5qtgjMaRGyIil2PAGsg///M/09rayuOPP+4ru/vuu3n88cdZtWoVra2tuN1u5syZA0B+fj7r16+nubmZ5ORklixZAsDGjRvJzc3lueeeY+LEiWzduhWA1atXk5ubi8fjIT4+nvz8fAAWL17Mhg0b8Hg8xMbG+oYPD5VLjdxQLUREpK8BE8j69etZv36939+9/vrrfcqmT5/Ozp07+5RPnjyZHTt29ClPSEjg+eef71PucDh44oknBgovZEbjyA2RkcgRE+13syoteRJ6WsrkonCtpy8iobVkznV+54ssmXNdmCIauZRALvK3nn6sPUqrgIpEgB17PvT9eVZyEj/IuL7H3uk/yLh+RDdFx9r9j2rtrzxUlEAumpWcxK03JvlmbkbZ4NYb/W+rKSLW8ta7lT2SyL8dPNljQMy/HTwZrtCGRVu7/3Fq/ZWHihLIRYdOVPH2f1X5Zm52Gnj7v6o0CkskQux778JKFet/fojK+p7zQCrrv2T9zw+FI6xhoS1tw2w0rp8jMpJ0ffnrnTy69Fc+Enx92vhBlYeKEshFGoUlEtmGeuFAK3vrXf/rBPZXHipKIBdpFJZIZLtuiHffk76UQC4KVxVQREKjxs/6VzK0lEAuOlZRP6hyEbEWNTcPP21pe5H6QCRURuqinFa/LzU3Dz8lkIvGj3X4TRb6SymD0bUoZ9eIvq5FOQFLfdgOViTcl5qbh5+asC7STHQJhZE6HDwS7kvNzcNPCeQizUSXUBipTaGRcF9WimW0UAK5SDPRJRRG6nDwkXpfcnmUQC6KhCq6WN9IbQodqfcll0ed6BdFQhVdrK+rydPKo5WCMVLvSy6PEshF2oRG5NJmJatPUHpSArnIX/K4VLmIP5Ew3FUkVNQHIhJC6kuT0UQ1kIuibH9cDrp3uUigRnJfmtVnosvwUw3korFfiRlUuYg/I3W466ETVby4+4Meu/y9uPsDDXMf5ZRALvqsxTuochF/Rupw11/v/YiOXjX0DnOhXEYvNWGJhNBIHe7act7/YJL+ymV0UAIRCTENd5XRQk1YF00aP2ZQ5SKjSdwY/981+yu3KvXZhJYSyEWft7QNqlxkNLnn29dij+45JNEebeOeb18bpoiC81LJh0oiIaQEcpHaeEX6Nys5ie/Pvd43mmz8WAffn3t9xDXVaU5OaEVW/VNEwmak9O2MhDk5VqEaiIiMKpocHDpKICIyqvhbcUKCowQiIqPKlVdohe1QCSiBNDc3k5GRwZkzZwBYu3YtqampzJ8/n/nz57N3714AysvLycrKIi0tjXXr1tHe3g5AZWUl2dnZzJkzhxUrVtDS0gJAY2Mjy5YtIz09nezsbGprawFoa2sjJyeH9PR0FixYQEWFOr1Ewu3QiSpytr/N0sffJGf72xE7mslmUxtWqAyYQN5//33uueceTp065Ss7fvw4L7/8MkVFRRQVFTF79mwAcnJy2LBhA3v27MEYQ0FBAQCbNm1i0aJFlJaWcsMNN7B9+3YAtm3bhsvloqSkhIULF7J582YAduzYwZgxYygpKSEvL4+1a9eG+r5FhsxI+aDtrmuZ+u5rYUXqkNjmL9vDHcKIMWACKSgoYOPGjSQmJgLw5ZdfUllZSV5eHpmZmTz11FN0dnZy9uxZzp8/z4wZMwDIysqitLQUr9fL4cOHSUtL61EOUFZWRmZmJgAZGRns378fr9dLWVkZ8+bNA+Dmm2+moaGBysrKkN+8SKiNpA/a7kbSMvXqRA+dAYfxdtUKutTV1XHLLbewceNG4uPjWb58OTt37uSaa67B6XT6jnM6nVRXV3Pu3Dni4uKw2+09ygFqamp859jtduLi4mhoaOhR3nVOVVUVkyZNCvjGxo+PC+g4pzM+JMcMFyvFEqhIi/ly4i08cMjvB23hgZPM++Y1lxtav4b6GV9qmXor/f8NJJZOE9zzstJ9DsZQxj3oeSBTpkzh2Wef9b1evHgxhYWFTJs2rUfbojEGm83m+9ldf22QxhiioqL6nNNVPhj19c10DjDcwumMp7a2acBrBXLMcAg0XiuJtJgvN97ac1/2Wz5UzyHczziY9x6qD7VAYomyDT7mcD/jyxFo3FFRtoC/ePvOGWwwH330EXv27PG9NsZgt9tJSkrydYLDhZpKYmIi48aNo6mpiY6OCzO6a2trfc1hiYmJ1NXVAdDe3k5LSwsJCQlMmDCBmpqaPtcSsbqRuh/ISKJhvKEz6ARijOHRRx/l888/x+v18uqrrzJ79mwmT56Mw+Hg6NGjABQVFZGSkkJMTAwul4vi4mIACgsLSUlJAcDtdlNYWAhAcXExLpeLmJgY3G43RUVFABw5cgSHwzGo5iuRcPn6tPGDKpfhF2kLQFrZoJ/k9OnTWbZsGffccw/t7e2kpqaSkZEBQH5+PuvXr6e5uZnk5GSWLFkCwMaNG8nNzeW5555j4sSJbN26FYDVq1eTm5uLx+MhPj6e/Px84EKz2IYNG/B4PMTGxrJly5ZQ3a/IkDpWUT+ochl+LRqFFTIBJ5A333zT9+fs7Gyys7P7HDN9+nR27tzZp3zy5Mns2LGjT3lCQgLPP/98n3KHw8ETTzwRaGgiljGS90QfKdSCFTqaiS4SQiNl3wyRQCiBiISQMf6/3/ZXHimUGMUfJRCREBqp+8qM1MQol0cJREQGNFITo1weJRARGVB/q39oVZDRTQlERAbUX0OVGrBGNyUQkRCK7melvv7KRSKZhlCE0KETVezaV0F9YyvjxzrIck8bEXtIS+A6+lkno79ykUimGkiIHDpRxS+Ky3ss4/2L4vKIX8ZbZKj0tzOgI0a1tcHqb4+sod47SwkkRP7lP35Pe0fPb5ntHYZ/+Y/fhykiEWvrb1XuGHu05pcM0lcc/pNxf+WhogQSIv3tcqbdz0T8u9S/mXu+fS2xdn08BSpcw6z1f0hEwuJSS9/PSk7i1huHpv9wJDaQhWsbASUQEQmLLPe0PrWMWHsUWe5pHDpRxf879umQvG/UCBwRF65tBJRARCQsZiUncV/6dN+35PFjHdyXPp1ZyUl++xRDZSSOiAvXNgLqqRKRsJmVnOR3qLv6DgcnXNsIqAYiIhLh1AciIiJB8def5IiJJss9bUjfV01YAcjZ/rZml4tY3O0zJwEXRlmNvF6OS5uVnMQfznzGvvcq6TQQZYM7XH865J9VqoEEoPvs8pdKPtTschEL++bFRDKaHDpRxdv/VUXX+IBOA28cOTPkn1VKIIPU1t7Jrn0V4Q5DRHrZ914lAIvTpvtqI6PFrn0VtLV39ihr9XYM+WeVEkgQhnpkg4gMXvfRuYvTpocvkDDQKKwI0t8icCISGvbowU/2G4HzAwOmUVgRpF27eIoMqWAmEbpnjK5mq+40CiuCtHpDm0G0j4jI5RttzVbddX1edP8cuT8jmeSpCUP6vkogYXboRBUvlXzo6wDrGukFKImISMB6z+p3OuOprW0a0vdUE1aY+Rs9oZFeIhIJlEDCLFyjJ0RELpcSSJiFa/SEiMjlUgK5KDpMYwCz3NP6DFm0R9uGfPSEiMjlUif6ReHcI8D0eu/er0UktLS+XWgEVANpbm4mIyODM2fOAHDw4EEyMzNJTU3lySef9B1XXl5OVlYWaWlprFu3jvb2C2v6V1ZWkp2dzZw5c1ixYgUtLS0ANDY2smzZMtLT08nOzqa2thaAtrY2cnJySE9PZ8GCBVRUDH2HcriajHbtq6D3kPcOgzrRRYaQ1rcLjQETyPvvv88999zDqVOnADh//jx5eXls376d4uJijh8/zr59+wDIyclhw4YN7NmzB2MMBQUFAGzatIlFixZRWlrKDTfcwPbt2wHYtm0bLpeLkpISFi5cyObNmwHYsWMHY8aMoaSkhLy8PNauXTsU996Dv4k4w0Gd6CLhpVGPwRvwE7OgoICNGzeSmJgIwLFjx7jqqquYMmUKdrudzMxMSktLOXv2LOfPn2fGjBkAZGVlUVpaitfr5fDhw6SlpfUoBygrKyMzMxOAjIwM9u/fj9frpaysjHnz5gFw880309DQQGVlZchvvjt/22sOB3Wii4SfvrAFZ8A+kK5aQZeamhqcTqfvdWJiItXV1X3KnU4n1dXVnDt3jri4OOx2e4/y3tey2+3ExcXR0NDg91pVVVVMmjS0SxX0noiz9PE3h/T94ELNp/tEQoBYe5Q60UWG0WheR+tyDLoTvbOzE5vtj0/bGIPNZuu3vOtnd71fdz8nKiqqzzld5YMxfnxcQMc5nfGDum4w513q2HnfjGds/BX8qqScunNf8rWvjmFJ+vV88xtTLvt9rSLSYh6qeIfyOYTzGQ/Hv6Ghvl6nGfj8SPt7DEMf86ATSFJSkq+zG6C2tpbExMQ+5XV1dSQmJjJu3Diampro6OggOjradzxcqL3U1dWRlJREe3s7LS0tJCQkMGHCBGpqapg6dWqPaw1GfX0znQOMZrqcqf6DOW+gY5OnJvDE8lkDnjMcSxOEWqTFPJTxDtV1w/2Mg3nvoYj5cq4XZbv0+eF+xsEYbMxRUbaAv3j7zhlsUDfddBMnT57k9OnTdHR0sHv3blJSUpg8eTIOh4OjR48CUFRUREpKCjExMbhcLoqLiwEoLCwkJSUFALfbTWFhIQDFxcW4XC5iYmJwu90UFRUBcOTIERwOx5A3X4XToRNV5Gx/m6WPv0nO9rc1IkRkmGnkfHAGXQNxOBw8/vjjrFq1itbWVtxuN3PmzAEgPz+f9evX09zcTHJyMkuWLAFg48aN5Obm8txzzzFx4kS2bt0KwOrVq8nNzcXj8RAfH09+fj4AixcvZsOGDXg8HmJjY9myZUuo7tdyDp2o4sXdH/iG8tY3tvLi7g8ALaYoItYWcAJ5880/dijPmjWL119/vc8x06dPZ+fOnX3KJ0+ezI4dO/qUJyQk8Pzzz/cpdzgcPPHEE4GGFtF+vfcjv/NAfr33IyUQEbE0LWUSZi3n/e8t0l+5iPTliNEwqnBQAhGRiPe/b5gY7hBGJSWQMIsb478Vsb9yEenrWEV9uEMYlZRAwuyeb1/rdzXee759bZgiEunL6ismaCZ5eCiBhNms5CS+P/f6HkuofH/u9epAj1D9zJHttzxSfH3a+EGVDzfNJA8PtZNYQO8lVCRymX7mE/RXHin6ayKyStOR5nGEhxKIBRw6UcWufRXan0Asy+qrRlulKW20URNWmB06UcULuz/osT/BC7s/0Gz0CHXlFdGDKo8UVu4D0eKj4aMEEma/Ki3v07xhzIVyiTyLZl9HrzERRNsulEcyf/vlWOGDe/xYB/elT1eNPUzUhBVmrV7/jbf9lYu1dX2QjbQmSSve14u53wrbe8sFSiAiITZSB0WM1PuS4KkJS0QijibaWoMSiIhEFE20tQ4lEBGxnP5GrdlAE20tRAlERCynv9Fs/yfzfyl5WIgaEkXEcqw46kv6UgIREUvSqC/rUxOWiIgERQlERESCogQiIiPS9VclhDuEEU8JRERGpL/++qSI34fF6pRARGRE2rWvIuL3YbE6JRARGZGsslfJSKYEcgmOGP/13/7KRcQ6rLBXyUinBHIJWmpdJHL528NEQktP9xKsvAubiFzarOQk7kuf7vv3qn+3oaeZ6JeQ5Z7GSyUf0tbe6Suzwi5sIhKY3rPZlz7+ZhijGXmUQC5B6/GIiPRPCWQAWo9HZOQYP9bhd3SWmreCoz4QERk1/HWsq1k6eKqBiMiooWbp0LqsBLJ48WIaGhqw2y9c5h//8R9paWnhscceo7W1lfT0dB588EEAysvLWbduHS0tLbhcLjZt2oTdbqeyspKcnBzq6+u5+uqryc/P58orr6SxsZGHH36YTz75hHHjxrFt2zacTufl37GIjGpqlg6doJuwjDGcOnWKoqIi33/XXXcdeXl5bN++neLiYo4fP86+ffsAyMnJYcOGDezZswdjDAUFBQBs2rSJRYsWUVpayg033MD27dsB2LZtGy6Xi5KSEhYuXMjmzZtDcLsiIhIqQSeQ//7v/wZg6dKlzJs3j5dffpljx45x1VVXMWXKFOx2O5mZmZSWlnL27FnOnz/PjBkzAMjKyqK0tBSv18vhw4dJS0vrUQ5QVlZGZmYmABkZGezfvx+v13s592pJsXb/s9r7KxcRsYqgE0hjYyOzZs3i2Wef5Ze//CW/+c1vqKys7NHMlJiYSHV1NTU1NT3KnU4n1dXVnDt3jri4OF8TWFc50OMcu91OXFwcDQ0NwYZrWfelX0/vVGG7WC4iYmVB94HMnDmTmTNn+l5/97vf5amnnuIb3/iGr8wYg81mo7OzE1u3dZW7yrt+dtf7dfdzoqICz3fjx8cFdJzTGR/wNYN1qfeY9814xsZfwa9Kyqk79yVf++oYlqRfzze/MWXQ17KqSIs50uIFxTwcIi1eGPqYg04gR44cwev1MmvWLODCB/zkyZOpra31HVNbW0tiYiJJSUk9yuvq6khMTGTcuHE0NTXR0dFBdHS073i4UHupq6sjKSmJ9vZ2WlpaSEhICDi++vpmOjsvvWaV0xlPbW3TIO46OAO9R/LUBJ5YPmvAc4Yr3lCKtJgjLV5QzMMh0uKFwcccFWUL+Iu375zBBtWlqamJLVu20NraSnNzM6+99hoPPfQQJ0+e5PTp03R0dLB7925SUlKYPHkyDoeDo0ePAlBUVERKSgoxMTG4XC6Ki4sBKCwsJCUlBQC3201hYSEAxcXFuFwuYmJigg1XRERCLOgayO23387777/PnXfeSWdnJ4sWLWLmzJk8/vjjrFq1itbWVtxuN3PmzAEgPz+f9evX09zcTHJyMkuWLAFg48aN5Obm8txzzzFx4kS2bt0KwOrVq8nNzcXj8RAfH09+fn4IbldERELFZszI3LNruJuwLrVI24u53wrJe4yGanS4RVq8oJiHQ6TFCxZvwpKebp85aVDlIiKRTkuZhMjitOkA7Huvkk4DUTZwz5jkKxcRGWmUQEJocdp0JQwRGTXUhCUiIkFRAhERkaAogYiISFCUQEREJCgjthM9Kiqw1WwDPc4qIi1eiLyYIy1eUMzDIdLihcHFHMz9jdiJhCIiMrTUhCUiIkFRAhERkaAogYiISFCUQEREJChKICIiEhQlEBERCYoSiIiIBEUJREREgqIEIiIiQYnoBNLc3ExGRgZnzpwBYO3ataSmpjJ//nzmz5/P3r17ASgvLycrK4u0tDTWrVtHe3s7AJWVlWRnZzNnzhxWrFhBS0sLAI2NjSxbtoz09HSys7Opra0FoK2tjZycHNLT01mwYAEVFRWXFe+7777L9773PTweDw899BBtbW2Wird3zPv27fM92/nz53PLLbewfPlyS8Xc+xkfOHCAefPmkZGRwZo1ayz/jAF27drF3LlzyczM5JFHHvHFZpWYn3nmGTweDx6Phy1btgBw8OBBMjMzSU1N5cknn/Qda4WY/cUL4PV6ue+++/jP//xPS8XbX8yvvvoqGRkZZGZmsnbtWmv8XTYR6r333jMZGRkmOTnZfPLJJ8YYYzIyMkx1dXWfYz0ej3n33XeNMcasXbvWvPLKK8YYY5YtW2Z2795tjDHmmWeeMVu2bDHGGLNp0ybz05/+1BhjzGuvvWZWr15tjDHmhRdeMH//939vjDHmnXfeMQsXLgw63qamJnPrrbea8vJyY4wxDz74oC8uK8TrL+buampqzB133GFOnjxpmZj9xZuSkmL+8Ic/GGOMWbVqlSkoKLBMvP5irqioMLfddpvv7/HGjRvNiy++aJmY3377bXPXXXeZ1tZW09bWZpYsWWJ++9vfGrfbbf7nf/7HeL1es3TpUlNWVmaJmP3F++///u+moqLC3HXXXebGG280v/vd73zHhzve/mL+6U9/ambPnm2amppMZ2enWbNmjfnFL34R9pgjNoHk5eWZw4cPm9tvv9188skn5osvvjB/8Rd/YX7wgx+YjIwM85Of/MR0dHSYM2fOmDvuuMN33uHDh83ixYtNW1ubmTlzpvF6vcYYYyorK823vvUtY4wxt99+u6msrDTGGOP1es3MmTNNW1ubuffee83hw4d917rjjjvM2bNng4q3tLTUrFy50vf7+vp6U1NTY5l4/cXc3cMPP2x+/vOfG2OMZWL2F++tt95q3nvvPdPe3m6WLVtmioqKLBOvv5iLi4vNqlWrfL8vKyszixYtskzMv//9730fVsZc+DB6+umnzZIlS3xlr732msnNzbVEzP7i/eUvf2meeOIJs3fvXnPvvff6EogV4u0v5qefftocOHDAV/bCCy+YzZs3hz3miG3C2rx5My6Xy/e6rq6OW265hUcffZSCggKOHDnCzp07qampwel0+o5zOp1UV1dz7tw54uLisNvtPcqBHufY7Xbi4uJoaGjwe62qqqqg4j19+jRf+cpXePDBB5k/fz5PP/00Y8eOtUy8/mLucurUKd555x2WLFnS5/3DGbO/eP/hH/6BxYsXc9ttt3Hu3DnmzJljmXj9xTx9+nTef/99Pv30Uzo6OigtLaWurs4yMV9zzTXMmDEDuPD3oKSkBJvN1uN6iYmJVFdXWyJmf/G63W7WrFnDt7/97R7HWiHe/mLOyMjg1ltvBaChoYFXXnmFO+64I+wxR2wC6W3KlCk8++yzJCYmMmbMGBYvXsy+ffvo7OzEZvvjMsXGGGw2m+9nd71fdz8nKiqqzzld5cHo6OjgwIEDPPTQQ+zatYsvv/ySn/3sZ5aNt7tXX32VRYsWERsbC2DZmGtra8nPz2f37t0cOHCAm266iccee8yy8QJcffXV/OhHP2LFihVkZ2dz3XXXERMTY7mYP/74Y5YuXcqaNWuYMmWK39isFHP3eP/sz/7M7zFWire/mKurq7nvvvv4zne+w1/91V+FPeYRk0A++ugj9uzZ43ttjMFut5OUlOTrJIILNZXExETGjRtHU1MTHR0dwIUPm8TERODCN6i6ujoA2tvbaWlpISEhgQkTJlBTU9PnWsH42te+xk033cSUKVOIjo4mPT2dY8eOWTbe7t544w3mzp3re23VmI8cOcK1117L1KlTiYqK4nvf+x7vvPOOZeMFaG1t5etf/zqFhYX85je/YcKECUyZMsVSMR89epT777+fH/3oRyxYsKBPbF0xWCXm3vH2xyrx9hdzRUUFd999NwsWLGDlypWWiHnEJBBjDI8++iiff/45Xq+XV199ldmzZzN58mQcDgdHjx4FoKioiJSUFGJiYnC5XBQXFwNQWFhISkoKAG63m8LCQgCKi4txuVzExMTgdrspKioCLnw4ORwOJk2aFFS8f/3Xf82JEyf49NNPAXjrrbdITk62bLxdGhoaOH/+PFOmTPGVWTXma6+9lmPHjvn+sbzxxhvceOONlo0X4IsvvuD++++nubmZtrY2Xn75ZebOnWuZmD/99FNWrlxJfn4+Ho8HgJtuuomTJ09y+vRpOjo62L17NykpKZaI2V+8/bFCvP3F3NzczA9+8ANWr17N0qVLrRPzJXtIIkD3DtOXX37ZpKenm9mzZ5sf//jHvmPKy8vNd77zHZOWlmYeeugh09raaoy50Gl27733mvT0dLN06VLz2WefGWOMOXfunFm+fLmZO3euueuuu3zXP3/+vFmzZo2ZO3euufPOO83x48cvK9633nrLzJs3z6SlpZm/+7u/M1988YXl4u0d8/vvv+93dIaVYu4e765du0x6errJyMgwK1euNPX19ZaLt3fMBQUFZu7cuSY1NdU89dRTvmOsEPM//dM/mRkzZph58+b5/vv1r39tDh48aDIzM01qaqrZvHmz6ezstETM/cXbpXsnuhXi7S/m559/3iQnJ/co27ZtW9hj1o6EIiISlBHThCUiIsNLCURERIKiBCIiIkFRAhERkaAogYiISFCUQEREJChKICIiEhQlEBERCcr/Bw/mn9PksxhHAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.scatter(clean_data4['Size'], clean_data3['Weekly_Sales'])  # eine lineare Funktion sollte entstehen - nicht exponentielle Funktion"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "Verletzung der OLS-Annahme --> keine Linearit\u00e4t L\u00f6sung dann Log-Transformation durchf\u00fchren"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 65,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>Weekly_Sales</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>Type</th>\n",
-                            "      <th>Size</th>\n",
-                            "      <th>Week</th>\n",
-                            "      <th>Year</th>\n",
-                            "      <th>log_sales</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-05</td>\n",
-                            "      <td>139884.94</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>42.31</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>2010</td>\n",
-                            "      <td>11.848576</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-12</td>\n",
-                            "      <td>143081.42</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>38.51</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>2010</td>\n",
-                            "      <td>11.871169</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-19</td>\n",
-                            "      <td>135066.75</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>39.93</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>2010</td>\n",
-                            "      <td>11.813524</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-26</td>\n",
-                            "      <td>125048.08</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>46.63</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>8</td>\n",
-                            "      <td>2010</td>\n",
-                            "      <td>11.736454</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-03-05</td>\n",
-                            "      <td>132945.44</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>46.50</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>9</td>\n",
-                            "      <td>2010</td>\n",
-                            "      <td>11.797694</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2855</th>\n",
-                            "      <td>41</td>\n",
-                            "      <td>2012-09-28</td>\n",
-                            "      <td>128422.98</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>56.08</td>\n",
-                            "      <td>4578.46</td>\n",
-                            "      <td>51.73</td>\n",
-                            "      <td>3.00</td>\n",
-                            "      <td>1902.88</td>\n",
-                            "      <td>14423.97</td>\n",
-                            "      <td>6.432</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>196321</td>\n",
-                            "      <td>39</td>\n",
-                            "      <td>2012</td>\n",
-                            "      <td>11.763085</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2856</th>\n",
-                            "      <td>41</td>\n",
-                            "      <td>2012-10-05</td>\n",
-                            "      <td>142134.06</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>50.14</td>\n",
-                            "      <td>6094.23</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>33.94</td>\n",
-                            "      <td>2887.65</td>\n",
-                            "      <td>3853.33</td>\n",
-                            "      <td>6.195</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>196321</td>\n",
-                            "      <td>40</td>\n",
-                            "      <td>2012</td>\n",
-                            "      <td>11.864526</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2857</th>\n",
-                            "      <td>41</td>\n",
-                            "      <td>2012-10-12</td>\n",
-                            "      <td>145984.90</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>39.38</td>\n",
-                            "      <td>1570.23</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>26.31</td>\n",
-                            "      <td>834.80</td>\n",
-                            "      <td>14421.12</td>\n",
-                            "      <td>6.195</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>196321</td>\n",
-                            "      <td>41</td>\n",
-                            "      <td>2012</td>\n",
-                            "      <td>11.891258</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2858</th>\n",
-                            "      <td>41</td>\n",
-                            "      <td>2012-10-19</td>\n",
-                            "      <td>132903.53</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>49.56</td>\n",
-                            "      <td>3138.86</td>\n",
-                            "      <td>0.00</td>\n",
-                            "      <td>6.17</td>\n",
-                            "      <td>129.04</td>\n",
-                            "      <td>8206.10</td>\n",
-                            "      <td>6.195</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>196321</td>\n",
-                            "      <td>42</td>\n",
-                            "      <td>2012</td>\n",
-                            "      <td>11.797379</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2859</th>\n",
-                            "      <td>41</td>\n",
-                            "      <td>2012-10-26</td>\n",
-                            "      <td>131128.24</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>41.80</td>\n",
-                            "      <td>4864.30</td>\n",
-                            "      <td>101.34</td>\n",
-                            "      <td>250.60</td>\n",
-                            "      <td>47.24</td>\n",
-                            "      <td>1524.43</td>\n",
-                            "      <td>6.195</td>\n",
-                            "      <td>A</td>\n",
-                            "      <td>196321</td>\n",
-                            "      <td>43</td>\n",
-                            "      <td>2012</td>\n",
-                            "      <td>11.783931</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>2860 rows \u00d7 16 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "      Store       Date  Weekly_Sales  IsHoliday  Temperature  MarkDown1  \\\n",
-                            "0         1 2010-02-05     139884.94          0        42.31       0.00   \n",
-                            "1         1 2010-02-12     143081.42          1        38.51       0.00   \n",
-                            "2         1 2010-02-19     135066.75          0        39.93       0.00   \n",
-                            "3         1 2010-02-26     125048.08          0        46.63       0.00   \n",
-                            "4         1 2010-03-05     132945.44          0        46.50       0.00   \n",
-                            "...     ...        ...           ...        ...          ...        ...   \n",
-                            "2855     41 2012-09-28     128422.98          0        56.08    4578.46   \n",
-                            "2856     41 2012-10-05     142134.06          0        50.14    6094.23   \n",
-                            "2857     41 2012-10-12     145984.90          0        39.38    1570.23   \n",
-                            "2858     41 2012-10-19     132903.53          0        49.56    3138.86   \n",
-                            "2859     41 2012-10-26     131128.24          0        41.80    4864.30   \n",
-                            "\n",
-                            "      MarkDown2  MarkDown3  MarkDown4  MarkDown5  Unemployment Type    Size  \\\n",
-                            "0          0.00       0.00       0.00       0.00         8.106    A  151315   \n",
-                            "1          0.00       0.00       0.00       0.00         8.106    A  151315   \n",
-                            "2          0.00       0.00       0.00       0.00         8.106    A  151315   \n",
-                            "3          0.00       0.00       0.00       0.00         8.106    A  151315   \n",
-                            "4          0.00       0.00       0.00       0.00         8.106    A  151315   \n",
-                            "...         ...        ...        ...        ...           ...  ...     ...   \n",
-                            "2855      51.73       3.00    1902.88   14423.97         6.432    A  196321   \n",
-                            "2856       0.00      33.94    2887.65    3853.33         6.195    A  196321   \n",
-                            "2857       0.00      26.31     834.80   14421.12         6.195    A  196321   \n",
-                            "2858       0.00       6.17     129.04    8206.10         6.195    A  196321   \n",
-                            "2859     101.34     250.60      47.24    1524.43         6.195    A  196321   \n",
-                            "\n",
-                            "      Week  Year  log_sales  \n",
-                            "0        5  2010  11.848576  \n",
-                            "1        6  2010  11.871169  \n",
-                            "2        7  2010  11.813524  \n",
-                            "3        8  2010  11.736454  \n",
-                            "4        9  2010  11.797694  \n",
-                            "...    ...   ...        ...  \n",
-                            "2855    39  2012  11.763085  \n",
-                            "2856    40  2012  11.864526  \n",
-                            "2857    41  2012  11.891258  \n",
-                            "2858    42  2012  11.797379  \n",
-                            "2859    43  2012  11.783931  \n",
-                            "\n",
-                            "[2860 rows x 16 columns]"
-                        ]
-                    },
-                    "execution_count": 65,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "log_sales = np.log(clean_data4['Weekly_Sales'])\n",
-                "clean_data4['log_sales'] = log_sales\n",
-                "clean_data4"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 66,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<matplotlib.collections.PathCollection at 0x2156c482c40>"
-                        ]
-                    },
-                    "execution_count": 66,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD7CAYAAACBiVhwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqpElEQVR4nO3de1RU57k/8O8Mt2jAQ0JmIDFqG0/UlCYmKV3qsnESiZeBGThibUSDWuSoqcvFMY0ciWlprVQxsdVcTZuEVqMixyBEF+gxGk1sONX4i3iJ0ZRKKkG5pzIkMsC8vz8sE4aZgT3DXPae+X7W6ir7ZV+ePcF59n6vKiGEABERUS9qfwdARETyw+RARER2mByIiMgOkwMREdlhciAiIjtMDkREZIfJgYiI7IT6OwB3tLa2w2Lpf3hGTEwkmptNPopo8JQWL6C8mJUWL6C8mJUWLxAcMavVKtx2260uXUORycFiEQMmh579lERp8QLKi1lp8QLKi1lp8QKM2RFWKxERkR0mByIissPkQEREdpgciIjIjiIbpIlI3irPX0PJsWo0X+9AzLAIpOlGY1J8nL/DIhcwORCRR1Wev4Y/V3wGc5cFANB8vQN/rvgMAJggFITVSkTkUSXHqq2JoYe5y4KSY9V+iojcweRARB7VfL3DpXKSJyYHIvKomGERLpWTPDE5EJFHpelGIzzU9qslPFSNNN1oP0VE7mCDNBF5VE+jM3srKRuTAxF53KT4OCYDhWO1EhER2ZGUHEwmEwwGA2prawEAu3fvhsFggNFoRG5uLsxms90xe/fuxY9+9COkpqYiNTUVv//97wEA169fx5IlS6DX6zF//nw0NjZ68HaIiMgTBkwOVVVVSE9PR01NDQDg8uXLePPNN1FUVIR3330XFosFO3futDvu3LlzWL16NcrKylBWVoaVK1cCADZv3oyEhARUVFRgzpw5yM/P9+wdERHRoA2YHIqLi5GXlwetVgsACA8PR15eHiIjI6FSqTBmzBjU1dXZHXf27Fns3bsXRqMRzzzzDP75z38CAI4ePQqj0QgAMBgM+OCDD9DZ2enJeyIiokEasEG675P98OHDMXz4cABAS0sLduzYgfXr19sdp9FokJmZiYcffhi/+93vsHbtWmzatAkNDQ3QaDQ3Lx4aisjISLS0tCA2NlZy0DExkZL202iiJJ9TDpQWL6C8mJUWL6C8mJUWL8CYHXG7t1J9fT2ysrIwe/ZsTJgwwe73r7zyivXnrKwsTJs2zeF5hBBQq11rF29uNg24CpJGE4XGxjaXzutPSosXUF7MSosXUF7MSosXCI6Y1WqV5IfqHm4lh+rqamRlZSEjIwOZmZl2v29ra8M777yDRYsWAbiZAEJCQgAAWq0WTU1NiIuLQ1dXF9rb2xEdHe1OGESkQJyxVRlc7spqMpmwePFiZGdnO0wMADB06FC88cYbqKqqAgC8/fbb1jcHnU6H0tJSAEB5eTkSEhIQFhbmZvhEpCQ9M7b2zLPUM2Nr5flrfo6M+nI5OezZswdNTU0oLCy0dlPdsmULAGDNmjU4fPgwQkJCsHnzZvzqV7+CXq/H+fPnsWrVKgBAdnY2Tp8+jeTkZOzcuRO//OUvPXtHRCRbnLFVOVRCiP4r72WIbQ7yoLSYlRYvoLyYB4o3c8MRp797a/VUb4Q0IKV9xoBv2hw4QpqIfIYztioH51YiIo9z1uicphtts0ocwBlb5YrJgYg8SsoyoeytJH9MDkTkUf01OvfM1jqYZMCusL7B5EBEHjXQMqGD+XKX8lZCnsEGaSLymcrz11BYfsFmnENh+QXJ4xzYFdZ3+OZARD6z671L6Oq27Ybe1S2w671Lkp78B3orCVR937YWGeIRPzLaq9fkmwMReZRa5bzc9E2Xw985K+8rGLvCOhpV/vL/VHl9VDmTAxF5lO7Bu1wqd8UDo2NcKg8EjqrSOjq7vV6VxuRARB6VMWMc7hsVbVN236hoZMwYh1tvCXF4jLPyvs5UN7tUHgj8VZXG5EBEHlV5/hou/eMrm7JL//gKleevYd60sQjpU+0UogLmTRsr6dzB2Obgr6o0Jgci8qidhy6iT5szusXN8knxccg0fM/6xRYzLAKZhu9J7oYajG0OabrRCA+1/aqOCAvx+qhy9lYiIo9qv9HtUnkPKeMfgnH6DUejyn3RW4nJgYh8xtkgtr/VfoW/nL024OC2YJ1+o++ocl/MJMvkQEQ+42wQ27HTdeg7C3/vKTd6G+z0GyQNkwMR+YyzhmNny7MEckOzKzgIjogCmrOGY2cD5wK5oVkqWQ+CM5lMMBgMqK2tBQDs3r0bBoMBRqMRubm5MJvNdsecOnUKP/7xj5GamoqFCxfiyy+/BACcOHECEyZMsC4xmpub68HbISI5c9TzJjxUDd2Dd0HVJ0GoVAjohmapZDsIrqqqCunp6aipqQEAXL58GW+++SaKiorw7rvvwmKxYOfOnXbHrVq1CuvWrUNZWRmMRiPWrVsHADh37hwyMzNRVlaGsrIyrF+/3rN3RESyNSk+Dgv142y6si7UjwMA9F2wWAjgb7Vf+ThC+ZHtILji4mLk5eVBq9UCAMLDw5GXl4fIyEioVCqMGTMGdXV1NseYzWZkZ2dj3Lib/9HHjh2Lq1evAgDOnj2L48ePw2g0YtmyZdZyIgpex07XuVQeTGQ7CC4/Px8JCQnW7eHDh2Py5MkAgJaWFuzYsQOJiYk2x4SHhyM1NRUAYLFY8PLLL+Pxxx8HAERFRSEjIwP79u2DTqfDypUrPXYzRCRvleev4Y19n9rUn7+x71OnDdLOyoNJmm60/ahytUq+g+Dq6+uRlZWF2bNnY8KECQ73MZvNWL16Nbq6urB06VIAwNq1a62/T09Px6ZNm9DW1oaoqCjJ146JiZS0n0Yj/ZxyoLR4AeXFrLR4AWXG7My2A5+h7/d9f9//KpX9/R89dQXbKi6gqfUb3HHbECzQ34dHfzBiUHHJ+TMeFvUVVGoVeg87V6mAYVG3eDVut5JDdXU1srKykJGRgczMTIf7tLe346mnnkJ0dDRee+01hIWFwWKx4PXXX8eSJUsQEvLtRFu9f5aiudkEywCPFL4YJOJJSosXUF7MSosXUF7MA31ZdXRa+v19X+GhKpv77zuIrrH1G7xUfBrX2264PfZB7p/xn/afd7gGxp/2n5fcnVWtVkl+qLYe49LeuNlzafHixcjOznaaGICbDdKjRo3C5s2bER4e/q8A1Th06BAOHjwIACgtLcX48eMxdOhQV8MgoiDQ0Wn7pRiMK8H5q0Ha5TeHPXv2oKmpCYWFhSgsLAQATJ06FdnZ2VizZg2mTp2KO++8E4cPH8a///u/Y9asWQAArVaLP/7xjygoKMAvfvELvPLKK7j99tuxceNGz94REQWM0D6V7cE4K6sKjqvenAwN8RjJyeHIkSMAgEWLFmHRokUO98nPz7f+fPHiRYf73HvvvSgqKnIhRM8YzKLmROQZ4aEqmLuktzL3rU6JCAtBR6f9BH4RYa5VTSuJs0/L2231QTFC2tEIwz9XfOb1EYZEZGv08H8b1PGOEkN/5eS+oEgOwVhPSSRHF774yt8hkERBkRyCsZ6SiGgwgiI5BOPqUUSBYvvBz6w/O2tbCOQ2B38JiuSQphtt1+shNMT7IwyJaPDe/6TOmiAWzHS81rSzcnJfUCQHABB9Bs313SYi+eqZY+l/jnzu8PfOygPBrbc4fityVu4pQZEcSo5VO1zwnA3SRMrQ8yz3VXunw987Kw8E7q7JPVhBkRzYIE2kbN4e8EX2giI5RA5xPNbPWTkRyUt4GNODrwXFt6Pou4rIAOVEzgTqSHu531ffOZbI+4IiOfirzo4CS98ZQXtG2gOQ1Repq5RwX3zL972gqFbiOAfyhEAdaa+E+zJzegyfC4rk8MDoGJfKiRwJ1I4NSrgvVybrI88IiuRwprrZpXIiRwL1DTRQ74sGJyiSgxKejEj+AnWkfZpuNMJDbb8KwkPVir8vGhy28hC5IBBH2vc0Osu5txL5HpMDkUT9jbRX+hfppPg4xd8DeRaTA5FEgVw9KfdxDuR7ktocTCYTDAYDamtrAQC7d++GwWCA0WhEbm4uzGaz3TF1dXWYP38+Zs6ciaeeegrt7e0AgOvXr2PJkiXQ6/WYP38+GhsbPXg7RN4TqA23leev4a39n9qslPjW/k+5UmKQGzA5VFVVIT09HTU1NQCAy5cv480330RRURHeffddWCwW7Ny50+64X//615g3bx4OHDiA73//+3j11VcBAJs3b0ZCQgIqKiowZ84cm3WnieQsUBtudx666LC6bOchx+vAU3AYMDkUFxcjLy8PWq0WABAeHo68vDxERkZCpVJhzJgxqKurszmms7MTJ0+exIwZMwAAaWlpOHDgAADg6NGjMBqNAACDwYAPPvgAnZ2BO6MiBY5J8XFYqB9nfVOIGRaBhfpxiq9+4QwC5MiAbQ59n+yHDx+O4cOHAwBaWlqwY8cOrF+/3maf1tZWREZGIjT05uk1Gg3q6+sBAA0NDdBoNDcvHhqKyMhItLS0IDY2VnLQMTGRkvbTaKIAACoV4GgaJZXq233kQE6xSKW0mAcbb8qjUUh59F4PRSONPz9jOf33HSiW8//4Co/+YIRXzi1X3ozb7Qbp+vp6ZGVlYfbs2ZgwYYLN74QQUKls+4P33e69r1rt2nCL5mYTLAN0IdRootDY2PavazjeRwhY9/G33vEqhdJiVlq8gG9ijhwSCtM3XQ7LXb22N7+sBopl867/h+ttN1x+k1Pi30UPqXGr1SrJD9XWY9wJqLq6GnPnzsWsWbOwfPlyu9/ffvvtaGtrQ3f3zdfSxsZGa7WUVqtFU1MTAKCrqwvt7e2Ijo52Jwwi8oD0x8c4HNyX/vgYP0XkHraTeJbLycFkMmHx4sXIzs5GZmamw33CwsKQkJCA8vJyAEBpaSmmTJkCANDpdCgtLQUAlJeXIyEhAWFhYW6GT0SDNSk+Dj9Nus+mLeWnSfcpsi2F7SSe43K10p49e9DU1ITCwkIUFhYCAKZOnYrs7GysWbMGU6dORWJiIvLy8rB69Wq89tpruPPOO/G73/0OAJCdnY3Vq1cjOTkZUVFReOGFFzx7R0TkMg6Co74kJ4cjR44AABYtWoRFixY53Kd34/Xw4cOxfft2u32io6OxdetWF8MkIm8KlEFwEVwxzmM4QpooyClhsR/pgmIuUZ9gciByQaA8YffW32I/Sru3Di4K5DFMDkQSBdYT9rcCec4och/fwYgkUsJymu5QO6mmd1YuZ+GhCgxappgciCQK1CdsZ+NJlbhURXhYiL9DCBhMDkQSBeqsrIHE0Uhvcg+TA5FED4yOcamcSMmYHIgkOlPd7FK5UjirpWftfXBjciCSKFDbHMKdDBxzVk7BgcmBSKJA6tXTW0en45ZnZ+UUHJgciCQKpF49vQVq0qPBYXIgCnKBmvRocJgciIjIDpMDERHZ4dxKEgXihGtERM4wOUgQqBOukWtUKsfrkTtZHp0ciAhTsReUQrBaSYJAnXCNXOMoMfRXHqxuvcXx/Ea33hKCBTPv83E0yufs4cPbDyWS3xxMJhPmzp2LrVu34u677wYA5OTkYOLEiUhLS7PbPy0tDd3dN+dWv3HjBq5cuYIPPvgAHR0dMBgMGDlyJADgjjvuwJtvvumJe/GaQB38ROQNKiffWiqVCpPi47DrvUucA8kFQyNCHK6NPTTCu5MMSkoOVVVVeO6551BTUwMAqK+vR15eHiorKzFx4kSHx5SUlFh/zsnJwaxZs3DHHXfg4MGDMBqNWLt27eCj9xG1ynG3PvYDJ7Ln7Iu/pzz98TE21bTUP0eJob9yT5FUrVRcXIy8vDxotVoAwL59+5CYmAi9Xj/gsZWVlfjss8/wn//5nwCAs2fP4tKlS0hNTcWCBQtw8eLFQYTvG+wHTiTdQLPXToqPw+T7vdNWF4gPbP6aDVhScsjPz0dCQoJ1OysrC3PmzJF0gRdffBErV65ESMjNV6CIiAikpKRg7969WLx4MZYvXw6z2exG6EQkR2m60QgPtf1qCQ9VI003GsDNDh4fnrnqlWvH3T7EK+f1J3/NBuzV3kqff/45Wltb8dhjj1nLVqxYYf1Zp9Nh06ZN+Pvf/45x48ZJPm9MTKSk/TSaKI/s483jvXUuX1FazN6K15ufgz8/Y3eunfLovRgWdQu2VVxAU+s3uOO2IVigvw+P/mAEAKDo8Ifo6nb9tVtKLHXN37gVs5z/js/VtDot92bcXk0O7733HpKSkmzKtm/fDoPBgNtuuw0AIIRAaKhrYTQ3m2AZoE5Ho4lCY2PbgOeSso83j+8hNV45UVrM3ozXW+f192fs6rV74o0fGY2CpZMcnqvt606vxuJuzHLV2PqN03KpcavVKskP1dZjXNrbRadPn7apjgKAkydPYs+ePQCAEydOwGKx4J577vFmGEREiiXrNgeptmzZgl27dlm3r1y5gtjYWJt91qxZg48++ggGgwEFBQXYtGkT1GoOtyAicsRRG05EWIi1DcdbXKrPOXLkiM32hg0bbLazs7NttsvLy+3OERsbi8LCQlcu61WrXv0Lp8QgkrlA7IUkVc93Uu/pexYZ4hE/Mtqr1w36R/aegWw9U2JUnr/m54iIqK+x//oifOyhu/wbSBAJ+uTQG6fEIJKnKw0mAEDGjHFBlyB65nbr/SD78v9Uef1BlsmhD06JQeRd7swJ1HvUdcYM6d3eA4Gjud06Oru9/iDL5NCHt3sAEAU7TlToGn/N7cbk0EuICl7vAUAU7CLCXJ8wztlMr8EgILqyKp0bgzaJyEUdna5NGBeiAuZNG+ulaORPEV1Zg8G2Axc82p2VK8gRDU6m4XtB/W/GX11ZmRz68OQqVVxBjmjw+G/l5mfQ+3PwxZQfrFbyIq4gR0RKxeTgRVxBjsg7Qpx8czkrJ9fxo/Qif/UyIAp03U4WkXNWTq5jcvCigRY9ISKSq6BokI4IC3G5+5wnOOplwN5KRKQEQfHm4I/EQESkZEHx5hAzLEJyI7AnZwZmV1Yi3+M0/J4RFG8Ojur+fYFdWYl8j9Pwe0ZQJIdJ8XFYqB9n7SXUX28hT86gwa6sRP7FhzH3SU4OJpMJBoMBtbW11rKcnByUlJQ43P/EiROYMGECUlNTkZqaitzcXACA2WzGqlWroNfrMWvWLFRX++Y/3KT4ODz/s8l4a/VUPP+zyT65JruyEvkfH8bcIyk5VFVVIT09HTU1NQCA+vp6LFu2DAcPHnR6zLlz55CZmYmysjKUlZVh/fr1AIDt27djyJAhqKiowLPPPmtNGoGIXVmJ/C+YlxgdDEnJobi4GHl5edBqtQCAffv2ITExEXq93ukxZ8+exfHjx2E0GrFs2TJcvXoVAHD06FGkpKQAAH74wx+ipaUFdXV1g70PWXJUnbVQP44NZEQ+ZOFsy26R1FspPz/fZjsrKwsAcOrUKafHREVFQa/XY/r06di1axdWrlyJoqIiNDQ0QKPRWPfTaDS4du0a7rorMJf+6zthFhH5Fqtx3eO1rqxr1661/pyeno5Nmzahra0NQgioeq0TKISAWu1au3hMTKSk/TSaKJfO685x7l7D2+fyFaXF7K14vfk5+PMzdufano53sOebEB834DmU9ncMeD9mryQHi8WC119/HUuWLEFIyLcrOIWEhCA2NhYNDQ0YOXIkAKCpqclaXSVVc7MJlgHeFQczpa0rx3lq2lxfTMHraUqL2Zvxeuu8/v6MXb22N+Id7Pn+ev4afqxzfg5/f8bucDVmtVol+aG6h1eSg1qtxqFDhzBq1CgkJSWhtLQU48ePx9ChQ6HT6VBWVoaEhAR8/PHHiIiICNgqJYCL/RD5G3srucej4xy2bNmCXbt2AQAKCgqwbds2JCcn45133sG6desAABkZGTCbzUhOTkZ+fj42btzoyRBkpWeENAflEJHSuPTmcOTIEZvtDRs22GxnZ2dbf7733ntRVFRkd46IiAgUFBS4clnF6m+ENN8eiEjOgmKEtL9whDQRKRWTgxc5G3zDQTlE0rAbqv8wOXiRsw5VHJRDchI5xHHtsrNyX3pgdIy/QwhaTA5exLmVSAmEcPy04qzcl85UN/s7hKDF5OBFnFuJlKD9huPFsJyV+xLb5/zH/++NAYzLhJISOFsMSw5vuHKo2gpW/OS9jHMrBY77RkXjwhdfOSxXsjTdaLy1/1N096pFClFBFm+4cqjaClasViKS6EqDyaVyJVH16ULXd9tf5FC1FayYHIgkMn3T5VK5UpQcq0ZXt+0Tele3kMUKanKo2gpWTA5EQU6ugzXZecO/mByIJLr1lhCXypVCjl2uuTCW/7FB2ss4K2vgmDdtrMOG23nTxvovKA9I043Gnys+s5kHzN9P7b5a552cY3Lwosrz11BYfsFan9t8vQOF5RcAgAlCgQK1a7Lc7kseTeHE5OBFu9675LChb9d7lxT/hRKsArVrspzui51X5YFtDl4UqL1biCjwMTkQkU8NVG0UEcaKJTlgciAin1IPMMAuLFTZvb8CBZMDEflU9wBz1rPaVR4kJweTyQSDwYDa2lprWU5ODkpKShzuX11djfnz5yM1NRVPPPEELly42Uvnyy+/xEMPPYTU1FSkpqZi8eLFg7wFIgokHBUtD5J6K1VVVeG5555DTU0NAKC+vh55eXmorKzExIkTHR7z3HPPYenSpXj00UdRWVmJ//7v/8a7776Lc+fOwWg0Yu3atR67CW9Tqxwv0COT6WeIFOXWW0Kczpnk7/EV9C1Jbw7FxcXIy8uDVqsFAOzbtw+JiYnQ6/VOj5kzZw4eeeQRAMDYsWNx9epVAMDZs2dx6dIlpKamYsGCBbh48eJg78HruKIbkefMmzYWIQ4erCKHhHJUtIxIenPIz8+32c7KygIAnDp1yukxaWlp1p9ffPFFPP744wCAiIgIpKSkYO7cufjwww+xfPlylJeXIzw8XHLQMTGRkvbTaKIkn7O/49RqFSwOMoFarfLYNZyVyZ3SYlZavIDyYh4o3pRHozAs6hZsq7iAptZvcMdtQ7BAfx8e/cEIv8WktM8Y8H7MXh0EJ4TAxo0bUVVVhW3btgEAVqxYYf29TqfDpk2b8Pe//x3jxo2TfN7mZpPDL+veNJooNDa2uRV33+OcXctiER67xmDi9Relxay0eAHlxSw13viR0ShYOsmmzJv32d+5lfYZA67HrFarJD9UW49xNSipurq68Mwzz+Ds2bPYtm0boqJuZrnt27ejtbXVup8QAqGhHKhNRCQnXksOBQUFMJlMeOutt6yJAQBOnjyJPXv2AABOnDgBi8WCe+65x1thEBGRGzz6yL5lyxZotVrMmDEDO3bswN133405c+ZYf19WVoY1a9Zg9erVKCsrQ0REBDZt2gS1msMtiIjkxKXkcOTIEZvtDRs22GxnZ2dbf/70008dniM2NhaFhYWuXJaIiHyMj+xERGSHyYGIiOwwOUigcjIS2lk5EZHSMTlIIJwMqXBWTkTedd+oaH+HEPCYHIhIcValP8wE4WUcfUZEirQq/WGb7cwNR5zsSe7gmwMREdlhciAiIjusViIiRao8fw0lx6rRfL2DCwR5AZMDESlO5flr+HPFZzB3WQAAzdc7/BxR4AnaaqVbb3G8iLmzciKSj5Jj1dbEQN4RtMlh3rSx6DuGTfWvciKSN74peF/QJgcACOmzVmHfbSKSJ7YxeF/QJoeSY9Xo6rYd4tzVLVByrNpPERGRVGm60QgPDdqvL58I2k/X2WspX1eJ5G9SfBwW6sdZ3yD4JuF5QdtbKWZYhMNEwD8yImWYFB+HSfFx1m2OkPasoH1zcPRaGh6qRpputJ8iIiKSD8nJwWQywWAwoLa21lqWk5ODkpISh/tfv34dS5YsgV6vx/z589HY2AgAMJvNWLVqFfR6PWbNmoXqav/U8Tt6LV2oH2fzJEJEyhGidtyhxFk59U9ScqiqqkJ6ejpqamoAAPX19Vi2bBkOHjzo9JjNmzcjISEBFRUVmDNnDvLz8wEA27dvx5AhQ1BRUYFnn30Wubm5g78LN02Kj8PzP5uMt1ZPxfM/m8zEQKRgmcn3uVRO/ZOUHIqLi5GXlwetVgsA2LdvHxITE6HX650ec/ToURiNRgCAwWDABx98gM7OThw9ehQpKSkAgB/+8IdoaWlBXV3dYO+DiAihfbqj990m6SQ1SPc89ffIysoCAJw6dcrpMQ0NDdBoNDcvEhqKyMhItLS02JQDgEajwbVr13DXXXe5HDwRUY/+uqezVsB1PuutJISAWq2GEAKqXutr9pS7IiYmUtJ+Gk2US+d1h7vXcHScL+L1NKXFrLR4AeXF7K94W5x0Q2+53jFgTEr7jAHvx+y15KDVatHU1IS4uDh0dXWhvb0d0dHRiI2NRUNDA0aOHAkAaGpqslZXSdXcbILF0v8anRpNFBob29yOXyp3r9H3OF/F60lKi1lp8QLKi9mf8d7upHv67cMi+o1JaZ8x4HrMarVK8kO19RhXg5JKp9OhtLQUAFBeXo6EhASEhYVBp9OhrKwMAPDxxx8jIiKCVUpENGjsnu5ZHn1z2LJlC7RaLdLT05GdnY3Vq1cjOTkZUVFReOGFFwAAGRkZ+OUvf4nk5GSEh4dj48aNngyBiIJUT7tC7zUe0nSj2d7gJpeSw5EjtiMQN2zYYLOdnZ1t/Tk6Ohpbt261O0dERAQKCgpcuSwRkSR9R02T+4J2hDQRETnH5EBERHaYHIiIyA6TAxER2WFyICIiO0wOXhTi5NN1Vk5EJBf8mvKiW8JDXConIpILJgcvar/R7VI5EZFcMDl4kbMlR7kUKRHJHZODF3GuFyJSKp9N2R2MONcLESkVk4OXca4XIlIiVisREZEdJgciIrLD5EBERHaYHIiIyA6TAxER2WFyICIiO5K6sppMJsydOxdbt27F3XffjY8++gjr169HR0cH9Ho9Vq5cabN/c3MzMjMzrdttbW1obW3FJ598ghMnTmDFihWIi7vZvfN73/se1q9f78FbIiKiwRowOVRVVeG5555DTU0NAODGjRt49tlnsX37dtx5551YunQpjh07Bp1OZz0mJiYGZWVlAACLxYKFCxdaE8i5c+eQmZmJpUuXeuF2iIjIEwasViouLkZeXh60Wi0A4MyZMxg1ahRGjBiB0NBQGI1GHDhwwOnx77zzDoYMGQKj0QgAOHv2LI4fPw6j0Yhly5bh6tWrHroVIiLylAHfHPLz8222GxoaoNForNtarRb19fUOj+3u7sbWrVvx6quvWsuioqKg1+sxffp07Nq1CytXrkRRUZFLQcfEREraT6OJcum87vDkNXwRr6cpLWalxQsoL2alxQswZkdcnj7DYrFApVJZt4UQNtu9ffjhh/jOd76DsWPHWsvWrl1r/Tk9PR2bNm1CW1sboqKk32hzswkWi+h3H40mCo2NbZLP2R8VAEdXUwEeu4Yn4/UVpcWstHgB5cWstHiB4IhZrVZJfqi2HuNqUHFxcWhsbLRuNzY2Wquc+nrvvfeQlJRk3bZYLHjttdfQ3W27nkFIiLwXv3GWhvpPT0REyuVychg/fjwuX76ML774At3d3di/fz+mTJnicN/Tp08jISHh24up1Th06BAOHjwIACgtLcX48eMxdOhQN8MnIiJvcDk5REREYMOGDVixYgWSkpJwzz33YObMmQCANWvW4PDhw9Z9r1y5Yu2y2qOgoADbtm1DcnIy3nnnHaxbt26Qt+B9kUMc1745KyciUjqVEEJxtSO+bnOoPH8NheUX0NX97TVDQ1T4adJ9HpuOOxjqPf1NafECyotZafECwRGzO20OfPSVgIv2EFGwYXKQiIv2EFEw4dxKRERkh8mBiIjsMDkQEZEdJgciIrKjyAZptdrxdB3u7icXSosXUF7MSosXUF7MSosXCPyY3bk/RY5zICIi72K1EhER2WFyICIiO0wORERkh8mBiIjsMDkQEZEdJgciIrLD5EBERHaYHIiIyA6TAxER2ZFlcjCZTDAYDKitrQUA5ObmYvr06UhNTUVqaioOHToEALhw4QLS0tIwY8YMrFmzBl1dXQCAuro6zJ8/HzNnzsRTTz2F9vZ2AMD169exZMkS6PV6zJ8/H42NjQAAs9mMVatWQa/XY9asWaiurh50zJ988gl+8pOfIDk5GU8//TTMZrOsYz527Jj1801NTcXEiROxdOlSWcXc9zM+fvw4UlJSYDAYkJOTI/vPGABKSkqQlJQEo9GIdevWWWOTQ8wvv/wykpOTkZycjI0bNwIAPvroIxiNRkyfPh2///3vrfvKIV5nMQNAZ2cnFi5ciL/+9a+KiHn37t0wGAwwGo3Izc2Vx9+ykJnTp08Lg8Eg4uPjxZUrV4QQQhgMBlFfX2+3b3Jysvjkk0+EEELk5uaKHTt2CCGEWLJkidi/f78QQoiXX35ZbNy4UQghxK9//Wvx+uuvCyGE2Lt3r8jOzhZCCPHGG2+IX/ziF0IIIU6cOCHmzJkzqJjb2trE5MmTxYULF4QQQqxcudIam1xj7q2hoUEkJiaKy5cvyyZmR/FOmTJF/O1vfxNCCLFixQpRXFwsm3gdxVxdXS0eeeQR699yXl6eeOutt2QR81/+8hfxxBNPiI6ODmE2m8WCBQvEvn37hE6nE//4xz9EZ2enyMzMFEePHpVFvM5i/t///V9RXV0tnnjiCXH//feL//u//7PuL9eYX3/9dTFt2jTR1tYmLBaLyMnJEYWFhX6PWXbJ4dlnnxUnT54Ujz32mLhy5Yr4+uuvxcMPPywWL14sDAaD2LJli+ju7ha1tbUiMTHRetzJkydFRkaGMJvN4qGHHhKdnZ1CCCHq6urE1KlThRBCPPbYY6Kurk4IIURnZ6d46KGHhNlsFk8++aQ4efKk9VyJiYniyy+/dDvmAwcOiOXLl1t/39zcLBoaGmQdc2/PPPOM+OMf/yiEELKJ2VG8kydPFqdPnxZdXV1iyZIloqysTDbxOoq5vLxcrFixwvr7o0ePinnz5ski5kuXLlm/hIS4+SXz0ksviQULFljL9u7dK1avXi2LeJ3F/Kc//UkUFBSIQ4cOiSeffNKaHOQc80svvSSOHz9uLXvjjTdEfn6+32OWXbVSfn4+EhISrNtNTU2YOHEifvvb36K4uBgff/wx9uzZg4aGBmg0Gut+Go0G9fX1aG1tRWRkJEJDQ23KAdgcExoaisjISLS0tDg817Vr19yO+YsvvsDQoUOxcuVKpKam4qWXXsKwYcNkHXOPmpoanDhxAgsWLLC7vj9jdhTvr371K2RkZOCRRx5Ba2srZs6cKZt4HcU8btw4VFVV4erVq+ju7saBAwfQ1NQki5jvvfdePPjggwBu/g1UVFRApVLZnEur1aK+vl4W8TqLWafTIScnB48//rjNvnKO2WAwYPLkyQCAlpYW7NixA4mJiX6PWXbJoa8RI0bglVdegVarxZAhQ5CRkYFjx47BYrFApfp2GlohBFQqlfX/e+u73fsYtVptd0xPubu6u7tx/PhxPP300ygpKcE333yDP/zhD7KOucfu3bsxb948hIeHA4BsY25sbMQLL7yA/fv34/jx4xg/fjzWr18v23gB4Lvf/S5+/vOf46mnnsL8+fMxduxYhIWFySrmzz//HJmZmcjJycGIESMcxiWnePvG/J3vfMfhPkqIub6+HgsXLsTs2bMxYcIEv8cs++Rw8eJFHDx40LothEBoaCji4uKsjS3AzTcMrVaL22+/HW1tbeju7gZw80tEq9UCuPnk09TUBADo6upCe3s7oqOjERsbi4aGBrtzueuOO+7A+PHjMWLECISEhECv1+PMmTOyjrnH4cOHkZSUZN2Wa8wff/wxxowZg5EjR0KtVuMnP/kJTpw4Idt4AaCjowMPPPAASktLUVRUhNjYWIwYMUI2MZ86dQqLFi3Cz3/+c8yaNcsurp7ryyVeRzE7I/eYq6urMXfuXMyaNQvLly+XRcyyTw5CCPz2t7/FP//5T3R2dmL37t2YNm0ahg8fjoiICJw6dQoAUFZWhilTpiAsLAwJCQkoLy8HAJSWlmLKlCkAAJ1Oh9LSUgBAeXk5EhISEBYWBp1Oh7KyMgA3v3QiIiJw1113uR3zj370I5w/fx5Xr14FALz//vuIj4+XdczAzVfaGzduYMSIEdYyucY8ZswYnDlzxvoP4fDhw7j//vtlGy8AfP3111i0aBFMJhPMZjPefvttJCUlySLmq1evYvny5XjhhReQnJwMABg/fjwuX76ML774At3d3di/fz+mTJkii3idxeyMnGM2mUxYvHgxsrOzkZmZKZ+Y+22R8KPeDY9vv/220Ov1Ytq0aeL555+37nPhwgUxe/ZsMWPGDPH000+Ljo4OIcTNxqcnn3xS6PV6kZmZKb766ishhBCtra1i6dKlIikpSTzxxBPW89+4cUPk5OSIpKQk8R//8R/i3Llzg475/fffFykpKWLGjBniv/7rv8TXX38t+5irqqoc9mKQU8y94y0pKRF6vV4YDAaxfPly0dzcLLt4+8ZcXFwskpKSxPTp08WLL75o3cffMf/mN78RDz74oEhJSbH+b+fOneKjjz4SRqNRTJ8+XeTn5wuLxSKLePuLuUfvBmk5x7x161YRHx9vU7Z582a/x8yV4IiIyI7sq5WIiMj3mByIiMgOkwMREdlhciAiIjtMDkREZIfJgYiI7DA5EBGRHSYHIiKy8/8BqAvQV20P8cgAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.scatter(clean_data4['Size'], clean_data4['log_sales'])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 67,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "clean_data4 = clean_data4.drop(['Weekly_Sales'], axis=1)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 68,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<matplotlib.collections.PathCollection at 0x215696f10a0>"
-                        ]
-                    },
-                    "execution_count": 68,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD7CAYAAABnoJM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABZkUlEQVR4nO29e3xU1bn//9lzySSQYCAmhItw2iAEkYseVBA1iFcgEaX6O+A5oCfS2lN/ltJfQSzUtL7KS7FyCrZaeypSoYLlWAThC1jRglbzLWjlagCJomBIgFzMxVzmsn9/jBNmZj/PzqzJ2nPJrPfr1VedzWTPXnuvvZ5nPVdN13UdCoVCoUhZbPG+AIVCoVDEFyUIFAqFIsVRgkChUChSHCUIFAqFIsVRgkChUChSHCUIFAqFIsVRgkChUChSHEe8LyAa6utb4POZpz/k5GSitrY5RlcUX1JprIAab08mlcYKxG68NpuGvn17s/+elILA59O7FASB76UKqTRWQI23J5NKYwUSY7zKNKRQKBQpjhIECoVCkeIoQaBQKBQpjhIECoVCkeIkpbM40Sg/Uo1NeypR29iOnD4uzCwqwMRR+fG+LIVCoYgIJQi6SfmRary04yg6PD4AQG1jO17acRQAlDBQKBRJgTINdZNNeyo7hUCADo8Pm/ZUxumKFAqFQgwlCLpJbWO70HGFQqFINJQg6CY5fVxCxxUKhSLRUIKgm8wsKkCaI/Q2pjlsmFlUEKcrUigUCjGUs7ibBBzCKmpIoVAkK0oQSGDiqHy18CsUiqRFmYYUCoUixYlIEDQ3N6O4uBinT58GAPz5z39GcXExSkpK8Oijj6Kjo8PwN6+99hquu+46zJgxAzNmzMCvf/1rAEBjYyO+973vYerUqfj3f/93nDt3TuJwFAqFQiFKl4LgwIEDmD17Nk6ePAkA+Oyzz7B69Wq88soreP311+Hz+bB+/XrD3x0+fBiLFy/Gli1bsGXLFixYsAAAsHLlSowfPx47duzAPffcg2XLlskdkUKhUCiE6FIQbNy4EWVlZcjLywMApKWloaysDJmZmdA0DcOHD0dVVZXh7w4dOoTXXnsNJSUl+MlPfoKvvvoKALB7926UlJQAAIqLi/HOO+/A7XbLHJNCoVAoBOjSWRyusQ8aNAiDBg0CANTV1eHll1/GE088Yfi73NxclJaW4sorr8R///d/4/HHH8eKFStw9uxZ5Obm+n/c4UBmZibq6urQv3//iC86Jyczou/l5mZFfM5kJ5XGCqjx9mRSaaxAYow36qihmpoazJs3D9/5zndwzTXXGP792Wef7fzvefPm4ZZbbiHPo+s6bDYxn3VtbXOXXX1yc7Nw7lyT0HmTlVQaK6DG25NJpbECsRuvzaaZKtBRCYLKykrMmzcPc+bMQWlpqeHfm5qa8Je//AX3338/AP9ib7fbAQB5eXk4f/488vPz4fF40NLSguzs7GguQ6FQKHoU8apkLBw+2tzcjAceeADz588nhQAA9OrVCy+88AIOHDgAAPjTn/7UuSMoKirC5s2bAQDbt2/H+PHj4XQ6o7x8hUKh6BkEKhkH6pQFKhmXH6m2/LeFBcGrr76K8+fPY82aNZ2hoatWrQIALFmyBG+99RbsdjtWrlyJn//855g6dSqOHDmChQsXAgDmz5+P/fv3Y/r06Vi/fj0ee+wxuSNSKBSKJCSelYw1XdfNje0JiPIRhJJKYwXUeHsyqTRWIHS8pU++zX7vxcVTuvU7XfkIVGaxQqFQJADxrGSsBIFCoVAkADOLCmDXQo/ZNcSkkrESBAqFQpEgaDbN9LNVqOqjCkUKEq8wRQXPpj2V8HhDfZ8er45NeyotfzZKECgUKUYgTDEQoRIIUwSghEEXWClA49n2VpmGFIoUI55hislMPOP8rUYJAoUixYin5pnM9GQBqgSBQpFixDNMMZnpyQJUCQKFIsWYWVSANEfoq5/msMUkTDGZ6Z1uFzqeTChnsUKRYgScmypqSAxNo0M5ueNA8kRnKUGgYEmWSawQZ+KofPUsBWlu9QgdF43OysxwkOfKzLB+mVaCQEGiQgwVsSSgdNQ1tqNfgiodOX1cpD+A862YOZepsc2+eTjWbK8IySVw2DXMvnl4N6+8a5SPQEHSkyMkFIlFcFimjsQNy5xZVIBwK5BmUgJC1Lk8cVQ+rh8zAIFkYpsGXD9mQGL2I1CkBj05QkKRWCSL0nHidAPCazXruv84BWfS4Y6XH6nGe4eqESis7NOB9w5VJ2Y/AkVqoEIMFbEiWZSOv31UJXScq/DPHY+nQFQ+giSAc9paaVedWVQQ4iMAVIhhKmNl4ICo7T1ZaGnzCh2Pp0BUgsBCZLw8nNP2xOkGvHeo2jJnrgoxVASwOnCgpyodogIungIxItNQc3MziouLcfr0aQDAn//8ZxQXF6OkpASPPvooOjo6DH/z4Ycf4u6778aMGTNw33334csvvwQA7N27F9dcc01nm8tHH31U4nASB1l1Sbjt4p79VUlhV1UkP1abLCaOysek0fkhTtJJo5M/vNUscW/dG0cxb/nbKPn/tmDe8rex7o2jcU3063JHcODAASxduhQnT54EAHz22WdYvXo1Nm3ahN69e2Px4sVYv3497r///pC/W7hwIZ577jkUFhbi1VdfxS9/+Uv87ne/w+HDh1FaWooHH3zQivHEBUrzFw0d4+C2hVynTlnbSBU+qghgtcmCc5IOG5wtba7FIyeG21WfON0Q4lfw6Rf8DPdNLYzLLrxLQbBx40aUlZVh0aJFAIC0tDSUlZUhM9Pf/3L48OGoqgp1lnR0dGD+/PkoLCwEAIwYMQJ/+tOfAACHDh3C+fPnsW3bNgwaNAhlZWUYMGCA1EFRWDURuAUzXAgEEH15uO2iTaOFgaxtpCxBZka8EtZUopwYVpssrJ5r5UeqQ+LzaxvbsWZ7Rcjvc/634OPR3AcqcW/1to/J7+7ZX4U5txXGZS52KQiWLVsW8nnQoEEYNGgQAKCurg4vv/wynnjiiZDvpKWlYcaMGQAAn8+H3/72t7j55psBAFlZWZg6dSpuvfVWbNiwAQsWLMArr7wiZTAcVmq33CSOZqGmJh9nP500Oj/ERxA4LmsbGQstMB47jp6w04m1IJtZVEAmOiXLXNuw6zjZ8GXtzgroukb6397ZX4XAn9Q2tuPFbR/jhnEDpbxz3G6eOx4LonYW19TUYN68efjOd76Da665hvxOR0cHFi9eDI/H02kKevzxxzv/ffbs2VixYgWampqQlZUV8W/n5GRG9L3cXP85N/+9nFysN//9M9wx+dKIf5eiTtB0c82o/M7rCmb3h6ewducxtLv9EQW1je1Yu/MY/t97xuLh/2cc1u6owPn6VlzcNwNzp47E5H+9BFd+eIo8Lspu4jw2mwYfMQibTSOvX5TuPpNor8HKuWAlgfFy86RPVnpUzz4S+mTR8fN9stKlzIXcvhk4V99KHpdxfq4ERLtbBxA6sA6PD7v3VxnG69WBD46dY99FWcgYbzREJQgqKysxb948zJkzB6WlpeR3Wlpa8F//9V/Izs7G7373OzidTvh8Pvz+97/H9773PdjtFyr2Bf93JNTWNpOLVDC5uVk4d64JAMhJFjge+E609BM03fzjSDXuLjL+5h+3Hel8uQO0u73447YjmFlUAJ/XBx2Az+tDY1Mbzp1rwqgh2Vj+4MTQsQqOJ1xDPlffit9s3M/eX59P7/Y9C/wOd7yr8wePN5a/Gy+Cx2s2T0YNybbk9/+47Qi8YfPB69Ol/ead132L3PXeed234vJMmDB/NH3t7nzngpF5ja/v/sSS3Z7Nppkq0MKCoLm5GQ888AB+9KMf4c4772S/t3DhQgwdOhS/+MUvYLPZvrkYG958800MHToU06ZNw+bNmzF27Fj06tVL9DKEsNLGObOoAC9u+xjBO0+7BngFnblmx600Zcg0bYnQO91OxlNbXdJX5lyIh68hFia78DFZ/ZvBTlUrcmK4uRYLqPtpRvBaEjBJAdabLYUFwauvvorz589jzZo1WLNmDQBgypQpmD9/PpYsWYIpU6ZgwIABeOuttzBs2DDcddddAIC8vDz84Q9/wPLly/Gzn/0Mzz77LPr164ennnpK7ogIxhTkkNl/YwpypLzMmi105ddsGjLT7OSWVDSG2KbBNHSvuy+PWVRSmsNmmQ8impK+MpAVsx4vX4OVSg03Jq4qpsz49oBTtTu7PY57bxlBKmvQAC8d08Eisl505aSmCFcgvTqw/s1jiSMI3n77bQDA/fffbwgVDRDsWD527Bj5nUsvvdRy53A4BytryeN7K2q6nZS1aU8l6YjSdR0Ouxaxg41boMyij2RoD2YLSyAM1gqNV7SkrywmjsrHidMN2LO/Cj49+pj1WERVUZgpNd2FG5PToVmqFADWVh/lwjj/sJWO3jFDRPhzTmpRYrGbSYnMYk7rpW6w6Mtsdm57mHKrm/g1uMka+EwhQ3sw05CtrFnPmZ5smrUmF1kx6/EqB8ApNQcra7t938zm8ndLLrP0mYiGd4pCzeVoBIGI8LdaqZFJSggCTuvlEPkut6AB9EIdbNIJn9zcwiuyUxDVHmSWkhBZiMxC6OLhExHV5M12Ul3VhurOfbbSl2Q2JiuVAj688xg8Hq9lNnMN4TFD0ZFoxfGiISUEAaf1appmiMAAxDoCicb+ir6wnCmDq3gYDTJeclGbeTQ+kWjqNFnl+OTm1JiCHEtrQ1l538x2h1bu0vjwTuO7KdNmLitsX/UsThI4rXf9m8fQ7jZ+nysTSxFNRILIC8uZMjgs9rWyiGra0fhEOLjIDE4wiZyHW3DMTHlcbahwpSEaASfzvoXDjQmwdpcmiiybudluXgSPqMdZkFgImpQQBICYjbClzYuFz70X0YIgK8qFe2G5hYVD1+XZ2EXOI6ppi/pEuAgVbieS5jQujmb3DRBf7ETmlKzaULLum9n5w8e08Ln3uoxc685cS3No6PBYm1ZLzWVZmbz+xDQjI4dmo+LzBsNxu00z5GUAvKlqSH/rk8xSRhBQE4ELiwMuvKC1je14wcQuKcshZLeJmTI4MjMcUrQ3MweeiKlHtA4LADLUj4tQ4QRlV4s+hQyTlKiWGU0IpogvSUZkj9U5LqIKtSYYUMApC2a5LG6PHvGui+OLGjoMlhICAG+qOvZFg9DvRkNKCAJuImhaZG+srgNrd1YILYCieH20RsoJq8wMB9o6vIbwVF3XpSxonANvw67jrKlHVj0aKi8DoEMMRe+9qINQ9PxmQsDKEEwzpz9nOot0IbXan8MtjBy6SUBBuD+taNxAHKysJa8zzekwJH/aNX/eAeWX2/1RFTl3OJuALBNWLGoQpYQgEDWvUHDbv7y+GdKiBkRiuK8qzMM7+0MdxrpPF+5+xBFNnD9VhkAULi9jw67jaG3zGCJIOEHJaXWTRudjz/4z8AX5gWyaBk3TSc3U5RQz/cUrL4Oj/Ei1Id/kha0fwx6U49KVJs/NcatLoZtBvSsv7agIMTEFl3emoOaN95sexJRfjpvN0azT1Dvt9vrI8ha2GPj9UkIQWDkxrd62tbR5ceMVAw3aycHKWjI81erSEBwbdh0nC5NxOwgO7llxL21rGy2Yrh7ZH8MGZ5Oa8O6wxUHXdXZR62AUAA6zhC/OpGNlJztAN8wTHcbEJjNNXnSOZ2Y44lJ+Q5afgXp+Zooj58w1281fVZhneKer674mfQojLKohFUxKCAIra41YvW3TNJDaCTcxuevJ65th0RX6MdtBiCwKoqY2LlHzYGUtWdv94ZV7DBqc2SMUfbz7jp5lj3OCSYadXcau16zciAgtrR6hrHeXU2N33MmApmnkHJ9983DSXHpVYR75TjsdtOp/limUKJOUEATtbmvDu6xE1+ltsKbxVRIpjppodaKFsda9cdRghzVDZKHjNGpRRLLJzTDLdKaOmwlE6j44HZoUO7uMXa+sXaMOsaz3ZBYCAP9s75taiP+cNjLiEOMOxuoaC1NbSgiCaOp7hCPrJeG0H9FoExEhYPZ9zqTAXafdBrLNHldxVYOYQ5HTqDk4gSjreeX3yxBOEOOw8uWXEbQgo16RGS1tXlJ4iio18SK8dlgAszn+qx9MklLawmpSQhDIQNZL4mEU0vx+GTjb0GbYRrqcNmlmLZHeypyTlAv142Qt936L+AIC2DTN4OQtGjfA0k5tVbXGbblZgpgsRDvZcQ5dkUWWq2Mkkxe2fdx5PYHQ7EQTAi6nncxq5hRK0TluFrYeL5QgiBBZLwkXSXOmrtUwo7xeHUMGZ5EOpGgQ6a0sa7su03mthd0gDTqGDc4GgG5XExVFlm+IW3Q4xYPL72AXKYHrjIUJggooiCfhgRhF4wZKK9/SO91OCu0O4nmboaKGJHHjFfTDHZiTQWp8FLWN7cK2dBGoF0IHcFSSEADo7avV+HRjo55Aghh1P80c+5zd2e3RDY430WqiosgqTwDQz4BTPGSVNqbgCuZxGbI9gWGDs3Gwsha1je3om+XCsMHZeP9wDSmcRfF4OeVL7Hl15YOTgaaLFNZJEERbVZYfqcYLWz8O0Sc1APNKLjMkjmganf7tctoNyVppDhsKBvUhXxJZlQ3jhSy7rctph9fnM5i8rh8zAO8ePGM4fungi6QsOjl9XPjVDyYZjv9w1TtC23KHXYNN0wzPfdLofNIkBejSwhgDpZ+DE+issi8HzGzBTdsBv9AuLb4M//v2J2houVCYK7u3M+RzImO30SZNl1OD1wfDHJQlWKOB2qHMua2w2+ftqlVlSgiCQN2gcKjF4r9W/E3ILJLTxwWX0xaysxDZaXSH8MVa04DJ4wYamm9rGpDmoE0QZlBJL7J2EZygkSlAqRr6ALB6W4XB1+Cw03HovdPtuHpkf/Ll5HaIMhbrNIe/hZZV95+Cc/ibtV61ElkLNZeFb7fZpGj+stA0YPUjUyw5t/SexcmISEE0Uds4dY5YCAGOYYOzyXj1tTvNW+SFwyW9yLKfcuqHrPWmd7qd3JZPGp1P+hq46J2WNu83mcj+zz4d2LP/TKfpKdz8tO4N88ihSHF/0+UuGKtNedz6Gi8FmXoXo9HWm1s9pFIgc3dFKU2apgutJ7pOh2bL2BF0RUSCoLm5GbNmzcLzzz+PwYMH489//jPWrVsHTdNw+eWX4xe/+AXS0tJC/qaqqgoLFy5EbW0tvvWtb+Hpp59G79690djYiJ/85Cc4deoU+vXrh5UrVyI3N9eSwQWIV6N0CpkaL5fJO/vm4Ybvigq41naPUPnrRMPjpX0iVLSPWUY2gJDdQ+Dz2p3+Vqzhi8ue/dYKSlGSwYQjz9/CI6tDGYWmAfdNLTTMhZd2iClfAB2aDcByYWDr6gsHDhzA7NmzcfLkSQDAZ599htWrV+OVV17B66+/Dp/Ph/Xr1xv+7he/+AXuvfde7Ny5E5dffjmee+45AMDKlSsxfvx47NixA/fcc09In2OrEGmUbrVwsFq5av4mqzO4emogq1MEr0+ec9kR1rMz/LMVcFt+s85o4VdldpXtbi9e2nE05D6/tONoTAqEcdjC5rNN0+C2uFY+xcAcOoudOz5iSPY3/pULhH+ONeFLg6b5hSrFgH4ZmDgqH7/6wSS8uHhKZ+6ALF+RLOXCjC53BBs3bkRZWRkWLVoEAEhLS0NZWRkyM/32puHDh6OqKvRC3W439u3bh2effRYAMHPmTPzHf/wHFi5ciN27d+Pll18GABQXF+Pxxx+H2+2G00nfZBmIlD8Y0l9euGa8oKJr4kl4r2az3s3xgqoR39VVWh2FFW4P78o+Tu1cYtH4PJzqOto0yh0/W99qCLrggjBiBbXb5nZW1XWtwtn2IiRE9dFwjX3QoEEYNGgQAKCurg4vv/wynnjiiZDv1NfXIzMzEw6H//S5ubmoqakBAJw9e7bTFORwOJCZmYm6ujr0798/4os2c3oEk5vrb+iQ2zcD54h6HVm9nIaY7FjEUqcaiSaYKKKplCoCF7nCoWn+PJJgwj/LpF9WGuqaOqScy2zXRUG9d7KFwJEvGrB2RwXO17fi4r4ZmDt1pLRzh1c57arqKWDMH3E57ejweOnqozatcy2ziqidxTU1NZg3bx6+853v4Jprrgn5N13XDWYXzjyj6zpsNrFtoGjU0J3XfYtsdtLh9lgWKib64iuiR1RzthIuQUx0LnB5JdEQSbSRLCGQqPxm4/7Oe3CuvhW/2bg/rtdz7eWhkWjXXu5XhCkBUjR2QOdaFi1dRQ1FZYirrKzErFmzcNddd+Ghhx4y/Hu/fv3Q1NQEr9f/Qpw7dw55eXkAgLy8PJw/fx4A4PF40NLSguzs7GguQwg9zOKrw9qKh6koBCgbtWg9fw6uI6jLaU8o01MihSMGuG9qYWcmt9XlyGOBy6kJ+xTIwo2CvyvLs+VyakKBGIHseSsRFgTNzc144IEHMH/+fJSWlpLfcTqdGD9+PLZv3w4A2Lx5M2644QYAQFFRETZv3gwA2L59O8aPH2+pfwDwR9JQ9tNkwGq3qqzz220ac4/lOP3YcFPdlxSmp3hy4nQD6pv8ppfA/1uJpDbeLB6PbhBu900Vj6rRQQcycLEMToeGG68Y2Fnywab5E8DMCD+XXQMcdrqfdnifjAAbdh03/Q0ZCL+lr776Ks6fP481a9ZgxowZmDFjBlatWgUAWLJkCd566y0AQFlZGTZu3Ihp06bhgw8+wI9+9CMAwPz587F//35Mnz4d69evx2OPPSZvNAyJVuCJg4paEbSaCaOD1uRF4WzsVmvIVjc9B4zaZrwjWkT520dVIdqn1XB3R1a0mCxBn9PHhf+cNjJEoPzntJHs+Ts8OubcVogXHpmCFxdPwQuPTOkyrLO0+LKQ85cWX8Y68LlhxWL9SonM4tIn347FZSUlVjbt6SlYWZgsWQjPf4kmH0ZmAxoZfqGRQ7OxcPaVhuNm68WLi42Zv2bfp+YOlcvSFdTvimCJjyDZSGM6/8jAHovSgJKgtqltHUoIdEUiJdZxsfhWE75u6RA3K8r0yVGF90Q3slxkUmYGHUPDHTcjfDcW/DmRSIkSE2lOOzo83dtecRqQ3eZ/wOG1fRJxn6XZQovGaLb4FthKFuJRtRWg+y80fp04WcKJNnNkvXNci8nZNw+3NF/ADKt7QKfEjqC7NjaHPbw6zQU6PLpwjfWRQ7NNP1uFVeWLFdHDZau6nHbS+Z4s/q5kZuKofNJ3cOJ0A6nhR2MToPxOdmY1tts0rNleEZLFvmZ7BcqPyNuZpsSOoLvoPl2qLV3ULqnouXAlIBIxDLUnwhV5o2oTrWZKtYiqU4ECjuEFHfcdPUsKeioQw+PVsWHXcWm7AiUIIsCr+xPiZJVltrLBjSK5UI76+CJS5E2WbT+/XwbpdxJdS2TuDlPCNCSD5lYPCgb1CTkW/jlSRIvCUdvIaBxXiYaMsFWFXOJRIDDR4OL5Re8EF0dSXdcaN78TR0oIAhlT2W7TDFEG0dZDEU2AmjQ6PySJZdLofMy+eXjCxbeLXo8etqkO/2wVlI+mJwhWGVC28Z4gC6iIOQ5uFqYxWfJ2G53pLFpzSRRZWftAiggCGffd6qJkHL3T7Wz4IiUg4oXLqQlfT7wamR//osHwuUU5YVmSPabA5dTIEjNmlB+pxsLn3kPpk29j4XPvofxINRv+6vXpcXkXZb4vKZ9Qlki9hSkfRJrTRtoCMzMc6HD7YtrK0AyX0w6Px2so7Jfsi0iqEf7M7N80jUmlx2i3AXZb5B3HXE4Nuh7btqIBIk00Uwll4GufaJq/gX3wVjheZmqX007WTzHrpZBIdsZ2t1fV/OkBUM8w1R6jw66R71YHsyPocOsJ9S5GQ0oYRguHZJP2/MIhxr6z8QrjdNjpdnovbP045V7EZECV5ui5cCYg7j2M1/sp06+VEjuCL2roWt7U8XhVjBAtRGVGvBLWEg2q3aDwOZjjSggkHj3Apy0E1Zs8WlJCEHAvLXXczPUgI0qHW4xkSnfKGZqKTB4XWjJ4chTlANRuLPHIzHCQlXq5qJ5kh8s4PnG6QdpvpIQgEIFr3BGw2Xe7BjpbV1/ekkPZeblwOSsL8kUDJyjtNo3c6XA7OE0D3tkfWg7gnRg0AVfIgyvo6PZ4ySJ4VjaaigVczgbX5EpmU/uU8BFkZjjYyJtwZhYVkAWnrM7+bWnzkunuXOtDUby6f+EM9pWEf04EOHno9enkTmcE4/+xITl6JSv4tq7c8WRf8DlEa3/JjGhPiR3BVYV5Qsep1ocnTjfgpR1HQzKCX9pxVNo1pjk0sqCVxyPPFn00bCE9+kVDUtlVqYX9i5omsmuUWvSTB07jjUXTISuxOgJRpj8zJXYEBytrIz6+aU8lueBQzSRkhohxk17mghavBC4raWnzYs5thYbaMKnWOEYRX6hGOZcOvkh4x03lcQxndr0yS2BHLAiam5sxa9YsPP/88xg8eDAAYNGiRZgwYQJmzpxp+P7MmTM7m9e3tbXh1KlTeOedd9De3o7i4mIMGTIEAHDxxRdj9erVMsbCEtDiIznOfTcRm0lQaBqgwVjHPl49mjMzHPi6zZsw1yMT6qWNRnDL6P6lEEdmxzTKivBp1VfC56F6hlw3xr/gh5t1u2qTKUJEguDAgQNYunQpTp48CQCoqalBWVkZysvLMWHCBPJvNm3a1PnfixYtwl133YWLL74Yb7zxBkpKSvD44493/+ojxKbRC7lNM1YCTfb4cF0HbFroYPluCtZzSV6mwbYv83riWSOotPgyQxXZP2w1LyAYDrXoKyEgFy7rXaavgbIieKM4P9UzZMOu4+hwh1ofKr9sRPmR6tiWod64cSPKysqwaNEiAMDWrVtx0003ITs7u8u/LS8vx9GjR/HEE08AAA4dOoTjx49jxowZuOiii7BkyRKMGDEi+hFEgFnxp5d2HO008dQ2tsNh1wwvZ7KVSkgkJ+mxLxoM9z+a6xmYk4GzDW0Rd42Sqe1RuJwaTpxuQH2TfwdZ39QeVThfEk2rhMdu08iaYA470B7W2M2r8wpiokEFunR4fNi0p1KaIIjIWbxs2TKMHz++8/O8efNwzz33RPQDzzzzDBYsWAC73Q4AcLlcuOOOO/Daa6/hgQcewEMPPYSOjo4oLj1yzJwq4XZ+j9dYA1NLor7EiYasF626rhXXjxkQ4hS+fswAtmsUVw5AFh6PTv5uPKFi61MJrjAkt8P3EWHVyVRplTNjR4Ol++pPPvkE9fX1uPHGGzuPPfzww53/XVRUhBUrVuDTTz9FYWHk9i6z4knB5OZmAej+YpSKLR1tNg2jv90PB05ccKiPHZYT8jmW+HTg3YNnQhbedw+eYV9+q59YIk4Je5jD0m7XkOFyoCmB+hwnEnbbN1VIg/xVehQNx8cOy8HRzxtCwrxdTjsAHe1usYCS8HBxs/Bxm03rXOO6i6Xho7t27cK0adNCjq1btw719fWdn3Vdh8MhJo9qa5tx7lyT6f8AhPx3ouCfINYiIwM6v286Kk7WhxyrOFkvtQa6KJT9VGop3i4+JzrU/fH5fDHvU5GRZu3vyZqDXh8MVYy7qmpMcfpsM669vH/IbvXay/sLCwEAmHv7iJCk1bm382Zzn0/vch0M/K+2ttn0dy19Yvv37w8xKQHAvn378OqrrwIA9u7dC5/Ph29/+9tWXoYU5C0KPsu7QFEZ0FzGtGgXJatNLvHEHvYcwj93l3gImpY2r6GTnszfpbK9WzusrbzZ4dYTqilTbWM72zNEhJw+LkwclY9f/WASXlw8Bb/6wSRMHJXPvqMJm0ewatUq5OXlYfbs2QCAU6dOoX///iHfWbJkCRYvXowtW7bA5XJhxYoVsNkSP69N1vLX7tYNdkjdp0sNGaSqmAKhjnHAvGY6pxj1XDFAa9Qy0TQtpJRI+OdI4AIXwuPYg4+Hx6DLHFXll42mn61AB938PV4+Gptm9DVGk2M0piCHPG51pzNANabpcdx4xUAMG5xtCGucOCrfECo7s6gAG3Ydl9IEm1uIFNHhsGvwhgUuaAB6M+VSUgntG60p/N4UMiVTZClZXMMaWYmlvdPtuPeWEYZ3dPW2j9nw9xceUY1pFAxrtleElMJYs70C5UforaosPYATAslmZ6eIR0N3j1cnTVWpLgQAvy+Xyr2o/PIrstxIoaQy7A673dKWlC1tXrKMTSx2BCkhCETt48nM3z6qIk0ca3cewx+2fhwyyf6w9WPLk+d0+DOJg7FpWtw6wUUD1dA9FlhtqhJBxCavaf68j2DCP1tBh0fHsMHZ6Jvlf1Z9s1wYNjgbxySVYW93e6X4AswQMTHJrBycEoJgZlEBOZGTIZlEFjIqmEZLeDkJny432sdqqMQxrkRyT0WkBLuuA+e/Co1xD/8cjowmQgCENOpoEPUFUOuOrKgnt0TFICUEwcRR+eRE7p1ufSinIvmhEse4/AWFH9EFUwszIoZ/tup3rYZad+bePpLcJYuuRzKVqZSoPgrQkTQbdh2P09UoFPKxsnhdeCkWmSXYAXrX2BOgdpPDBmcb6m1p0DGkf5ZQtVKZe9KUEQRUxIyVjrc0hwafDkNtHFE7r92m4YaxAwy1dHbvr0oq84rCeqwsXidD006W2j4cfpu8JhQ1FBzSGthNvn+4hqwHJurLkBl1nxKmofIj1XhxW6ij9MVtH1vqsPT6gLzs9JBj4Z8jO49OOqiUEFAkGyOGZMclAguQU1MozWmX0q6W89eJCkmuoU80pMSOYP2bx2JekdPr01FV2xpyLPxzpCSa3ZNC1dA3x+W0w+vzGXaI148ZgN0fVVnajyBR+j98WvUVGQnFVQ2VCVXnX3QRaG71kCZm0dLjiUhK7AiSub9AouFy2snQwGheYyrmOxZhhhxUuQRZ6LqPbF4C+DOMgwn/3F0SQQgAfP3/WDjeZYTicmHo9jitojLrfqXEjiCZiaIYoqV4vD5pOx2qxWQ8s8A/Of2V6efuQLUi9eow7AaAxFm4U5U0h0Y+rzEFOaSvsXT6ZXHZFTgd8qIeU0IQJNpiKoKuG68/nuORqb1RL1U8iUcCV5JOyx5DuLM3zWFDmtOGDo8xkGRvRQ3eO1RtiJ66b2ohbrxioCGgY9/Rs2RAisupQdfFnM4UMoNdUsI0ZOWiyW0LZe7uqabzVpf6jQWUA7+nkgwJaPEyccST8MqsBYP6sAtsS5uX9Netf/MYGdDRwTiFHXZbp9NZQ/ROZ5ltWlNiR5DTx0V285HhlOM891Zr7FaX+o0FIg78WDgUOUaGFTML/xwJiZaApsGvrARrsNFU7wyvhppsbV3Dn2PF5w3CbU4pH6SZdt/S5u10OgcXxwzsjiNFZr3QlNABZhYVkGFrSTRfFXG07R0Pi+8O/5yMOB2aoSYP5wzlSHNo/g5fQYR/Tka4fgcyNXAKrgw1h8wgmJQQBADIiI14FT5LpKYaZiRSP9dotEyqfk00hbpiHXocCzo8usEsxy1EXCSX12d9RjA1B63ukqeDLg1xVWGepb97sJJuA8uNVmaJnJQwDW3aU5lQL/N9UwsNTtJEjEUOb5cjt32O9VC+FTcRDQIkd0CBDAIRTBRcVFgszF1U/P+1lw/AO/urDCapjHS6V0PvdDu+bvcaAi7CexoEsGnWlqTh3EWcWYi7yzLDjFNCEIjY3azGYdfISSZqH4wFPbH+CzeCHjC0bpNot4AqyeLx6jhYWYsbxoVG6dwwzt+QierC5+8EF3puXQfrCygaN9DSkjRF4waSxzlfJkdcooaam5tRXFyM06dPdx5btGgRNm3aRH5/7969uOaaazBjxgzMmDEDjz76KACgo6MDCxcuxNSpU3HXXXehsrKym0PoGhlbKFlN53UdWPfGUcxb/jZKn3wb85a/jXVvHMXMooKEMsUo4g9lQoxVSQYr4BRYLlqJC9816xFMmXS4BbPdrZNJhAGBEl7OWpTMDAeZNBmeOxOAM81x9yfmpqEDBw5g6dKlOHnyJACgpqYGZWVlKC8vx4QJE8i/OXz4MEpLS/Hggw+GHF+3bh0yMjKwY8cO7Nu3D48++ig2btzYvVF0gYwtlMMO6Hr329R5fTpZiKq67muEnyn544IU3aFgUJ+QqJbwz8lG4RA62iqamjlUGOemPZWdDd+D4XbbvdPtZM/lU2ebhcq62DW/ySq8fMjsm4cD8Nv+axvbO53ygF8ZDM874HwEPuanY24a2rhxI8rKyrBo0SIAwNatW3HTTTchOzub/ZtDhw7h/Pnz2LZtGwYNGoSysjIMGDAAu3fvxvz58wEAV111Ferq6lBVVYWBA+ntkgxkbKFa2rz4bsllhu3i+jePSfHeUy9ITzBXBKaqlbV0eipUaGMyY/X11za2kwvsmIIcMjTW46UFiqhyl5HuwFWFeSG/e/2YAQDo8t1/P1gVci8CyiAH967E3DS0bNkyjB8/vvPzvHnzcM8995j+TVZWFubMmYOtW7eiqKgICxYsAACcPXsWubm5nd/Lzc1FdbXcdm9WwG3D7r1lRFKbdDSNrvkjiwE5GZbX0lHEh0QzU9k1uonQ+4fPkN+X1bWvudWDd/aH/u47+6uwYddxUtDIEohJUWvo8ccf7/zv2bNnY8WKFWhqaoKu6yELga7rsAkW1s7JyYzoe7m5WULnNcPrA178PxWdkRK1je148f9U4EezrsCPZl+JtTsqcL6+FRf3zcDcqSOxYv0/pf22lUydMBT/dfc4/Pg/Qo//7aMtUs5PRZz0BKezIvHgIgFFksMAIKuXEx1uX4igcDntSHPa0PS12/B9jUii8+pyNXaKDo8ubY2zRBD4fD78/ve/x/e+9z3Y7Rc0abvdjv79++Ps2bMYMmQIAOD8+fPIyxOLz62tbYavi9C14Iw9MyLNhGzrMGoPXp+O5zcdwG9+VITlD07s+iQJSGubG6/v/iShav4ooiPWWb6xqMVkJb3T7XB7dIPfb9ZNlwIA+U5QUUnxKguv64hojQMAm00zVaAtEQQ2mw1vvvkmhg4dimnTpmHz5s0YO3YsevXqhaKiImzZsgXjx4/HBx98AJfLZal/ADC3SUdTlzyYZC9x/bePqvDuwTOdL3VtYzvWbK+I81UpoiHR8z7ieTVUcbl7bxmBE6cbQmz7k0ZfCO0OdzoDMNj34+nAl1m+SmpK66pVq7BhwwYAwPLly7F27VpMnz4df/nLX/DLX/4SADBnzhx0dHRg+vTpWLZsGZ566imZl0AymbF5u5z2pNdqZBCPqps9AaoBeTxJlLwP7i7Ea1bZbRrbWYwKQy0/Qvss171xNC4OfK7AZH4/eb07NF1m5aIYIWoaKj9SjRe2fWxJKWcNwOrFUwzH171xNKoiXgoxBuZkRN0PQZHYcM9W9N1Nc2h4/ic3Go4vfO49Mqw0p48Lv/rBJMPxecvftrTnMtcHgcOmAS88Ylx7yO/GwzSUaGzaU0lmFspopq2DrqsfSBoJD2VTwkEuZxghEM9qpQo5NH7tNpiTNABpDrtQxA+3uHJZvLWN7eQ7LWs65fRxYUxBTrfXBpnTOyUEAffAZdxIDcCa7RWkjZ3qwKUEgVy4RyhLCFBlDhSxgYq60SEv7NNMEXxx28edrsNAUT5RH8fIodmo/LLR4JuYWVSAiaPyMee2whDLxZ6gENRIr18WKSEIuBoeke4IzBYDHbSNPVCgKlyr6J1uT3oHcyqhhEDyw7luzN59KhyUW3dHDs1Gfr9eBg1/zm2F5M6CckJ3dT0UXM2iaEgJQTCzqEA47CsgPAIPT7QoXHOrh8wqVMlU5nBaFyeMo4lESaTWnwrr4Z5tZgZdrZQ9D3P8bH0rFs6+kqwhRBWY5OAU04BgoQSNLFJCEAQeRLhkXr3tY/bGU84iUYezSL0SUbjSusm0oJH2X6YipN3mT+qTMV7KX5TscPfC5dTg9iRvEh+VG+GD2DPjTCiy4mSiqRpMlcLgdgQ+HRg2OJusWSSLlBAEAC2ZuR4A1AM5cbqBXEACC5SVcDHQgF+41TW2o5/k2kexYDLR8JvzobS7ddg0DXqQ6NAQ+jmcZG+jyEHNh0mj87F7f5VBUM69faQhVt5mSw6/R+90O9rdPkM/Al3w2n06HdAh6z0RtdWHRxQGSmFwUUO90+2kzwKgcx2iIWUEATURzLZi4ezZTy9QPp8crYUjzaGRjWyCk17Cs6itbHIjMymIqs9ihmicPFWzXtQhl4hQ8wFASGIg4I+cOnG6wRAr7xNcSGVFuXAMzMnA+a/ayT4CMnJc7Bpd/E2Wv050PnFridurk0Le4/WRPov1bx5TgkCE8iPV5EQw24oFYoy7Ch3TQS84sl4St1dn7YwB4Ra8IzhxukHK73LIXEOt7hpHJQsluxAA6N3twufeIxdNUcFHLUTBUS7ByJrj7W4fJo3ON2T4yjq/Vwe8hJk2zekgxytqwhXt9cyuJbpY90KZO/+UEASb9lSS9noz7Ta4KcWa7RXsdzXQmq0szZlTejnhFq+6J4kI9cxl5I4kIrJCpM12n1Zh1mjGSppbPUKl5V1ODbqukYJSFiImbJmkhCAQ7QUajserswlKNsJHIFOz1TTarMUJN1Ey0mxo7TD+nSxBJpotaTU+ndZ6Re+dy6nB49ENJkGHYLKTKFw5dNE2hxwiUS4ysTKwgqN3up0db7BNHvA/27m3jwRgDDoxu1/Uu5uIpIQgkPGSeH06GXZotaPYBtq+KetFae3wYeTQ0M5R4Z8j5UbC+WvWR9bKBZMjPBy4q+03x7WX+xuPWGUSBOioqntvGUEuLlzzFVFE4t6THY/XfLzU8XVvHEV9k38tqW9qx4nTDez94XbtXNiqqIlJJikhCLg8gjSnTSyOWDDskNI8vT6fkPDg7JsyTRwLZ19pPMbUYeGwaXQmNQCywuOwwdkhGdmAP1fg0sEXSSvkxdm7ZfD+4Rroum4wZ8h0pvubrushnwPOX6O/S86vUgtXgPCFMVqFIVFod3vZ8VI7BS7aBwA577ldu9OhkQEm3NzknNox71mc7HAS/sTpBstKPmRmODD75uGG39yw67iUhhWyTBwcohomJ5TKj1ST9t9hg7Pxn9NGks+EWlyiWWC56Brq5Rdd1KjdjGxzBhUltfujKsN9kPm71MK1YddxdLh9hnuW5hQrXmzXALvdujkLiCcLcr2Pw5WXQEIXxZ79VaQg4BSpljavv7tbWFgsQO9Qrh7Zn3wXrx7Znx+YICkhCABawm/aUxnR32oa0Dud3s65nLRN+KrCPEsdP5kZxj6p0URajByaTR7nGmlzC3JmhoNtyC3SaHz1Nvr+iAoBzv678Ln3yOs5W99qqHaZiJVN4+FtoeZ9NL19fQBKCeEsmrXPkZnhQGubB8Fvow2AXdBPVdvYzmr+FJwSZFbahitLQwlcp4NOVODe0WiQ2o8g2Yh48un+hT3NEXq70hw2OJjd2cHKWpQfqcbC595D6ZNvY+Fz76H8SLU0O2Brm4fUtLk+plx72fx+vcjjog72llYP2S/WrMIjRTTmLqpndCDhLtLfrW1sNyz6VbWtbJ0ajswMBzlPFH7N/MTpBoONfWZRAXnPROey2+MlQ5LTnHbDc/Qrd3JMK1xC2cyiAnJucnO8udVDKilcmKgM4RkgZXYEFJE6kXUAeytqhGJ8A2Gn4VVJ87LTye+LVrnkfAe90+3o8BhLT3C6W2C7G67JizrYRdfvnD4uoSQ/M0qLjSGAE0flk+cXHhdzLXYbYLcZzRyzbx4OwGiGXLuzQrh3rgjZvZ1oaDH20xUpx92pUYfZrtNd8golcpp24N0KzonZsOs42t3G3Qg3l7n729zq8dvkg47Z4DetBPtbgOhMVUXjBrLRQeEdEDWbhsw0uxTzcBqzU4iGlFZVxhTkRPxd7kXgNHyN2f5xpgbPN1mFwUSjSba0eQ0P1QZ+QQu8jOGafF7fDFKbkUVe3wy8tONoSL7GSzuOYsSQbPL73E87mIsKRGyEn39MQY6U++z1gex6xUWQBKKMwrFLegMbiabqAJCeZjPcI00zdlNz2DVcVZjXaavu/K5Nw9Uj+1u6y9n9URUmjsrHr34wCa+vmNFpMuQWy2j84tRO4WBlLfkMOQ3fpvkj4wL/HvgciIwLn2sbdh0n1wBdp9910R2KzLDslOhQBtBFnvZW1AhpOpRzVmbPUiq5RdSnIDOayKZpIQ5Lm6ZB03QpIbPcdXJ5B1xNpzSHBp8OQ/SRy2kjny0XPhpeUDASXiQ604WHDPqv0QZN0y3dEZgRHtY7Ykg2jn/RYND8Mxg/GHfPZAU+ABfuZfB7W/rk21LOHcnvBsN1F7zxCrrip2iEHXDhXQ/eAQEQrpJMXT+FtA5lzc3NmDVrFp5//nkMHjwYALBo0SJMmDABM2fONHy/srISjz32GJqbm5Geno6f//znGDlyJL788ksUFxdjyJAhAICLL74Yq1evjvQyosIs7CtSNI2OMDj2RYOMS4RNox3aXJajf1tozHKUGYFB1vaRtJZxworTcjjhQ33f49Xh8fJ2Veo+v7SjQkjDcjk1Iee4LMzqY1HHe6fbDZnvlOLi1WmnMMDfMyuj7mIBt5vnugtyZZ9FhUBOH1fn/QxXWAGjWTFhMosPHDiApUuX4uTJkwCAmpoalJWVoby8HBMmTCD/ZunSpXjwwQcxefJklJeX45FHHsHrr7+Ow4cPo6SkBI8//ri0QXQFF/YlgplpRQZcI+p7bxlBZjneN9VYVXLS6Hx2lyMzvj2Z4V5+0W2218fbu2WQmeEIiSABLlQZpeza3HGqYJkoOX1crNCTgcupkXWzZO1uuXtpllPC5cRQcH6n3ul2uD260O9SAnftzmNkZKLLGeM8go0bN6KsrAyLFi0CAGzduhU33XQTsrOz2b+55557cP311wMARowYgTNnzgAADh06hOPHj2PGjBm46KKLsGTJEowYQUd4yCIetWU4xxtXlbS6rpV82QKTkXJEUTWOHEwYUxpTJ+Xii1xxCZG02zTYbdbuaLiEMuo+i1aiFK2CyQlizpl7VWEehg3ONiyOE0fldx6nsmG7E07cO92O1nafwRyY1zdDitDjwnG/PfAiMrdjxBDxhDXqmXMOfNHSENz3uYTV4FLx3cnUnnv7CKzeVmF4LnNvl7duRiQIli1bFvJ53rx5AIAPP/yQ/Ztgc9EzzzyDm2++GQDgcrlwxx13YNasWXj33Xfx0EMPYfv27UhLS4v4os1sXcHk5mYB8NvHOJ9Cd3vSpqfZoeuhCUYupx0P3jUGALB2RwXO17fi4r4ZmDt1JFas/yd5nvCXK/A5I92Jkd/Kgc1ugwbAZrehT1Y6/mfzIdIB5mXKNnS4dfz43isM1/M/mw8JjVdW/wWvT8dt1wzBzn98AZ9Ph82m4earLsH28s+7f3IAWb2cuH7sQMP5vzzfQt5np0TnZ3huictpx03jB+Ove78w+DI4QfDBsXO4cmQ+bN94kwPPPTc3C3dMzsIdky8N+f7uD0/h/cM1IYrB+4drhK67X590nDrbEnLMp+vCi7HNpuH2sGd7+zVDsO/oWfL7x059ZXg/Ozw+nG9sx9hhOThw4sLOY+ywHHxa1Ygmwjme1cuJ79052jDHJ//rJQBguGccuz88FaKF1za2Y+3OY+iTld55rmDumJyFL8+3GOZa4Peo39394Sn2Oqnz98lKj/j70WBp+Kiu63jqqadw4MABrF27FgDw8MMPd/57UVERVqxYgU8//RSFhZG3XRN1FheNHcA6f8K1K1F7X1uHl3Tyjvom+mX5gxOFzhfOjv/7OXbtO9WpbZyrb8VvNu4X1pz79XFh1JBsw/VQL1QAKg0+w0U7FKNp+rJr36nO5+jz6di171RUXceo6xw/Ipc8P3ff3JJ2IjYNuPby/iGa+bWX98fdRQVobXOHHL9+DD0vAf9zCX7Ogefe2NRGapR/3HbEYD4QreUULgSixefTMeji3uibmebvqJWZhkEX98b2enrnyb3L5+pb8VVT6PtYcbIebkYT+brNQ87xc+eahDR87l7+cduRzvc6mPIj1Xjj/35+QQj7dLzxfz/HoIt7s+Xjg8295+pbsXLDP9lnC4AdV6RIcxaL4vF48Mgjj6CmpgZr165FVpZfO1+3bh2Ki4vRt29fAH5h4XBYm87QlfMn+OY/sPxtoYUoM8MhVLGRy0Tm0HU5lRnz+maQJhEzqPh8znHl1Y3F6roq2yBjXDYNGB5mQhg+JNtypy3HiCHZbEll0VLLXEY2YDQ3yEwu6i690+3SGsGIPEMuX4Ir/hYg0nvJHV//5jG2cQx1frPvx6vAn2Ur8PLly9Hc3IwXX3wxxOyzb98+tLW14bvf/S727t0Ln8+Hb3/721ZdRieROn9EtVHR6Nt4VNwE/JEiwYtlwCTCafJciQauHEBOHxdZvM7qEMA+vZwGYROrQmhUtVVOAFENYrrqiUERXn22q4qWvdPtaGs3ZtzKgLt2j5dewNOcDoMptrum2XBEIrnWv3ksxJkbuJcupm92Zga9XHLCraWNLmrHCbN4tpiVKghWrVqFvLw83HbbbXj55ZcxePBg3HPPPZ3/vmXLFixZsgSLFy/Gli1b4HK5sGLFCthsiZPXJmoeEn143Pm5F4KzycuKAvLqtGmFK9HAOca4SAjRHZAoVDatGdz1iC5IaQ6NVC44wWfW4Y7K19B1vhszV9GS620dHl0mGjxht/lbsgb/mQZ/AAK1YHLPu7nVYyj14PXpUueIiFObencDwpkimpSreOxKo0FIELz9dugkf/LJJ0M+z58/v/O/P/6YNiH0798fa9asEfnZmMItdG6Pj3wxbRqthXC7D+78TodGxr6npxk1OtlN2KlWm9wWdeKofDJsdeKofPxqwz8NpiFdpyc+J8hkLgqU9um3358xLLxmQoDqC3Df1JHkd6Mxf2hhd0KDzpZR4Ghp8xp2KJNG+5/huwfPhJikRPH65CQ7AnQpd9HnbXUoNHdu7rlyuzFRJCbuC5PStYYouJLV3KTnon0Auka56Pm5krVcvRJuW2sGVyaac3RR3z/2Rb0hNNDMRMNdISc4ohEQetiqp/t07Dt6lk6UM2EyYQLiahlpolXqIK93M/Vc3j98ptumF84PFotEJ4poRkPtlrh+JNyuictBuaowj9x5iHbnM/um1Q2DlCAgELGNc+zZX4Xquq8NGvLC2VcKZ7aa1SsJn9xzby/E3w9WGX638suv2PNzTklqonHNNmTlInDXyAkIM6gFVlRzs2u8k/fdg2cMRQVl2rtFscoMoet60rRc5OB6U1Dx+UXjBpDJedyYucS6NKcdgDGRzenQ2PInFGbOblnCIHGM8xZDlYQWgSuVy0Gl8ld83oBfbaDzCNyCC0hLm7ezYJaGCwWzAKDyy8aQ71Z+2YhJo+miZxyikRNWwwkIrkCYKJwi7wO9wO7eX0UKaO48UWwUEoaA0zO8qJrMzFYKl9NOvnOc09aMQFG7FxdP6Sxqd+J0A7s7FCkoyL0Tza0e8jz33jKCHBcnaDjlK9J+KpGQEjsC0fAx6oFzJp3V2z4WsrtWfN5AaleifiiuXgnXeOW9Q2fI83CmJE47kZX2zzlnRfMIorkWkc5u3LWYHafOP2l0fsgOAggklPHlkym4Ll+cmUPEnm5Wx4iaU/4SCkRhQuikeYvKrDd73u1u2u8RvtOOlq46jkWqbXMBINw7FLyWhGeNU8RCKUsJQcBJVC587MTpBhysrI3IHlcURcNyM6FEIdJ7l5scnEbd7tZJpyp3flnlOjgTis5EMcm0uFBmAs70F43go87PlYYQtbNnpNMtUAG6cuWk0fl4Z39VRPcvvx9dAoIbf0ub11CaXINuyOsIMHxINo6GH9fNhRVllhM1eXE7CG5cPl28xARVD2xMQU6XPZGponPhcP6xmNcaSnbMeoeG0+HxhSzswcKBahoeMMeEOxPNhIOoLZdbWCiiyY6mnKoA/TJEExUjQu90O9rdPmM/V4mSgEsA5BZSSpP3a8nGa+LyL7jfFd1RNrd62PNT0Vxzbis0CKB2t5fcPVTX0X4es50C5YfhKvJSwqGrocvwe1xVmEce58alabyyxr13VAOavRU1Qv43Di5IQmZYdkoIgmgWx2DMEoICvXfDI4RkbV+DTUCRwGknZusol+VI7ZaiiYrhoHY6GhHKGQsHLGf6A/yNU4LxenVcf8VAg6Ztln/BIbrbMHMomkV/Bc8f0VwHn06H4nLPJR5FHs0ItI0Nf7acwua0a0IL+KY9leScNSuFnmikhCDgFkeuEigFN7lrG9vJSbZw9pX48W/eDUl4yu7thN1uk1ayloPSTkQ1am63JBOR1p8comYjM+cyJXAfXrnHoLXq8LcuFcm/4DArYdzu9kVssuvKoRh8nzlTA2evD1TSDUb36dLi5zm46xFN/uOysUV387Js9aJ9y812ZLJICUEA0IujLjCZuEnpctJ1Vf5+sMqQ9drQ4sbIodmoa2w3JChFU7KWquHOaSfRFHMTweW0Q9eNgkxUeHALI1fWm+uqxSGqrZqVD6DKgHP5FxxcguHVI/vjnTBnZrgJLxizRSq8dzaH0043O9J1o/PXq4MNYdY0TYrZgnO8c8mX3Bznmkpxu/mAfzAcbgHn5iwncEVa5AK8cOqqVpgIKSEIuMUxUkegmU2YetAdHh9rFuLspCdON7CRClwMd/gLbhbHrgtu70Vx2IF7bzFq+Fw7Q5dTIwUo12AluKZ8sOAT3UHk9HGxjkDRWHnRwmFmDkjKeU2dnys6Z6adR/qMOzw6vlsyUijZUTTjmCqnkeESayvKnV80wovbzYuWUeG+77AD7UQFFNGGPsMGZ5PZ8MMGZwudx4yUEAScFuQjNA6HXYPXG1rnRffp6LDY7hkIWQuHC33VNF1I8+deKtFEOY6WNi/rywjvB6xpgNNhzIzu8Pg6G4pzCzU1LhFTGxfJwQUDiGZqt7R5WYHSVQRJMNxix5k5ZBRd4PxRZoUGRb5PmZg06Lh6ZH/SIR947t1N7uTQQD+T+6YWCgVoiFYLEL32TXsqyXwHUaezGSkhCDhtKTPDGIrX1uFBS9i206uL94oVhTsHZ/vl4LbT3EsF0NEyos3WzeyV/shyPeSzWX9cCk4gFgzqQ/7N1SP7k+Ga3P3kggEyMxzw+rxCOynqOtOcRjOZmQOSE3BcTH93CcwRSoiNKcghTROciYPTkDkT076jZ4Ui18zqdYlEtOkwNxmJLLKiAlQElUcgCa5qoK7rQhEV1AJbMKgPae7h2vJxcAtpNA9bhjaz/k26TyoHJ8g27DouVNuHMxlxCykXqniwspY0tZnVjKJobvUYkpquHzMA+46epRO4mIWaW6xFzROyHPZpDg1ZvdIi2rU4HfTk5KJxRDVk6j6aRa5xGnv49fvHKS4gZC2woiYmDjPfhyxSQhCYOfzCMcsS5EwrFO1uH1mvHqBL4xaNG0i+VNFEZoiEm3JEU16bQvTaO9w6wgswmy2kZtFcFGaaNnWuzAwHGZbJKQCiDvnMDEdIRFttYzte3PYxSosvw6TR+Ya8AE4Acc56KqHMrgGTRg8w2Kq53VIH8wh5MxWNjBLvkWjslICgoga5QANRjR0Q8/+Ivpuivo9oSAlBYLa4hz/AMQU5bMEpUVuuWTOccAExbHC2FNtvZoZD2BlKLURmUJm/soqQyZrb3A6LM3OMGJKNY198RfYFENmJcNob15u4td1Dmkte2lEBQDMIIE2j75DDDlw90ig4qISy8DkevqBHCrf74TR5zownWqWT20WZLbBU1OBVhXlCxeU4uioKF6+uYyKkhCDgtmiU4/C9Q9WYNDo/4hIT0WzbKAHB1Qgyg4oCuqowj1zYOWcoiLowXQWZkHkKDKKZyFy5gTSHf1HsblITF7FR+eVXpAmLu3a20QxznGujyLTf/WZhNO6MOLoKZw2ev9xcEw0x5r7LafKc8OSqdHJ+qjQHbT7k5rg/3NQYWGEWmCCCWQ6HDCHAvUO901WJCSHMQvSoB3iwsha/+sGkiM4ta9sWTVJKYAzB4ZRcP9TdH1UZFtho7c3US8WFNd57ywhyW37DuIGkNsa9/JoGQ96H7tPZl4QLE+Xus4hGCsgLEpBJpOGs3D2wMs8EMPfDBMJQg+fy2p0V5Pc5Ick5/M1MWzI0dqududw7JJrFbkbEgqC5uRmzZs3C888/j8GDBwMAFi1ahAkTJmDmzJmG7zc2NuInP/kJTp06hX79+mHlypXIzc1FR0cHlixZgsOHDyM9PR1PP/00Cgqsr20uataJNaILy5iCHLJwFRtjLeMiTTDL3iwtNsaaixZho4SDVwc0jW7ROKYgh8yzEDVDBM5H2d4pQSbLmSsrAZASklZnBHOYhTaLzGUOWeU6RBGtPiqKLF+DGREJggMHDmDp0qU4efIkAKCmpgZlZWUoLy/HhAkTyL9ZuXIlxo8fj//5n//B5s2bsWzZMqxcuRLr1q1DRkYGduzYgX379uHRRx/Fxo0bpQ1IBBkPMJptG6Wpik7ifUfPdi6kwVqULFxOOzwesRaZoqF4J043oL7Jf//rm9px4nSDsEAM1ibDE9lk1CwK2Nop2zsAw3Fq52WG3aZB04wmr+vH0M1RZAiaaHrvyoDLXLa6yY3LqUHXrftd0fDaRCSixjQbN25EWVkZ8vL8Vfy2bt2Km266CVOnTmX/Zvfu3SgpKQEAFBcX45133oHb7cbu3btxxx13AACuuuoq1NXVoapKrIyzLLhmMyIT5N5bRhhK8Zpt28qPVGPN9opOARTQVEWbbTS3ejqbhejoXrMQR9gAHHYNc28fgdLiy0KaapQWXyZ8bm53te6No/jbR6E27eDPkRJooxjedESWxjtiSDYZNbTujaPkcdElNj3NhuvHDOh0bgfCU+fcVsg2HhLB5bQbmjLJqh6bxoSVcnR4dEwanR8y1kC/awruneAa1nBz3+mwCzWaEYXzO4lmEHMEnNHBa8ZLO44KN9cyI6LVZ9myZSGf582bBwD48MMP2b85e/YscnNz/T/icCAzMxN1dXUhxwEgNzcX1dXVGDhQXt2MSJGx5RI9B6eptraLL1yUBt473Q6vz+hEtttsZF4AlVQXfP3d7VPLvcxcUxAOzoksS7vlzCWnzjYLJaCJ0tLmNTSXf/fgmRAnb3fMJbruM5jsRLHbNNhtRo3an9sRec/f3ul2of7Ys28ebiibElBSALE8BSujd6z2EVjtjAZi6CzWdR02mz+7MLiUceC4CDk5mRF9Lzc3q8vv3DE5C3dMvjTk2O4PT2Htjgqcr2/FxX0zMHfqSEz+10vY49Q5ODhNlYseEaWlzYtpE4di5z++gM+nw2bTcOvVQ/DugSqm4qSGOyZfGvH1Z/VyoulrooAKg6Zp5HMw0/zDi3WZNa7/us1Lnp+7TruNvtdtHfT5uecl01FMKQavvPVJyDMJjFH0/lOOVQqze+z16fjRrCsMc/+/1/+T/L5Pp5+hzWZDhyf02js8Pmz++2fkWO+YnIU+WenkO+f/99A5u/nvn+FcvTGJM7dvRkRrQbTk9s3o1u929Z06RqDUNbZLG5dlgiAvLw/nz59Hfn4+PB4PWlpakJ2djf79++Ps2bMYMmQIAOD8+fOdJqdIqa1thq+LNzGSzj8U4THB5+pb8ZuN+/HPiuoQm23geGNTW8LFCf917xed98fn0/HXvV+w9vGmr914ffcnEe9oZt10qVC/g6av3cLPYe7tIyKuidSvj4u8/vEjckm7LRfPL+o/EC05Iur8DX4uwT4g7v6LVmEFLvjIIikWN2pINpY/ODHkWD8TH9uYgpwQ/8m1l/dnyzufq2/tnCPh7y31u9x8uvO6b5E7iDuv+1ZUa0Gk3Hndt8jw9Eh+N5J1irvP/fq4Ih6XzaaZKtCWNa8vKirC5s2bAQDbt2/H+PHj4XQ6UVRUhC1btgAAPvjgA7hcrriYhTjMatGY1XuPFM6JzFlbo6k5LtJUPZDZGmx/fHHbx6z9ceKofNJ3YFaiVxTKicz5cwK5IOH2070VNeS5RSOGAr8T/rlo3ECh49FYsCgfEADy/s++ebhQo3dqHnJzkztu9kwoE5DLSU9CmfHwXM0iK5k4Kt9SH4QMX2ZXSN0RrFq1Cnl5eZg9ezbmz5+PxYsXY/r06cjKysLTTz8NAJgzZw4ee+wxTJ8+HWlpaXjqqadkXkK3MatUKvJ9DtG4ei5MUbjAls40bXd7I44/DyBSvI6brHwNdy1Ecww4kYELNZTC+y+IlEUQpXe6HffeYtyhcOGv3HHRipkaoiuIFkn9HbvmL4HS0hYqPLlyFFzgg2h+DqfTRNP1joq8MyvdnWi7dhFiET6q6fGKJesGVpqGFj73nlAtmpw+roiTzwKIlIAwKw0hWpRMtHb8i4unSBkX913q+t0eH2nRtmnAC4/4ryf42XJFAjlEa/KUFl8m5YXjxsv9rpmlqrvPhetZzNXTEh2/6DMBLowpkveWu5dmc1/0nonAXU8ku4JI1ynRkhrhdGUaSonMYhG4chRcE/Notmcizc3NjgPGRi3r3zzG5jWIJNXJREaFSk7ui+YdcA10zDT87r6EgLlWJ7KDkJGkZFYCXEZ0jWhhP9ExcTsOWecXxeqonq5qGclACYIwzJqYi7QOjAVUeCFAV1rktveyStxyk5WvcUQLuNXbPhbqzyqr9SR3PeVHqtmifNEIg0gF/YnTDVKSlKjnwiFrwbRamTIz33K9OKxEhY/2UKgXc+Fz71luf7Ra86SQVStJtOELd99E+7OK7gi4gmUAvbBztZvMfCgykJWkRD0Ximh3txRWK1OipeKt9g9YXWLCakEDKEEQMVY/jFhonhSyJrEsJztVuqFo3EC2nLfoOuL26oYkNDPBZNbLQobg5pA13yL9vuzdrZXKlFnDl3iUfZbVgIbDakEDKEEQMVY/jHhpnrImsahmbnbfzPo4UOcRWRzNGpmLYqXdVtZ8i/T+xCK6RpZwM9v1Wimco7keGcSilpESBBFitdQX6aImk4mj8nHidIOheJroJBZVKPP6Zoj9AYNo/1pRhyJXeoJryiJrMZU136jzcFhddVemMsX5c6x2qopcjyysrmUEKEEQMbGI5bUaLgxVpP4Lh6hmzjUpEcXMHs05LEW6UnH1brhM5GgW066iqoKjwmT4jOqa2smdUTTJiyJYrUzFwqkaD5SPIIXgNE/RqqQcnLbENYWXZbcV7TUcDV2F10YaJsqdmzqPaHQTRyRtDqPNiQkeQ/D4uDh/mc/Eyh6+HLFYMOOB8hEkEFZvOznNc/bNw7t9bsCsMTm9UMuy28paMAF/6epInciBaxLNy4j0PKL5Dhzx0GKtXlji1cM3FgtmPLB6JwUoQRAxVr+w8dKWOGTZbbl4eC4clCPQvyBAcOmJSB3LMpHVR9ZMiw1o1d0xDVHE00QT+Hcr5ngsFsx4EAuztBIEERKLbaeV2hJnerK6e9Oc2wpRXfc1Kj5v6Dw2cmi28OLN9S/Ys78qLoKAq48jWjeH02J7p9st24HG00Rj5a66J/jxOKwOi1WCIEKSfdvJlZRy2G1sUTUZlB+pRuWXjSHHKr9sRPmRaqHf4Ewu8Uru5so0iJaCnllUQJoENU1Dhyd0xyF7BxprE43N4kgrwPoFs6eiBEGEJPu20yw81cqXR5ZJzaz+fzyQqRhQpZPN6gElOqKBA8kwpp6OZf0IehoTR1lbc9xqZPYLEEGWSY3zKRSNG2joySuzlyuHrBrxXOlkjngJPhG4dyVec1DRNWpHIEAybzvjtaORpTlzpSeGDc6OSxKRLHu0qECMc53DiOHelWTeVfdklCBIEeLlSJMpgAKlJ4Lj6hc+917ckoiSoWRzItGTnbnJjhIEKUQ8djQ9IYnIyvo1nKAsGNQnJNIqgMz6MvEgmXfVPRklCBSWY+XLb7UT2epEQk5Qcr2wZdaXUSgCRCQImpubMWvWLDz//PMYPHgw3n//fTzxxBNob2/H1KlTsWDBgpDv19bWorS0tPNzU1MT6uvr8dFHH2Hv3r14+OGHkZ/vfwEuu+wyPPHEExKHpEglrA4rjUXmr0jmsoqwSU2srqrapSA4cOAAli5dipMnTwIA2tra8NOf/hTr1q3DgAED8OCDD2LPnj0oKirq/JucnBxs2bIFAODz+XDfffd1CovDhw+jtLQUDz74oLRBKFKXntAUhCLZ81YU8ohFVdUuw0c3btyIsrIy5OXlAQAOHjyIoUOH4pJLLoHD4UBJSQl27tzJ/v1f/vIXZGRkoKSkBABw6NAh/P3vf0dJSQm+//3v48yZM1IGokhcrAzvlBXGyRGvkEerx6VIHroq2SGDLncEy5YtC/l89uxZ5Obmdn7Oy8tDTU0N+bderxfPP/88nnvuuc5jWVlZmDp1Km699VZs2LABCxYswCuvvCJ00Tk5mRF9Lzc3S+i8yUyijnX3h6ewducxtLv9CW21je1Yu/MY+mSlY/K/XhL1eQPjvWNyFvpkpWPtjgqcr2/FxX0zMHfqyG6dO5j7i0dh1Z8/MmT+3l88ytJ7bvW4EplEnctW0dV465jdZ11ju7R7Jews9vl8IfVUdF1n66u8++67+Jd/+ReMGHGhcfrjjz/e+d+zZ8/GihUr0NTUhKysyAdUW9sMXxdG4O6W7k0mEnmsf9x2pFMIBGh3e/HHbUcwakh2VOcMH++oIdlY/uDEkO/Iuh+NTW1k5m9jU5vl9zwwruDxJupzlkUiz2UriGS8/RgzYb8+rojvlc2mmSrQwpnF+fn5OHfuXOfnc+fOdZqNwtm1axemTZvW+dnn8+F3v/sdvN7QhcFuF6vYqEgekr1GPJf5K3NbrlCYEQszobAgGDt2LD777DN8/vnn8Hq92LZtG2644Qbyu/v378f48eMv/JjNhjfffBNvvPEGAGDz5s0YO3YsevXqFeXlKxKdZC8rkOyCTJH8xKK8jbBpyOVy4cknn8TDDz+M9vZ2FBUV4fbbbwcALFmyBFOmTMFNN90EADh16lRnmGiA5cuX42c/+xmeffZZ9OvXD0899ZSEYSgSlWQv1qeidxSJgNWJeJrO1SdOYJSPIJREH6vsGOhYjjc8dA/wC7JYFhxM9Ocrk1QaKxC78XblI1CZxQrLSeayAqo+jiIVUIJAoeiCZBZkCkUkqH4ECoVCkeIoQaBQKBQpjhIECoVCkeIoQaBQKBQpTlI6i20RFpuP9Hs9gVQaK6DG25NJpbECsRlvV7+RlHkECoVCoZCHMg0pFApFiqMEgUKhUKQ4ShAoFApFiqMEgUKhUKQ4ShAoFApFiqMEgUKhUKQ4ShAoFApFiqMEgUKhUKQ4ShAoFApFitPjBMHWrVsxbdo03HrrrXj55ZfjfTmW0NzcjOLiYpw+fRoA8P7776OkpAS33norfv3rX8f56uTy29/+FtOnT8f06dM725r25PGuWrUK06ZNw/Tp07FmzRoAPXu8gL997eLFiwH07LHOmTMH06dPx4wZMzBjxgwcOHAgccar9yCqq6v1G2+8Ua+vr9dbWlr0kpIS/ZNPPon3ZUll//79enFxsT5q1Cj91KlTemtrq15UVKR/8cUXutvt1ktLS/Xdu3fH+zKl8N577+n/9m//pre3t+sdHR363Llz9a1bt/bY8f7jH//QZ82apbvdbr21tVW/8cYb9YqKih47Xl3X9ffff1+/5ppr9EceeaRHz2Wfz6dfd911utvt7jyWSOPtUTuC999/HxMmTEB2djZ69eqF2267DTt37oz3ZUll48aNKCsrQ15eHgDg4MGDGDp0KC655BI4HA6UlJT0mDHn5uZi8eLFSEtLg9PpREFBAU6ePNljx3v11Vdj7dq1cDgcqK2thdfrRWNjY48db0NDA37961/j+9//PoCePZc//fRTAEBpaSnuuOMO/OlPf0qo8fYoQXD27Fnk5uZ2fs7Ly0NNTU0cr0g+y5Ytw/jx4zs/9+QxX3rppRg3bhwA4OTJk9ixYwc0Teux4wUAp9OJZ555BtOnT8fEiRN79PN97LHHsGDBAvTp0wdAz57LjY2NmDhxIp599ln88Y9/xCuvvIKqqqqEGW+PEgQ+nw+adqHcqq7rIZ97Iqkw5k8++QSlpaVYtGgRLrnkkh4/3h/+8IcoLy/HmTNncPLkyR453v/93//FgAEDMHHixM5jPXkuX3HFFXjqqaeQlZWFfv364e6778YzzzyTMONNyn4EHPn5+fjggw86P587d67ThNJTyc/Px7lz5zo/97Qxf/jhh/jhD3+In/70p5g+fTr27t3bY8dbWVmJjo4OjBw5EhkZGbj11luxc+dO2O32zu/0lPFu374d586dw4wZM/DVV1/h66+/xpdfftkjxwoAH3zwAdxud6fg03UdgwYNSpi53KN2BNdeey3Ky8tRV1eH1tZW/PWvf8UNN9wQ78uylLFjx+Kzzz7D559/Dq/Xi23btvWYMZ85cwYPPfQQnn76aUyfPh1Azx7v6dOnsXTpUnR0dKCjowNvvfUWZs2a1SPHu2bNGmzbtg1btmzBD3/4Q0yZMgUvvPBCjxwrADQ1NeGpp55Ce3s7mpub8dprr+HHP/5xwoy3R+0I+vfvjwULFmDu3Llwu924++67MWbMmHhflqW4XC48+eSTePjhh9He3o6ioiLcfvvt8b4sKaxevRrt7e148sknO4/NmjWrx463qKgIBw8exJ133gm73Y5bb70V06dPR79+/XrkeMPpyXP5xhtvxIEDB3DnnXfC5/Ph3nvvxRVXXJEw41UdyhQKhSLF6VGmIYVCoVCIowSBQqFQpDhKECgUCkWKowSBQqFQpDhKECgUCkWKowSBQqFQpDhKECgUCkWKowSBQqFQpDj/Pw+mkFmQf4rlAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.scatter(clean_data4['Week'], clean_data4['log_sales'])"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 69,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "<matplotlib.collections.PathCollection at 0x215682e9dc0>"
-                        ]
-                    },
-                    "execution_count": 69,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD7CAYAAABnoJM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAeOklEQVR4nO3dfXBU9d338fcmISk0cZC4C4pKR1uh0pbaiQNWawooGLKbDKGMRAbpHVJALU3pCBKCbkvN8NDGglMVbZEWCmIGkUCvACrcARkzA3JLBC4Ur0AqEcgjl2QzQgh77j8oW/NEdsNJssnv85pxJud3Hvb7lZn97Hl2WJZlISIixoro7gJERKR7KQhERAynIBARMZyCQETEcAoCERHDKQhERAynIBARMVxUdxfQEefO1eP3d+z2h/j4WGpqfDZXFL5M6xfUsynUc/AiIhzceOM325zfI4PA77c6HARX1zeJaf2CejaFeraHDg2JiBhOQSAiYjgFgYiI4RQEIiKG65Enizui+OhZNu8ppfb8RQbcEENa4p3cN3xQd5clItLtjAiC4qNn+fv2T2ho9ANQc/4if9/+CYDCQESMZ8Shoc17SgMhcFVDo5/Ne0q7qSIRkfBhRBDUnL8Y0riIiEmMCIL4G2JCGhcRMYkRQZCWeCfRUU1bjY6KIC3xzm6qSEQkfBhxsvjqCWFdNSQi0pIRQQBXwuC+4YNwOuOoqqrr7nJERMKGEYeGRESkbUEFgc/nw+12U15eDsCbb76J2+3G4/GQnZ1NQ0NDi3XefvttHnjgAVJTU0lNTeVPf/oTAOfPn2fmzJkkJSUxdepUqqqqbGxHRERC1W4QlJSUkJ6eTllZGQAnT55k9erVbNy4ka1bt+L3+9mwYUOL9Y4cOcKCBQsoKCigoKCAuXPnArBixQoSEhLYvn07kydPJjc3196OREQkJO0GQX5+Pl6vF5fLBUB0dDRer5fY2FgcDgd33XUXp0+fbrHe4cOHefvtt/F4PDz99NN8+eWXABQVFeHxeABwu93s3buXS5cu2dmTiIiEoN2Txc1/sQ8ePJjBgwcDUFtby/r161myZEmL9ZxOJxkZGfzoRz/ihRdeYPHixeTl5VFZWYnT6bzy4VFRxMbGUltby8CBA4MuOj4+NuhlW+N0xl3X+j2Naf2CejaFerZHh68aqqioIDMzk0mTJjFy5MgW81966aXA35mZmTz88MOtbseyLCIiQjtnXVPj6/Bbeky7asi0fkE9m0I9By8iwnHNH9AdCoLS0lIyMzOZNm0aGRkZLebX1dXx1ltv8fOf/xy48mUfGRkJgMvlorq6mkGDBtHY2Eh9fT39+/fvSBkh0dNHRURaF/Lloz6fjxkzZpCVldVqCAD069ePv/71r5SUlADwj3/8I7BHkJiYyJYtWwAoLCwkISGBPn36dLD84Fx9+mjN+YtY/Ofpo8VHz3bq54qI9AQhB8GmTZuorq5mzZo1gUtDV65cCUBOTg67du0iMjKSFStW8Nvf/pakpCSOHj3KvHnzAMjKyuLQoUMkJyezYcMGnnvuOXs7aoWePioi0jaHZVkdO9jejUI9R5CxdHeb815fMMaOksKWjqOaQT2bobPOERhxZ7GePioi0jYjgiAt8U4iHU3HIh3o6aMiIhgSBACOCMc1p0VETGVEEGzeU0rj5abnFBovWzpZLCKCIY+h1qsqRaQn6+z7oIwIAhGRnurqfVBXL4G/eh8UYFsYGHFoSESkp+qK+6AUBCIiYawrDm0rCEREwtg3vxEZ0nhHKAhERMKYw9H6pe5tjXeEEUEQ06f1/2FtjYuIhAvfV40hjXeEEUEgItJTdcUjcowIgouXWn9AXVvjIiLhIi3xTpofBXLY/IgcI4JARKSn+p/y/6X5M6It68q4XRQEIiJh7P9+dDqk8Y5QEIiIGE5BICJiuKCCwOfz4Xa7KS8vB+DNN9/E7Xbj8XjIzs6moaGhxToHDx7kZz/7GampqUyfPp0vvvgCgP379zNy5MjAay6zs7NtbEdERELVbhCUlJSQnp5OWVkZACdPnmT16tVs3LiRrVu34vf72bBhQ4v15s2bx/PPP09BQQEej4fnn38egCNHjpCRkUFBQQEFBQUsWbLE3o5ERCQk7QZBfn4+Xq8Xl8sFQHR0NF6vl9jYWBwOB3fddRenTzc9adHQ0EBWVhbDhg0DYOjQoZw5cwaAw4cPs2/fPjweD7Nnzw6Mi4hI92g3CHJzc0lISAhMDx48mPvvvx+A2tpa1q9fz9ixY5usEx0dTWpqKgB+v58///nPPPTQQwDExcUxbdo0tm3bRmJiInPnzrWtGRGR3iamT+vPFGprvCM6/D6CiooKMjMzmTRpEiNHjmx1mYaGBhYsWEBjYyOzZs0CYPHixYH56enp5OXlUVdXR1xcXNCfHR8f29GyW3A6g//cnsqEHptTz2YwoedhQ/pT8j81rY7b1X+HgqC0tJTMzEymTZtGRkZGq8vU19fzxBNP0L9/f1555RX69OmD3+/n1VdfZebMmURG/ifNvv53MGpqfPj99twVXFVVZ8t2wpXTGdfre2xOPZvBlJ4Pl7YMgavjwfYfEeG45g/okC8f9fl8zJgxg6ysrDZDAK6cLB4yZAgrVqwgOjr638VE8O6777Jz504AtmzZwogRI+jXr1+oZYiIGKGt37w2/RYGOrBHsGnTJqqrq1mzZg1r1qwBYMyYMWRlZZGTk8OYMWO4+eab2bVrF9/+9reZOHEiAC6Xi7/85S8sW7aMZ599lpdeeokBAwawfPly+7oREellIhytf+lH2PjwZIdlNX+KRfgL9dBQxtLdbc57fcEYO0oKW6bsPn+dejaDKT3/4Y3/x7F//W+L8e8O6c+89B8FtQ3bDw2JiEjXOVXpC2m8IxQEIiJhTC+mERGRTqcgEBExnIJARMRwCgIREcMpCEREDKcgEBExnIJARMRwCgIREcMpCEREDKcgEBExnIJARMRwCgIREcMpCEREDKcgEBExnIJARMRwCgIREcMFFQQ+nw+32015eTkAb775Jm63G4/HQ3Z2Ng0NDS3WOX36NFOnTuWRRx7hiSeeoL6+HoDz588zc+ZMkpKSmDp1KlVVVTa2IyIioWo3CEpKSkhPT6esrAyAkydPsnr1ajZu3MjWrVvx+/1s2LChxXq/+93veOyxx9ixYwff+973ePnllwFYsWIFCQkJbN++ncmTJ5Obm2tvRyIiEpJ2gyA/Px+v14vL5QIgOjoar9dLbGwsDoeDu+66i9OnTzdZ59KlSxw4cIDx48cDkJaWxo4dOwAoKirC4/EA4Ha72bt3L5cuXbK1KRERCV5Uews0/8U+ePBgBg8eDEBtbS3r169nyZIlTZY5d+4csbGxREVd2bzT6aSiogKAyspKnE7nlQ+PiiI2Npba2loGDhwYdNHx8bFBL9sepzPOtm2FKxN6bE49m8HEnr/Orv7bDYK2VFRUkJmZyaRJkxg5cmSTeZZl4XA4mow1n/76shERoZ2zrqnx4fdboRXchqqqOlu2E66czrhe32Nz6tkMJvbcXLD9R0Q4rvkDukNXDZWWljJlyhQmTpzIU0891WL+gAEDqKur4/Lly/8utipwaMnlclFdXQ1AY2Mj9fX19O/fvyNliIiIDUIOAp/Px4wZM8jKyiIjI6PVZfr06UNCQgKFhYUAbNmyhQcffBCAxMREtmzZAkBhYSEJCQn06dOng+WLiMj1CjkINm3aRHV1NWvWrCE1NZXU1FRWrlwJQE5ODrt27QLA6/WSn5/PhAkT+PDDD/n1r38NQFZWFocOHSI5OZkNGzbw3HPP2deNiIiEzGFZlj0H27tQqOcIMpbubnPe6wvG2FFS2DLxOKp6NoMpPdvx/dUp5whERKT3UBCIiBhOQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAiYjgFgYiI4RQEIiKGiwp2QZ/Px5QpU1i1ahW33norAPPnz2fUqFGkpaW1WD4tLS3w8voLFy5w6tQp9u7dy8WLF3G73dx+++0A3HTTTaxevdqOXkREpAOCCoKSkhIWLVpEWVkZABUVFXi9XoqLixk1alSr62zevDnw9/z585k4cSI33XQTO3fuxOPxsHjx4uuvXkRErltQh4by8/Pxer24XC4Atm3bxtixY0lKSmp33eLiYj755BN+8YtfAHD48GGOHz9Oamoqjz/+OJ9++ul1lC8iItcrqD2C3NzcJtOZmZkAHDx4sN11X3zxRebOnUtkZCQAMTExpKSkMGXKFN5//32eeuopCgsLiY6ODrV2ERGxQdDnCDris88+49y5c4wePTowNmfOnMDfiYmJ5OXlceLECYYNGxb0duPjY22r0emMs21b4cqEHptTz2Ywseevs6v/Tg2C9957jwkTJjQZW7duHW63mxtvvBEAy7KIigqtjJoaH36/ZUuNVVV1tmwnXDmdcb2+x+bUsxlM7Lm5YPuPiHBc8wd0p14+eujQIRISEpqMHThwgE2bNgGwf/9+/H4/d9xxR2eWISIi12DrHsHKlStxuVykp6cDcOrUKQYOHNhkmZycHBYsWEBBQQExMTHk5eUREaHbGUREuktIQbB79+4m00uXLm0ynZWV1WS6sLCwxTYGDhzImjVrQvlYERHpRPopLiJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiuKCDwOfz4Xa7KS8vD4zNnz+fzZs3t7r8/v37GTlyJKmpqaSmppKdnQ1AQ0MD8+bNIykpiYkTJ1JaWnqdLYiIyPUI6lWVJSUlLFq0iLKyMgAqKirwer0UFxczatSoVtc5cuQIGRkZzJo1q8n4unXr6Nu3L9u3b+fAgQNkZ2eTn59/fV2IiEiHBbVHkJ+fj9frxeVyAbBt2zbGjh1LUlJSm+scPnyYffv24fF4mD17NmfOnAGgqKiIlJQUAO69915qa2s5ffr09fYhIiIdFFQQ5ObmkpCQEJjOzMxk8uTJ11wnLi6OadOmsW3bNhITE5k7dy4AlZWVOJ3OwHJOp5OzZ892pHYREbFBUIeGOmLx4sWBv9PT08nLy6Ourg7LsnA4HIF5lmURERHaOev4+Fjb6nQ642zbVrgyocfm1LMZTOz56+zqv1OCwO/38+qrrzJz5kwiIyMD45GRkQwcOJDKykpuv/12AKqrqwOHnIJVU+PD77dsqbWqqs6W7YQrpzOu1/fYnHo2g4k9Nxds/xERjmv+gO6Uy0cjIiJ499132blzJwBbtmxhxIgR9OvXj8TERAoKCgD48MMPiYmJ4ZZbbumMMkREJAi2BsHKlSt54403AFi2bBlr164lOTmZt956i+effx6AadOm0dDQQHJyMrm5uSxfvtzOEkREJEQhHRravXt3k+mlS5c2mc7Kygr8/Z3vfIeNGze22EZMTAzLli0L5WNFRKQT6c5iERHDKQhERAynIBARMZyCQETEcAoCERHDKQhERAynIBARMZyCQETEcAoCERHDKQhERAynIBARMZyCQEQkjH3t9S1BjXeEgkBEJIxZbbx6pa3xjlAQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYLugg8Pl8uN1uysvLA2Pz589n8+bNrS5fWlrK1KlTSU1N5dFHH+XYsWMAfPHFF9xzzz2kpqaSmprKjBkzrrMFERG5HkG9s7ikpIRFixZRVlYGQEVFBV6vl+LiYkaNGtXqOosWLWLWrFn89Kc/pbi4mGeeeYatW7dy5MgRPB4Pixcvtq0JERHpuKD2CPLz8/F6vbhcLgC2bdvG2LFjSUpKanOdyZMn85Of/ASAoUOHcubMGQAOHz7M8ePHSU1N5fHHH+fTTz+93h5ERHqtW+L7hjTeEUHtEeTm5jaZzszMBODgwYNtrpOWlhb4+8UXX+Shhx4CICYmhpSUFKZMmcL777/PU089RWFhIdHR0UEXHR8fG/Sy7XE642zbVrgyocfm1LMZTOj5TO1XbY7b1X9QQdBRlmWxfPlySkpKWLt2LQBz5swJzE9MTCQvL48TJ04wbNiwoLdbU+PD77fntrqqqjpbthOunM64Xt9jc+rZDKb0fK07i4PtPyLCcc0f0J121VBjYyNPP/00hw8fZu3atcTFXUmudevWce7cucBylmURFdWpeSQiItfQaUGwbNkyfD4fr7/+eiAEAA4cOMCmTZsA2L9/P36/nzvuuKOzyhAR6dGio1p/ulxb4x1h60/xlStX4nK5GD9+POvXr+fWW29l8uTJgfkFBQXk5OSwYMECCgoKiImJIS8vj4gI3c4gItKa6Unf5a/b/puvHyFy/HvcLg7LsvMZdl0j1HMEGUt3tznv9QVj7CgpbJlyHPXr1LMZTOq5+OhZNu8ppfb8RQbcEENa4p3cN3xQ0Ot32zkCERHpGXSWVkQkjBUfPdvk0FDN+Yv8ddt/A4S0V3At2iMQEQljr//XMZofCLf+PW4XBYGISBi73Mb50LbGO0JBICJiOAWBiIjhFAQiIoZTEIiIhDFHGzcQtzXeEQoCEZFw1tY5YRtvBVYQiIiEsS7IAQWBiIjpFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGC7oIPD5fLjdbsrLywNj8+fPZ/Pmza0uf/78eWbOnElSUhJTp06lqqoKgIaGBubNm0dSUhITJ06ktLT0OlsQEem9Itq4g7it8Q59RjALlZSUkJ6eTllZGQAVFRXMnj2bnTt3trnOihUrSEhIYPv27UyePJnc3FwA1q1bR9++fdm+fTsLFy4kOzv7+rsQEeml2nratI1PoQ4uCPLz8/F6vbhcLgC2bdvG2LFjSUpKanOdoqIiPB4PAG63m71793Lp0iWKiopISUkB4N5776W2tpbTp09fbx8iIr3SN78RGdJ4RwT1qsqrv+avyszMBODgwYNtrlNZWYnT6bzyIVFRxMbGUltb22QcwOl0cvbsWW655ZaQixcR6e0cbTxdrq3xjuiydxZblkVERASWZTVp4Op4KOLjY22ry+mMs21b4cqEHptTz2Ywoef6rxrbHLer/04LApfLRXV1NYMGDaKxsZH6+nr69+/PwIEDqays5Pbbbweguro6cMgpWDU1Pvw2HSCrqqqzZTvhyumM6/U9NqeezWBKzwNuiKHm/MVWx4PtPyLCcc0f0J12+WhiYiJbtmwBoLCwkISEBPr06UNiYiIFBQUAfPjhh8TExOiwkIhIG9IS7yQ6qulXdXRUBGmJd9r2GbbuEaxcuRKXy0V6ejpZWVksWLCA5ORk4uLi+OMf/wjAtGnTeO6550hOTiY6Oprly5fbWYKISK9y3/BBAGzeU0rt+YsMuCGGtMQ7A+N2CCkIdu/e3WR66dKlTaazsrICf/fv359Vq1a12EZMTAzLli0L5WNFRKQTddnJYhERCV3x0bP8ffsnNDT6Aag5f5G/b/8EwLa9Aj1iQkQkjG3eUxoIgasaGv1s3mPfUxkUBCIiYay1K4auNd4RCgIRkTAWf0NMSOMdoSAQEQljP7gzPqTxjlAQiIiEsY9La0Ia7wgFgYhIGNM5AhERw+kcgYiI4XrcIyZERMReYfeICRER6Xr3DR/EfcMHddoTV3VoSETEcAoCERHDKQhERAynIBARMZyCQETEcAoCERHDKQhERAwX1H0EPp+PKVOmsGrVKm699VY++OADlixZwsWLF0lKSmLu3LlNlq+pqSEjIyMwXVdXx7lz5/joo4/Yv38/c+bMYdCgKzdD3H333SxZssTGlkREepfio2e794aykpISFi1aRFlZGQAXLlxg4cKFrFu3jptvvplZs2axZ88eEhMTA+vEx8dTUFAAgN/vZ/r06YGwOHLkCBkZGcyaNcu2JkREequweFVlfn4+Xq8Xl8sFwMcff8yQIUO47bbbiIqKwuPxsGPHjjbXf+utt+jbty8ejweAw4cPs2/fPjweD7Nnz+bMmTO2NHItMX0iQxoXEQkXXfGqynb3CHJzc5tMV1ZW4nQ6A9Mul4uKiopW1718+TKrVq3i5ZdfDozFxcWRlJTEuHHjeOONN5g7dy4bN24Mqej4+NiQlh+bcCuFxf9qddzpjAtpWz2RCT02p57NYELPtW08brr2/EXb+g/5WUN+vx+HwxGYtiyryfTXvf/++3zrW99i6NChgbHFixcH/k5PTycvL4+6ujri4oJvqKbGh99vBb38no/K2xz/mY1P8AtHnfVsknCmns1gSs8Dbohp9d0DA26ICbr/iAjHNX9Ah3zV0KBBg6iqqgpMV1VVBQ4bNffee+8xYcKEwLTf7+eVV17h8uXLTZaLjOzcQzT1Fy6HNC4iEi664jHUIQfBiBEjOHnyJP/617+4fPky//znP3nwwQdbXfbQoUMkJCT858MiInj33XfZuXMnAFu2bGHEiBH069evg+WLiPRu9w0fxPSkYcTfEIODKy+kmZ40rHsfQx0TE8PSpUuZM2cOFy9eJDExkUceeQSAnJwcxowZw9ixYwE4depU4DLRq5YtW8azzz7LSy+9xIABA1i+fLkNbVxbbN8ofF81tjouIhLuOvsx1A7LsoI/2B4mQj1HUHz0LGsKj9F4+T/rREU6+D8TvmtrqoYjU46jfp16NoN6Dl575wiM+EncFW/4ERHpqYwIAuj8XSsRkZ5KzxoSETGcgkBExHAKAhERwykIREQM1yNPFkdEtP5Ii65av6cxrV9Qz6ZQz/as0yPvIxAREfvo0JCIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOF6ZRBs27aNCRMmMG7cONavX99i/rFjx0hLS2P8+PHk5OTQ2NjyNZY9TXs9v/fee6SmppKSksKTTz7Jl19+2Q1V2qu9nq8qKipizJgxXVhZ52mv5xMnTjBt2jRSUlKYMWOGEf/OR48eZdKkSaSkpDBr1izOnz/fDVXay+fz4Xa7KS8vbzGvU76/rF7m7Nmz1ujRo61z585Z9fX1lsfjsT777LMmyyQnJ1sfffSRZVmWlZ2dba1fv74bKrVPez3X1dVZ999/v3X27FnLsixrxYoV1u9///vuKtcWwfw7W5ZlVVVVWY888og1evTobqjSXu317Pf7rXHjxll79uyxLMuy/vCHP1jLly/vrnJtEcy/c3p6ulVUVGRZlmUtWbLEeuGFF7qjVNscOnTIcrvd1vDhw61Tp061mN8Z31+9bo/ggw8+YNSoUfTv359+/foxfvx4duzYEZj/xRdfcOHCBX74wx8CkJaW1mR+T9Rez5cuXcLr9TJw4EAAhg4dypkzZ7qrXFu01/NVixYt4pe//GU3VGi/9no+evQo/fr148EHHwRg9uzZTJ06tbvKtUUw/85+v5/6+noAvvrqK77xjW90R6m2yc/Px+v14nK5WszrrO+vXhcElZWVOJ3OwLTL5aKioqLN+U6ns8n8nqi9nm+88UYefvhhAC5cuMBrr73GQw891OV12qm9ngHWrl3L3XffzYgRI7q6vE7RXs+ff/45N910EwsXLmTixIl4vV769evXHaXaJph/5wULFrBo0SIeeOABPvjgA6ZMmdLVZdoqNzeXhISEVud11vdXrwsCv9+Pw/GfR65altVkur35PVGwPdXV1TFz5kyGDRvGxIkTu7JE27XX8/Hjx3nnnXd48sknu6O8TtFez42Njezfv5/09HTefvttbrvtNpYuXdodpdqmvZ4vXLhATk4Of/vb39i3bx+PPfYYzzzzTHeU2iU66/ur1wXBoEGDqKqqCkxXVVU12cVqPr+6urrVXbCepL2e4coviccee4yhQ4eSm5vb1SXarr2ed+zYQVVVFZMmTWLmzJmB/nuy9np2Op0MGTKE73//+wC43W4+/vjjLq/TTu31fPz4cWJiYvjBD34AwKOPPsr+/fu7vM6u0lnfX70uCH784x9TXFxMbW0tX331Fe+8807gmCnA4MGDiYmJ4eDBgwAUFBQ0md8Ttdfz5cuXmT17NklJSeTk5PT4PSBov+df/epX7Ny5k4KCAl577TVcLhcbNmzoxoqvX3s933PPPdTW1vLJJ58AsHv3boYPH95d5dqivZ6HDBnC2bNnOXHiBAC7du0KBGFv1GnfX9d9ujkMbd261UpOTrbGjRtnvfbaa5ZlWVZmZqb18ccfW5ZlWceOHbMmTZpkjR8/3vrNb35jXbx4sTvLtcW1en7nnXesoUOHWikpKYH/Fi5c2M0VX7/2/p2vOnXqVK+4asiy2u/50KFD1qRJk6wJEyZYGRkZVnV1dXeWa4v2ei4qKrI8Ho/ldrut6dOnW59//nl3lmub0aNHB64a6uzvL72hTETEcL3u0JCIiIRGQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAiYjgFgYiI4RQEIiKG+/8ZTOEUfzIu6AAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.scatter(clean_data4['IsHoliday'], clean_data4['log_sales'])"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "Annahme keine Multikollinearit\u00e4t"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 70,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>VIF</th>\n",
-                            "      <th>Features</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>4.338373</td>\n",
-                            "      <td>Week</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>79.762781</td>\n",
-                            "      <td>Year</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>76.444362</td>\n",
-                            "      <td>Size</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "         VIF Features\n",
-                            "0   4.338373     Week\n",
-                            "1  79.762781     Year\n",
-                            "2  76.444362     Size"
-                        ]
-                    },
-                    "execution_count": 70,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "from statsmodels.stats.outliers_influence import variance_inflation_factor\n",
-                "\n",
-                "variables = clean_data4[['Week', 'Year', 'Size']]   \n",
-                "\n",
-                "vif = pd.DataFrame() \n",
-                "\n",
-                "vif[\"VIF\"] = [variance_inflation_factor(variables.values, i) for i in range(variables.shape[1])]\n",
-                "\n",
-                "vif[\"Features\"] = variables.columns\n",
-                "\n",
-                "vif"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 71,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "data_no_multi = clean_data4.drop(['Year'], axis=1)"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 3.4. Dummy-Variablen erstellen"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 72,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "data_with_dummies = pd.get_dummies(data_no_multi, drop_first=True)   # drop_first=true: die erste Auspr\u00e4gung aller categorialen Werte wird weggelassen"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 73,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>Size</th>\n",
-                            "      <th>Week</th>\n",
-                            "      <th>log_sales</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-05</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>42.31</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>11.848576</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-12</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>38.51</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>11.871169</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-19</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>39.93</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>11.813524</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-26</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>46.63</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>8</td>\n",
-                            "      <td>11.736454</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-03-05</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>46.50</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>9</td>\n",
-                            "      <td>11.797694</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   Store       Date  IsHoliday  Temperature  MarkDown1  MarkDown2  MarkDown3  \\\n",
-                            "0      1 2010-02-05          0        42.31        0.0        0.0        0.0   \n",
-                            "1      1 2010-02-12          1        38.51        0.0        0.0        0.0   \n",
-                            "2      1 2010-02-19          0        39.93        0.0        0.0        0.0   \n",
-                            "3      1 2010-02-26          0        46.63        0.0        0.0        0.0   \n",
-                            "4      1 2010-03-05          0        46.50        0.0        0.0        0.0   \n",
-                            "\n",
-                            "   MarkDown4  MarkDown5  Unemployment    Size  Week  log_sales  \n",
-                            "0        0.0        0.0         8.106  151315     5  11.848576  \n",
-                            "1        0.0        0.0         8.106  151315     6  11.871169  \n",
-                            "2        0.0        0.0         8.106  151315     7  11.813524  \n",
-                            "3        0.0        0.0         8.106  151315     8  11.736454  \n",
-                            "4        0.0        0.0         8.106  151315     9  11.797694  "
-                        ]
-                    },
-                    "execution_count": 73,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "data_with_dummies.head()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 74,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "array(['Store', 'Date', 'IsHoliday', 'Temperature', 'MarkDown1',\n",
-                            "       'MarkDown2', 'MarkDown3', 'MarkDown4', 'MarkDown5', 'Unemployment',\n",
-                            "       'Size', 'Week', 'log_sales'], dtype=object)"
-                        ]
-                    },
-                    "execution_count": 74,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "data_with_dummies.columns.values"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 76,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "cols=['log_sales', 'Store', 'Date', 'IsHoliday', 'Size', 'Week', 'Temperature', 'Unemployment', 'MarkDown1', 'MarkDown2','MarkDown3', 'MarkDown4', 'MarkDown5']\n",
-                "#cols=['log_sales', 'Store', 'Date', 'IsHoliday', 'Size', 'Week', 'Temperature', 'Unemployment'] # because the R\u00b2 improves if we keep these values in"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 77,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>log_sales</th>\n",
-                            "      <th>Store</th>\n",
-                            "      <th>Date</th>\n",
-                            "      <th>IsHoliday</th>\n",
-                            "      <th>Size</th>\n",
-                            "      <th>Week</th>\n",
-                            "      <th>Temperature</th>\n",
-                            "      <th>Unemployment</th>\n",
-                            "      <th>MarkDown1</th>\n",
-                            "      <th>MarkDown2</th>\n",
-                            "      <th>MarkDown3</th>\n",
-                            "      <th>MarkDown4</th>\n",
-                            "      <th>MarkDown5</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>11.848576</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-05</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>5</td>\n",
-                            "      <td>42.31</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>11.871169</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-12</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>6</td>\n",
-                            "      <td>38.51</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>11.813524</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-19</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>7</td>\n",
-                            "      <td>39.93</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>11.736454</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-02-26</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>8</td>\n",
-                            "      <td>46.63</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>11.797694</td>\n",
-                            "      <td>1</td>\n",
-                            "      <td>2010-03-05</td>\n",
-                            "      <td>0</td>\n",
-                            "      <td>151315</td>\n",
-                            "      <td>9</td>\n",
-                            "      <td>46.50</td>\n",
-                            "      <td>8.106</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "      <td>0.0</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "   log_sales  Store       Date  IsHoliday    Size  Week  Temperature  \\\n",
-                            "0  11.848576      1 2010-02-05          0  151315     5        42.31   \n",
-                            "1  11.871169      1 2010-02-12          1  151315     6        38.51   \n",
-                            "2  11.813524      1 2010-02-19          0  151315     7        39.93   \n",
-                            "3  11.736454      1 2010-02-26          0  151315     8        46.63   \n",
-                            "4  11.797694      1 2010-03-05          0  151315     9        46.50   \n",
-                            "\n",
-                            "   Unemployment  MarkDown1  MarkDown2  MarkDown3  MarkDown4  MarkDown5  \n",
-                            "0         8.106        0.0        0.0        0.0        0.0        0.0  \n",
-                            "1         8.106        0.0        0.0        0.0        0.0        0.0  \n",
-                            "2         8.106        0.0        0.0        0.0        0.0        0.0  \n",
-                            "3         8.106        0.0        0.0        0.0        0.0        0.0  \n",
-                            "4         8.106        0.0        0.0        0.0        0.0        0.0  "
-                        ]
-                    },
-                    "execution_count": 77,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "data_preprocessed = data_with_dummies[cols]\n",
-                "data_preprocessed.head()"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## Lokale Datei\n",
-                "df_dummies.to_csv('train_dummies.csv', index = False) # vollst\u00e4ndiger Pfad, wenn die Datei nicht im selben Ordner wie das Notebook liegen soll\n",
-                "\n",
-                "## Cloud-Datei\n",
-                "#project.save_data(\"train_dummies.csv\", df_dummies.to_csv(index=False))"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "# 4. Modellierung und Evaluation"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 4.1. Mehrfaches lineares Regressionsmodell"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 78,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "targets = data_preprocessed['log_sales']   # zielvariable\n",
-                "inputs = data_preprocessed.drop(['log_sales', 'Date'], axis=1)"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 4.2. Merkmalsskalierung"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "wandelt unsere Daten in verteilte Standarddaten um"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 79,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "from sklearn.preprocessing import StandardScaler\n",
-                "scaler = StandardScaler()\n",
-                "scaler.fit(inputs)\n",
-                "input_scaled = scaler.transform(inputs)"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "## 4.3. Testen & Trainieren der Daten"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 80,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "from sklearn.model_selection import train_test_split\n",
-                "x_train, x_test, y_train, y_test = train_test_split(input_scaled, targets, test_size=0.2, random_state=365)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 81,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "LinearRegression()"
-                        ]
-                    },
-                    "execution_count": 81,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "from sklearn.linear_model import LinearRegression\n",
-                "reg = LinearRegression()\n",
-                "reg.fit(x_train,y_train)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 82,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "y_hat = reg.predict(x_train)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 83,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABKf0lEQVR4nO2de3gU5dn/v7PHhBwaiAkBglRDIRCloFhFhHBQAU0IRHk1IIdfwHps0asGQcRoKy/goRUPwFtOCgUEFMEgYjkIKE2rUk4NAWoEBCEBAjEkJpvs7vz+WGeZ3Z3j7szubHJ/rovrIrszs/fOPvPcz3MfGZZlWRAEQRCECKZIC0AQBEEYG1IUBEEQhCSkKAiCIAhJSFEQBEEQkpCiIAiCICQhRUEQBEFIQoqCIAiCkMQSaQH04PLlerjdoaeHJCfHo7q6TgOJwkc0ygxEp9zRKDMQnXKTzPpiMjFo2zZO9P0WqSjcblYTRcFdK9qIRpmB6JQ7GmUGolNukjlykOmJIAiCkIQUBUEQBCEJKQqCIAhCElIUBEEQhCQt0plNEARhJErLKrFhdwWqax1ITrQjPzsD/bLSIi2WYkhREARB6EhpWSXe+/QompxuAEB1rQPvfXoUAKJGWZDpiSAIQkc27K7wKgmOJqcbG3ZXREgi9ZCiIAiC0JHqWoeq140IKQqCIAgdSU60q3rdiJCiIAiC0JH87AzYLL5Trc1iQn52RoQkUg85swmCIHSEc1hT1BNBEAQhSr+stKhSDP6Q6YkgCIKQhBQFQRAEIQkpCoIgCEISUhQEQRCEJKQoCIIgCElIURAEQRCSkKIgCIIgJCFFQRAEQUiiq6Koq6tDTk4Ozpw5AwBYu3YtcnJykJubixkzZqCpqSngnH379uH+++9HXl4eJk6ciB9++EFPEQmCIAgZdFMUBw8eREFBAU6ePAkAOHHiBJYuXYr3338fH3/8MdxuN1avXh1wXlFREV5++WVs2rQJubm5ePnll/USkSCIFkppWSWKFuxF4dydKFqwF6VllZEWKarRTVGsW7cOxcXFSE1NBQDYbDYUFxcjPj4eDMOgW7duOHv2rM85TU1NmDp1KjIzMwEA3bt3x7lz5/QSkSCIFgjXKIgr4801CiJlETy6KYrZs2ejb9++3r87deqE/v37AwAuXbqEVatWYejQoT7n2Gw25OXlAQDcbjfefvtt3HnnnXqJSBBEC6QlNAoyGmEvClhVVYUpU6bgvvvuw6233ip4TFNTE6ZPnw6n04lHHnlE9WckJ8eHKqaXlJQEza4VLqJRZiA65Y5GmYHolFupzJdEGgJdqnWE/XuH+nm79p3Gik/LcfFyA65pG4sJI3pg0M2dNZJOOWFVFBUVFZgyZQrGjx+PwsJCwWPq6+vx2GOPISkpCQsXLoTValX9OdXVdXC72VDFRUpKAi5cuBLydcJJNMoMRKfc0SgzEJ1yq5G5XaJdsHtcu0R7WL93qPfZv9f2hcsNeGvdAdReadS8Eq3JxEgusMMWHltXV4fJkydj6tSpokoC8Dizu3TpgjfeeAM2my1c4hEE0UJoCY2CAGOZ0MK2o/jggw9w8eJFLF++HMuXLwcADBkyBFOnTsXMmTMxZMgQdOjQATt27EDXrl0xevRoAEBqaioWL14cLjEJgohyWkKjIMBYvbYZlmVDt9EYDDI9RZfMQHTKHY0yA9Epd2uUuWjBXkGlkJxox6uP9w9FtAAMY3oiCIIglGMkExq1QiUIgjAgRjKhkaIgCIIwKEbptU2mJ4IgCEISUhQEQRCEJKQoCIIgCEnIR0EQBGFwSssqI+rUJkVBEESLJdITrBb4l/LgquECCNt3IdMTQRAtkpZSbtwIpTxIURAE0SIxwgSrBUYo5UGmJ4IgWiRKJli1pqlImLKSRarhJifadf1cPrSjIAiiRSI2kXKvqzVNRcqUZYRSHqQoCIJokchNsGpNU5EyZfXLSsPEEZleBZecaMfEEZkU9UQQBBEqcrWSpExTRQv2BpiVIukriHQpD1IUBEG0WKQmWDHbPyAcgmoEX0GkINMTQRCtjtKySjiaXZLH+JuVjOAriBS0oyAIolVRWlaJ5VvK4XTJNzerrnX4RDrZLAwYBmBZwMQA/W80RnVXvSFFQRCELigJJY1EuOma7ccVKQkAiI+1+GRFNzmvnudmgb2HK9E1PanFKwtSFARBaI6SshNalaZQq2zqGpyKrmuzmMCybECkEx/OPBVuRRFuBUs+CoJoZezadxpFC/aicO5OFC3Yq0segJJQUi3CTbXObfAPQa1vlPZjcJ8ZTiKRz0E7CoJoRZSWVWLF1mNeR65eBeaUhJJqEW4qpWzEvk9cjFlQAcTFmPHq4/0Dri8nT7ijnoL5zqFCOwqCaEVs2F0REO2jR9KYXFa00mPkCEbZjL2rO8yM72tmxvM64FGm3I7L0ewKOJZPJKKeIpHPQYqCIFoR4ZpkemUky76uRbhpMMqmX1YaCnN6Ii7G7H0tNsZjXPE369Q1OMGYGO+xcTFmxMd6jo2PtcBqYbC45IhuJjwhtFCwaiHTE0G0IsKVNHaoolr2dbnMaSXkZ2f4OMQBcWXDdwD7U9fgxLLNRxAbYwkw6zhdLH4RZ8FbT2X7XCtSPSLUfGetIEVBEK2I/OwMHx8FoM8kI7dz8Y/aeTi3Z1ATrFJl4z+xC+FixSOi/L9PJPwEHFooWLWQoiCIVkS/rDQkJsTg3c1luk4yUjsXrVfjSuogCU3savDfcUW6R0S4az/pqijq6urw4IMPYtGiRUhPT8fatWuxcuVKMAyDG264AS+99BJsNpvPOWfPnkVRURGqq6tx3XXX4bXXXkNcXJyeYhKELhi1Deegmzsj69okXT9DyjwSidW4mgncZjHJmnVaW90n3ZzZBw8eREFBAU6ePAkAOHHiBJYuXYr3338fH3/8MdxuN1avXh1w3ksvvYSxY8di69atuOGGG7BgwQK9RCQI3WgpbTiDRao0tharcX5kkpAj2f99u1UidIlHfKxFUUnv1lb3Sbcdxbp161BcXIxp06YBAGw2G4qLixEfHw8A6NatG86ePetzTnNzM77++mu88847AID8/Hw89NBDKCoq0ktMIowYdYWtB5G0YRsFf/MIN3mLIbcaF3NG+5uuhExbSim4s5sis04k/ASRRDdFMXv2bJ+/O3XqhE6dOgEALl26hFWrVmHOnDk+x1y+fBnx8fGwWDxipaSkoKqqSvVnJyfHByl1ICkpCZpdK1wYUeZd+04HJHqt2HoMiQkxGHRzZwDGlFsOMZkviUxOl2odhvie4ZbB//f3x241Y1JOlo9cu/adxopPy3HxcgPi21jxU6MTLrdwjaYmpxuLS47gh4v1+Pro+aD8EQltrBg56Ffi8v8syzVtYzFhRA8kJsTAZDaBAWAym5CYEBNwX43wW2tB2J3ZVVVVmDJlCu677z7ceuutPu+xLAuG8d0i+v+thOrqOrhFBpQaUlIScOHClZCvE06MKvO7m8sCJglHswvvbi5D1rVJhpVbCiGZuVWv2Ohrl2iP2PfkZLtU60C7MK+AhX5/Dm41nnVtkvferPzsKD7ff9XicOWnZkWfs6X0VFDyWcwMHhz6K8Hfxn+HcuFyA+av3Q/WzYKrLXjhcgPeWncAtVcavfc0msa0ycRILrDDqigqKiowZcoUjB8/HoWFhQHvt2vXDleuXIHL5YLZbMaFCxeQmpoaThEJndDKLm3krb5cCGakbNj+ZTuA8Mb9c58nxquP9/eapaprHaIlNvSElVhYCpkRharPtmTTYtgURV1dHSZPnoynnnoKo0aNEjzGarWib9++2LJlC3Jzc7Fx40YMHDgwXCISOhJqlEgkE5yUIhWCGYxi00IxSvVeUDKxaSWDifGU5fZHKFw23EoC8ORQiN0LNYuZcBcIDBdhK+HxwQcf4OLFi1i+fDny8vKQl5eH+fPnAwBmzpyJHTt2AACKi4uxbt063HPPPfjmm2/w1FNPhUtEQkdCjRKJVGN7NcitmtUqCS2ipjbsrpDsvSAlsxYycNcQUhJS4bKRQOxeqAl5banhsbrvKHbu3AkAmDRpEiZNmiR4DN/x3alTJ6xcuVJvsYgwE2qUSKQTnJSgZWy9VlFToVQ+DVWG0rJKLN18RFBJmBh4w04XlxyRvVY4ELsXQjkhFjPj46MAKDyWIDQhlGzSaEhw0rIGj1aKUey+cUjJFooMpWWVWCaiJACPGYobC3IyhgOp38l/kRMfawHLsqhvdHlNakb0mWkJKQoiKohEITS1aBlbr5VizM/OEPVRDO7TUVI2ORmk/Bertx2DVLdREwMUzt0p6rsIJzYLI5hUx4db5Pj7U9zs1XHYUpUEQIqCiBKiJcFJqxo8WilGTpY12497C94ltLHiwaG/kpVTSga54AI5hzSnHCKtJDxIh+CXllX63D9/WnK0EwcpCiJqCHchtEiipWL0v29K4/uFlIzVwnjlaimZ501ON5ZuPoLFJUcC7rNU1BifSJvO9IYUBUEYFKMoxqbmqwqhvtElmSvCTZjxsRbRFbgR4XY2/jsjuagxDiP5yvSAFAVBED7+hvhYC5qaXWhyipfLkMqLAIBbMlN9MqujCf7OSMlOwWYxoVdGsjdhkNuVjBzUMsp3AKQoCKJVwlcMcTFmOJrd3pWzkp0A58T131n0ykhGaVkl9h6O7iq51bUOFC3YK7szMjFARqdE7D1cGeCv+eFiPf5VVmlon5pSGJZlDeFO0hKq9RRdMgPRKXc0ygwAZd/X4K11B0JKcmMADOrTMWDXYLOYYLUwEcmu1gMzA7Bg4NZgmrRZTLLRVZHCULWeCKK1YOS6VCs+LQ85E5oFBE1LTU43mqLHNSGLiwXiYkyaKL5odfYDpCgIIiSEFAKAsNSlClYZXbzcoJkMrQEtd0fRGh1FioJodWi12t+177SgQrBaGN1DR0Mpkhjfxqq4bHe0k5xoR2OT0zCmsGiNjiJFQbRo/JVCr4xkQccjoH61L2TCkTK9aLmabEl5DHqSn52BNduP6/oZNosJ/W9Mw6GKap9x9o//VPmUdjdaJQE1kKIgWixCq24xu3ow5bbVmnC4ktpa7GZCqcNU10p2EwB0LzhoYjzj5+uj5+EfF2SzmryKIi7GjLF3dY9aJU6Kgog6pCZb/ntq6ggpKbftvwsRM+F48hDcASv+6lqHz8Qlt5uR+p5SdZjklNE1bWNxgfwUgpgZIMYu3zjJzACMiREMKRZakDSL5KREC4rCYxsaGnDs2DH07t0ba9asweHDh/Hkk0+iY8eO4ZBRNRQeG10yA8rlFuoiZ2aA2JjQMoGTE+149fH+gu9xiVRCWMyMT+YuFwIJXC2/EcxnC31Pfnil2Pv9b0zzMa3xiYsxg2EYwfvEnbvnwFnJYn4tnbgYM65tn4DyUzUB79mtDBzNLJIT7XA0u1SPN6kxphSxRUCoO1VNwmNnzJiBzp07w2QyYcmSJRg1ahRmzZqFpUuXKhaEILRAyDbvYpUliYkhZzuWmuydLhZ2q9lrYuBqIXEPqVg/Brnry/kgxGpBSTUBElsl8yeWrulJeO/TctGs7JaCiRHOjahvdAkqCQCIj7Vh4R88E33h3J2qP9P/dxaLmJPaLQvtbL89U6OZ300MRYri9OnTeOONNzB//nyMHj0aTz75JO677z5NBCC0gRt0l2odaBehuH2lqxqh45SWO9AjvLD/jcI1lTg55eA7LLlaSNzDq2RjGxdjDij/oMQHIVQLSq1NXniVy8CTKdEyCTYSqrrWgcK5O5GcaA+qlhU/4klo0l++pdynGZJQ3SmhxcPuA2cDxpnWgQ2KFIXT6bkhX375JZ599lm4XC789NNPmghAhI4R+kkrlUHsuMSEGGRdmyT7OXo0uTlUUe0jn1KTkRhiD68YDQ436ht9243GxYjbyX8/fw/qGpyCyljt/fE/1ihtSfWC2z2G4uSurnXAzASaHZV8LofQfZbray72u4qNMy2fE0U9s/v06YN77rkHjY2NuOmmmzBp0iTcfvvtmglBhIYR+kkrlUHsuBWfliv6nF4ZyaEJKgD3QPn3iA4FNS4yfxNIk9MNhhHvkcCtZIV6WAv1JpfCP64/WhPClMDgavvVUPMZXCxgt5q815HqaJGcaA8o3RGMMlcrs5Y5G4p2FLNmzcL+/fvRvXt3mEwmTJ48GdnZ2ZoJQYSGEfpJK5VB7DihUFMhExV/9S9HXIwZDQ63bJ0e7oHScjUdauc2pWYNfxODGt+IkG/GCG1J9YKFxzS3YXcFemUkh1zdtr7Rhbee8syDQsEFdqsZE4YLh8Squc/c+BRqJCWG1jkbihSF2WyG2+3GP//5T2+s8LZt23D33XdrJggRPJHuJ81f0crJICbrNW1jff5e+dlRnwe5utaBZZuPyEbk8OPVixbs9Zp0xOA/UFpOkNm9O4pGHymBu29KZOIfwylXOSVhtzKYMNwTncX3j/gnJLZExPJp1MIf20LBBZNyskTNqUKTvsXM+PgoAN/x6f8ZUnJp7aNUpCief/557NmzB126dPG+xjAMKQqDEOl+0lImLn8ZhFZyNosJE0b08P5dWlYp+CArMQfH2CzeB0RuklWamxAM44dlomt6kmRWuBgmhlHtbH11zb/xfdUVxec4mll88o8TOFt9dSdXXevA3sOV6H9jGr4qrzJM2QsjIvR8qekkKBa1JvQa/5rcZ4iFbGsRgiuEIkVRWlqKLVu2ID5ePM6WiBz8QReJqCelk6tYn4L+N6Zh0M2dvQ9VKL4VfmSKmENY7GFSs7WXgltp+k8cnu9/TvZ8N8uqnqTFQjql4CsJjianG4cqqiV9JERgpFwwkXxiHQyVPLfhXhwqUhQdOnQgJWFwuEEXiYQ7qZW4XHgfgAC/gxarek9mNgMzA9GtvD9SqzwlfZMBj/lA6PpXbdjGDzttqT4KLfGPlAslki8YtOyprgRFiuKmm27C008/jcGDByMmJsb7OpmeWi/+rTP9J2QOJeF9/q9r1W/ZzXqS4ZJiLZIPk1DhQK7AG+f4dCkMg2R5zoFgy4lEmmiSVUvUjDv+mBWL5PvrxsOY//sBuvUmCWdPdUWKYv/+/QCA9evXe19T6qOoq6vDgw8+iEWLFiE9PR0AMG3aNNx2223Iz88POP7HH3/EM888g6qqKthsNvzpT39Cjx49Ao4jIof/CqquwQmLmKaAb3ifnNO9tKwS9Y3adb5xNLswYXh374O6YXcFvj1Tg6+PnhecFPwdnWodny72qumMf4+iaeKNJlm1RM3ihD9mxRZAV35qxsrPjuqeNR0OVLVCdTqdYFkWVqtV0fEHDx7E888/jxMnTmDr1q2wWq0oLi5GaWkpiouLBRXFG2+8gebmZhQVFWHnzp1YvHgx1qxZo/wbgWo96S2zmCNNbCXK+QSk6hclJsTg3c1lupg9hHo76000h5nyS5IQgVjMDAb06uDddUrtwMTei4sxI8YmvdMNJ5rUeqqursazzz6Lf/7zn3C5XLjlllvw6quvon379pLnrVu3DsXFxZg2bRoAoKSkBEOHDkVSUpLoOW63G/X19QA8xQj5pi4i8pT+3CxeCLGHxdHsQmlZZYBdlSvRvHrbMTQ0uTVR7kKEW0mYmOi285OSuArDeLKSuc0ywwC/Sv8Fvjh0zuuzkhq2Yu/VN7q8AQvRsMtQpCj++Mc/onfv3vjzn/8Ml8uFlStX4sUXX8TChQslz5s9e7bP31OmTAEA7Nu3T/ScwsJCPPDAA7jjjjtQX1+PZcuWKRGRCAPcjkAtdQ3OgAeBv7NoaWGYrdV00xJhWcBsMcH181hl2eAizOTgFkxRrShOnjyJ+fPne//+/e9/j3vvvVcXgf70pz9h3LhxmDBhAvbv34+nn34an3zyCeLi4hRfQ2oLpZaUFGXF6oyEFjLv2ncaKz4tx8XLDbimbSwmjOiB93f8N+jVeZPTjY1fnkBiQgyWflKu2+6BILTEZApsa6sX9Y0ulH1fg0E3dw7L56lBcVFAh8MBu93jwGloaNAtznrHjh344x//CMBTYyo5ORkVFRXo1auX4muQjyI0mUvLKn3CQS9cbsBf1uyXLYUhx4XLDZi/dj8pCSIqUFP0Tyve3VymW0itFJr4KO655x5MmjQJ+fn5YBgGH374IYYNG6aZkHwyMzOxfft25OXl4eTJkzh//jyuu+46XT6LEGbN9uMBD4iUklBTbiLcDx5BBAvrZr3NioJFbaixUX1bihTFE088gbS0NHzxxRdwu93Iz8/H/fffr5kQ8+fPR2pqKgoKCjB37ly88MILWLx4MWw2G+bNm4eEhOgz/0QzanMYuAQzLbKaCcIouFjAJaAkmJ/bdfDfYQCY/XYgdqsZt9/QPqBsi81iAsMwgkED4arPphbJ8Ni6ujrEx8ejpqZG8H2p6KVIQqan0GRW072LYYApOT297RjXbD+uSbIcQRiZ+FgL2J9LrXDhrd+eqfH2ITExwPDbuuD+7AzRTnZSrW7DTUimp/Hjx+Ojjz7Cbbfd5uOTYFkWDMOgvFxZDwEiupBqmuMPy8Lb0e1QRTXqGpyaZVYThFHxH99fHjrrEw3lZoEd35xBp2viJDOo+Qsrro2uEVGUcOd2u2Ey+TZDqampoR2FAdHKma2kpLcUQiWTzQzghke5EERrgPNRCO1AAOPsKuR2FIpaYQn1x37ooYeCl4owNP2y0lCY09NrL+VqOanB6WIRG2PxXiM50Y7CnJ4Y1Ltj0HIxP8sCeHY9dqs56GsBHsVlM/Aqjoh+uPVqXYMzIMFuzfbjEe9MqRRJ09PEiRNx+PBhbwtUDrfbjRtvvFF34Qh9UFKkTKhEttpe0nUNTrw5daDPa6E8BCw8Zk+uPEZyoh2339DeW0pBDdz3DqV3crTws++11Rb7U4LdagbLsmELxmhyukU/y4iRT5KK4p133kFNTQ2ee+45zJkz5+pJFgtSUlJ0F47QHrGSyABk6+u/+nj/gM5zUsTFBK74Q30I/EsfcI12dh04q8ik5b+1X73tmKQ/hptco2WSHdyno1dxJifaYbeavH0nokH+SGExA2PvyjREtV8jRj5Jmp7i4+ORnp6OBQsWYPPmzejUqRMAYMmSJWhsbAyLgIS2iJVE5q/0OWXCTeqcMln52VF8cUi+8Q5HfaMLRQv2+rRKFXsIEtpYYQrCCtTkdGPXfmVKAvBtOFNaVglHs/QKkrMvG9nRyOer8irv/2vqmgSbExGB1De6fHbMYoX8ONOnFsTFmGGz+E7B4exMqQZF33rGjBneEuGJiYlgGAazZs3C66+/rqtwhLZIFfRTUl9f6ard/7r8HYtYU/vrOybi2zM1QdV9UiPS7gNn8fn+s6ois6Ipgou/43LRFkIVcrtdrhc7EHqvEZvFhLF3dQcQvuZDoaAo6ik3NxclJSU+r40cORIff/yxboKFAkU9BcosVOKbD789qJo8CqXEx1pgt5oNaX8lCCXwx7CaHujcuf5RT0ZSCJqU8HA6nd7kOwCor6+HijYWhAEQa0PK0SsjGQB8zERaUtfgjKqVORFdmBgg++eIOjWNptTuLLlj1TS0WjZ9iGJ5jIoiRTFq1CiMGTMGw4cPB8Mw2LZtm2DTIcK4yK3kuR7ARgzNE8PEAG1iKLmPANom2NE1PQn9stJQeeknxaXAuRBrvcZQMH43I6JIUTzyyCPo2rUrSktLYbFY8MwzzyA7O1tv2QgNkeu4xndcGw2h5D0ueunbMzWqVpBEy6S61oHFJUew7JNyVb6Z6loHzIx+lWKzQ8gbMhKSioJf6+nmm2/GzTff7H3PyJnZRCByOQP8xDilysJmYdDk1N8EaWKA/r19wz57ZSRjxdbykCp7Ei2PYBz4LhaIs5oQY2M021nwaz21BKjWUyuhX1aaZME+LiQvPzsDS0qOKIokSmhjQ2rbWBz7vkbXmPMmJ4u9hyu9+Q9alBghCD6ck1mtovDPW+E7qaMxGEYMSUXx0UcfAQCOHlXf/pIwHgV3dhOcYE28RYCcQuFTXevAlZ+aMTmnJ5ZuPhKSsmAY6RpQXK5Hv6w0bNhdQUqC0BQ1O2k+44dl6iCN8ZBUFBs3bpQ8edSoURqKQuiNmBJws6x3EgbUOfa4CTy7d8fQfAUKsp+N7EchohcuyU2sRI3YuOQnjwpVMhg5SN8+OkpK8WiFpKLYunUrAODChQv47rvvcNttt8FiseBf//oXevToQYoiChFTAvwHRO3qqrrW4V1ZBassrmkbiwuXpbOIg/GjEIQc/JIuQtVc+9+YJth8iDPXipXFSUyI0a2tqdJSPFohWcJj0aJFWLRoEZKTk7Fp0yYsXLgQb731FjZu3AiLRbtUdiJ8iJXQ4L+en50RUFpAyTXHD8vEsulD8HBuT59JfXCfjt6/42LMsPiVorVZTJgwoodkjRv+g5mfnaG6mi1BCJGcaPdOrP2y0jBxRKbP2J04IhPjh2UKvs6dJ1bJYMWn+vlwlZTi0RJFs/25c+dw7bXXev/u2LEjKiv1Scwi9CU/O0Nw1cSvL8N/AJR05fKvTSPVqAUQ3jIPurkzaq80CmaPx8WYfconCBX0o2ZJhBxmBgH9Ufi7Av6YfDj3atfGogV7va9zzuvFJUewYXcF8rMzRHe3F2V2yKGgpBSPlihSFCkpKXjzzTcxevRoAMDatWvRuXNnXQQi9EVMCQjVsOE/MHyU2kXFbKhiisRfNs42HGMLHKZC1+AeaILwx2xi4PaLluCWI0JmnMUlRwLCyf2zsTlzj91qFux/fU3bWG2/BA8x86telWcV1Xo6f/48XnrpJZSWlsJkMmHAgAGYNWsW2rVrp4tQoUK1noKTWageVLAdt9Reiy93sHLI1bMiCH/iYsyIsVk0X2BYzAymPtAnbD4KILTueJrUekpNTcU777yDH3/8Eb/4xS9UC0FEB1J2T7WDL5RriZ27dLNnhSd2vv+OhIhO7FZPOe9w/Ib8artaokeWNx85y4DWKPJYfvfdd7jnnnuQk5ODqqoqjBgxAhUV0VMTiFCGlnbPUK4ldoyb9fhIpAoX9stKw6uP9zdk8xdCGZwZZ3CfjgGBD3qg11h5e/1B3YpsAlfH+rLpQ/Dq4/11rUarSFG8/PLLmDlzJpKTk9G+fXs89NBDeOGFF3QTiogMSiKiwnEtqeYwSiM71EZuEcaC8weoXZkzKvVKfKxFt7HiaHZFVZFNKRTdnZqaGvTv39/797hx41BXV6ebUERkEHpggu24Fcq15NxmSnYlXKhjS6neSSiDZT07EX/MjG8FAsDjRyi4s5uuY6WlmEAVJ0M4HA5vvacLFy7A7SaHYTQilc2ppd0zlGvJ2YyV7nD6ZaVJFkIkWh7JiXaMH5aJrulJguHdUmNfaqx4Fj2sYBHMuBgzGhwu2eztaEaRoigoKMDkyZNRXV2N119/HZ988gmmTJmit2yExijJ5pTLgVBDsNeSyrxWu8MJRxZ3x+RY6k0dJmwWk2RUGzc25EKwhZAaK01O988mUXdApBHX0tQ/CsluNRuy/3UwKDI9jRkzBlOnTkVubi6cTif+9Kc/YezYsYo+oK6uDjk5OThz5oz3tWnTpmHDhg2ix//hD3/AqFGjMGrUKJSVlSn6HEKecGdzBotU5nX/G+WVD5ckVTh3JxqbQkvCU7IiJCWhDzaLyZvVz+BqRrTYbxIfawlpkSPnq6hrcIpmaAtldT855teGancaCop2FBMnTsR7772HW265RdXFDx48iOeffx4nT54EAFRVVaG4uBilpaW47bbbBM+ZM2cOOnTogNdffx179uzBiy++iPXr16v63NaEvylpUk6WaOx2uLM5g0Wqgu2himpJ85n/rinU0Eej3RsjILeqD/aa/W9MU1yyWyiHoODObgHXVVM4j3tdrBIyV+5D6nz+e9GYhyWGIkVx5coV/PTTT2jTpo2qi69btw7FxcWYNm0aAKCkpARDhw4VbXjEsiz+/ve/Y8eOHQCAgQMHokOHDqo+szUhZEp6e/1BTBjeXXAwhzubMxSkihdKmc/keoO3FhgAZp26tk0ckekz+Uop07gYs1dZMwBYwNt4SkwpyKHU/xVM4Typ4oAtxYwUDIoURWxsLAYPHozu3bv7KItFixZJnjd79myfvzm/xr59+wSPr66uhs1mw+rVq/H555/DbrfjueeeUyJiq0RoUuRC8oQeBCV1noyCWO0mEwNB89mSzUd8aj+1dljok/Q1uE/HgJWzWOmU5EQ7Xn28f8DrWqDE/xVs0me4k9miAVlFcfz4cQwdOhR33HEH0tL0vVEulwsXL15EQkIC1q5di7179+KJJ57w7jCUIpWKrpaUFH1ryofCJZGV3KVah6DcIwclIDEhBis+LcfFyw24pm0sJozogUE3G6NuFyfzrn2n0eAInPCl+hqzbOhmptaO3WrG0L7p2PHNmYDaRQwDjLitCx67v3fAeZNysvD2+oM+59itZkzKyVL0/Ozad1rRmFT7LKp9PviMHJSAkYN+perzhDDy/KEGSUXx4YcfYt68eejSpQu+//57vPbaaxgwYIBuwrRt2xYWiwU5OTkAgP79++Onn35CdXU1kpOTFV+ntdR6aiey7W+XaBeVO+vaJMx7pJ/Pa+H8jmI2Y/69fndzmWDvY7vVBLdbOAxRT/SwyeuJf5VUMTomx6LyUgPcPzeNuv2G9uh0TRysFgaOZs8x/pV7hcZK7ZVGwXOyrk2SHVv+5qELlxvw+up/Y9GGgz6fG8yzGMzzoSVGnz/4yNV6kox6WrlyJUpKSrB+/XosWrQIixcv1lxAPjabDbfffjs++eQTAMCBAwcQGxuLtm3b6vq50YpQlIaRQ/K4SYHfqU6oJIeYzbu+MfxKgoHHJh9NyCmJlLaxGNynIy7+6PDeTzcLfHHoHJaUHPEx+dU3urC45AiKFuwVLEfB/ab8c5oFcg3EEPMp1Te6ZMu1yKFlAmlrR9b01L59ewBAnz59cPnyZV2EmD9/PlJTU1FQUIDZs2fjhRdewOrVq2GxWPCXv/wFJhOVYhBCyJYqFfUUaaRsxtw2X2piSE60w9HsUt13QukKW4g2MWYAvk7ZaCY+1oJlz9+NSS9tDfgtpHwa1bUOLN/iacTDt9WL/aZrth9XZOOXcoQHW5CSQ43Tm/wR0kgqCsYv5d1sNgf1ITt37vT5e+7cuT5/T5061fv/1NRUWSc5cZVoCslTEp4rldPRKyMZew6ob7VamNMz6Iqy3Iq6R5ckHP++JmiFYxS48ijB3Auni8Wa7cd9xpvYdeoanF6FLhVtJBc1FWp4spImWuFsKRqtqFqq+ysOglAClwAnBj88V2pi+Hz/2aAm6n5ZaSEXfis/VYNu1yZFfe2o+kYXcv+wKejz/XdzSkOrxRI75X4XvUO3oyUJNdJI7iiOHTuGm266yft3Y2MjbrrpJrAsC4Zh8O9//1t3ASNFaVklNn5ZiguXG1rddlTLrbiSZkK9Mq4GKmhdcoMBUDh3J5IT7T4JXcFQfqpGM7mimdKySu94EAq5FkPovnPXEUqwDIc/IVqSUCONpKLYtm1buOQwFEbajobbfqrldy8tqxTNcuVzqKLa+381E48SuI+urnVgz4GzKMzpSYUCQ4Q/HoT8AI1NTkF/jtjugLtOJHwF0ZSEGkkkFUWnTp3CJYeh0LLTWyhEQmGp/e5iDzcnu5IoJf6DqmeXOhcLrN52zNuLO1Jwk1NcjBkMw6h2zkca//Hg7wcQa9MptzvQsiClUqIpCTWSUDiRAEbZjkbCfqrmu0uFu67ZflzVrqDw5b/7RDwJNavXgvpGF7J7B/YrCBecMk1OtKO+0QW71YzBfTpGtMlSMH4XqWeBK5AXF3M1+MVmNeZUI1TML9i+0y0Zxf0oWhNG2Y6GorDktvFi76v57qu3HRNUZMGU0rhwuQHvfXoU356pwReHzunac3j8ME9exO4DZyV3FtzOIznRjrqGJjiaQ5PJZjGhV0ZywC7x8/2eSC6G8WSYhxMz44kK8zf9yKHkWeDnU9Q1OA0bTRSJnUy0QYpCgHBtR+Um82AVlpjJ6tszNYLOXL5JS+l3Ly2rFFUGckrCbjUL7hianG7vpKkXXJvV8cMyMX5YpqiZxH9VWVpWieVbyn0UmFRJESG4YnpiO61wKwkugxq4Wq8pOdGOh3M9imPlZ0exa/9ZCIlVXetA0YK9on4EsUVEuM23hDaQohCAG8gbvzyhW9STEv9DsApLzGQlNQlzDzFXxE3OqRiK+Uuu1alecK0v+ShNyvI/zsR48gqU+ju4EtVGcqS/9VS25DjkK1OhnYaYz0xqEaG3+ZaS5/SBFIUI/bLSMHLQr3RLXlPiNA62imWwDyN3npKteCgPfCTqJvnXLOKj1PQgVIJaqVPc0exC4dydEXekc3C7UqXjsF9WmmCVWKFdgtQiQk/zrZGiFVsapCgihFL/g5JJjL+KSmkbK1qiWw7+QyzXHMgoE54cJgaY/LMNXgqlK9Fg+11wv4cR7hm/HpgaP5jcsUp8HHpGExklWrElQooiQmjlMBeqvmlm1NvP+SYtKR/HV+VVhqp5xDXDEcPNXl3hik0WSleipWWVmplOxBSt2t9NLfx6YHJ1tYReExuzShIrQ21VKodRohVbIqQoIoRWDnOhVZSLBWyM+GTkT1yMGU4XsLjkiKgNXUtHs8XMIMZm1iR/QMmUKmeCUFLYLj7WgnoN8x24aCqhTm96NWDiGglx9cCkTERC41BqzMrttMRalQLa+RWMEq3YEiFFESGC9T/4P1Riq6UmmVLPnEkGQEA0j97YrSbckpmqe4QTHykThJLCdkqUmlpzHD80lv/76+Xw9p/85XIhxF4TGrNSMkuNbS39CkoWX+TsDg5SFBGE73/gBvDikiOqegAHi5uF10GphZLgVqtibTH51De6sPdwoNljcJ+O6JqepGkJDz5icgXr0/EnFP9Dda0Di0uOYMXWYyHLIUSPLkmKK7dKrcD9lQW3K5G6llQ7VC39CnKLL3J2Bw8pigjgv6rplZGMvYcrZQdwsI5UIbhsXK3st9yqTUmtJqG+14Cn5hOXDMfdn7gYMxocbrhZ3/yFYExXYhNgpMJ1hdArI/385YaA14Ixf4pNtv1vTPMZw0quxZ2v5nU5pII/yNkdPKQodEaJUhAywQgNYC2dcm5WukkQH05uKVORWEivP1JtRYXCc0vLKrFss69Zg3WzuCUzFXsOCJcdNzMAY2ICkuMam5zeSrLcBLZhd4WhnPN6UV3rQOFc374w8bEWZHRKxLHva7ztUPvfKB1lJzbZclnu/Gx2JWYdKXPd7+fvQcGd3TSbxMnZHTykKHREaPWlxi7vP4C1LMGdnGhXlDTHNx3sPXxO0Pfhv1L3n+j5JaSbJXYaYuG5/rhY4KvyKohdaWBvjwmL74huaLxa0bS61oFlm48EKJPWRl2D06d0upsF9h6uRNf0QDMVh9j447dU5XYSSiZ4KXMdv+zHyEEJsteSg5zdwUOKQgfU1MyRggs75JthtAqflNshAL6mg5WfHRVUEmZGPja+qfnqlC4mOT+2X0mopdQugDNhcRNV0YK9AWYqF4vg+6OqIBL1m0JBzhSjxJ+jptqwXItZ/1a5oUCVYoOHFIXGKJnklCBUQK6+0QUzo43z9avyKsn3uRLYi0uOSIZrxsZIx8YL1fwRIpPnbA3VF1Nd6/Ca1fQoV64GTknYrQyanGzYlEYoPb7F6jit/Oyo4nEnVW2Yv8NW0jRTq98v2EhDghSF5gQzydksJp/ua5xPQKi6qYv1rL7fnDoQv3tjd9CTgdR5PbokoeKHWjQ5XbLHSk0cUjV//Dn4bbW3c5oWE4ORaioBCLnyrBosZgZj7+oe0j2QKyQph4mBjz+oX1aa4LOhRHFqaRqiSrHBQYpCY+QeKCGlIFQCXKrpD/cZY+/qjiWbj2i+SuWcm0oRqyKqtnAgZ67Quh1qNGCzMLBZhSO51JqvnC4WG3ZXhLSrAEJLsuTGDz+CL5jflExDxoAUhcZITXJKt7pyuxL+CssEQGwq6Jgci3PVDYqyl/mozQcQC+dVOzFwx2vdDjUaaHKysFqEb3wwC4HqWgcezu2JZZuPiLpi4mMtuCUzNaQ+4kpocrqxdLP63Q2ZhowDKQqNEXOYCXXNEssSlXtoORtyY5NT0h97tjowdl4v+A5M7nuphVOA3H3Sq5SFUVH7Xc2MuD+eK2sOBNrkuarI/PGnd5FHNdeWS9Ijwg8pCo0RmuT4bSDlavt/e6ZG0UMbbtMMwwBxMdJOdM6JLLUbsFlMyOiU6BOWCfhGPXE0OFqPkgiG2BgLWJYNUDB8c41Q9v+SkiOI+zlk2MULaw03cTFmOJrdPlF8ZGoyJsZsZNsC8G8DubjkCB57/XMs31IuUZ/JYxM2Qilqf9rYPQ50Kccil5shpiS4fsRFBTdhcJ+O3uxwEwMM7ZseUGrBiPdBDUoiekKhrsGJt57KxsO5PWX7U/P7m7M/nyu0Gwmmf3awvPVUNv7fPT2oX3UUQDsKaF8oTGyyDGfki9bwk9XEyM/OkIy04WoDfXumBnsPV/okaW0pPYUtpaeQnGiHo9nVIvwToQYZyO0suQn22zM1PrsKLlEtmLLwwSjnwX06AoAqxzffzEiKwfjovqOoq6tDTk4Ozpw5431t2rRp2LBhg+R5lZWV+M1vfuNznh7wV1rAVROQ0vIWQtczSsSOxazd8pC/6hMiLsbsjViSgstOlyrjoUWBvpaA1KTNmWhKyypFS8B8vv9sWHw8X5VXeWt0KYHMS9GHrori4MGDKCgowMmTJwEAVVVVePTRR/HZZ59Jnud2uzFz5kw0NzfrKR4A6UJhauGUjpGwW0NXFvwHOz87AzaLKeD9sXd1R2lZJRqb9J3k7VZGd5OOUZBWuizWbD9uiHyR+kYXSssqFec7ZHRKVL2L2LXvNIoW7EXh3J0oWrA36IUcERy6mp7WrVuH4uJiTJs2DQBQUlKCoUOHIikpSfK8JUuW4Pbbb8eJEyf0FA+AtoXCtKzuqgUeJyGDHl2SApzHSvHvNS0WSQMgLCGt0Wy+U0tjk1O0ZEuTk0WTMzw7LxMDWC2M5L3fsLtCcVhz+amagMx5uZ4VK7Ye81bWpfLg4UdXRTF79myfv6dMmQIA2Ldvn+g5//nPf/DPf/4TS5YswapVq/QUD4C2hcKMYnLi43SxQSkJqV7TQnblogV7BSeIaOmtbUQ4s1Gk60W5WcAp0wiL66ehdLO3etsxNDtZRb0hNuyuCCi/TuXBw4uhnNkNDQ146aWXMH/+fJhMwVvFkpPjFR87KScLb68/6DMQ7VYzJuVkAQBSUjxVK3ftO40Vn5bj4uUGXNM2FhNG9MCgmzv7XCulbSwuCNT9j0ZYFqoKsV2SqCpqt5oD7u/Qvun4+uj5FnO/9MQIRQWV1k9UKqqQ76TJ6cbGL08EjDuxsXWp1uF9Po2K0eVTiqEUxTfffIPq6mo89thjAIDz58/jt7/9Ld5++21cf/31iq9TXV0Ht8JlbNa1SZgwvHvAFjjr2iQA8CYm8duFXrjcgPlr96P2SqPPimbUHde1mIzidol2XLhwRdXxYjszrqeyv4nh/p+dsXyzAhEaXJisGie2ml2fVJKfFly43BAw7sTGltoxGm643uTRgMnESC6wDaUoBgwYgJ07rzZXGTJkCP76178iPT1d18+VC9Fbs/14gJ3Y6WKxpOSIt3Vpr4xkHKqoRpPTLfrgmRnAImHrlTIxMAxgs1xdmXPVXfWKEBKLShELJRYqW+7fl4A7b/W2Yz49KoKFq6Lrr4xaM8GMCa7RUK+MZMlwWu4+r9harpuviDP5ypXXp8ip8GKIhLv58+djzZo1kRZDFLEHjxu2XMgnN0lxzVsG9+noE1ZamNMT8bE20c8Z1Luj6Hss69sms9np6fLmH4GkBrvVLPh6fKxw6XCxUOKVnx0V7IHNdUvzP6++0aWJguMriX5ZaYIRWUZhcJ+OIcsm9nvxqWtwBpU0V13rwBeHzsEpsRHhJmaW1SfsjB/y6z9eWNYzLgFKzIsEYdlR8HcJADB37lyfv6dOnarovGiiyenGoYrqgJo1UuGM44dlKk5aanK68fXR87BaGAQbkWoxAyxrCqhLVXBnN8Hj5dpg+nOoolr0PK2ornVg+ZZyAJ6d4bdnaoKueKoXg/t0xPhhmeianoQlJUdUF2kEPL/LhOHdFX2/YIMHnC4WTpe4puiXlSYatBAqJgbeyV/oM1xu1ltenwg/xlx+GQx+eQQ1qImmkktoE6KuwRlSQlV9owsTR2QqLqEg1wZT7Hi9zUFOF4sVW8tRtGBv2JWExcxgcJ+OPmOEW28nJ9rxcG5Pn2Q0qTmc+x3iYsw+u4e4GLP3d+GUb6SQ+y2DLQHiZq9GO1Fva+NhKB+FURl7V3fJcs1iCE36cu0Yw1lim6swqnQLH0yfCC4RS++H3NHMwtEc/onk/93TA/2y0mQzk+WSMU0M8Orj/QWLKvLrhkVqsuQrPyEZ4mLMiLFZvD4F/2J/cvCfFeptbTxoR6GAfllpGNj7ahE7hoFsvLi/s620rBJFC/ZicckRWC2MoL21tKwyoHVoXIw5ZPs2w3gc6VLyKSEYH8DikiOtaiXI/c7+GcRy5jduVyZXKUBssjQxwe98lcBN+b0ykgXfb3C4fX0KbtY7xuXwH4tC40youjARPmhHoYDSskqfInYs6zE52K0mUdMP58jlzvfvfW2zmPBwbk+fY4R2LY5mN7qmJ6FrepJPtFFjk3KzE8sCsbEW2K3mkAofGtUHEEn4SV9CPaGVdnfjJlUps0vh3J2iEUATR3h2NHqV9ODkEzN9uf3C9biWvQV3dgvYIZkZT4l0/2AEDqHs/0k5Wd6QdSL8kKJQgNAqz+li8Ys4i3e77c+himrR3hNAYGbpht0VgqYtrq3lq4/3F2yXqtREVdfgVOwI5MsdH3u15wGnoIir8H9bsd3A0s1HZNuS1jU4UVpW6Q35FaO+0QUzExgazI2NLw+dDbpcixTsz4pAze6wutYhWvJFbpHibxKNppyElggpCgUE41zjVpNSEzn/fLlr+cM9REs3H1EU5aLUvuuvgPiTVmsyISmFf1+lnP2OZrdssprS3YCLDQwN5rijV0d8d/ZHzfMcOCWnxt9EpcRbDuSjUIBUpJKUzVhute/vwFP7+f2y0hSHQnLtU+WqbhqtsKGRsVvN6JWRjN/P34PCudKh3E4Xi9gYi6aNgfxL4nNKXo9kOM7/IeQ/MDOBJe0pIa5lQYpCAWKltfOzM0Tfk5vAhRx4Qu0jLGZG8oFTEwki12vDSL00jE5yoh1D+6Zj94FzipMH6xqcmJzTU9OkwCanG2u2H/cGSqhR8mralTia3Sgtq0S/rLSAkOrCnJ7Uqa6FQ6YnBSixs/q/J1VOQsqBx++1HR9rQcGd3SQfOLXhtGJVN43YSyMcyPkOxMjPzsD7O/4b4MSVggtHBpSbDJVQ1+AMLtOdgeIqfk4Xi8UlR7zlxP0TSQEq+d2SIUWhECk7q9h7QvkSUiutYGy5/kpMCULHtVaTU4zNEpSiCCa6iNsZcr9ZpAtIutyBlX3loF4QrRNSFDoRbLSHUoSK8wHKJjAhc1VrNDmFIxGQz7dnagIaQEW6Q10wVXubnG6f3QUpjJYPKQod0SvaQyxen4ull0LMydjaGgyZGYS94uzuA2dV9ZYOFW4BoUWlXiFod9F6IEURhUhl78o1T+InAvJpTUrCv71ruExA/vc4mL7sShS6kIlTbOcSrI+GgzrNtQ5IUUQhUnkdfxh7E95ad0B04vt8/1l8vv+sd8LhVp3hNsNECn42PBCcj8cf7l7KTeL+obFKP4/fllYo0ZJfJUAsUEIoo95mMWHsXd0lzV9KFElrGDetHVIUUYhU0bRBN3dG7ZVGWds3N6Fx5oP+N6Zh7+HKAOd7RqdEXTJ9I4VcD/DSskpVEUn81btctny2X78RJcrZf3cQrO+LK3O+YXcFLtU60I533nuflqNJoCe2zcIo2m1Qsb6WDymKKESuAi2gzucg1lPCzbItSkkomdDUOJlT2sZi1B3XiU7iHCbGoyT8/RNCv6NcHSTuc4Ix9XDn+ZfDmDiiR0CfDObn1+V2WpRY1zogRRGFSK0qd+07jfc+Para5yB0vJoy0XrCrby5dp1yRQnjYy1oaHT6lMvgd0+TW41LFT9kGGDKz2YgofpDaiZxvSPjlCInh9guKVLyEuGHFEWUIjYhrfi0vEXlQyQn2gWTu6SUxZtTB4qGD4tVd/W/l5ypRm0CpFqMUgdJTA6jKDMispCiaCFIVaqNVsTMGuOHZeIf/6kSzAHgymELTXxCLTalonaMMolHGroPBCmKKELMbKK25Hi0IJXFfvsN7QV3Fbdkpopej1psEkRwkKKIEqSa4rTE8hv8ukhCiDXQkeopTS02CSI4SFEYDDHbulDIJmc2aWkrYiWRNMHsDpREixEEEQgpCgPh3w61utaBJZuPwATxUFdOoWipLDg7v9ZlHzg5haKS+McocZYGszsgxyxBBAcpCgOxetuxgMmTZQGplCdustPSR1Hf6IRVTbMCBcTFmH2il/x3Tmp7Ige7OyDHLEGohxSFgVBbc4ebGLmJT6vibywLwUzdYDEzwNi7uvu8FmpPZNodEET4IEURpZgY36igb8/U6FIhNFT0nMBpd0AQ4UH3Vqh1dXXIycnBmTNnvK9NmzYNGzZsEDy+oqIC48aNQ15eHh544AGUl5frLaJh4HwDcph5ReIAjxlHLls53MTHWrBs+hC8+nh/mswJIsrRVVEcPHgQBQUFOHnyJACgqqoKjz76KD777DPRc55//nk8/PDD2LRpE5566ik8++yzeopoKAru7BbQpF6I2BiLz+S7ZvtxPcXywWJmEBdjBuDZLQzu0zFAZouZQcGd3cImE0EQ+qKr6WndunUoLi7GtGnTAAAlJSUYOnQokpKSRM8ZM2YMBgwYAADo3r07zp07p6eIhkJpyWu+iam0rFJ3k5N/SXL/HQJXlZRfj2nD7gosLjlCvgOCaAEwLKuiO3yQDBkyBCtWrEB6ejoAYPr06fjNb36D/Px8yfNefPFFOBwOzJkzR28RDUnhy38XbEKU0jYWy56/W/IYpaS0jcUtman47F/fwyUQg2u3mvHkmF9j0M2dFV1v177TeHv9QZ/yGmqvQRCEsTCkM5tlWbzyyis4ePAgVqxYofr86uo6uDVo2aY2EkdrRt1xnWAI6Kg7rvPKFYqSAIB5j/TD797YLagkAE+pjHc3l+H11f9WtDt4d3NZQA0mR7ML724ukwx/jfS9DoZolBmITrlJZn0xmRgkJ8eLvm84ReF0OvHss8+iqqoKK1asQEJCQqRFihhKQkBDSbbjOq5JheXymxkp6ZFM9ZQIouVhOEUxb9481NXVYdmyZbDZbJEWJ+LIhYCGkmzn33FNCDXVVgGqp0QQLRFDKIr58+cjNTUVw4YNw6pVq5Ceno4xY8Z439+0aVMEpTM2/ruOlLaxsuYohgGsZgaf7z+Lr8qrVH8m1VMiiNZFWJzZ4aal+CiCISUlAQ/O3CxoToqLMWPsXd1DLvch1kyIQ0kXOSG5o/FeR5vMQHTKTTLrS9T5KIjQGXtXd5/igsDVMhpqSpIP7tPRx0cBUD0lgmiN6J6ZTYSffllpKMzp6fULJCfaUfhzJrdSp3J8rAXjh2Vi4ohMn+tINRMiCKJlQjuKForYql5JlJTNYvJmVtPugCAI2lG0MvKzM2Cz+P7sZuZqnSnaNRAE4Q/tKFoZVJ6bIAi1kKJohZA5iSAINZDpiSAIgpCEFAVBEAQhCSkKgiAIQhJSFARBEIQkLdKZbTLJd4mLxLXCRTTKDESn3NEoMxCdcpPM+iEnZ4us9UQQBEFoB5meCIIgCElIURAEQRCSkKIgCIIgJCFFQRAEQUhCioIgCIKQhBQFQRAEIQkpCoIgCEISUhQEQRCEJKQoCIIgCElalaKoq6tDTk4Ozpw5AwD4xz/+gdzcXNx99934y1/+EnB8dXU18vLyvP+GDBmCPn36AAC++uor3Hrrrd73ZsyYETa5AWDatGnYsGGD4PG1tbX47W9/ixEjRmDcuHG4cOECAKCpqQlFRUUYMWIERo8ejYqKCt1kDkbuiooKjBs3Dnl5eXjggQdQXl4OAPjhhx/Qp08f772ePHmyYWQWGwfhvNdqZc7Pz/fKO2zYMPTs2RMXL16M6H1eu3YtcnJykJubixkzZqCpqSngnLNnz2LcuHEYPnw4HnvsMdTX1wMQH+9GkXvfvn24//77kZeXh4kTJ+KHH34AEN45JGTYVsKBAwfYnJwcNisriz19+jTb0NDAZmdns99//z3b3NzMFhYWsrt27RI93+VysQ899BD78ccfsyzLskuXLmUXLVoUdrkrKyvZRx55hO3Vqxf74YcfCp7z0ksvsf/3f//HsizLfvTRR+zUqVNZlmXZJUuWsLNmzWJZlmW/+uordsyYMYaS+8EHH2Q///xzlmVZ9h//+Aebm5vLsizLbt261Su3ngQjs9g4CNe9DkZmPkVFRezChQtZlo3cff7uu+/Yu+66i71y5QrrdrvZadOmscuXLw8477e//S27efNmlmVZ9u2332ZfeeUVlmXFx7tR5B48eDBbXl7OsizLrl+/nn300UdZlg3fHKIFrWZHsW7dOhQXFyM1NRUAcOjQIXTp0gWdO3eGxWJBbm4utm7dKnr+hx9+iNjYWOTm5gIADh8+jC+//BK5ubl49NFHce7cubDIXVJSgqFDh2LEiBGi5+zatcsrZ05ODvbs2YPm5mbs2rULI0eOBADccsstuHTpEs6ePWsYuceMGYMBAwYAALp37+69p4cPH8bx48eRl5eHCRMm4NixY4aRWWwchOteByMzR2lpKY4ePYqHH37Y+10icZ9tNhuKi4sRHx8PhmHQrVu3gHvV3NyMr7/+GsOGDQPg2RVxz6vYeDeC3E1NTZg6dSoyMzMBBI7rcMwhWtAiq8cKMXv2bJ+/z58/j5SUFO/fqampqKqqEjzX5XJh0aJFWLBggfe1hIQEjBgxAnfffTfWrFmDp59+Gu+//77uck+ZMgWAZzsrBv+7WSwWxMfH49KlSwHfOSUlBZWVlejYsaMh5M7Pz/f+/80338Sdd94JALDb7Rg5ciQefPBBfPHFF3jiiSewZcsW2Gy2iMssNg7Cda+DkZnjzTffxNNPPw2z2Qwgcve5U6dO6NSpEwDg0qVLWLVqFebMmeNzzOXLlxEfHw+LxTNlpaSkeJ9XsfHevn37iMtts9mQl5cHAHC73Xj77be94zpcc4gWtJodhT9utxsMc7W0LsuyPn/z+eKLL/DLX/4S3bt39772xz/+EXfffTcAoKCgAN9++y2uXLmir9BBwrIsTCZTwHfkXjcSLMti3rx5OHjwIJ577jkAwO9+9zuMHTsWJpMJ2dnZaNOmDb777rsIS+pBbBwY/V7/97//xeXLlzF48GDva5G+z1VVVZg4cSLuu+8+3HrrrT7vCT2fYs9ruO+1lNwcTU1NeOaZZ+B0OvHII48AiK45xDgjN8ykpaX5OL0uXLjg3VL6s337dtxzzz3ev91uNxYuXAiXy+VzHLcyizSpqam4ePEiAMDpdKK+vh5JSUlo3749zp8/7z3u4sWLot85EjidTjzzzDM4fPgwVqxYgYSEBADAypUrcfnyZe9xLMt6V5aRRGocGP1e+49pILL3uaKiAg8++CBGjx6NJ554IuD9du3a4cqVK957zX9exca7EeQGgPr6ekyZMgVOpxMLFy6E1Wo1/BziT6tVFL/+9a9x4sQJnDp1Ci6XC5s3b8bAgQMFjz1w4AD69u3r/dtkMmHbtm347LPPAAAbN27Er3/9a7Rp0yYsssuRnZ2NjRs3AgC2bNmCvn37wmq1Ijs7G5s2bQIAfPPNN7Db7bqYnYJl3rx5qKurw7Jly7xKAgC+/vprfPDBBwA8kSJutxvXX399pMT0IjUOjH6v/cc0ELn7XFdXh8mTJ2Pq1KkoLCwUPMZqtaJv377YsmULAM+95p5XsfFuBLkBoKioCF26dMEbb7zhNeMZfQ7xJ/LLsghht9sxd+5c/O53v4PD4UB2djaGDx8OAJg5cyaGDBmCoUOHAgBOnz6NtLQ0n/PnzZuHWbNm4Z133kG7du3wyiuvhP078Jk/fz5SU1NRUFCAqVOnYvr06bj33nuRkJCA1157DQAwfvx4vPDCC7j33nths9kiLjNwVe5hw4Zh1apVSE9Px5gxY7zvb9q0CTNnzsT06dOxadMm2O12vP766xE14/Dvtdg4MNq95ssMeMa0vw0/Uvf5gw8+wMWLF7F8+XIsX74cADBkyBBMnTrV51ksLi7G9OnTsXDhQnTo0AF//vOfAUB0vBtB7g4dOmDHjh3o2rUrRo8eDcCzA1q8eLHh5hApqMMdQRAEIUmrNT0RBEEQyiBFQRAEQUhCioIgCIKQhBQFQRAEIQkpCoIgCEKSVhseSxBKePnll/H1118D8CRXderUCTExMQA8lUO5/2vJlStX8MQTT2DFihWaX5sggoHCYwlCIUOGDMH8+fNx44036vo5Z86cQW5uLvbv36/r5xCEUmhHQRAq+emnn/Diiy/i1KlTqKmpQVxcHF577TVcf/31GD9+PH7xi1/gu+++Q0FBAQYOHIjnnnsOP/74I1JSUsCyLEaOHIn8/Hz8+9//xmuvvYaGhgaYTCY8+eSTGDx4MGbMmIHGxkbk5eVhw4YNeOedd7Bt2zZYrVa0bdsWc+bMMVQ5EKLlQ4qCIFSyZ88eJCYmYu3atQCAF154AatWrcKsWbMAAImJid5SEw888ADy8vIwduxYVFRU4L777sPIkSPx448/YsaMGVi6dCnS09NRVVWF//mf/0H37t0xZ84c5ObmYtOmTTh37hzee+89lJaWwmazYdmyZTh06JC3AilBhANSFAShkuHDh6Nz585YuXIlTp06ha+++srb+RCAt4bSjz/+iEOHDuFvf/sbACAjIwO33XYbAE+tpQsXLvgUkmMYBseOHcOvfvUr72vt27dHZmYmRo8ejYEDB2LgwIHo169fOL4mQXghRUEQKlm9ejXWrVuHcePGITc3F0lJST5tSLnCblwlUL4bkHvN5XIhIyMD69ev975XVVWFdu3a+fRFMZlM+Nvf/obDhw+jtLQU//u//4sBAwZg2rRpun5HguBD4bEEoZIvv/wSo0ePxpgxY3Dddddh586dAeWiASA+Ph433XSTt3f16dOnUVpaCoZh0Lt3b5w6dcobUVVeXo5hw4ahqqoKFosFLpcLLMvi6NGjyMnJQUZGBh555BFMmjQJhw8fDuv3JQjaURCESgoLC/HCCy94S3L37t0bx48fFzx23rx5mDlzJlavXo327dsjPT0dMTExaNeuHd5880288sorcDgcYFkWr7zyCtLT0+FyudCrVy/ce++9WLVqFUaMGIH77rsPbdq0QUxMDJ5//vlwfl2CoPBYgtCThQsX4u6770ZGRgauXLmCkSNHYvHixejatWukRSMIxdCOgiB05Je//CWefvppmEwmuFwuPPzww6QkiKiDdhQEQRCEJOTMJgiCICQhRUEQBEFIQoqCIAiCkIQUBUEQBCEJKQqCIAhCElIUBEEQhCT/H7qQEb3rv5qZAAAAAElFTkSuQmCC",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.scatter(y_train, y_hat)\n",
-                "plt.xlabel('Targets')\n",
-                "plt.ylabel('Predictions')\n",
-                "plt.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 84,
-            "metadata": {},
-            "outputs": [
-                {
-                    "name": "stderr",
-                    "output_type": "stream",
-                    "text": [
-                        "C:\\Users\\eebal\\Anaconda3\\lib\\site-packages\\seaborn\\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
-                        "  warnings.warn(msg, FutureWarning)\n"
-                    ]
-                },
-                {
-                    "data": {
-                        "text/plain": [
-                            "Text(0.5, 1.0, 'Residuals')"
-                        ]
-                    },
-                    "execution_count": 84,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                },
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEXCAYAAACzhgONAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABDCklEQVR4nO3dd3xUVf7/8deUtElCGpNCQi+hN0MREEHpEFFEvwq2VbBg+coKLIusICvqwwauiiK6P13B/cICIeAqYkUEFBCISQw1Aum9TNpkyv39ERmJkCFlJjNJPs/HgweZOXfuvLkk+cy959xzVIqiKAghhBB1ULs6gBBCCPcmhUIIIYRdUiiEEELYJYVCCCGEXVIohBBC2CWFQgghhF1SKIQAoqOjiY2NZebMmdx8881MnjyZW2+9lcTExEbv8+mnn+bAgQOXPZ+YmMgNN9zQ6P2mp6czZMiQRr9eiIbSujqAEO7iww8/JDg42Pb4/fff57nnnmPz5s2N2t/q1asdFU0Il5JCIcQVmM1msrKyCAgIsD339ttvs2fPHqxWK5GRkaxYsYKwsDD27NnD22+/jUqlQqPRsGTJEoYNG8bdd9/N3LlzmTJlCh9//DEffvghfn5+9OrVy7bPN954g6KiIp555pnLHh8/fpyXX36Z6upq8vLyGDVqFM8//3ytnGfPnuXpp5+muroaRVGYPXs2c+fObZ6DJNoMKRRC/Obee+8FoKioCC8vL8aPH88LL7wAwI4dOzh16hT/+c9/0Gq1bN68meXLl7NhwwZeeuklXnnlFQYPHsz333/Pjz/+yLBhw2z7TUlJ4c033yQ+Ph69Xm8rClfzr3/9iyeeeIIRI0ZQXl7OjTfeSFJSEoGBgbZt3n//fW644QYefPBB8vLyeP7557nzzjtRq+WqsnAcKRRC/Obipafk5GQefPBBRowYQUhICADffPMNiYmJ3HrrrQBYrVYqKysBmD59Oo899hjXX389o0ePZv78+bX2e/DgQUaPHo1erwfgf/7nf/j++++vmufFF1/ku+++45133iE1NRWj0UhFRUWtQjFx4kT+8pe/8PPPP3PttdeyfPlyKRLC4eQ7Sog/6NevH3/9619ZunQp6enpQE1hmDdvHvHx8cTHx7Nt2zb+/e9/A7Bw4UI+/vhj+vfvz/bt26946efSKdU0Go3ta5VKVavNZDLZvr7rrrvYu3cv3bp149FHHyU0NJQ/Ts02fvx4Pv/8c6ZOnUpKSgqxsbFkZ2c75kAI8RspFEJcwYwZMxg4cKDt0tOYMWPYunUrZWVlALz++ussWbIEs9nMDTfcQGVlJXfeeScrVqzg5MmTVFdX2/Y1evRo9u/fb/sFHhcXZ2sLCgoiOTkZRVEoKyvjm2++AaC0tJTExEQWLVrEpEmTyM7O5sKFC1it1lo5n3rqKT799FOmT5/OihUr8PPz48KFC049NqLtkUtPQtThb3/7GzfddBP79u3jtttuIycnh9tvvx2VSkVERAQvvvgiWq2WZcuWsWjRIrRaLSqViueffx5PT0/bfqKjo1m8eDH33nsvvr6+DBw40NZ2cf+TJk0iLCyM4cOHoygK7dq148EHH+SWW25Bp9MRFhbG0KFDOX/+PB07drS9fsGCBTz99NNs3rwZjUbDhAkTavWPCOEIKplmXAghhD1y6UkIIYRdUiiEEELYJYVCCCGEXVIohBBC2CWFQgghhF1SKIQQQtjVKu+jKCoqx2p1zKjfkBA/CgrKHLIvZ3DnfO6cDSRfU0m+pnGnfGq1iqAg3zrbW2WhsFoVhxWKi/tzZ+6cz52zgeRrKsnXNO6e7yK59CSEEMIuKRRCCCHskkIhhBDCLikUQggh7JJCIYQQwi4pFEIIIeySQiGEEMKuVnkfhRCihtkKRpO5znYvDy1a+bgorkIKhRCtmNFk5nBKTp3tw/qEofWSXwPCPvksIYQQwi4pFEIIIeySQiGEEMIuKRRCCCHscmovVllZGXfccQfvvPMOUVFRtudTUlJYunSp7XFhYSEBAQF88sknxMXF8eqrrxISEgLAuHHjWLhwoTNjCiGEsMNphSIhIYHly5dz7ty5y9r69OlDfHw8AJWVldx2222sXLkSgKSkJJYuXcqMGTOcFU0IIUQDOO3S05YtW1ixYgWhoaF2t1u/fj3Dhg0jJiYGgMTEROLi4oiNjWXRokWUlJQ4K6IQQoh6cFqhWL16te2Xf10MBgNbtmzhsccesz2n1+tZsGABO3fuJCIiglWrVjkrohBCiHpw6Z02O3fuZMKECbb+CIC33nrL9vW8efOYOHFig/cbEuLnkHwX6fX+Dt2fo7lzPnfOBq0/n1JYgb+fd53tOp0X+mBdo/ff2o+fs7l7votcWii+/PJLHnroIdtjg8HAtm3buO+++wBQFAWNRtPg/RYUlDlsiUG93p+8PIND9uUM7pzPnbNB28hXYTRjKKuqu73CSJ7F0qh9t4Xj50zulE+tVtn9gO2y4bGKopCcnMyQIUNsz+l0Ot577z0SEhIA2LhxY6POKIQQQjhOsxaK+fPnk5iYCNQMifXw8MDLy8vWrtFoWLt2LStXrmTq1KkkJyezePHi5owohBDiD5x+6enrr7+2fb1hwwbb1yEhIezfv/+y7WNiYoiLi3N2LCGEEPUkd2YLIYSwSwqFEEIIu6RQCCGEsEsKhRBCCLtkaSshWrA/LnVqtSocSslhf2IW+cVV+Pl4oA/0pn+3EDxkzVPRSFIohGjBLl3qtKrazNc/ZZBfUkWQvxcRITpQQVJqIRdyyhg3JJIAP08XJxYtkRQKIVqBiioTew6lUV5lZvSAcLp1aIdKpWJQLz2fHzzPdwmZfHE4jemjOuMja2SLBpJzUSFaOIvFyjdHM6k0WpgwLIrukQGoVCpbe3iIjgkxURhNFvYlZDlsehvRdkihEKKF+zEll4LSKkYPDCcs6MoT/AW382ZE3zCyCys4mVbcvAFFiyeFQogWLCm1gDPpJfTvFkynMPszkXaPbEd4sI6fzxRQbWrcRICibZJCIUQLVWk0s/mr0wT6eTKoR/urbq9Sqbimtx6jyUJiakEzJBSthfRqCeHG/jj89VI7vkulpKyaKSM7oVGrrrjNH4W086Zbh3acvFDMgG4hV3+BEEihEMKtXTr89VKGimq+OZpBTN9Q9IE+Ddpn3y5BpGaWcjq9hNEDOzgqqmjF5NKTEC3QsdP5qFQwdWTnBr82uJ03YUE+nDhfhEVGQIl6kEIhRAtTZDByLstAny5BBPh5Xf0FV9CnSxDlVWaSpK9C1IMUCiFamMSzBWg1Kvp1CW70PqL0fnh7ajh0hctaQvyRFAohWpCSMiPnsg307hSEl2fD15O/SK1W0TWiHcmphZRVmhyYULRGUiiEaEGSzxWhUavo2zWoyfvq1qEdFqvCkRO5DkgmWjMpFEK0EMZqC79mltKtQzu8PZs+YDG4nRfhwToOJGc7IJ1ozaRQCNFCnMkowWJV6N256WcT8NsNeNF6zqaXUFxmdMg+Revk1EJRVlbGjBkzSE9Pv6ztzTffZPz48cycOZOZM2eyadMmADIzM5k7dy5TpkzhkUceoby83JkRhWgRrIrCyQvFhAX5EOTfuJFOVzKwR3sU4PjpfIftU7Q+TisUCQkJ3HnnnZw7d+6K7UlJSbz22mvEx8cTHx/P3LlzAXj22WeZM2cOu3fvpn///qxbt85ZEYVoMTLyyimrNDnsbOKiiBAdoYE+HD2d59D9itbFaYViy5YtrFixgtDQ0Cu2JyUlsX79emJjY1m1ahVGoxGTycThw4eZPHkyALNmzWL37t3OiihEi3HifBE6Ly0dQ/0cul+VSsWQXu1JOVdEpfHKU4UI4bQpPFavXl1nW3l5OX369GHx4sV07tyZpUuXsm7dOubOnYufnx9abU0svV5PTk7Dx3mHhDj2h0mvtz8rp6u5cz53zgbun0+n88KsQFZBBSP6hRPQrvZ0HR4eWvz9vOt8/dXaPb08GNI7nM8PpfHzuSKG9w2v1e7jrcVfV/eqeO5+/CSfY7hkridfX182bNhge3z//fezbNky5syZU2vBFeCyx/VRUFDmsMVZ9Hp/8vIMDtmXM7hzPnfOBi0jX0WFkaMpOahVKjqF+mIoq6q1jclkvuy5hrSXVRhJzynB00PNlz+ep7Kyulb7sD5hVJVfuaO7JRw/yVc/arXK7gdsl4x6yszMZOvWrbbHiqKg1WoJDg7GYDBgsdTMlZ+Xl1fnpSsh2oKqajNnM0rpEuHvtCVM1SoVHUJ8ycgvR1Fk7idxOZcUCm9vb15++WXS0tJQFIVNmzYxceJEPDw8iImJ4dNPPwVgx44djB071hURhXALh1JyMVmsRHcKdOr7ROp9qaq2UGSQYbLics1aKObPn09iYiLBwcGsWrWKRx55hClTpqAoCn/6058AWLFiBVu2bGHatGkcOXKEJ598sjkjCuE2FEVh3/FMQgK8GzyVeENFhPgCkJEvw9HF5ZzeR/H111/bvr60X2Ly5Mm20U2XioyM5KOPPnJ2LCHc3s+n88kurGD0gPCrb9xEOm8tQf5eZOaVy4JG4jJyZ7YQbuqT/an4+XjQJbx5RsZ0aO9LbnElJrO1Wd5PtBxSKIRwQ/kllRxKzmbUgHA0mub5MQ0P1qEokFdc2SzvJ1oOKRRCuKFvj2UCMGZgRLO9Z2iQDyoV5BRWNNt7ipZBCoUQbqbaZOG7hExG9I8gyL/um+UczUOrJqSdN9lSKMQfSKEQws0cSsmlrNLEjDFdm/29w0N05JdUST+FqEUKhRBuRFEUvvopncj2vgzo3r7Z3/9iP0VukfRTiN9JoRDCjZzJKOF8joEbrolq1PQ1TaUPlH4KcTkpFEK4kd0/XsDPx4NR/Z1/78SVeGjVtA+QfgpRmxQKIdxEdmEFx0/nM35IJF4eGpflCA/WUVAq/RTid1IohHATew5dQKNRc8M1US7NEWbrp5CzClFDCoUQbqC0vJrvE7MZPSCcAN+6139oDqFBPqhVkF0oHdqihhQKIdzA10fTMVusTBrW0dVR0GrUtA/0kX4KYSOFQggXM5osfH00g8E92ttmcXW18GAdhSVVVFXL8qhCCoUQLvfN0QzKKk1MHdnJ1VFsQoN8UIBfs0pdHUW4AZcshSpES2C2gtFU9ydqLw8t2iZ+1KqoMvPfg+fo3y2YnlGBTduZA+kDfVABZzNKieklq0y2dVIohKiD0WTmcEpOne3D+oShbeLypJ8fukB5lZlbx3Zv0n4czUOrJridF6kZJa6OItyAXHoSwkXyiyvZfegCw/uE0rmZ1pxoiNAgHeeyDJgtcj9FWyeFQggX+fjL06hVKm4f38PVUa4oNMgHk8XKuWyDq6MIF5NCIYQLHDmRy/Ez+dw0ugvB7ZpvKvGGCA2qWaf7dFqxa4MIl3NqoSgrK2PGjBmkp6df1vbll18yc+ZMbrrpJhYsWEBJSc210Li4OMaMGcPMmTOZOXMma9ascWZEIZpdYWkVH+4+QZdwfya6wX0TdfHx0hIa5MPpdOmnaOuc1pmdkJDA8uXLOXfu3GVtZWVlrFy5km3bthEWFsbrr7/OG2+8wfLly0lKSmLp0qXMmDHDWdGEcBmT2cI78cmYLQoPzeyHtpmWOW2sbh3akXi2AKuioHbBbLbCPTjtu3TLli2sWLGC0NDLh9aZTCZWrFhBWFgYANHR0WRlZQGQmJhIXFwcsbGxLFq0yHamIURLZLZCudFMudGModLEuh3JnMkoYe6kXvjpPHH3efe6RwZQXmUmM7/c1VGECzntjGL16tV1tgUFBTFx4kQAqqqqePfdd7n77rsB0Ov13H///QwdOpTXXnuNVatW8eqrrzbovUNC/Bof/Ar0evcbkXIpd87nztnAfj6lsAJ/v7r7D3Q6L/TBOrv7zy2s4ERqASazlS8PXyA1o4Qxgzrg4+PJibQShkaH2t2HTudlN4OHh9ap7VGhfrDnFNnFVQzpe/n63S35/9cduHu+i1x6H4XBYODRRx+ld+/e3HLLLQC89dZbtvZ58+bZCkpDFBSUYbUqDsmo1/uTl+e+oz7cOZ87Z4Or56swmjGUVdXdXmEkz2Kx+x4VRjMXskrYn5hFYamRmN56ukX42/Zrbx96vT8VFUa7GUwm+xmb2u4b1Y4AP0+OpuQQ07P2inst/f/X1dwpn1qtsvsB22UXSHNzc5kzZw7R0dG2sw+DwcAHH3xg20ZRFDQa183LL0RjKYrCifNF/OuzE/z3wDkqqsyMHxpJ3y7Bro7WICqVip5RgZxKL3Z1FOFCLjmjsFgsPPzww0ydOpUFCxbYntfpdLz33nsMGTKEQYMGsXHjxkadUQjhKkUGI/sTs/j+5yxyiyvx8dLQs2Mgg3qE4O3ZMidC6BUVwJETueSXVNI+wMfVcYQLNOt37vz583niiSfIzs7ml19+wWKx8PnnnwPQv39/Vq9ezdq1a1m5ciVVVVV06dKFl156qTkjCtFgiqKQcr6IPYfTSEwtQFGgd6dAZo7pSu8uQSScyXd1xCbp1TEQgNPpJVIo2iinF4qvv/7a9vWGDRsAGDBgACdOnLji9jExMcTFxTk7lhAOkV9cyf/77AQp54sI8PNk2sjOjBkYQVhQTQd1ubHlT9MdpffDx0vD6bRiru3nmrW8hWu1zHNhIdxA8q+FfPjZCUDhzgk9GTe4Ax7a1tenplar6B4ZwCm58a7NkkIhRCNk5JWz93gG4SG+PDC9D+0Dfai2KFRbap9BOGjwncv1igpk+3eplFWa8PPxcHUc0cykUAjRQEWGKr49lkF4iI7RA8L5Nau0zgV+BvXSN3M65/i9n6KYIT1bx79J1J97zx8ghJsxW6x8dzwLTw8182f2w8ujaZeaVGqV7c7tP/7JLaxwmzOSrhH+aDUqTqfJ5ae2SM4ohGiAY6fyKSmvZkJMFP46zybvz2iykHAq74pt/n7edOvgHnfuemg1dIloJ/dTtFFyRiFEPZWUGTlxoYheHQPo0N7X1XGaXa+oQM5nGzCa7N+NLlofKRRC1NNPp/LRqtUM6tH+6hu3Qj2jArBYFVIzr9wfI1ovKRRC1ENecSXpuWX07xaMTxPXyW6pekYFoEIWMmqLpFAIUQ/Jvxbi6aGmd+cgV0dxGZ23B5F6P05LP0WbU69C8fjjj3PgwAFnZxHCLRkqqrmQU0Z0x0A8tG37s1XPjgGcySzFYnXzhTSEQ9Xru37ixImsW7eOyZMn8/7771NcXOzkWEK4j1/OFaFWqYju1HbPJi7qFRWIsdrChZwyV0cRzaheheKmm25i48aNrFu3joKCAmbPns3ixYv5+eefnZ1PCJcyW6ykZpbSOdwPnXfb65v4430eUWE1axYknSskt7DC7VfoE45R7+98q9XK+fPnOXfuHBaLhZCQEFauXMm4ceN44oknnJlRCJe5kFOGyWylZ1Sgq6O4xJXu8/Dz8eCnE7l00PvTu2MA2jbaud+W1Ot/eM2aNWzfvp2OHTsyZ84cXn/9dTw8PKioqGD8+PFSKESrdSajBD8fD8KCZXrti0KDfMjML0dR3OS2ceF09SoUhYWFbNiwgd69e9d6XqfTNXg9ayFaisLSKrILKhjUIwSVSuXqOG4jNMiH1MxSisuMro4imkm9+igsFstlReLiWcSYMWMcn0oIN3D0t0su3Tq0c3ES9xIWVHN2lZVf7uIkornYPaNYsWIFOTk5/PTTTxQWFtqeN5vNpKWlOT2cEK507FQ+Ie28HTKnU2vSztcTLw8NmXlSKNoKu4Vi9uzZnD59mpMnTzJ58mTb8xqNhsGDBzs7mxAuk1dcyYUcA0N7tc3pOuxRqVSEB/uQkVcm/RRthN1CMWDAAAYMGMDo0aMJCwtrrkxCuNyRk7kAdA53j9lb3U14iC/nc8rIK67EL1wWMmrt7BaK//3f/+X1119n3rx5V2zftWuX3Z2XlZVxxx138M477xAVFVWrLSUlhaeffpry8nJiYmJ49tln0Wq1ZGZmsnjxYgoKCujatSuvvPIKvr5tb6ZO4Vo/ncyjY6ifXHaqQ0RIzZrgJy8U0zVc+nBaO7uFYv78+QD87W9/a/COExISWL58OefOnbti++LFi3nuuecYPHgwy5YtY8uWLcyZM4dnn32WOXPmMH36dN566y3WrVvH4sWLG/z+QjRWSZmR1MxSpo/q7Ooobstf54GfjwenLhQzZXgnV8cRTmZ31FP//v0BGD58OBEREQwfPpyKigoOHz5Mnz597O54y5YtrFixgtDQ0MvaMjIyqKqqsvVzzJo1i927d2MymTh8+LCtP+Ti80I0p4SzBQD07xbi4iTuS6VSERXqx6n0YqzST9Hq1Wt47DPPPMOGDRs4e/Ysy5cvJz09nWXLltl9zerVq4mJibliW25uLnr97+vu6vV6cnJyKCoqws/PD61WW+t5IZpTwpl8Qtp5EdkGFydqiKhQfyqqzKTJvE+tXr1uuEtKSmLr1q28++673HLLLTz11FPMmjWr0W9qtVpr3cCkKAoqlcr296Uac6NTSIhfo7NdiV7v3h2a7pzPnbMZKqpRNLXXvK42WUj+tZAxgyLRenrg7+dd5+s9PLR22+uzTUtuj/rt2F3IryBmQIc69+FK7vz9B+6f76J6FQpFUVCr1ezfv5+HH34YgKqqqka/aXh4OHl5v88fk5+fT2hoKMHBwRgMBiwWCxqNhry8vCteurqagoIyrA5alV6v9ycvz+CQfTmDO+dz52wAikbD3p8u1HouPa+MarMVFQqVVdUYyur+PjeZzHbb67ONvXZ/P+8mvd7Z7f5+3oQF+3D4lyyu6+9+oyLd/fvPnfKp1Sq7H7DrdempU6dOzJ8/n/T0dIYPH85TTz1FdHR0o0NFRkbi5eXFTz/9BEB8fDxjx47Fw8ODmJgYPv30UwB27NjB2LFjG/0+QjRUZn45GnXNfQLi6np1DOJUWjFmi0wj25rVq1C88MILzJgxg48++sj2y/z5559v8JvNnz+fxMREAF555RVeeOEFpkyZQkVFBffccw9Qczf4li1bmDZtGkeOHOHJJ59s8PsI0VhZ+RWEBfug0bTtBYrqK7pTINUmq6yj3crV69KTTqcjJiaGkpISkpOTGThwIKmpqfTr1++qr/36669tX2/YsMH2de/evdm6detl20dGRvLRRx/VJ5YQDlVWaaKkvJqeHQNcHaXF6BkVgEoFKeeL6NUx0NVxhJPUq1C8/vrr/POf/yQk5PfhgiqViq+++sppwYRobhcnuesgo53qTeftQZdwf5J/LWTmmK6ujiOcpF6FIj4+nj179sg0HqJVy8wvR+elJcBX7sZuiAHdQth14BxllSb8fGQ6j9aoXhdiIyIipEiIVs2qKGQVVNChva+sPdFAA7u3R1EgMbXA1VGEk9TrjOLaa6/lpZde4sYbb8Tb+/cx1fXpoxCiJSgoqaLabCWivc7VUVqcLhH++Os8SDxbwLX9wl0dRzhBvQrF9u3bAWpNpyF9FKI1yfytfyIiRPonGkqtUjGgWwgJZ/KxWhXUajkja23qVSguHbkkRGuUmV9OSIA33p6aq28sLjOwewgHkrI5m1lCz6hAV8cRDlavPory8nJWrVrFvffeS3FxMc888wzl5bK6lWgdqk0W8kuqZLRTE/TvGoxapeLns9JP0RrVq1A899xz+Pv7U1BQgJeXF2VlZTzzzDPOziZEs8gqqEBRoEOI9E80ls7bg55RASSckULRGtWrUKSkpLBw4UK0Wi0+Pj688sorpKSkODubEM0iq6AcD40afaBM29EUA7uHkJ5XRmFp4+eBE+6pXoVCra69mcViuew5IVoiRVHIzK8gPEQnnbBNNLB7zQ25P8sw2VanXr/thw0bxssvv0xVVRX79u3jscceY8SIEc7OJoTTGSpMlFWa6CDDYpusQ3tfQtp587Ncfmp16lUoFi1ahE6nw9/fn7Vr19K7d2+WLFni7GxCOF2mTNvhMCqViiE925P0ayGVRrOr4wgHumqh+OKLL7j77rt57733SE9Px9/fn6FDh+Ll5dUc+YRwqsz8cvx1HvjrZNoOR4jpHYrZYiXhbL6rowgHsnsfxWeffcaaNWt44okn6N27NyqVisTERFavXo3RaGTSpEnNlVMIhzOZrWQXVtA9UmaLbSyVWkX5JWcPEXpf2vl68uMvuQzo3h4ALw8tWunSbNHsFop//etffPDBB3To8Psyh927d2fQoEEsW7ZMCoVo0U6nFWG2KLI2dhMYTRYSTuXVei4iREdSagEHErPw0KoZ1icMrVe97u0VbspunS8vL69VJC7q2rUrRqPRaaGEaA6JZwtQq1SEBUtHtiN1DvfHYlXIyCtzdRThIHYLhUZT93QGiuKYNamFcJWks/mEBfvgIddFHCo0yAdvTw3ns91jPWjRdPITItqkgpIqMvPL5bKTE6hVKjqF+ZORX47JLGtptwZ2LxyePHmSoUOHXva8oihUV1c7LZQQznZx7YQOeikUztAl3J9TacW24ceiZbNbKL744osm7XzXrl28/fbbmM1m7r33XubOnWtrS0lJYenSpbbHhYWFBAQE8MknnxAXF8err75qW3p13LhxLFy4sElZhLhUYmoBIQHespqdk1y8/HROLj+1CnYLRWRkZKN3nJOTw5o1a9i+fTuenp7ccccdjBgxgh49egDQp08f4uPjAaisrOS2225j5cqVACQlJbF06VJmzJjR6PcXoi5mi5Vfzhdxbf8IWc3OSdTqmstPZzNKqDSa8ZVRTy2a0/ooDhw4wMiRIwkMDESn0zF58uRaCx9dav369QwbNoyYmBgAEhMTiYuLIzY2lkWLFlFSUuKsmKINOp1WjLHawoDf5iYSztE9sh0Wq8Lx03lX31i4NacVitzcXPR6ve1xaGgoOTk5l21nMBjYsmULjz32mO05vV7PggUL2LlzJxEREaxatcpZMUUblJhaiFajoneXYFdHadXaB3jTTufBj79c/nMvWhannQ9ardZap/WKolzxNH/nzp1MmDDB1h8B8NZbb9m+njdvHhMnTmzQe4eE+DUicd30en+H7s/R3DmfO2b75UIR/bqF4O2pxd/Pu87tPDya1u6IfbT09j5dQ/gxORuLWk24C5aZdcfvv0u5e76LnFYowsPDOXLkiO1xXl4eoaGhl2335Zdf8tBDD9keGwwGtm3bxn333QfUFBh793NcSUFBGVarY+7z0Ov9yctz3w45d87njtlyiyq4kG1gVL9wAAxlda+dYDKZm9Te1H34+3k3OYMz2+uTL6q9jkPArr1nuPm6bnVu5wzu+P13KXfKp1ar7H7Adtqlp1GjRnHw4EEKCwuprKxkz549jB07ttY2iqKQnJzMkCFDbM/pdDree+89EhISANi4cWODzyiEqMvRUzWT1Q3t2d7FSdoGXx8PenYM5EBSNla5SbfFclqhCAsLY+HChdxzzz3cfPPNzJgxg4EDBzJ//nwSExOBmiGxHh4etWai1Wg0rF27lpUrVzJ16lSSk5NZvHixs2KKNuboqTw6hfnRXlazazYj+4WRX1LF6bRiV0cRjeTUMWuxsbHExsbWem7Dhg22r0NCQti/f/9lr4uJiSEuLs6Z0UQbVFxm5ExGCTdf19XVUdqUgT3a4+V5hv1J2UR3CnJ1HNEIMoWHaDOO/TbL6TW99FfZUjiSl4eGYb1DOZySKwsatVBSKESb8eMvOUSE6GQ1OxcYNzgSo8nCD8nZro4iGkEKhWgTCkqqOJVewsh+4XI3tgt0jfCnU5gf3xzLkJmnWyApFKJN+DGl5qavEX3DXJykbVKpVIwfEkl6XjlnMmSmhZZGCoVoE35IzqF7ZDtCZbSTy4zsG46Pl4Zvj2W4OopoICkUotX7NauU9Lwyrv3tJjvhGl6eGkb1i+DwiVwMFbJMQUsihUK0enuPZ+DpoWZkXykUrjZuSAfMFoXvE7NcHUU0gBQK0apVGs38+Esuw/uEofOWqa5dLVLvR6+oAL49luGwaXaE80mhEK3aweRsjCYL4wY3fm0V4Vg3XBNFXnEVCWfyXR1F1JMUCtFqWaxW9hxKo2uEP10jWsYsnW3BNdF6Qtp5sedwmqujiHqSQiFarZ9O5pFbXMm0kV3k3gkXUqlVlBvNtj9VJivXDerAybRiTqQVY7a6OqG4GrloK1olRVH49OB5woN1DOklM8W6ktFkIeFU7VXuvD01aDUqtn5zhoX/MxitLJXq1uSMQrRKR07mcSG3jOnXdkYtZxNux9NDQ4+oAM5llVJSZnR1HHEVUihEq2MyW9n67Rmi9L5y74Qb69M5CKsC+xIyXR1FXIUUCtHqfH00nbziKm4f3wO1Ws4m3JW/zpOOoX7s+zkLY7XF1XGEHVIoRKuSW1xJ3L5UBnYPoX+3kKu/QLhUv67BVFSZ+U7OKtyaFArRYpmt1BpNY6gy8c//pqBWqZg9vruMpmkBQoN86BEZwO5DFzBb5D/MXUmhEC2W0WTmcEqO7c+Hn6ZwKq2YwT3bcya9BKNJFslpCSYO70iRwchBWavCbUmhEK1CdkEFx07l0zncn55RAa6OIxqgT+cgOoX68dkPF2RaDzfl1EKxa9cupk2bxqRJk9i0adNl7W+++Sbjx49n5syZzJw507ZNZmYmc+fOZcqUKTzyyCOUl5c7M6Zo4UrKqvn2eAbtfD0Z1V8WJmppVCoV067tTHZhBUf/cL+FcA9OKxQ5OTmsWbOGjz/+mB07drB582bOnDlTa5ukpCRee+014uPjiY+PZ+7cuQA8++yzzJkzh927d9O/f3/WrVvnrJiihauoMvPVT+moVSpuuCYSD62cJLdEMdGhhAb58N8fzssKeG7IaT9VBw4cYOTIkQQGBqLT6Zg8eTK7d++utU1SUhLr168nNjaWVatWYTQaMZlMHD58mMmTJwMwa9asy14nBEBpeTVfHE6jqtrMDddE4q/zdHUk0UhqtYppIztzPttAYmqBq+OIP3BaocjNzUWv19seh4aGkpOTY3tcXl5Onz59WLx4MXFxcZSWlrJu3TqKiorw8/NDq625pV+v19d6nRAAhaVV/GNrAuVVJm68Jor2AbJyXUt1cS6owT3bE9LOm217UymrMtlGs8noNddz2gQrVqu11rViRVFqPfb19WXDhg22x/fffz/Lli1jzpw5l11jbug155AQv0amvjK93r1nHnXnfE3JZqioprLq8pFL2QXlvPrxUSqqTMSO6UYH/ZX/v3U6L/TBujr3n1tYgb+fd53tHh7aJrU7Yh8tvb0+21hRcTKtGIBBvfR8fSSNzw6l0a1DzaCEodGhdv8f7XHnnw1w/3wXOa1QhIeHc+TIEdvjvLw8QkNDbY8zMzM5cOAAs2fPBmoKiVarJTg4GIPBgMViQaPRXPa6+igoKHPY6Am93p+8PIND9uUM7pyvqdnKjTXDXy9VUFLFl0fSUangkVkDKCiuxFBWdcXXV1QYybPYueNXo6nztQAmk7lJ7U3dh7+fd5MzOLO9Pvka+h4dgn3w13nwQ2IW7f09UalUV/9/rIM7/2yAe+VTq1V2P2A77dLTqFGjOHjwIIWFhVRWVrJnzx7Gjh1ra/f29ubll18mLS0NRVHYtGkTEydOxMPDg5iYGD799FMAduzYUet1ou3KLqhgz6E0tBoVU0Z0IirUsWeOwvXUahWDerSnyGDkQk6Zq+OI3zitUISFhbFw4ULuuecebr75ZmbMmMHAgQOZP38+iYmJBAcHs2rVKh555BGmTJmCoij86U9/AmDFihVs2bKFadOmceTIEZ588klnxRQtxPlsA1/+lI7OW8uUkZ1o5ysd161Vlwh/Anw9STiTj1VGQLkFp04CHxsbS2xsbK3nLu2XmDx5sm1006UiIyP56KOPnBlNtBCKopD0ayHHTuWjD/Rm/NBIvD1l7YLWTK1SMahHCN8lZJGaUcqIvjIDsKvJoHPhtswWKweTcjh2Kp8uEf5MGtZRikQb0Tncn/YB3hw7nYfRJDPLupoUCuGWcosrWbP5OGcyShjYPYTrBkag0ci3a1uhUqkY1juUSqOFr47I2tquJh/PhNMYKqopN9Y9MZ+Xh5Yr3Uh9KCWHD3efAFSMG9KBTmEtYwihcCx9kA+dw/356kg6E67pSJC/l6sjtVlSKITTVFZdPrz1UsP6hNVaK7mkzMjmr8/wwy85dO/Qjrun9CY1s6Q5ogo3NbRXe3bllbH9u7M8ML2vq+O0WVIohMtVVJn54kgan/+2JsFNo7swY1QXjGarFIo2zl/nyfWDI/n6p3TGD4miW4d2ro7UJkmhEC6hKArnsko5fiqf75NqlsK8ppeeWdd3IyLEFwCjzN0ggMkjOnH0VB4ffHaCZ+6LQSt9Vc1OCoVoNoqiUFxm5NcsA+eyDJRVmtBq1AzrrWfSsE50DndsX8TFOYTqovFw6NsJJ/Hx0nLXxF68sT2RPYfTmDays6sjtTlSKITTVVWbSc0s5WxGKUUGIyoVRITouPm6rozsG47O2znfhkaThQQ76xvE9ItwyvsKxxvSS881vfTEf/8rMdF6QoMaN/eTaBw5hxNOk5Vfzr6ETLZ+c5YjJ/JQq1UM7xPK7HHdmRDTkRH9nFckROszZ2IvtBoVH+4+KWtWNDP5KRWNZrZyxXWpK6rM/PfgOfYlZKJRq4juFESPqAAZ3iiaJMjfi9nXd+ejPaf49ngm44dEujpSmyGFQjSa0XT58Nfswgq+/zmLyiozYwZ3ICLYR+6mFg5z/ZBIjp3OZ/NXp+nVMZDI9r6ujtQmyKUn4RCKovDLr4V8cSgNjVrF1Gs7cduNvaRIiCa7OCih3GimstrCnRN74emh4Z34JIrLq2Vho2YgP8WiyRRF4cdfcjmVVkynMD9GD4iQtauFw1xpUMLwvqF8/VMGG3Yms2DWgFo3bgrHk59m0SRWRWF/Yjan0orp1zWI6wd3kCIhnC5K70fvzoGknC8i8aysse1sUoZFoymKwqFfckjNLGVwjxAG9mjfoNdf7T4HBy1SKFqpa3rpySuq5F+7T9A5zM92o6ZwPCkUotH2HErjVFoJ/boGN7hIwNXvcxjUS9+UeKKV02jUXD8kkj2H0nhzeyLL74nBRy5BOYVcIxCN8v3PWXxy4BzdOrRjaK+GFwkhHMHPx4M/zehDdmEFG3b9QlmVydbxnVtYQbnRLJ3dDiDlVzRYyrlCPvjsBNGdAonpHYpKpXJ1JNGGdYlox9Been46mcf/+zSFAd1CAPD388ZQVnXZLMWi4eSMQjRIkcHI+p3JhAX78MCMvmjUUiSE6/XtEkSXcH+On8onM7/c1XFaHacWil27djFt2jQmTZrEpk2bLmv/8ssvmTlzJjfddBMLFiygpKRmSum4uDjGjBnDzJkzmTlzJmvWrHFmTFFPZouVd+KTMJqsPHrLALkeLNyGSqXi2v7hBPh58l1CJoaKaldHalWcVihycnJYs2YNH3/8MTt27GDz5s2cOXPG1l5WVsbKlSt599132blzJ9HR0bzxxhsAJCUlsXTpUuLj44mPj2fhwoXOiikaYPveVE6nl3DvlGg6yB2xws14aNWMHxoJCnx7LBOTdE44jNMKxYEDBxg5ciSBgYHodDomT57M7t27be0mk4kVK1YQFhYGQHR0NFlZWQAkJiYSFxdHbGwsixYtsp1pCNc5eiqP3YcuMH5IJCP7hbs6jhBX5K/zZMzACIoMRvYeTZfJAx3EaYUiNzcXvf734Y2hoaHk5Pw+L1BQUBATJ04EoKqqinfffZcJEyYAoNfrWbBgATt37iQiIoJVq1Y5K6aoh9yiCt7/bwpdwv2548aero4jhF1RoX4M6hHCyQtFnLxQ7Oo4rYLTLjJbrdZao2EURbni6BiDwcCjjz5K7969ueWWWwB46623bO3z5s2zFZT6Cgnxa2TqK9PrHbugjqM5M5/RZOG5f/2ERq1i+QMjCQv+fR0ApbACfz9vu6+31+7hoXVpu7PzOWIfLb3dVRlGD4qkpNzEkRO53DCsM6MHdbCb0VXc/XfLRU4rFOHh4Rw5csT2OC8vj9DQ0Frb5Obm8sADDzBy5EiWLVsG1BSObdu2cd999wE1BUaj0TTovQsKyrA66LZevd6fvDyDQ/blDM7O98FnJ0jNLOGJ2QNRWyy13qvCaMZQVmX39fbaTSb7r3d2u7PzNXUf/n7eLj9GTc3nyowThnVi85cnWbc1gdB2ngT6udc09+70u0WtVtn9gO20S0+jRo3i4MGDFBYWUllZyZ49exg7dqyt3WKx8PDDDzN16lSefvpp29mGTqfjvffeIyEhAYCNGzc2+IxCNJ3ZCl8fy+C7hEwmDutIz46BthuZLv6RKTaEO/Py1DBuSCRV1WbeiU/GYpXO7cZy2hlFWFgYCxcu5J577sFkMjF79mwGDhzI/PnzeeKJJ8jOzuaXX37BYrHw+eefA9C/f39Wr17N2rVrWblyJVVVVXTp0oWXXnrJWTFFHX7NKuHfX5wiLMiHsCCfy9adAJliQ7i/IH8vbr+xJxs/P8mOfb9y6/XdXR2pRXLqQPjY2FhiY2NrPbdhwwYABgwYwIkTJ674upiYGOLi4pwZTdhRaTTz/ie/4OmhZuzgDqjlpjrRgo3oG8a5rFL+e/A8PaMCGdg9xNWRWhy5M1vUoigKH3x2grziSq4b1EFuqhOtwtyJvYjS+/LeJ79QWGq/T0VcTgqFqOXLn9I5fCKX2NFdCb9khJMQLZVKrcJsVbhvWh9MZitvxSVRWlFt62uT+/KuTgqFsDl5oYjNX51hcI/23BgT5eo4QjiE0WThcEoOF3IMDO8Tyq9ZpWzYlczhlBwOp+RgNNW9JoqoIYVCAFBQUsW6HUmEBvkwP7YvapkRVrRCXTu0o1fHAJJ/LSItt8zVcVoMKRSCapOFN+MSMZmtPH6rTPYnWrdhvUMJbufF/sQsyipNro7TIkihaOMUReGD3Sc4n21gfmxfWU5StHoajZrrB3dAUeC745mYLdJJcTVSKNq4Hft+5YfkHGaN7caQnnJfhGgb/HWejOofTn5JFfH7fnV1HLcnhaIN+/7nLHYdOMd1AyOYfm1nV8cRoll1Dvend+dAvj2WwU8nc10dx61JoWijks8V8uHuE/TrEsTdk6NlOVPRJl0THUqnMH/++ekJcosqXB3HbUmhaIPOpJfw5rZEwoJ13DutD0azVeZxEm2SRq3i/ul9UAFv70jGZLa4OpJbkuEtbcz5bANr/pNAO19PRg8IJym14IrbyTxOoq0ICfDmgRl9eGNbIv/39RnunhTt6khuR84o2pCMvDJe3XwcnZeWx2fLMFghLhrSU8+U4Z345mgGXx9Nd3UctyO/KdqI1MxS1v4nAY1GxaI7B+On8wRkiVkhLrp1XDeyCyvYtOcUvt4ejOgb5upIbkPOKNqA5F8Lefnfx/D21LB07lDCgmQOJyH+SKNW8/DMfvTsGMh7n/xCYh2XZdsiKRStlNkK5UYzexMyWfufBEICvHny9kH46Tyls1qIOnh6aHji1oF0aO/LW3GJpJwrdHUktyCFopUqr6rmrW0/8+FnJwgJ8GbsoAhOpRXbJkIzy2pfQlyRzlvLn/9nMPpAH9b8J4EjJ+QeCykUrVB+SSVrtyRw4kIxfToHMXFYRzw9GrbuuBBtWYCvJ3+ZM5TO4f6s25HEzv2/YlXa7mm4dGa3IlarwjfHMti29ywA1w/uQOdwfxenEqJl8vPxYMmdQ/jgs5plVE+lFfPA9L4E+Xu5Olqzk0LRClgVhYQz+Wz/LpWMvHL6dQli9vge/JpV6upoQrg9lVpFubHuNSnum9aHnh0D+L+vTrP8vR+4aXRXbrwmCq2m7VyQkULRgpVWVPPDvlQ++T6VzPxyQoN8eOTm/sRE66motkihEKIejCYLCafy6mwf1ieMcYMj6dM5iI+/OM3mr8/wxZE0pgzvxKj+Eei8W/+vUaf+C3ft2sXbb7+N2Wzm3nvvZe7cubXaU1JSePrppykvLycmJoZnn30WrVZLZmYmixcvpqCggK5du/LKK6/g69u2p79WFIUig5GM/HJOXigm+VwhF7INKNRMbjY/ti/Deoe2qU85QjSnsCAdT942kORzhezcf46PvzzN1m/P0q9rMAO7hzCgWwjB7bxdHdMpnFYocnJyWLNmDdu3b8fT05M77riDESNG0KNHD9s2ixcv5rnnnmPw4MEsW7aMLVu2MGfOHJ599lnmzJnD9OnTeeutt1i3bh2LFy92VtRmZVUUjNUWqqotVFWba/42/vb3Jc+VG80UG4yUlldTUl5NXnElVdU189Co1Sq6d2jHzDFduXFkF3y1MqGfEM7yx0tTXTsE8L+3DeJCjoEfkrNJ/rWQY6fzAQjy9yJK70eU3pf2gT4E+nrSzs+TQF8v2vl64qFtmR/knFYoDhw4wMiRIwkMDARg8uTJ7N69m8ceewyAjIwMqqqqGDx4MACzZs3iH//4B7fddhuHDx/mrbfesj1/1113NahQqNUN/8Vptlg5cjKPSqMZxaqgoGBVwNvbk/IKIyg1ncWKAlaUmhEQSs0vfotFwWyxYjJbMVmsmEwWzBYFo9mK2WzBZFF+a7NgMtVvWKqKmjHd3l5aAv29iNT74u/rSTudJ0H+XlwTHYqPp4aQED8KCi5f0lGrUaPz9qhz/01tr98+VE7N0PR25+Zr6j58vLRucIyals+VGX28tFjMHk3ev8WqkPLrle+n6Nc1hDmTosktrOB0eglZBRXkFlVw/Ew+livcrKTRqPDy0OKlVaPz8UCrUeGpVaPVqNGq1ag1KrQaFRq1Co1GjUatRqtWodaoUKtApVKhAmome77ka5UKtUrF4J7tCfD1rPPfUper/c50WqHIzc1Fr/99YrnQ0FB+/vnnOtv1ej05OTkUFRXh5+eHVqut9XxDBAU17jLV9NB2jXqdq4WE+F3x+aiIALuv6xYV1KT2+mzTMcz+MW1qhqa2OzufI/bR0tvdIYOz26PCAxjaN8LuNi2Z086DrFZrrTUOFEWp9biu9j9uB8haCUII4UJOKxTh4eHk5f0+kiAvL4/Q0NA62/Pz8wkNDSU4OBiDwYDFYrni64QQQjQvpxWKUaNGcfDgQQoLC6msrGTPnj2MHTvW1h4ZGYmXlxc//fQTAPHx8YwdOxYPDw9iYmL49NNPAdixY0et1wkhhGheKkVx3n3pu3btYv369ZhMJmbPns38+fOZP38+TzzxBAMGDODEiRMsX76csrIy+vXrxwsvvICnpycZGRksXbqUgoICIiIieO211wgIsH+9XQghhHM4tVAIIYRo+VrmoF4hhBDNRgqFEEIIu6RQCCGEsEsKhRBCCLta/7SH9bR27Vo0Gg2PP/74ZW3V1dU8/fTTJCUl4e3tzSuvvEL37t1RFIWXXnqJb775BrVazd///neuueYah+aqzwSJDz/8MFlZWUDNjYynTp1i69at9O7dmxEjRtCxY0fbttu3b0ejcdwiRvXJl5GRwYwZM+jUqRMA7du35/3333eb45ebm8tf//pX8vPzUavVLFmyhGuvvRaTyeS04+fuE2ZeLd+XX37JG2+8gaIoREVF8cILLxAQEEBcXByvvvoqISEhAIwbN46FCxc2e74333yTbdu20a5dzZ33t99+O3PnznWL45eSksLSpUttjwsLCwkICOCTTz5ptuPXYEobV1paqvz1r39VBg4cqPzjH/+44jbvvfee8re//U1RFEU5dOiQcttttymKoiifffaZMn/+fMVisSipqanKxIkTFZPJ5NB8Dz74oPLJJ58oiqIob775pvLSSy/Z3X7t2rXK8uXLFUVRlMTEROX+++93aJ7G5Nu9e7ft+F3KXY7fU089pWzcuFFRFEU5e/asMmrUKMVsNjvt+GVnZyvjx49XioqKlPLyciU2NlY5ffp0rW2mT5+uHDt2TFEURfnrX/+qbNq0qd7/HmfnMxgMyujRo5Xs7GxFUWq+5/7+978riqIoq1atUnbt2uXwTA3JpyiK8tBDDylHjx697LXucPwuVVFRoUyfPl05fPiwoijNc/wao81fevrqq6/o0qULf/rTn+rc5ttvv+Wmm24CYNiwYRQWFpKZmcnevXuZNm0aarWarl27EhERwbFjxxyWzWQycfjwYSZPngzUTJC4e/fuOrdPTU1lx44d/OUvfwEgMTGRwsJCZs2axe23386hQ4cclq0h+RITEzl16hQzZ87knnvu4eTJkwBuc/wmTpzIjBkzAOjcuTNGo5GKigqnHb9LJ8zU6XS2CTMvutKEmbt3727w94Oz8plMJlasWEFYWBgA0dHRtjPaxMRE4uLiiI2NZdGiRZSUlDR7PoCkpCTWr19PbGwsq1atwmg0us3xu9T69esZNmwYMTExQPMcv8Zo84Xi5ptv5sEHH7R7OeFKExhmZ2eTm5tba3qRi887SkMnSFy3bh0PPPAAfn41kwSqVCpuvPFGNm/ezMqVK1m4cCGFhVeeBdOZ+by8vLjpppuIi4vjgQce4NFHH6W6utptjt/kyZNtN3S+//779OnTB39/f6cdvytNmHlpLmdOmOmIfEFBQUycOBGAqqoq3n33XSZMmGDLtGDBAnbu3ElERASrVq1q9nzl5eX06dOHxYsXExcXR2lpKevWrXOb43eRwWBgy5Ytthm1L2Zy9vFrjDbTR/HZZ5/xwgsv1HquW7dufPDBB1d9rfKHiQoVRUGtVl9xYkO1unG190r5OnfuXO8JEktKSti/fz+rV6+2PXfHHXfYvu7bty8DBw7k6NGjth/q5sp3ab/P9ddfz6uvvkpqaqpbHT+ADz74gM2bN7Nx40bAscfvUu4+YebV8l1kMBh49NFH6d27N7fccguAbXkAgHnz5tkKSnPm8/X1ZcOGDbbH999/P8uWLWPOnDludfx27tzJhAkTbP0R0DzHrzHaTKGYOnUqU6dObdRrw8LCyM3NtXXGXpzAMDw8nNzcXNt2F593VL6LnakWiwWNRmN3gsS9e/cyduxYvLx+X/h9x44dDB061JZbURQ8POyvHeCMfB999BEzZswgKCjIlkOr1brV8XvppZfYu3cvmzZtIjw8HHDs8btUeHg4R44csT1uzISZV/v3ODMf1HxqfuCBBxg5ciTLli0DagrHtm3buO+++4Ca4+XIgRP1zZeZmcmBAweYPXu2LYdWq3Wr4wc1AwIeeugh2+PmOn6N0eYvPdXH9ddfT3x8PABHjhzBy8uLDh06MHbsWHbt2oXFYuH8+fOcO3eOAQMGOOx9GzJB4vHjx23XOS86efIk//znP4Ga/ouUlBSHjiqqb77Dhw+zdetWAA4dOoTVaqVbt25uc/w++OADfvzxR/7973/bigQ47/i5+4SZV8tnsVh4+OGHmTp1Kk8//bTt07JOp+O9994jISEBgI0bNzrlE/HV8nl7e/Pyyy+TlpaGoihs2rSJiRMnus3xg5oikJyczJAhQ2zPNdfxa5Tm7j13V//4xz9qjXr6+OOPlbVr1yqKoihVVVXKkiVLlGnTpik333yzkpSUpCiKolitVuXFF19Upk2bpkybNk3Zt2+fw3Olp6crd911lzJ16lTl/vvvV4qLiy/LpyiKMm/ePGXv3r21XmswGJTHH39cmT59ujJjxgzl4MGDLsmXnZ2t3Hfffcr06dOVWbNmKSkpKYqiuMfxs1qtSkxMjDJu3Djlpptusv3Jzs526vHbuXOnMn36dGXSpEnKu+++qyhKzf/hzz//rCiKoqSkpCi33nqrMnnyZOXPf/6zYjQa7f57HM1evj179ijR0dG1jteyZcsURVGUw4cPKzfffLMyZcoU5eGHH1ZKS0ubPZ+i1Iy0u9i+dOlStzp+iqIo+fn5yqhRoy57XXMdv4aSSQGFEELYJZeehBBC2CWFQgghhF1SKIQQQtglhUIIIYRdUiiEEELYJYVCiN/8+OOPtjmfXCk9Pb3W+HohXE0KhRBCCLvazBQeQtSXwWDg2Wef5cSJE6hUKq677jr+/Oc/o9Vq2bt3L6+88gpqtZo+ffpw4MABPv74Y6Kiourc3549e3j77bdRqVRoNBqWLFnCsGHDOH78OC+//DLV1dXk5eUxatQonn/++cte//bbb7Nnzx6sViuRkZG2mVvr2q8QDufqO/6EcBc//PCDMn36dGXJkiXK3//+d8VqtSpGo1G5//77lfXr1yuFhYXK8OHDbXeWb9++XenVq5eSlpZmd7833nijbW2Jffv2KW+88YaiKIqycOFC5YcfflAURVHKysqUESNGKImJiUpaWpoyePBgRVEUJS4uTnnyySdt63T83//9nzJv3jy7+xXC0eSMQog/+O677/j3v/+NSqXC09OTO+64gw8//JCuXbvSvXt3evfuDcAtt9zCc889d9X9TZ8+nccee4zrr7+e0aNHM3/+fABefPFFvvvuO9555x1SU1Nt62AEBgbaXvvNN9+QmJjIrbfeCtTMTFpZWWl3v0I4mhQKIf7gj9NEW61WzGYzGo0G5Q8z3tRnWvSFCxdy6623sn//frZv384///lPtm7dyl133UV0dDTXXXcdU6dOJSEh4bL9W61W5s2bx5w5c4CaZXkvLmZT136FcDTpzBbiD8aMGcPGjRtRFIXq6mq2bNnCqFGjGDp0KOfOnePEiRMAfP7555SWltpd08BsNnPDDTdQWVnJnXfeyYoVKzh58iT5+fkkJiayaNEiJk2aRHZ2NhcuXMBqtV6WZevWrZSVlQHw+uuvs2TJkjr3W11d7bwDI9osOaMQ4g+WL1/Oc889R2xsLCaTieuuu46HH34YT09PXnvtNf7yl7+gVqvp378/Wq0WHx+fOvel1WpZtmwZixYtQqvVolKpeP7552nfvj0PPvggt9xyCzqdjrCwMIYOHcr58+fp2LGj7fW33XYbOTk53H777ahUKiIiInjxxRfr3K+np2dzHCLRxsjssULUU1lZGevWrePxxx/Hx8eH5ORkHnroIfbt2+eUldKEcBdyRiFEPfn5+eHh4cHs2bPRarVotVrWrl3Ljz/+eNkyrBeNGDHCtgKcEC2VnFEIIYSwSzqzhRBC2CWFQgghhF1SKIQQQtglhUIIIYRdUiiEEELYJYVCCCGEXf8fWsAWLsAZEdQAAAAASUVORK5CYII=",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "sns.distplot(y_train - y_hat)\n",
-                "plt.title(\"Residuals\")"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 85,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "0.35803414778302856"
-                        ]
-                    },
-                    "execution_count": 85,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "reg.score(x_train, y_train)"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "Das Bestimmtheitsma\u00df R\u00b2 betr\u00e4gt nur etwa 35,8 %. Vermutlich muss ein anderes Modell gefunden werden, da diese Daten f\u00fcr diesen Zweck nicht brauchbar sind. Wahrscheinlich liegt es auch daran, dass wir nur die Gesch\u00e4fte des Typs A und nur die Abteilung 92 ber\u00fccksichtigt haben und somit eine gute Vorhersage gar nicht f\u00fcr alle m\u00f6glich ist."
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 87,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "11.638698055432007"
-                        ]
-                    },
-                    "execution_count": 87,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "reg.intercept_   "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 88,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "array([-0.05460284, -0.00297525,  0.1697551 ,  0.03078332, -0.06801271,\n",
-                            "       -0.04136023,  0.02414852, -0.01160719,  0.01454898,  0.00087434,\n",
-                            "        0.01764553])"
-                        ]
-                    },
-                    "execution_count": 88,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "reg.coef_  "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 89,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Features</th>\n",
-                            "      <th>Weights</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>Store</td>\n",
-                            "      <td>-0.054603</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>IsHoliday</td>\n",
-                            "      <td>-0.002975</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>Size</td>\n",
-                            "      <td>0.169755</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>Week</td>\n",
-                            "      <td>0.030783</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>Temperature</td>\n",
-                            "      <td>-0.068013</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>5</th>\n",
-                            "      <td>Unemployment</td>\n",
-                            "      <td>-0.041360</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>6</th>\n",
-                            "      <td>MarkDown1</td>\n",
-                            "      <td>0.024149</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>7</th>\n",
-                            "      <td>MarkDown2</td>\n",
-                            "      <td>-0.011607</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>8</th>\n",
-                            "      <td>MarkDown3</td>\n",
-                            "      <td>0.014549</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>9</th>\n",
-                            "      <td>MarkDown4</td>\n",
-                            "      <td>0.000874</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>10</th>\n",
-                            "      <td>MarkDown5</td>\n",
-                            "      <td>0.017646</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "        Features   Weights\n",
-                            "0          Store -0.054603\n",
-                            "1      IsHoliday -0.002975\n",
-                            "2           Size  0.169755\n",
-                            "3           Week  0.030783\n",
-                            "4    Temperature -0.068013\n",
-                            "5   Unemployment -0.041360\n",
-                            "6      MarkDown1  0.024149\n",
-                            "7      MarkDown2 -0.011607\n",
-                            "8      MarkDown3  0.014549\n",
-                            "9      MarkDown4  0.000874\n",
-                            "10     MarkDown5  0.017646"
-                        ]
-                    },
-                    "execution_count": 89,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "reg_summary = pd.DataFrame(inputs.columns, columns=['Features'])\n",
-                "reg_summary['Weights'] = reg.coef_\n",
-                "reg_summary"
-            ]
-        },
-        {
-            "attachments": {},
-            "cell_type": "markdown",
-            "metadata": {},
-            "source": [
-                "Die Gr\u00f6\u00dfe hat den gr\u00f6\u00dften Einfluss auf den Umsatz, gefolgt von der Woche, wie erwartet. Wenn wir die Gr\u00f6\u00dfe um 1 \u00e4ndern, \u00e4ndert sich der Umsatz um 0,169."
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 90,
-            "metadata": {},
-            "outputs": [],
-            "source": [
-                "y_hat_test = reg.predict(x_test)"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 91,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABNmElEQVR4nO2deXwUVbbHf71kI8sEYkLYRCbIYkZWfYIgYVMIJCwBRiOyDKC4zUM/IwgCRhgZwWUUUHAGBIUBFRXQMIAPQVAxjohsJiGMURCMiSEkhIRs3V3vj1hNL3Vr667q6uR8Px9nSHdV9anbXffce1YTx3EcCIIgCIKBOdACEARBEMaGFAVBEAQhCikKgiAIQhRSFARBEIQopCgIgiAIUUhREARBEKKQoiAIgiBEsQZaAC0oL6+Gw+Gf9JC4uCiUlVX55VpaQTL6jtHlA0hGf2B0+YDAyGg2m9CyZSTz/SapKBwOzm+Kgr+e0SEZfcfo8gEkoz8wunyA8WQk0xNBEAQhCikKgiAIQhRSFARBEIQopCgIgiAIUZqkM5sgCH3IyS3G9kOFKKusQ1xMGKanJSP5+thAi0X4GdpREAShipzcYry15zTKKusAAGWVdXj1vRPIyS0OsGSEvyFFQRCEKrYfKkS9zeH2Wl2DHdsPFQZIIkIrSFEQBKEKfich93UieCFFQRCEKuJiwhS9TgQvpCgIglBFRkoSQq3uU0hYiAUZKUkBkojQCop6IghCFf2TEwGAop6aAaQoCIJQTf/kRKfCAID4+GiUll4JoESEFmhqeqqqqkJaWhouXLgAAHj33XeRlpaG9PR0LFiwAPX19V7nHD16FBMnTsTYsWMxbdo0/Pzzz1qKSBAEQUigmaI4ceIEMjMzcfbsWQDAjz/+iDfeeAPvvPMOPvroIzgcDmzdutXrvLlz5+LZZ5/Fhx9+iPT0dDz77LNaiUgQBEHIQDNFsW3bNmRlZSEhIQEAEBoaiqysLERFRcFkMqFLly4oKipyO6e+vh5z5sxBt27dAABdu3bFL7/8opWIBEEQhAw081EsW7bM7e927dqhXbt2AIBLly5hy5YteO6559yOCQ0NxdixYwEADocDr776KoYPH66ViARBEIQMdHdml5SUYNasWZgwYQJuu+02wWPq6+sxf/582Gw2zJ49W/FnxMVF+SqmG/Hx0X69nhaQjL5jdPkAktGVg0fPY9OefFwsr8F1LSMwNbU7BvftIHkejaFydFUUhYWFmDVrFqZMmYIZM2YIHlNdXY2HHnoIsbGxWLt2LUJCQhR/TllZld86RAVDFAfJ6DtGlw8gGV3h60zxJURKy2uwettxVF6pdYvCCpR8vhAIGc1mk+gCW7eEu6qqKsycORNz5sxhKgmg0ZndsWNHvPLKKwgNDdVLPIIgggihOlP1NgfVmdII3XYU77//Pi5evIiNGzdi48aNAIChQ4dizpw5WLhwIYYOHYo2bdpg//796Ny5M8aPHw8ASEhIwLp16/QSkyCIIIDqTOmL5oriwIEDAIDp06dj+vTpgse4Or4LCgq0FokgiCAnLiZMUClQnSltoFpPBEEEHUJ1pkKtZqozpRFUwoMgiKBDqM5URkqSqCObUA8pCoIgghLPOlOEdpDpiSAIghCFdhQEQSgmJ7eYzD7NCFIUBEEowjPZrayyDm/tOQ0AGDNYv4xiUlb6QaYngiAUYYRkN15Z8SGyvLLKyS3WTYbmBO0oCIJQhBGS3cSUFb+rENpx6LnjaUqQoiAIQhFGSHaTUlYs81hMdDi1alUBmZ4IglCEEZLdWEqJf52149i0J19z2ZoipCgIglBE/+RETEvt5pyU42LCMC21m66OZCllxdpxXCyv0Vy2pgiZngiCUIw/k93URC9JZWazzGPXtYzwi8zNDVIUBEEEDLFQWznKgnVMRkqS23WBxh3H1NTufpK8eUGmJ4IgAoZWobYs85icDniEN7SjIAgiYGgZaku1oPwH7SgIgggIObnFMJuE36O+EsaCFAVBELrD+yaEWttTXwnjQYqCIAjdEfJNAIDZBN1DbQlpSFEQBKE7LB+Eg5OOdiL0hxQFQRC6I5VZTRgLinoiCB2h0tiNsPIcyDdhTEhREIRO+JJc1tRoCj2vm5PSJ0VBEDohpzR2cyKY8xyam9InHwVB6IQR+jgQ/sEIzZv0hHYUBKETRujjECjEzDTBaMJpbkqfFAVB6ERzdeCKmWkABKUJp7kpfTI9EYROGKGPQyB4+5MzTDNNsJpwjNC8SU9oR0EQOhLMDlw15OQWo6rGJviemJmmrLIOM5Yf0M0UpdT81RSitpSgqaKoqqrCPffcg9dffx3t27fHu+++i82bN8NkMuEPf/gDlixZgtDQULdzioqKMHfuXJSVlaFTp0548cUXERkZqaWYBEFohNjOgN9ZSSmMjbsb25dqNQmrjWBqTkpfM9PTiRMnkJmZibNnzwIAfvzxR7zxxht455138NFHH8HhcGDr1q1e5y1ZsgT33nsv9u7diz/84Q9Ys2aNViISBKExYkogIyVJ0ITjic3OYV12HuauOYyc3GJ/ixi05i890UxRbNu2DVlZWUhISAAAhIaGIisrC1FRUTCZTOjSpQuKiorczmloaMCRI0cwYsQIAEBGRgb27t2rlYgEQWgMy7kbGW5xrsgH3JzILDfuCr/S97eyaG4RTGrQzPS0bNkyt7/btWuHdu3aAQAuXbqELVu24LnnnnM7pry8HFFRUbBaG8WKj49HSUmJ4s+Oi4tSKbUw8fHRfr2eFpCMvmN0+YDgk/G25ETszjnn9n5YiAUPZvREfHw0Dh49jy+/KxEsNy5Evc2BnV/8iDGDb/SLfAAQ3zICpeU13se1jAjYeBvte9bdmV1SUoJZs2ZhwoQJuO2229ze4zgOJpP70sLzbzmUlVXBIfeXJ0F8fDRKS6/45VpaQTL6jtHlA/SXUU1+g6uMObnF+OTIea9jbv9DayRfH4vS0it4c1cu6hrsiuQqLa9RPQ5CYzhuYCfBsOVxAzsF5DcRiN+i2WwSXWDrqigKCwsxa9YsTJkyBTNmzPB6v1WrVrhy5QrsdjssFgtKS0udpiuCIPTDHyUqWD0nThaWOf+txrzj71yF5hbBpAbdFEVVVRVmzpyJxx57DOPGjRM8JiQkBLfccgt2796N9PR07Ny5E4MGDdJLRIIgfsMfdanEbP9z1xxGRkoSM3GNhVa5Cs0pgkkNuiXcvf/++7h48SI2btyIsWPHYuzYsVi5ciUAYOHChdi/fz8AICsrC9u2bcOoUaPwzTff4LHHHtNLRIIgfsMfDl6xlT+/Q+mRFCcZ9cQ7us0mYMDNNKEHAhPHcf4x5hsI8lEYD6PLaHT5AH1lnLvmMLNExQsPD2Ce5+mj8LT9C10vIyUJb+zKk+XQDrWafcpmp+9ZGEP5KAiCYGOk4nhq61IdPHoeb+7Kdd7DgJsTcbKwTHSHwt+jlFIBmndZ9kBCioIgDIDR+huIOXhZCm3zx6fx6bFruVFllXU4fKoY01K7OY/3hDdPeX5eZLgF1bXC0VCU36A/pCgIwgAYsamRkINXSKGty87Duuw8wWvw9yC0Q+HP5x3brp83d81hpqJoqhVajQwpCqJZYCSzjhB6Zgf7MhaskFcxXM1LQjsLod2TVOmPYMXov0MWpCiIJo8/zDpaP+B69TfwdSzUKi5+1/DCwwMEHeWeuyfWeERFWAXlDIYJ2GjmRSVQPwqiyeNr0Tf+AecnLi1qDunV34A1FnKL7qlVXK5jJmf3xBqPzOFdvM7T4/vxB8FcfFBSUQhFz16+fFkTYQhCC3w16+jxgGvZ1Cgntxhz1xzGjOUHJEt6S02wcqq9suDHLCpC2JDh+rqS8QiWCTiYiw9Kmp4yMjKwY8cOt9cmT56MXbt2aSYUQfgTX806ej3gWmQHy8llcEXIge5q1omKsMJkUp+jxEc0CeG5KJU7HsEyAQdz+1Tm0mDatGno06cPCgoK0KdPH+d/vXr1QsuWLfWUkSB8wlezDutBDoYHXK3zmcfTrFNVY0Ndg3pFERcTxoxmYr0u55pKXg8Uwdw+lbmjeO2111BRUYGnnnrKrRy41WpFfHy8LsIRhD/wteib2uQzI+Br0T01ikaMjJQkyZwKNdcMhu8nmIsPMhVFVFQUoqKisGnTJlRVVSEqKgp5eXk4c+YMRo8eDbOZ/OBE8OCLWSeYH3Axc4ecCdaf5pshvdsys7B9mdiD6fsJ1uKDkj6KVatW4dy5c/jLX/6CWbNmoXPnzjhy5IhXYyKCaMqofcDFwjb1COkUUwZyJlg51V2jIqwIC7GgrLIOZrNJsM5aVIQVndvHOkNjoyKsCLGaUF1r98u9+2MCDoYQ20AhqSgOHjyILVu24N1338Xo0aOxcOFCTJgwQQ/ZCCJoycktxtZ9BW52d9e4eQC6xNRLKQOpCZaVUc3Dh6zy18j9qQKrtx33Uky3dktwu05VjQ2hVjPuT79J1v1qPYkHc46DHshKuIuIiMCXX36Ju+++GwBQX1+vqVAEEcyIRRq5hm3qVbLDn2a3qAgrOI5j7gQG9+2Ayiu1XpM6K4R1fXYe3v7kDKpqbEwFoMckbsQSKkZCUlG0bNkSzzzzDL777jusXLkSL774InWdIwgRpBzAUrkMM5YfULRq1nq1rVTRCB3PqgXFoXF3AbAVgB6TeLCE2AYKSY/0ihUrkJCQgH/84x+IiIiAyWTCihUr9JCNIIISqcklLiZMMsJHbnaxUFbyuuw8/PmVQ5pmJrsm8fkzo1soUU6PSTxYQmwDheSO4rrrrkNGRgYKCgpgt9uRmZmJ6667Tg/ZCCIoEXMAu0b3SCXCyVk1s3Yv1bV2wdU5a/ehZFciZgqKia5w60fBX0fK1+GK59jpkagWLCG2gUKWM/uZZ56B2WzGO++8g9GjR+OFF17A8OHD9ZCPIIIO1qQYFWF1c/wCkOzsJrVqFnu/3ubA1n0Fbv6Fmlob7Ny1c9/acxrfX6jA4VPFoj4AV0ViNsFL5nqbA29/cgYNNg51DXbmdeR0svNUAL5M4p4KcHpaMpKvj/U6LphCbAOBpKJ47bXXsG3bNjzwwANISEjA1q1b8eSTT5KiIAgGcied/smJTNs9j9SqWSp8tbrW7oy84n0BrtTbHDh0vEhw4ud3Mzm5xdiwK8+pYFgTPev6/HXkdLITUgBqJ3Ghnc+r753A1JFdBc8N1hwHPZBUFHa73c153b17d5hMJk2FIggl5OQWOyNnACAy3IJ77xSeDPRC7qQj10zFQolJhwVr4ufl2rqvwKkk1OB6f0Kd7Ewmk2jUE3+e0u9TyCxX12CnSCYVSCqKiIgIFBUVOZXDN998g7AwcvAQxiAntxgbd+fD5jKTVdfasWFX40rd6BMCa6KXq+z4910Vpb/gdzNqazB5XodHr5U7RTL5D6aiOHr0KPr27Yu//OUvmDFjBkpLS3H33Xfj7NmzWL16tZ4yEgST7YcK3ZQEj51DUKwc/WEb5ydeT3t8XYPdJ+XBtyn1hVCrGT2S4pwZ2WrDfnm/CP//cq4TzNVajQZTUTz77LPYsWMH+vTpg23btuHYsWNwOBzo2bMnWrVqpaeMBMFEKifB6KjJgRA6B3BPiquttwnuBKwWE8JCzLJ3CWJjGBVhxdVam6hzesDNiZKOcp7NH592+ktMAGACOA+/iMPDES90HR6h3VpYiIUimVTAVBSuteFjYmKQkpKii0AEoQQpZ25ObrHmuwq1k72nuUjO5CfkoN24Ox+cg3P6EVi7CFfZhNqRKsFqMSFzeBdRZ3xcTBhOFpbJSpbb/PFpfHqsyPk35/wfNlLhw0K7NVbUEyEOU1FcunQJGzduZJ74pz/9SROBCEIJGSlJXj4KV7Q2PykpL+GqUFhITX5CDlrWvbsSFxOGFx4e4PxbjROcV8quCkcs3DUjJYmpSDzH4NDxIsHjpJBSdp7+kPj4aJSWXlH1Wc0ZpqKoq6vDmTNn9JSFIBTDTwJyJyR/I7e8hJJOc1qY0zzP81xtC+VGuBIZbnEqGl7hrcvOQ1iIxZk34Ur3jrHon5yIt/bko97mfWFPP4FUbgUL8jfoA1NRtG3b1q1hEUEYlf7JiX5rhqPUjCQ3skZJAyAxmeWU/RbCbIKzhlSPpDicLCxz3uP96TcBEM9vqGtwOMt0uO7g6hrsMLn4EsxmE1J6tsGUEd2w+ePTgkrCBHj5CaQUlRBKMqf57/VSZR1aUTKdYpi1njz716qlqqoKaWlpuHDhgvO1efPmYfv27YLHX758Gffffz/GjBmDiRMnIj8/3y9yEMZDab0gMfzRZlKobpJUvSUzI6XIBLjdm9zJXUpmofu0WkywSKQ2uTqBPz1W5HWPADAttRtTSdnsHLYfKsTbn5zxMnVxXKNje8P8ofjwhTGYMqIbABFzksnbLJfSq63goWEhjTfGjzP//3ExYZiW2k129BT/vXK4Vg9r88enJc8lGmHuKKZPn+7zxU+cOIFFixbh7NmzAICSkhJkZWUhJycH/fr1Ezxn48aN6NKlC9atW4cDBw5g6dKlePvtt32WhTAW/i4d7Y8wUzVVSlmrYH5CApSZi6QmP9Z9ur7mWgpcDvw9SilVsfsQcqAzx0bgdV65uDq0w0IszCxqJbB2c58eK0Ln9rG0s5ABU1GMGzfO54tv27YNWVlZmDdvHgAgOzsbw4YNQ2xsLPMch8OB6upqAEBNTQ3Cw8N9loMwHlqUjvY1kUtNgpZaUxDrWnLkF7rPnNxi1NY3TtZVNTaEhVhgMUF2RjWvqP3ZH1vMnCQUjda5faxbKG1dgx3rsvOwLjvPp9pLYt9PMOTaGAFZjYvU4tkuddasWQAak/lYzJgxA3fffTcGDhyI6upqbNiwQUsRiQAhNikrTc7y9Ct42uDlTjByE7RcP6+xBIXwKlkJFpO33V4uObnFWL8rz00GIQezFL4oichwi9drXa+PRf65CsHjhSZoMT+OLztOMWUeDLk2RkBTRaGGv/71r5g8eTKmTp2KY8eO4fHHH8e///1vREZGyr5GXFyUX2WKj4/26/W0QAsZDx49j0178nGxvAbXtYzA1NTuGNy3g+rrucoY3zICpeU1gse5mmw27S3AzxerceT0r4JyHDx6Hpv2FrhVLHU1X/DXiIkOl5R9eloyXn3vhNckW1ZZhyf/kYOpqd0BwO3z1Ja38FQuJrMJMdHhkt+j0Pvv7P/cZ0XlCxazCQ9m9HTKFh8fjYNHz+OHInYY6qXKOq97uSQxadfbHNj5xY8YM/hGt9elfqe3JSdid845wWvGt4ww5PNtNJkkFUVNTQ0KCgrQq1cvvP322zh16hQeffRRtG0r7Hzylf3792Pp0qUAgN69eyMuLg6FhYXo0aOH7GuUlVUJNnhXQzDEXftbRqF+z6XlNVi97Tgqr9Sq2qp7yjhuYCdZpo66BrvbQ+4px5u7ciVXz3UNdrz89rd4aeu3zB1GfHw0kq+PxdSRXQUjqErLa/DS1m9hgmQemCw8J3abncObu3KRfH2swI6lsWhefMsIjBvYyUv2K1cbZH+umugiIfhx4Mcz+fpYlJZecX7PUt9Lq5gwfHTwv247wcgIq2TJkdLyGrffkaevy/P3kZNbjE+OnBe8VqjVjHEDOxnu+VbzPPva5dBsNokusCU73C1YsAD79+/HyZMnsX79erRp0waLFy+WLYBSunXrhk8++QQAcPbsWfz666/o1KmTZp9HuMM/eEIrZaHuY2rpn5zoFmWjJIzVVQ65pgPP0g+sSKb+yYl44eEBiIoQXkNpuXAvq6zziryqrr1Wr6m0vEZW1zsWoVYzUnq1ZUZqKcFsAob0blwsrsvO84pak9NHY112ntvusabWBqtE+Jbn70TM18V6n5dfbtSU0VETracUyR3F+fPn8corr2DlypUYP348Hn30UUyYMMFvAgDAypUrkZCQgMzMTCxfvhxPP/001q1bh9DQUKxYsQLR0cbahgUzUisPOf2e1RR4E8LTKaskjJTvLa1mhezZa8Ezvh5gl8HQklCrCVv3FUh2vdu6r8Bt3MJCTKhrEB6EUKvJmctgMnH4/OQvguMVajVjwM2JTt+OFHYOXia+jbvzsWnvadQ1qPN12DkgMsSM30VaBWXgQ4flZLhLRZw5OHFfh9Z9yP2JHj3FJRWFzdb4wHzxxRd48sknYbfbcfXqVUUfcuDAAbe/ly9f7vb3nDlznP++4YYbsGnTJkXXJ+QhJyRVziQhFIOvtJ2mEGrKSqg1o7iu3j3HI8QamH4r9TYO9TZpn0d1rd0ZNZSTWwybQFIb0JgdXfhzJfh9EEuZmE1wUxJqnfM2OyernIgY1bV2rH6ssa4cq/ihnN+I605VaSKmv0O3tUYPR72koujduzdGjRoFi8WCPn36YNq0abj99tv9JgChH3JWHkrDPV23+b4+XEI5Aj2S4txCJlm4lp92jXoSO16o7Ee9zYF6/TcTiuG/s+2HCgVDYCPDLfi1vEaW0nVwcBvjQDrGXc1iQmHAc9cclrwn16RFNW1U9Vih+xM9yqlLKorFixfj2LFj6Nq1K8xmM2bOnEmVZIMUOSsPsX7PLHNMWWUd8+Fal52H7YcKZVft9JwccnKL8eV3v0ie5+CADfOHup0ntvL0U6xDwJAyrbi2QJWDP/MnfEHqe5GziAkNueZ69Vx8sAIC5HyGUUNpfekpLhdJRWGxWOBwOPDVV185y3rs27cPd911l9+EIPRBzspDLMOZ5UOQ2oWUVYr3KmZxbbKXN6vPXXPYKauS2kp6EGo1+1Ue3tku9Z0adXJj4WuPcKDRv+S6m3VdfMiJKAq2hkf+qEoghaSiWLRoET777DN07NjR+ZrJZCJFEYTIXXmwMpxZ5/dIinM2nGGhplex0sne1dzlzwmSVSFVLvyD6892pVU1NsxYfgCR4RZYLSY33wD/nXydX+KXz9ILf/YI98VUpMcK3d9o3V5WUlHk5ORg9+7diIrybxIboT++rjzEfAhyTDlKJ281k329zYE3duWJmsqU4ouS4CcYfpfDkiksxAKO4xTvOqpr7bCYrpkGxfw6YSEW2Gx22WU9tCIqworM4V0AKP8tCv0G/W0q0mOFHmxIKoo2bdqQkmhC+LryEApp9Uf5bNbxrIddzJTj4OCMyfc1CscXPCcYsYkrxGrCrd1ayw5PdcXONSqBVXMGAWB/J1ERVvRIau0W1uqKv5IJWUSGW3Dvne7mR09/lJzQa7lh1b6YirReoQcbkoqiT58+ePzxxzFkyBC3An1kemq+yIlj90RNr2Ixx3rm8C6iMkjF5GtFqNXMTOQSU3xVNTYcPlWMaamNVVTFWowKweeVSK2wTxaWMa8hJzNaCLm5LA0MX5NQJQAlUXPBaCoKNiQVxbFjxwAA7733nvM18lEEJ/5IIlLSqc2VRyf1VNyrWMoE8P2FCubqGPCOyfd3dVRPpMZUyr7O29UrrqhXbGJKMTLcorhUuBgWEzAj7Sbn/ebkFuOd/f9llhSR0ytb6nghyFSkPZKKYvPmzQAaE+84jkNISIjmQhH+x19JRGqiicwmYHDfDqpq6oiZAMRWx4BwNBerNaevePakFsJzQhNCy91PXYMDkeEW1YUMPYkIt3p9N+FhVtHaU673l5NbLKroPY8Xg0xF2iJZ66msrAyzZs1Cr1690KNHD0ydOhUlJcEVTUFI18SRi5qJrKvCnYQccnKLRWVhRXNp4bNQUiKcryXFqrfkjzpMLGx2DiaTyatDnlpcdyD8QoRVEZjHVXnL+e0ZNSS1uSG5o1i6dCl69eqFv//977Db7di8eTOeeeYZrF27Vg/5CD/hrxWsWIx5RkqSoG39zE8VOHj0vGLTEwt+UmIhVvBNi0Q7k9mE7y9UCJo+WOY+lhxaJwLyk7s/qsh6TvpKMqYB6d8e+RmMg6SiOHv2LFauXOn8+3//938xevRoTYUi/I8vSUSuk11UhNWrcxr/QLNWiHYO2LQnHytm91ctv6ssb+zKY05yvDMZgFsEDV/WQwtsds6rQN5be07j+wsVbmGqruY+f3bGU4OvSkLppM9/B9sPFWJddl5j+XSIR1kNuJnMSUZBcg9qs9lQV3ftR1BTUwOTKTBF0wj1ZKQkeZkc5KzYPEsYV9XYYDKbnB3NXJvci00WFyVMEnLgZRGb5Hgl4Vl2+dNjRbpOzPU2Bw4dL2Ka+4S+j2AhKsLqtWNjLTgiwy3YMH8oMlKScPjUNXNhda1dMhRXK8VOKEdyRzFq1ChMnz4dGRkZMJlM+OCDDzBixAg9ZCP8iNrIECGTgs3O4XeRVmdEEY/YKvm6lhE+SM+WxfPz+VIjSh3u/mhn6glLoZVV1slybPMEevfhSb1AGfGMlCRs2JXnlcxX1+Bw7kiVfidGuufmjqSieOSRR5CYmIjPP/8cDocDGRkZmDhxoh6yEX5GTWSIEt9GRkoSNu7O93IYW0xwthH1BbnOazUTjJ4VUyPDLU6zmJApzxWzyXgTJt8Tw3PRERHunYdhs3OKc254yJFtHJiKoqqqClFRUaioqMCwYcMwbNgw53uXL19GbGysHvIRAUaJb4NXQq41jfhsXLXhsXJk8XReG20F7orF1LjKrq69ZsoTw6hVbl2r0/K+F9aOoayyTpXznG+SpUVORDA1JjICTEUxZcoU7NixA/369XPzSXBcY4hdfn6+LgISgUVp1quW8ewsWTzt5WoaIOmFAwAX6GJLGlBvc4gqA18aTPm7aVCwNSYyAkxFsWPHDgBAXl4ezGZ3p1tFRYWmQhHGwUhZr3Jl4f+WUwbD18qwSvGHiUsLf4o/cHC+j6dQQqC/mwYFW2MiIyDpo5gwYYJTafDcd9992LVrl2ZCEcbCSFmvcmXhq7WyTFCR4RaYTCZVtY20Lp4nRSCUhBzTUVxMGKanJeMfO06qGlexrHF/mhKDrTGREWDG502bNg19+vRBQUEB+vTp4/yvV69eaNmypZ4yEoQqWCHBQ3q3RYONU12GPDTEf9nNStEyc5vFhvlDsf7JoaLOZd4cObhvB4SFWBR/RqjVLBp270/HNuta5Dxnw/y1v/baa/joo49wyy23IDs72/nfxx9/jLfeektPGQlCFf2TEzEttZtzAuBzPk4Wlvnkv6hr4Jz5Gnqjt3PbdfJk5X545lXIybge0rut1/ciprjrGuyYsfwA5q45jJzcYjW34kRtTlFzhqkooqKi0L59e6xZswa7du1Cu3btAADr169HbW2tbgIShL/x1cRgNjUqIaOsQONiwjCkd1vmLocPwfXELJE4azaZ3CZPIcV7f/pNWDVnkKzkO/69aandMGVEN7zw8ADcn34TgEZ/kpg0vBIpq6zDuuw8bP6YXcJFCtYCwijmVSMi6aNYsGAB2rdvDwCIiYmByWTC4sWL8dJLL2kuHEH4glB0Cz8h+bIw51f1Romu4qvWdm4fy3T0e4aD8q1SxSrJRoSZBQMF1PaH8JyMPb8fJd/Jp8eK0Ll9rOrJ3Uh+t2BAVq2n1atXAwCio6Px1FNPYcyYMZoLRhByEJoA+S5xLAes2IQUFxOGuga7qBmEX4nyE41Y7SkpoiKsqG9wqFY2vCxSeQGuE6Pc3hzVtXZVeQxyo9PUZGt7nk+TvT5IKgqbzeZMvgOA6upqcEaMzSOCCi2aKPE1nXjUTN5llXW4P/0m5kTqacvun5youBud67U8e0crPT8jJUlxXoCSCVptjoHUil2qTLxc2Qh9kFQU48aNw6RJkzBy5EiYTCbs27cPGRkZeshGNFEC2URJCr5eFH99150JS6FFqWgh6nktvkaV3MnP9Xyh2lZieQFKJ1h/5xhIlYl3Ray8iVF8RM0BSUUxe/ZsdO7cGTk5ObBarXjiiSeQkpIidRoRYIxcosBfCU/+XlG67haU2LDFdtgmAC1+yw+Q+h7k3I+QrV9pXoBYKRSxQob+QkzBW0xw1ozix0uo5S1FKemLrFpPffv2Rd++fZ3vVVRUUK0nA2P0EgVKJzaW0vOlrWeo1YwBNyc6/RnxLSMwbmAnVeMjJgMHIDzU6ta7W6hPhthEzE/gLBlZEzwr50LM2cwygflz9S52r649uHn6JyeKOuoJ7dG81lNVVRXuuecevP76687oqXnz5qFfv36CJqyqqipkZWWhsLCxCc6yZcuQnJys6KaaO0YvUaCk0CBL6X1/oQJ1AuWu5SDUAS8+Plp10UKpIoRllXXO2H8xnwqLFuFWZA7vgjGDbxSUUWl9JSlns5LaXmoQ+/5Zv0+KUgoskrWeTp9WH6984sQJLFq0CGfPngUAlJSUICsrCzk5OejXr5/gOc899xzatGmDl156CZ999hmeeeYZvPfee6plaI4YvUSBkkKDLKV36HiRKme1kOmGR625Tk6Y7Ft7TiM0xKzKp1JVY8O67Dy8s/+/uGfYjV4yqeleyJp4PZUIX+pkXXaes+GSrxO20kKTROBhKoqdO3eKnjhu3DjJi2/btg1ZWVmYN28eACA7OxvDhg1jmq04jsP//d//Yf/+/QCAQYMGoU2bNpKfQ7jjS9tTPVBSaJCl3NSGo7KUxMGj51Wb6/j3t+4rYJqh6m3qQ2B5rlxtEJRJycQrRxnySuTabs69nLjn5yvFSIUmCXkwFcXevXsBAKWlpfjhhx/Qr18/WK1W/Oc//0H37t1lKYply5a5/T1r1iwAwNGjRwWPLysrQ2hoKLZu3YpPP/0UYWFheOqpp+TeC/EbwbBik2tKUON4ZcFnVAuxaU++z+a68FCrap+JXIRkEuoDEmL1dlD4I4zWXyZMMiUFF0xF8frrrwMAHnjgAbz88su4/vrrAQBFRUVYvHixJsLY7XZcvHgR0dHRePfdd3H48GE88sgjzh2GXOLiovwqV3x8tF+vpwWuMo4ZHI2Y6HBs2pOPi+U1uK5lBKamdsfgvh0CKKG6cZyeloxX3zvhVro6LMSCYbe0x/99/ZNXNz0xRvbryJSB1dP7UmWd4DkHj553jm9UixBcrbXBLqG5oluEoL7B4XNZcyGZYqIr0GC79vnVtXZs2luAmOhw5/e+84scwYl/5xc/YszgGwU/R+7nu2L058Xo8gHGk1EyPPaXX35xKgkAaNu2LYqLfSvKxaJly5awWq1IS0sDAAwYMABXr15FWVkZ4uLiZF+nrKwKDj9VT/PFyakXQjImXx+LFbP7u70WyPtQO47J18di6siuXmYKAOBkfsdmE5DSqy0mpiQxZbiuZQRKBZRFq5gwr3M8V+ZXrjZIyhBqNeOeYY2TMSuT3PXexHweHIDpS/a6mWve3JXrpYDqGux4c1cukq+PBQDB++NfFxqXVozdnNCY8Bj9eTG6fEBgZDSbTaILbElFER8fj1WrVmH8+PEAgHfffRcdOmizMg0NDcXtt9+Of//737j33ntx/PhxREREUFnzZoiULX3umsPMRCyeyHCLMyxViqmp3bF623HVDnYxhJLr5CDm8/A0G8kJYFDqu1Jjwjx49Dze3JVLvocmhqSiWL58OZYsWYKxY8fCbDbjjjvuwN/+9je/CrFy5UokJCQgMzMTy5Ytw9NPP42tW7fCarXi5Zdf9uqwRzRt5NjS5ZSyvvfOrrI/c3DfDqi8UuuTg92TuJgwZ8E+pbg6lFm5DfU2B97Ylef8LCkloKatLSDf6ZyTW4xNewucOxuj5e8Q6jFxMgs3Xb58Gb/73e+0lscvkOnJeCiRkVXKwnXiFSt3YTYBMwUSt5TKx9rVyC21cX+6MhnEmLH8APM9Pnnw8KliWRVbtYo2kvO9BZqm9qz4CynTk+RS/YcffsCoUaOQlpaGkpISpKamOpPhCEIL5JhRxMwfDs73FSy/q+E/k18d5+QWy44e8+cqWqyzXb3NgZOFZbJ6LPRPTsQLDw/AhvlD8cLDA/wqo9Hzdwj1SJqenn32WSxcuBAvvPACWrdujfvuuw9PP/00tmzZood8zQYj12ZSiuu9SJWfEEKOGaV/cqJbOCjrOF9k96Te5sC67DzExYQh1GpCvY29a/V3y1KpDXJZZV3AQ06Nnr9DqEdyR1FRUYEBA65tGydPnoyqqipNhWpuiK1egw3Pe+EnuNLyGtmdyeS2qswc3kWwq1tZZZ2qlpmesrMoq6yDg4Ng1zgef7cslZpsjTAZZ6QkefXLNlr+DqEOWV7iuro6Z72n0tJSOByB7ejV1BBLbAo2pCKCPj1WJDmBy21V6XmcK2qUrZJoJpudQ0S4lblz8PfEnZGSBAvjw4wyGfdPTsSjk3pSi9EmiKTpKTMzEzNnzkRZWRleeukl/Pvf/3ZmWBP+wUi2XV9NYHJklpPZK9eMwh8n5EhVkkV88Oh5xeNdVWMTbHKk1cQt1OI6KqKxYKBRJuPBfTs48zaIpoOkopg0aRJuuOEGHDx4EDabDX/961/dTFGE7xjFtuuP8uRSlVT56/obX5QtH9apFKEmR1r5l7YfKhTMQg8LsRhGSRBNF0lFMW3aNLz11lu49dZb9ZCnWWKU2kz+qO0jp5KqFgrQF2W7/VAhs6yGWOipmiZHajHSrpNofkgqiitXruDq1ato0aKFHvI0S4xSTdMfk5HnvXiilQL0RdmK3R9vY3dtnGM2ufuQ9PiejLLrNBJNKVLQ6EgqioiICAwZMgRdu3Z1UxZ80UDCPwQ6tBFQ3lCI9ZC63gt/3KXKOrT6rbbR1n0FWJfdmFHsamP35cH3RdnKaaQj1NRHz8zjjJQkt6xnwDhO7EBg9C6OTQ1JRTFx4kQ95CAMgNxVuZKHlFca8fHR+Ojgf7FhV55bjaaqGhs27s7H9xcq3Mw7ah58tcpW7iQcyM6B/ZMTERMdTnWUfsPoXRybGqKK4syZM4iMjETPnj3RunVrvWQiAoTcVbnah3T7oULBQn42OyfYsc5ok3Cg/QQUUXSNQH8XzQ2movjggw+wYsUKdOzYET/99BNeeuklDBw4UE/ZCD+hxKTjWYxOqAWm3IfU9XPjW0aIPsSsBDUjTcJ6+AnI7i4P8tnoC1NRbN68GdnZ2WjdujWOHTuGl19+mRRFkOA62URFWFFTa3Ou5OWYdKRMS3IeUs9rsHoh8LA61mn54HsqMqkSI1pHp+XkFmPj7nxnGGxZZR027s4HEFx2dz2UnVEiBZsLopnZvLmpd+/eKC8v10Ugwjc8y1BU1di8zD1SWd9SmeJySmwoyXK2WkxI6dVWVtkOf+E5TnyJkRnLDzDLf8jNGFfL25+c8cqVsNk5vP3JGb9cXw/43uNal6PR+rsg3GHuKEweaaAWi4VxJGEk5E7QZZV1zJWflGlJji9DzGQUGW5xNuRxjXpyDUHV0uySk1uMN3bliZq7pJzzcj9Hyf0IFTgUe92I+KP3uFyMECnYXJCMeuLxVBxEYGGZTeTa9KMirEzzktzqrWIPqdg1WL0JpK7pD5PG5o9P49NjRZLH+Tq5BWP4pj/Gl9V7vKyyDjOWHyC/S5DCVBQFBQXo06eP8+/a2lr06dMHHMfBZDLh22+/1UVAwhsh+z8/CUVFWCVXoKFWMziOY678/GH/9eUaQhMW4HsOQ05usSwlweOLI11NZJjrTsvzda3xl2Jj9R7nCQaFSXjDVBT79u3TUw5CAWKTkJyGhaEhZqYy4fsa8J+jdnXpeQ1PZ7GrMogMt8BkMqGqxsZ0voeGmH02aSitxuuLI11N+Ob/dG/tpcgsJihq6aoWJYpNbOch1HvcE8p3CD6YiqJdu3Z6ykEowNcYcrEdBz85KrX/5uQWY+u+Ai/fA29mcm3v6Ll6dV1FC8lWb3MwJx4lq34lx1otJp8c6UrDN3Nyi3H4lLfDd1CvtrpMqEpCnsV2Hp69x5V+HmFMZPsoiMDh2TGOhdkERIQJmy/koDbKKCe3WDDjel12Ht7+5Awyh3fBmMHRzveURERJoWTVzzLtAIAJgOtejPOx85BS0xtrTE4Wlvkkh1zkKjY5Ow/XRYZYH20ieJDVuIgIHKyOcUI4OKhWEr6EF7IyroFGhfHWntM4ePS88zU1q8nIcIvP4bNiARme4ts55aYqV5SGb6rdJebkFmPumsOiYb1ykNtVUKmccq9LGBvaURgcf66+xWBFIslBajKrtzmwaU8+xg3spGryDbWanXZ6X/wmSsNMfTWPKDHfqck09mdklVy/lFI5jVIZmfANUhQGRw9bblxMmE+hkXKaFfGRWXKUntViQliIGdW1dreS3hkpST4pNDlyeh4PGDfT2N+F8YSq/q7LznO7ZzVyUr5D8EOKIoDImYCUTm5iCIXOhlrN6JEU59PKNCMlyctH4YnZbGIqCdeoJ6XhsEomcTlNlVzpkRSnWz6EmpW3VoXx5Nwz7RCaF6QoNEDO5CV3AlI6ubHgE92EZPN1Zcofs2lvPuoavLWF1WISbOPJs/qxFDe5+I5zYmVEhKJqpCZx/jW+F4YUJwvLcLKwzLCZxv7qH+KJ1O+BdgjND1IUfkauApA7OfP/fvuTM267Ac8oHTGk2nayJk6lK1ObTVgizsEhukUIrlxt8HovMtwiOGYs+PFkKU4hZRL3W8Okr/NLFDn79Q7vVGriYi0iyirrMHfNYef5QuO7LjvPy6wkdW/861ThtvlBisLPyFUASs0G9Q3u15RSEnw1VjltO+WuTFkTRE5usegqnd9MWEzwMk/VNTiwdV+B7B0Tfz9ieCqTsso6RRnZPPz9axXe6Zl0WNfgcKscK2Xi8jQDueJ6vlhAhNDniP0e1JriSLkENxQe62fkKgDWRCP0upLIp7iYMGyYPxQz025CqNXsDKcVq+IpJ4TRM0yXv97mj087Jwoxqq42ICLce11is3OyV/mu9yOGHGXiSlSEFRaPBBX+/rUK7/Qcz+pau5d5rt7mwBu7rlW0dQ0x5umfnIgXHh4g+LvhFwhyotJco9FY99wjKQ5v7MoTNQnKuVetKsoS2qG5oqiqqkJaWhouXLjgfG3evHnYvn276HnFxcX4n//5H7fzggGWAjCb4PZgKJmA5Jo5XM+XKhXuipyYf9b1Pj1WJGtSvq5lhM9VUAfcnCi5kperTFxZNWcQHrunt+D9a1XOWq7yd1X0r753QnByzcktFl2gyNn9uJ4vdM8Dbk7E4VPFqhpMKfktEsZEU9PTiRMnsGjRIpw9exYAUFJSgqysLOTk5KBfv37M8xwOBxYuXIiGBm+bttFh2Y0dHNy26EqiR1imgKgIK8JCLLhUWYdWHucrNW1JOSh9scmHWs2Ymtrd2WrUk6gIK+ob2GU6eE4Wlok6912d83Ll5RX4mME3enW4k5sRLwdP04ua8axrsHuZMPnVOgt+TKQCIjyViWenQynTnZgy0io6i9APTRXFtm3bkJWVhXnz5gEAsrOzMWzYMMTGxoqet379etx+++348ccftRRPE/iHWKjfgVipAzFYset8HwfXOko8/m4VqXZyiwy34N47uzprALHuAxC2tbvCR0S5nm82ASm92mLKiG5ux8qNbOIVeEx0uJui8LTFe5rwAGVVa+U666XgHdW8whGKDvM8/o1deeh6fSx+La8R/GzWTtZTbhZSpjhqWxr8aKooli1b5vb3rFmzAABHjx5lnvPdd9/hq6++wvr167FlyxZVnxsXF6XqPBbx8dHSB7kwZnA01jMmqkuVdaquFxMdjk178nGxvAbXtYzA1NTuGNy3A1PG6WnJePW9E6hruGb/DwuxYHpasuLPZ11PjOgWIXhg3M0AGpvZrM/Ow3UtIzD81g44cvpXt/vgj7n0W5XZ2jqbYIQU4D3JOjjgy+9K0Kd7onM8xgyOlq0ogGuZ4xsW3eV8becXOaKRVTu/+BFjBt8o6/pi13LFYjahRbgVVVcbYDKb4GDYeVxt/XJwcED+uQqM6t8RD03shYNHz4v+lpTIbTab8Oc/9tL1t+grgfhMpRhNRkNFPdXU1GDJkiVYuXIlzGb17pOysirmQ6YUodW6HFoxVlGtYsJUXS/5+lismN3f7TX+OkIyJl8fi6kju3qZtpKvj1X9+Z7Xq2uwC/odoiKsWPm/dwj2zfjkyHk3G7/QMRaTdO6FK3UNdry5K9dtR8Dqwc2itLwG05fslW0aKi2vwUcH/+tmnmGZEKX6hQPwOk/ual4Je786h4m//QZYvyW31yTkDrWaMS21m9tvSo/foi+ofZ71JBAyms0m0QW2oRTFN998g7KyMjz00EMAgF9//RUPPPAAXn31Vfz+978PsHTKMELzd38nRnleT2gy8zQlSYUKCx1j54DIEDN+F2l1+gekJn2hnYZSlK7U39pzGt9fqMDhU8Wi4aJyFI9naRIhH5avNn2lYyL2mUpDXClJL7gxlKK44447cODAAeffQ4cOxT//+U+0b98+gFKpozmUOpC6RzlOTNYx1bV2rH4sBQAwY/kBwWNcMZkaj4uKsMpq3uQP6m0OHDpeJOmLykhJEjWFiRXUc/29PPmPHMFVfmS4BeGhVkmFotQhz1rs+CPqiwguDKEoVq5ciYSEBGRmZgZaFL/iyyoqWBKUxO5RjhPTl2Nc4XWDryG4SpETLto/ORHfX6gQjByymCC5y3T9LXjCV9Z1/Q5YfcFTerUV/RxPmsNih5CHidNr+aUjRvBR+ALLpMOv5DyVyPS0ZK/QTiMgdR++HKMUvozHZ8eL3LLDLSYgIly6zzgLMbOYkN/BtRQLHxEmldEsFQ4sdP7mj087dzusyDAtMLoPwOjyAcb0UZCikEDrL41VpI+1yhYyB4SFWDB1pPiEEyj4+xPK9fA8RqqIopL8CE82zB/K/CwA2LS3QHZEF0+o1YwBNyd6KR/PY3wx1Yh1iPOl5LpWGH0iNrp8gDEVhSFMT4EmUGYeVt0csbo8Qs5foUQsf8roy9jwpinWj1/u9V1NXKzJk4WrGYtlKouJDncmBAoVEYyKsOLWbgk4WVjmpWQ+P/mLdxGr35BTaVZsDChZjTACzV5R6NVvQAhWVBDLnCFmq9eqmqnQ2Hx/ocJrwlSSfOZLITxAWel1i6lRkc5YfkBU1sF9O3iZ7+SYauauOSwZxiv23Uj9/sS+c9cKsUoJFh8YYQyafVHAQNahYU0ADg6CdaASWkYwr6VFlqtYfSc1Bd7kFsITGnvX3tDbDxXKqvsEACazyekT0KIYnRwFLSan1O9PqCaY62eruR8q0kcopdkrikBu7cUqyAoVoiv4qYJ5LS3yM+SOgVzFKrcQnufnCk1sh08VN3bWmz+UOY4mE2QrIrXIKVIo9t1I/f48C/R5ouZ+qEgfoZRmb3oKZB0asaQ8JQ2GAG3MZEqSvOQcJ/danmMvlbgnNI5imd3+XASI5UiYTWBGqvHfsZzfH/9bmLn8gGAfEqX3Q34PQinNfkehVb8BOSgtYc1KmDL7WtqUgZjZw5PIcIvTNDR3zWFBM4Yc5Ss09kpX3XExYQgLYcvtz0VA/+REDOntnZ8QajVjZtpNbh3mhEw9Sn5/1zFMj0rvR0kvFIIAaEcR8KQiJUl5Kb3aCiZSjbzten+LBUB4bHokxbmVrAB4h7ED1bXuE6Gr0zu+ZQTzXD6PwbNrnmuJb5Zz33Olfn964+Qsls3t70XAlBHd0Ll9LPM3JLYj4kNc5fz+pqZ2x+ptx30uC2OE8jJEcNHsFQUQPHVo+Cgcz0Sqhyb20izuWmhsPCdFoeKAvNObp7S8Boev1GHAzYmSEVOsEt+uWC0m9EiKY0YMsUw6keEWAHAr1Z2RkoQxg32r1in2G5KzI5Lz++NLtSvJORE6JtCLIyL4oIQ7CZp7go6cMEo5tZh45CSKycmTsJiA8DCLYBtVVmIinyDnuasJtZrx5z/20iy7nXU/fOMpuZM1/z2LfSdyMt21xOjPi9HlA4yZcNfsfRRNHdewUpbvQOxcOWGUSmzbfOMdMTnkOFXtHJi9tssq65j+n5OFZYJmoE178mXfg1KE/BBWiwk1tTa3sV2XnYfNH4v3Hxf7TnJyi1X1tCYIKcj01ITwXGl6+gTEEtrklsgQyjRWkgAnJQegvpue6/n8teVGjsnpGaEWIVNPbb1NUNF9eqwIndvHMlf/LH/H25+cQX2DQ1VPa4KQgnYUTQShleanx4pkrS49z5XC8zh+9R4VIX/dIbbKlRttFRVhVRyxpnfkGE//5ES88PAAbJg/FC88PIC5GwIguvpnfUdVNTZFPbEJQgmkKJoIcpPZAO/JRsm5gPCk0z85EWEhFtnXEJLD9VquZqPIcAusFveJnG+QpCS8GGBXevWXT0suYhO3mMJWM+FTRBPhK2R6aiKoLZKn9FyxSUepeUNs0hPqpsdy4Cpx0rLMWvEi5VG0QCxRT2xcWE76EKtJcJfimvRHEGohRdFEkGvXF5ro5Z4rFZmjxLegdJXrrxBm1kQ7NbW7z9dWAquZkdS4sEJbAVA3OkIzSFE0EcTCQfm8Bb5N6LrsPGw/VOic9KWc0VaLCX8a1V1ywpHr1A7kKpc10Q7u20H3kESpRD0WYkqTciMILaA8Cgm0iGn2d4lntfH1PHyEFK9QXImKsCJzeBcv+Vgd1PgQTdbwG3WVS/H1/sHoMhpdPsCYeRS0o9AZLftfSK00xRoiHT5VLHsC9+zJ7ODg/HvKiG6ixQuNqCQIghCHFIXOSFVC9RXWrkJNfgTreoeOe9ebAhpLi0wZ0U20IiopCYIIPig8Vme0LPGck1uMDbvy3HIpNuzKQ05usaywSjl9IN7ac5odYvrb60J5EGEhFgrRJIgghRSFzmhZ4nnrvgKv1s12rvF1OUlscvtAsOBz1oTKZzw6qSftJggiSCHTk84oKfGs1OnNyvatrrU724cKOax5+DpMcs1VnqT0utaXwdNfEgxORIIghCFFoTNySzz72+nt6bBm1XaSU6qbj5ISinoiCKLpQYoiAMhJHmOZfbbuK2CeGxVh9eoL4Xk+77Dm/xMqgc0fJ9WqlRQDQTQPyEdhUFhmn+paO7NEd+bwLl41kaSuK2aG4n0NfLMfAAgVaTFKEETThJ56gyLm3GZVF+2fnIg/jeouWsXV9bpiPSFcj2uwXfOQV9XYBHtSEATRdNFcUVRVVSEtLQ0XLlxwvjZv3jxs375d8PjCwkJMnjwZY8eOxd133438fO0ayhgZsVBSyZyIBuHIJE+nuVg56x5JcZi75jDWZVMjHIJo7miqKE6cOIHMzEycPXsWAFBSUoIHH3wQH3/8MfOcRYsW4f7778eHH36Ixx57DE8++aSWIhqW/smJzJ2B1G5DKIRVqL6SmMI5fKpY9H1qhEMQzQdNFcW2bduQlZWFhIQEAEB2djaGDRuG1NRU5jmTJk3CHXfcAQDo2rUrfvnlFy1FNASsdqWZw7sobszDmsAdXGN3N9frsxSO2SSeLyF2LkEQTQ9No56WLVvm9vesWbMAAEePHmWek5GR4fz3qlWrMHz4cG2EMwhywmCV5FJIlfp2vT4rqklKSVAjHIJoXhgyPJbjODz//PM4ceIENm3apPh8sSqIaoiPj/br9VzZ+UWOoA9g5xc/YszgGzFmcDRiosOxaU8+LpbXYOcXPyImOhyD+3YQlHF6WjJefe8E6hrYrTb5629YdJfbta9rGYGpqd2xaU8+s4d0/G/HeH6+HLQcR39gdPkAktEfGF0+wHgyGk5R2Gw2PPnkkygpKcGmTZsQHa18wIxeZtwV1oRcWl7jLB3uuuovLa/B6m3H8W1+sTPLOr5lBMYN7IT+yYlIvj4WU0d2FUym87z+9CV7kZGShBWz+7u9N25gJ8kmOErHxOiZ2UaXDyAZ/YHR5QOozLgsVqxYgaqqKmzYsAGhoaGBFkdzxLKfAXbinWuZ79LyGjdzlafJigUr21uNyYsgiKaLIRTFypUrkZCQgBEjRmDLli1o3749Jk2a5Hz/ww8/DKB02iJV+0ludJFr1rVYkyKx81zxV+tRgiCCH10UxYEDB9z+Xr58udvfc+bMcf47L4/d9KYpIrV6V9KHmj9OrEmR2HkEQRBCGGJH0dwRW73L7UMNXDNXKZ34KdSVIAgxqISHwRHq7TCkd1vR/ArWxB8VYVWcl0EQBEE7iiBAaMfRuX2s01zlGvUEsP0emcO7ACAnNUEQyiBFEaS4Kg/PcDopvwcpBoIglECKoolCUUsEQfgL8lEQBEEQopCiIAiCIEQhRUEQBEGIQoqCIAiCEKVJOrPNZvG+0YG+nhaQjL5jdPkAktEfGF0+QH8ZpT7PxHGcf8qsEgRBEE0SMj0RBEEQopCiIAiCIEQhRUEQBEGIQoqCIAiCEIUUBUEQBCEKKQqCIAhCFFIUBEEQhCikKAiCIAhRSFEQBEEQojRLRVFVVYW0tDRcuHABAPDll18iPT0dd911F15++WWv48vKyjB27Fjnf0OHDkXv3r0BAF9//TVuu+0253sLFizQREYAmDdvHrZv3y54fGVlJR544AGkpqZi8uTJKC0tBQDU19dj7ty5SE1Nxfjx41FYWBgQ+QoLCzF58mSMHTsWd999N/Lz8wEAP//8M3r37u0cv5kzZ/pFPjUysr5LrcZQjYwZGRlO+UaMGIGbbroJFy9e1GwcPeV79913kZaWhvT0dCxYsAD19fVe5xQVFWHy5MkYOXIkHnroIVRXVwNg/0YDIePRo0cxceJEjB07FtOmTcPPP/8MQJvnWY18O3bswMCBA51y8POSVmMoCdfMOH78OJeWlsYlJydz58+f52pqariUlBTup59+4hoaGrgZM2ZwBw8eZJ5vt9u5++67j/voo484juO4N954g3v99dc1lbG4uJibPXs216NHD+6DDz4QPGfJkiXcP/7xD47jOG7Hjh3cnDlzOI7juPXr13OLFy/mOI7jvv76a27SpEkBke+ee+7hPv30U47jOO7LL7/k0tPTOY7juL179zrl8ydqZGR9l1qMoVoZXZk7dy63du1ajuO0GUdP+X744Qfuzjvv5K5cucI5HA5u3rx53MaNG73Oe+CBB7hdu3ZxHMdxr776Kvf8889zHMf+jQZCxiFDhnD5+fkcx3Hce++9xz344IMcx/n/eVYr39KlS7ns7Gyv17UYQzk0ux3Ftm3bkJWVhYSEBADAyZMn0bFjR3To0AFWqxXp6enYu3cv8/wPPvgAERERSE9PBwCcOnUKX3zxBdLT0/Hggw/il19+8buM2dnZGDZsGFJTU5nnHDx40ClTWloaPvvsMzQ0NODgwYMYM2YMAODWW2/FpUuXUFRUpLt8kyZNwh133AEA6Nq1q3OcTp06hTNnzmDs2LGYOnUqCgoKfJLNFxlZ36UWY6hWRp6cnBycPn0a999/v1N2f4+jp3yhoaHIyspCVFQUTCYTunTp4jUODQ0NOHLkCEaMGAGgcQfEP0+s36jeMtbX12POnDno1q0bAO/foz+fZzXy8XLs2LED6enpeOKJJ3D58mUA2oyhHJqdoli2bBluueUW59+//vor4uPjnX8nJCSgpKRE8Fy73Y7XX38df/nLX5yvRUdHY8qUKcjOzkZKSgoef/xxv8s4a9YsTJo0SfQc1/uwWq2IiorCpUuXvO4vPj4excXFusuXkZEBi8UCAFi1ahWGDx8OAAgLC8OYMWOwY8cOzJw5E4888ojgVlwPGVnfpRZjqFZGnlWrVuHxxx93jqkW4+gpX7t27TBgwAAAwKVLl7BlyxYMGzbM7Zzy8nJERUXBam0sTB0fH+98nli/Ub1lDA0NxdixYwEADocDr776qvP36O/nWY18QOO4Pfzww/joo4/Qpk0bLF26FIA2YyiHZqcoPHE4HDCZrpXY5TjO7W9XPv/8c9xwww3o2rWr87WlS5firrvuAgBkZmbi+++/x5UrV7QVWgYcx8FsNnvdD/96oGRasWIFTpw4gaeeegoA8Oc//xn33nsvzGYzUlJS0KJFC/zwww8BkY/1XRppDAHgv//9L8rLyzFkyBDna3qOY0lJCaZNm4YJEybgtttuc3tP6PlhPU9ajqOYjDz19fV44oknYLPZMHv2bAD6Pc9S8r322mvo27cvTCYTZs2ahc8//1zwOnr9Fpu9okhMTHRzCJWWljq3iZ588sknGDVqlPNvh8OBtWvXwm63ux3Hr/L0JCEhARcvXgQA2Gw2VFdXIzY2Fq1bt8avv/7qPO7ixYvM+9MSm82GJ554AqdOncKmTZsQHR0NANi8eTPKy8udx3Ec51yN6onYd2mUMeTx/B0C+o1jYWEh7rnnHowfPx6PPPKI1/utWrXClStXnOPo+jyxfqN6ywgA1dXVmDVrFmw2G9auXYuQkBDdnmcp+a5cuYI333zT+TfHcU4Z9BpDT5q9oujZsyd+/PFHnDt3Dna7Hbt27cKgQYMEjz1+/LjbNtJsNmPfvn34+OOPAQA7d+5Ez5490aJFC11kdyUlJQU7d+4EAOzevRu33HILQkJCkJKSgg8//BAA8M033yAsLAxt27bVXb4VK1agqqoKGzZscCoJADhy5Ajef/99AI0RJw6HA7///e91l0/suzTKGPJ4/g4BfcaxqqoKM2fOxJw5czBjxgzBY0JCQnDLLbdg9+7dABrHkX+eWL9RvWUEgLlz56Jjx4545ZVXEBoaCkCf51mOfC1atMD69etx4sQJAMC//vUv3HnnnQD0GUMhmmSHOyWEhYVh+fLl+POf/4y6ujqkpKRg5MiRAICFCxdi6NChThvi+fPnkZiY6Hb+ihUrsHjxYrz22mto1aoVnn/+ed1kX7lyJRISEpCZmYk5c+Zg/vz5GD16NKKjo/Hiiy8CAKZMmYKnn34ao0ePRmhoaEDkGzFiBLZs2YL27du72eA//PBDLFy4EPPnz8eHH36IsLAwvPTSS7qadVzHkPVdBnIMPWUEGn+HrVu3djtGj3F8//33cfHiRWzcuBEbN24EAAwdOhRz5sxxe1aysrIwf/58rF27Fm3atMHf//53AGD+RvWWsU2bNti/fz86d+6M8ePHA2hcqa9bt07z51nuGL7yyit45plnUFtbixtuuMEphx5jKAR1uCMIgiBEafamJ4IgCEIcUhQEQRCEKKQoCIIgCFFIURAEQRCikKIgCIIgRGn24bFE8+HZZ5/FkSNHADQmPbVr1w7h4eEAGit68v/2N1euXMEjjzyCTZs2yTr+yy+/xIoVKwA0JvfZ7XZnOOzs2bO9ku2kmDFjBl588UW0atVKmeAE8RsUHks0S4YOHYqVK1fi5ptv1vyzLly4gPT0dBw7dkzxuatXr0Z5eTmefvpp1Z/ftWtX5OTkkKIgVEM7CqLZc/XqVTzzzDM4d+4cKioqEBkZiRdffBG///3vMWXKFPzud7/DDz/8gMzMTAwaNAhPPfUULl++jPj4eHAchzFjxiAjIwPffvstXnzxRdTU1MBsNuPRRx/FkCFDsGDBAtTW1mLs2LHYvn07XnvtNezbtw8hISFo2bIlnnvuOdklQQoLC7Fs2TJUVFTAbrdjypQpmDhxIqqrq7FgwQKcO3cOZrMZycnJWLp0KRYuXAgAmDZtGv75z3+iTZs2Wg4l0VTRpZg5QRiMIUOGcCdPnuQ4juP27NnD/fWvf3W+t3jxYm7p0qUcx3Hcfffdxy1YsMD53h//+Eduy5YtHMdx3Pfff8/17NmT++CDD7iKigrurrvu4s6fP89xHMcVFxdzgwYN4n7++Wfu/PnzXK9evTiO47iioiKuT58+XF1dHcdxjf0P9u3bx5Rz1apV3JIlSziO47iGhgZu1KhR3HfffcdxHMdVVlZyqamp3LFjx7gdO3ZwM2bM4DiO42w2G7dw4ULu7NmzHMdxXJcuXbiysjIfR4xoztCOgmj2jBw5Eh06dMDmzZtx7tw5fP31184OhgCcdZUuX76MkydP4l//+hcAICkpCf369QPQWH+ptLTUrcibyWRCQUEBbrzxRudrrVu3Rrdu3TB+/HgMGjQIgwYNQv/+/WXJefbsWfz000/OyrsAUFtbi7y8PNxxxx14+eWXMWXKFNx+++2YNm0aOnbsqH5QCMIFUhREs2fr1q3Ytm0bJk+ejPT0dMTGxrq1JuWLwvEVPDkXtx7/mt1uR1JSEt577z3neyUlJWjVqpVbfxOz2Yx//etfOHXqFHJycvC3v/0Nd9xxB+bNmycpp91uR3R0tLNAIdDo7I6OjkZYWBj27duH//znP/jqq6/wpz/9CUuXLsXQoUNVjgpBXIPCY4lmzxdffIHx48dj0qRJ6NSpEw4cOOBVahoAoqKi0KdPH2c/6/PnzyMnJwcmkwm9evXCuXPnnFFV+fn5GDFiBEpKSmC1WmG328FxHE6fPo20tDQkJSVh9uzZmD59Ok6dOiVLzk6dOiE8PNypKH755RekpaXhu+++w9atW7FgwQIMHDgQc+fOxcCBA5GXlwegUZnZbDZ/DBXRTKEdBdHsmTFjBp5++mlnme5evXrhzJkzgseuWLECCxcuxNatW9G6dWu0b98e4eHhaNWqFVatWoXnn38edXV14DgOzz//PNq3bw+73Y4ePXpg9OjR2LJlC1JTUzFhwgS0aNEC4eHhWLRokSw5Q0NDsWbNGixbtgzr16+HzWbDnDlz0LdvX3Tv3h1ff/01Ro0ahYiICLRp0wZTpkwB0GhamzJlClavXo0uXbr4Z9CIZgWFxxKEAtauXYu77roLSUlJuHLlCsaMGYN169ahc+fOgRaNIDSDdhQEoYAbbrgBjz/+OMxmM+x2O+6//35SEkSTh3YUBEEQhCjkzCYIgiBEIUVBEARBiEKKgiAIghCFFAVBEAQhCikKgiAIQhRSFARBEIQo/w+7HY/ImbEOjQAAAABJRU5ErkJggg==",
-                        "text/plain": [
-                            "<Figure size 432x288 with 1 Axes>"
-                        ]
-                    },
-                    "metadata": {},
-                    "output_type": "display_data"
-                }
-            ],
-            "source": [
-                "plt.scatter(y_test, y_hat_test)\n",
-                "plt.xlabel('Targets Test')\n",
-                "plt.ylabel('Predictions Test')\n",
-                "plt.show()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 92,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Predictions</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>116819.417145</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>130998.419879</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>92313.264681</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>90837.833968</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>117826.572101</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Predictions\n",
-                            "0  116819.417145\n",
-                            "1  130998.419879\n",
-                            "2   92313.264681\n",
-                            "3   90837.833968\n",
-                            "4  117826.572101"
-                        ]
-                    },
-                    "execution_count": 92,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "df_pf = pd.DataFrame(np.exp(y_hat_test), columns=['Predictions'])\n",
-                "df_pf.head() "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 93,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Predictions</th>\n",
-                            "      <th>Target</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>116819.417145</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>130998.419879</td>\n",
-                            "      <td>143081.42</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>92313.264681</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>90837.833968</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>117826.572101</td>\n",
-                            "      <td>NaN</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Predictions     Target\n",
-                            "0  116819.417145        NaN\n",
-                            "1  130998.419879  143081.42\n",
-                            "2   92313.264681        NaN\n",
-                            "3   90837.833968        NaN\n",
-                            "4  117826.572101        NaN"
-                        ]
-                    },
-                    "execution_count": 93,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "df_pf['Target'] = np.exp(y_test) \n",
-                "df_pf.head()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 94,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/plain": [
-                            "0    11.703337\n",
-                            "1    12.038666\n",
-                            "2    11.550857\n",
-                            "3    11.463528\n",
-                            "4    11.968262\n",
-                            "Name: log_sales, dtype: float64"
-                        ]
-                    },
-                    "execution_count": 94,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "y_test = y_test.reset_index(drop=True)\n",
-                "y_test.head()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 95,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Predictions</th>\n",
-                            "      <th>Target</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>116819.417145</td>\n",
-                            "      <td>120974.69</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>130998.419879</td>\n",
-                            "      <td>169171.18</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>92313.264681</td>\n",
-                            "      <td>103866.03</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>90837.833968</td>\n",
-                            "      <td>95180.23</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>117826.572101</td>\n",
-                            "      <td>157670.36</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "     Predictions     Target\n",
-                            "0  116819.417145  120974.69\n",
-                            "1  130998.419879  169171.18\n",
-                            "2   92313.264681  103866.03\n",
-                            "3   90837.833968   95180.23\n",
-                            "4  117826.572101  157670.36"
-                        ]
-                    },
-                    "execution_count": 95,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "df_pf['Target'] = np.exp(y_test) \n",
-                "df_pf.head()"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 96,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Predictions</th>\n",
-                            "      <th>Target</th>\n",
-                            "      <th>Residuals</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>116819.417145</td>\n",
-                            "      <td>120974.69</td>\n",
-                            "      <td>4155.272855</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>130998.419879</td>\n",
-                            "      <td>169171.18</td>\n",
-                            "      <td>38172.760121</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>92313.264681</td>\n",
-                            "      <td>103866.03</td>\n",
-                            "      <td>11552.765319</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>90837.833968</td>\n",
-                            "      <td>95180.23</td>\n",
-                            "      <td>4342.396032</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>117826.572101</td>\n",
-                            "      <td>157670.36</td>\n",
-                            "      <td>39843.787899</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>567</th>\n",
-                            "      <td>109907.197654</td>\n",
-                            "      <td>116989.93</td>\n",
-                            "      <td>7082.732346</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>568</th>\n",
-                            "      <td>111919.500560</td>\n",
-                            "      <td>80209.05</td>\n",
-                            "      <td>-31710.450560</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>569</th>\n",
-                            "      <td>85980.050529</td>\n",
-                            "      <td>126907.41</td>\n",
-                            "      <td>40927.359471</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>570</th>\n",
-                            "      <td>140304.667673</td>\n",
-                            "      <td>155777.29</td>\n",
-                            "      <td>15472.622327</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>571</th>\n",
-                            "      <td>121242.374520</td>\n",
-                            "      <td>88335.66</td>\n",
-                            "      <td>-32906.714520</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>572 rows \u00d7 3 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "       Predictions     Target     Residuals\n",
-                            "0    116819.417145  120974.69   4155.272855\n",
-                            "1    130998.419879  169171.18  38172.760121\n",
-                            "2     92313.264681  103866.03  11552.765319\n",
-                            "3     90837.833968   95180.23   4342.396032\n",
-                            "4    117826.572101  157670.36  39843.787899\n",
-                            "..             ...        ...           ...\n",
-                            "567  109907.197654  116989.93   7082.732346\n",
-                            "568  111919.500560   80209.05 -31710.450560\n",
-                            "569   85980.050529  126907.41  40927.359471\n",
-                            "570  140304.667673  155777.29  15472.622327\n",
-                            "571  121242.374520   88335.66 -32906.714520\n",
-                            "\n",
-                            "[572 rows x 3 columns]"
-                        ]
-                    },
-                    "execution_count": 96,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "df_pf['Residuals'] = df_pf['Target'] - df_pf['Predictions']\n",
-                "df_pf"
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 97,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Predictions</th>\n",
-                            "      <th>Target</th>\n",
-                            "      <th>Residuals</th>\n",
-                            "      <th>Difference%</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>0</th>\n",
-                            "      <td>116819.417145</td>\n",
-                            "      <td>120974.69</td>\n",
-                            "      <td>4155.272855</td>\n",
-                            "      <td>3.434828</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>1</th>\n",
-                            "      <td>130998.419879</td>\n",
-                            "      <td>169171.18</td>\n",
-                            "      <td>38172.760121</td>\n",
-                            "      <td>22.564576</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>2</th>\n",
-                            "      <td>92313.264681</td>\n",
-                            "      <td>103866.03</td>\n",
-                            "      <td>11552.765319</td>\n",
-                            "      <td>11.122756</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>3</th>\n",
-                            "      <td>90837.833968</td>\n",
-                            "      <td>95180.23</td>\n",
-                            "      <td>4342.396032</td>\n",
-                            "      <td>4.562288</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>4</th>\n",
-                            "      <td>117826.572101</td>\n",
-                            "      <td>157670.36</td>\n",
-                            "      <td>39843.787899</td>\n",
-                            "      <td>25.270309</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>...</th>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "      <td>...</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>567</th>\n",
-                            "      <td>109907.197654</td>\n",
-                            "      <td>116989.93</td>\n",
-                            "      <td>7082.732346</td>\n",
-                            "      <td>6.054138</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>568</th>\n",
-                            "      <td>111919.500560</td>\n",
-                            "      <td>80209.05</td>\n",
-                            "      <td>-31710.450560</td>\n",
-                            "      <td>39.534754</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>569</th>\n",
-                            "      <td>85980.050529</td>\n",
-                            "      <td>126907.41</td>\n",
-                            "      <td>40927.359471</td>\n",
-                            "      <td>32.249779</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>570</th>\n",
-                            "      <td>140304.667673</td>\n",
-                            "      <td>155777.29</td>\n",
-                            "      <td>15472.622327</td>\n",
-                            "      <td>9.932528</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>571</th>\n",
-                            "      <td>121242.374520</td>\n",
-                            "      <td>88335.66</td>\n",
-                            "      <td>-32906.714520</td>\n",
-                            "      <td>37.251903</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "<p>572 rows \u00d7 4 columns</p>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "       Predictions     Target     Residuals  Difference%\n",
-                            "0    116819.417145  120974.69   4155.272855     3.434828\n",
-                            "1    130998.419879  169171.18  38172.760121    22.564576\n",
-                            "2     92313.264681  103866.03  11552.765319    11.122756\n",
-                            "3     90837.833968   95180.23   4342.396032     4.562288\n",
-                            "4    117826.572101  157670.36  39843.787899    25.270309\n",
-                            "..             ...        ...           ...          ...\n",
-                            "567  109907.197654  116989.93   7082.732346     6.054138\n",
-                            "568  111919.500560   80209.05 -31710.450560    39.534754\n",
-                            "569   85980.050529  126907.41  40927.359471    32.249779\n",
-                            "570  140304.667673  155777.29  15472.622327     9.932528\n",
-                            "571  121242.374520   88335.66 -32906.714520    37.251903\n",
-                            "\n",
-                            "[572 rows x 4 columns]"
-                        ]
-                    },
-                    "execution_count": 97,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "df_pf['Difference%'] = np.absolute(df_pf['Residuals'] / df_pf['Target']*100)\n",
-                "df_pf   "
-            ]
-        },
-        {
-            "cell_type": "code",
-            "execution_count": 98,
-            "metadata": {},
-            "outputs": [
-                {
-                    "data": {
-                        "text/html": [
-                            "<div>\n",
-                            "<style scoped>\n",
-                            "    .dataframe tbody tr th:only-of-type {\n",
-                            "        vertical-align: middle;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe tbody tr th {\n",
-                            "        vertical-align: top;\n",
-                            "    }\n",
-                            "\n",
-                            "    .dataframe thead th {\n",
-                            "        text-align: right;\n",
-                            "    }\n",
-                            "</style>\n",
-                            "<table border=\"1\" class=\"dataframe\">\n",
-                            "  <thead>\n",
-                            "    <tr style=\"text-align: right;\">\n",
-                            "      <th></th>\n",
-                            "      <th>Predictions</th>\n",
-                            "      <th>Target</th>\n",
-                            "      <th>Residuals</th>\n",
-                            "      <th>Difference%</th>\n",
-                            "    </tr>\n",
-                            "  </thead>\n",
-                            "  <tbody>\n",
-                            "    <tr>\n",
-                            "      <th>count</th>\n",
-                            "      <td>572.000000</td>\n",
-                            "      <td>572.000000</td>\n",
-                            "      <td>572.000000</td>\n",
-                            "      <td>572.000000</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>mean</th>\n",
-                            "      <td>115670.583849</td>\n",
-                            "      <td>120025.710717</td>\n",
-                            "      <td>4355.126868</td>\n",
-                            "      <td>21.517588</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>std</th>\n",
-                            "      <td>22941.875293</td>\n",
-                            "      <td>39330.902460</td>\n",
-                            "      <td>31032.826964</td>\n",
-                            "      <td>17.482142</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>min</th>\n",
-                            "      <td>71040.429117</td>\n",
-                            "      <td>45263.340000</td>\n",
-                            "      <td>-63813.487107</td>\n",
-                            "      <td>0.127541</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>25%</th>\n",
-                            "      <td>94828.761143</td>\n",
-                            "      <td>90459.230000</td>\n",
-                            "      <td>-17799.809897</td>\n",
-                            "      <td>8.428694</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>50%</th>\n",
-                            "      <td>118220.278893</td>\n",
-                            "      <td>116320.655000</td>\n",
-                            "      <td>1400.734279</td>\n",
-                            "      <td>18.218184</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>75%</th>\n",
-                            "      <td>129494.110343</td>\n",
-                            "      <td>148368.807500</td>\n",
-                            "      <td>24456.722143</td>\n",
-                            "      <td>28.399692</td>\n",
-                            "    </tr>\n",
-                            "    <tr>\n",
-                            "      <th>max</th>\n",
-                            "      <td>208616.696105</td>\n",
-                            "      <td>293966.050000</td>\n",
-                            "      <td>163920.222512</td>\n",
-                            "      <td>98.055631</td>\n",
-                            "    </tr>\n",
-                            "  </tbody>\n",
-                            "</table>\n",
-                            "</div>"
-                        ],
-                        "text/plain": [
-                            "         Predictions         Target      Residuals  Difference%\n",
-                            "count     572.000000     572.000000     572.000000   572.000000\n",
-                            "mean   115670.583849  120025.710717    4355.126868    21.517588\n",
-                            "std     22941.875293   39330.902460   31032.826964    17.482142\n",
-                            "min     71040.429117   45263.340000  -63813.487107     0.127541\n",
-                            "25%     94828.761143   90459.230000  -17799.809897     8.428694\n",
-                            "50%    118220.278893  116320.655000    1400.734279    18.218184\n",
-                            "75%    129494.110343  148368.807500   24456.722143    28.399692\n",
-                            "max    208616.696105  293966.050000  163920.222512    98.055631"
-                        ]
-                    },
-                    "execution_count": 98,
-                    "metadata": {},
-                    "output_type": "execute_result"
-                }
-            ],
-            "source": [
-                "df_pf.describe()"
-            ]
-        }
-    ],
-    "metadata": {
-        "kernelspec": {
-            "display_name": "Python 3",
-            "language": "python",
-            "name": "python3"
-        },
-        "language_info": {
-            "codemirror_mode": {
-                "name": "ipython",
-                "version": 3
-            },
-            "file_extension": ".py",
-            "mimetype": "text/x-python",
-            "name": "python",
-            "nbconvert_exporter": "python",
-            "pygments_lexer": "ipython3",
-            "version": "3.8.5"
-        },
-        "title": "Sales Forecast for retail store",
-        "category": "Forecast"
-    },
-    "nbformat": 4,
-    "nbformat_minor": 4
-}
\ No newline at end of file