
Internetworking – Task 1
Prof. Dr. Marcus Schöller

Substask 1.1: Code analysis (5 points)
Analyze the provided source code in case the user issues a legal command. So far, the actual
command communication is not implemented (you have to do this in substask 1.2). Only the
preparatory step to request a cookie from the server is implemented.
You can use a debugger to observe the code during operation. You have to document protocol
stack initialization and the cookie request method all the way until a cookie is available to the
client or the request got rejected. Document your findings and visualize them in a sequence
diagram. Use class names as actors.

Subtask 1.2: Command Protocol: print command (5 points)
Once the client has a valid cookie, it can send command messages to the server. Implement all
functionality of the client to send a print command message to the server and to receive the
respond from the server.

1. Completion of send method in CPProtocol.
a. The client must only send command messages if a valid cookie was received.
b. Create a status command message object (see below).
c. Send to server. The PHY config is stored as an attribute in CPProtocol.

2. Implementation of receive method in CPProtocol.
a. For any command message sent, the client waits at most three seconds for a re-

sponse from the server. Call the appropriate receive method of the PHY layer.
b. Call the message parser to create a CP message object from the String object

received according to the protocol specification. If the parser throws an excep-
tion, the message shall be discarded.
Note: you can use the receive method of the cookie response message as a tem-
plate.

c. Check that the response matches the command message by comparing the mes-
sage id of the received message with id of the sent message.

3. Create and implement a message classes to create and parse command messages.
a. To calculate the crc-checksum use the CRC32 class of Java (https://docs.ora-

cle.com/javase/9/docs/api/java/util/zip/CRC32.html)
b. Add getter/setter methods as needed by other tasks.

Advanced feature for subtask 2
In case you finish early on this part and you want to improve your implementation further you
might want to enhance your implementation in the following way:

1. The message parsing should be implemented with regular expressions (RegEx). See
the Java RegEx tutorial for details:
https://docs.oracle.com/javase/tutorial/essential/regex/intro.html

This advanced feature is not mandatory to implement and will not provide any points for the
hands-on. It is rather experience you will gain from this J.

https://docs.oracle.com/javase/9/docs/api/java/util/zip/CRC32.html
https://docs.oracle.com/javase/9/docs/api/java/util/zip/CRC32.html
https://docs.oracle.com/javase/tutorial/essential/regex/intro.html

